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Abstract

Consider an irreducible algebraic space curve C which is implicitly defined as the
intersection of-two algebraic surfaces. There always exists a birationaJ correspondence
between the points of C and the points of an irreducible plane curve P whose genus
is the same as that of C. Thus C is rational iff the genus of P is zero. When f and
9 are not tangent along C we present a method of obtaining a projected plane curve
P together with a bhational mapping betweeen the points of P and C. Together with
[4], this method yields an algorithm to compute the genus of C and if the genus is zero,
the rational parametric equations for implicitly defined rational space curves C. As a
blproduct, this method also yields the implicit and parametric equations of a rational
surface containing the space curve.
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1 Introduction

Consider an irreducible algebraic space curve C which is implicitly defined as the intersec

tion of two algebraic surfaces f(x,y,z) = a and g(x,y,=) = O. 'Ve concern ourselves

with space curves defined by two surfaces since they are of direct interest to applications

in computer-aided design and computer graphics, see Boehm, et. al [7]. Irreducible space

curves in general, defined by more than two surfaces are difficult to handle equationally and

one needs to resort to computationally less efficient ideal-theoretic methods, Buchberger

[9]. However general space curves is a topic with various unresolved issues of mathematical

and computational interest and an aIea of important future research, Abhyankar [1].

Now for an irreducible algebraic space curve C as above, there always exists a birational

correspondence between the points of C and the points of an irreducible plane curve P

whose genus is the same as that of G, see Walker [18]. Birational correspondence between C

and P means that the points of C can be given by rational functions of points of P and vice

versa (i.e a 1-1 mapping, except for a finite number of exceptional points, between points of

C and P). Together, (i) the method of computing the genus and rational parameterization

of algebraic plane curves, Abbyaokar and Bajaj [4], and (ii) the method of this paper of

constructing a plane curve P along with a birational mapping between the points of P and

the given space curve G l gives an algorithm to compute the genus of C and jf genus = 0

the rational parametric equations of C.

In this paper we now show how, given an irreducible space curve C, defined implicitly

as the intersection of two algebraic surfaces, one is able to construct the equation of a plane

curve P and a birational mapping between the points of P and C. As a first attempt in

constructing P, we may consider the projection of the space curve C along any of the

coordinate a>..-is yielding a plane curve whose points are in correspondence with the points

of C. Projecting C along, say the z axis, can be achieved by computing the Sylvester

resultant of f and 9, treating them as polynomials in z, yielding a single polynomial in x

and y the coefficients of f and g. The Sylvester resultant eliminates one variable, in this

case z, from two equations, see Salmon 114]. Efficient methods are known for computing

this resultant for polynomials in any number of variables, see Collins [11L Baja j and
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Ro~'appa [5]. The Sylvester resultant of f and 9 thus defines a plane algebraic curve P.

However this projected plane curve P in general, is not in birational correspondence with

the space curve C. For a chosen projection direction it is quite possible that most points

of P may correspond to more than one point of C (i.e. a multiple covering of P by C)

and hence the two curves are not birationally related. However this approach may be

rectified, as e::\."'Plained in this paper, by choosing a valid projection direction which yields

a birationallJ" related, projected plane curve P.

There remains the problem of constructing the birational mapping between points on

P and C. Let the projected plane curve P be defined by the polynomial h(x,Y). The map

one way is linear and is given trivially by x = x and fi = y. To construct the reverse

rational map one only needs to compute z = I(x, ii) where I is a rational function. Vile

show in this paper how it is always possible to construct this rational function by use of

a polynomial remainder sequence along a valid direction. In fact the resultant is no more

than the end result of a polynomial remainder sequence, see Bocher [6], Collins [10].

Note additionally that the reverse rational map, z = I(x, ii) where I is a rational

function is also the rational parametric equation of a rational surface containing the space

curve C. Hence constructing a birational mapping between space and plane CUD'es which

always exists, also yields an explicit rational surface containing the space curve. By an

explicit rational surface we mean. one with a known or trivially derivable rational param

eterization. For irreducible space curves C, a method of obtaining an e>""'Plicit rational

surface containing C, is given (without proof) in Snyder and Sisam [17J. The technique

presented here is similar, but uses a subresultant polynomial remainder sequence, which

for an appropriately chosen coordinate direction, provides an efficient way of obtaining the

reverse rational map as well as an e>""Plicit rational surface containing C.

It is important to note that conversely knowing the rational parametric equations of a

rational surface containing a space curve, yields a birational mapping between points on

the space curve and a plane curve. Namely, if one of the two surfaces f or 9 defining the

space Clln'e C, or actually any known surface in I(!, g), the Ideall of the curve generated

11(J, g) :;; {h( x )y, z) Ih :;; o:f + (3g for any polynomials a(x, y,.z) and ,6(:c, y,.zn.
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by! and 9 is rational with a known rational parameterization, then points on C are easily

mapped to a single polynomial equation h(s, t) = 0 describing a plane curve P in the

parametric plane s - t of the rational surface. This mapping between the (x, Y 1 z) points

of C and the (8, t) points of Pis birational with the reverse rational map, from the points

on P to points on C being given by the parametric equations of the rational surface. For

space curves C which have a quadric or a rational cubic surface in its Ideal, the plane curve

P and the rational mapping from the points on P to C are easily constmcted by using

known techniques for parameterizing these rational surface, see Abhyankar and Bajaj [2,3],

Sederberg and Snively [16J.

The rest of this paper is structured as follows. Section 2 describes a method of choosing

a valid direction of projection for the space curve C. This then also yields a projected

plane curve P in birational correspondence to C. Using these results, Section 3 describes

a method of constructing the reverse rational map between points on the plane curve P

and points on C.

2 Valid Projection Direction

To find an appropriate axis of projection, the following general procedure may be adopted.

Consider the linear transfonnation x = alxl + bIYl + CIZl, Y = a2xl + b2Yl + C2Z1 and z

= 0SXl + b3Yl + CSZI. On substituting into the equations of the two surfaces defining the

space curve we obtain the transformed equations fl(XI, YI, zd = 0 and 9I(XI 1 Yb ZI) = O.

Next compute the RCSZ1 (!1,91) which is a polynomial h(XllYI) describing the projection

along the Z axis of the space curve C onto the z = a plane.

Since C is irreducible and f and 9 are not tangent along C, the order of h(XI, YI)

IS exactly equal to the projection degree, see [1]. By order of h(xll YI) we mean k, if

h(XI' YI) = (g(XI' YI)t· For a birational mapping we desire a projection degree equal

to one. Hence, we choose the coefficients of the linear transfonnation, a;, bi and Ci such

that (i) the determinant of ai, bi and Ci is non zero and (ii) the equation of the projected

plane curve h(xll Yl) is not a power of an irreducible pol~'nomial. The latter can be
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achieved by making the discriminant Res=l (h, h=l) to be non zero. Nate, a random choice

of coefficients would also work 'with probability 1, since the set of coefficients which make

the determinant and Res=l(h,h=l) equal to zero, are restricted to the points of a lower

dimensional hypersurface. See [15] where the notion of randomized computations with

algebraic varieties is made precise. A suitable choice of coefficients thus ensures that the

projected irreducible plane curve given by h(Xl, YI) is in birational correspondence with

the irreducible space curve and thus of the same genus. The parameterization methods of

Abhyankar and Bajaj [4] for algebraic plane curves are now applicable and thereby yield a

genus computation as well as an algorithm for rationally parameterizing the space curve.

3 Constructing the Birational Map

We choose a valid projection direction by the method described in the earlier section.

Without loss of generality let tIllS direction be the Z axis. Let the surfaces f( X, Y, z) = 0

and g(x, y, z) = 0 be of degrees ml and m2 in z, respectively. Again, without loss of

generality,assumeml > m2' LetF1 = f(x,y,z)andF2 = g(x,y,z) be givenb;y

fo zm1 + 11 Zm1-1 +

go Zm2 + gl Zm2-1 +
+ Iml-1 Z + 1m,

+ gm2-1 Z + gm2 (1)

with 1;, (j = 0 ... ml) and 9k, (k = 0 m2), denoting polynomials in X,v. Then, there

e:"'"1st polynomials Fi+2(X, y, z), for i = 1 k, such that A.i F i = Qj F:"+l + B; F,'+2 with

m'+2, the degree of z in F i+2, less than mi+l, the degree of z in Fi+! and certain polynomials

A,(x, y), Qi(X, y, z) and Bi(x, V). The polynomials ~"+2' i = 1,2, ... form, 'what is known

as a pol~ynomial remainder sequence and can be computed in various different ways: as we

now describe.

Let Ic(A) denote the leading coefficient of polynomial A, viewed as a polynomial in z,

(i.e. coefficient of term 'with highest z degree). Further let Cj denote Ic(F;). To compute

Fi+2 from F i and F i +! we first begin with R? = F i and then,

for k = I, ... ,mj - mj + 1 + 1
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if Ic(R: - 1) = 0

then R'• R' -1•

(2)

Th 1 . 1 R m ; - mi+1+1 . 1 h d . d f F. d F. to .e po ynoffila i 15 ~nown as t e psue o-remaIll er 0 i an ;+1" Ismg
R,;,,-m,+l+l

Collin's reduced PRS method (10], one constructs the polynomial F i+2 d
i
_ l

where do - 1 and d; C~l-m;+l+l. Using Brown's subresultant FRS scheme [8],
mj-mi+l+ 1

one constructs the polynomial F i+2 = (_l)m i - mifl+
1

R j Ci Em- where Eml = 1 and,
mi-mi+l

Ern;+I = ~!1 ro,f] 1. As shown by Loos [13L both the above methods, as well as others,
,

follow naturally from the subresultant theorem of Habicht [12].

Thus starting with polynomials F l and F2 one constructs the polynomial remainder

sequence, F1 ,F2,F31 ••• Fi, .. Fr with mi, the z degree of F,-less than mi-l, the z degree

of F i - 1 and fir = 0 (i.e. Fr being independent of z). 'Ve choose the subresultant PRS

scheme for its computational superiorit~yand also because each F i = Sm,_l-l, 1 ::; i ::; r,

where Sk is the kth subresultant of F1 and F2 , see [6, 8, 10, 12].

Now for any i, if F i _ 1 and F i are of degree greater than two and F iH is independent of z

then the Z axis is not a valid projection direction. This may be seen as fo1101\'S. Since the Z

axis was chosen as a valid projection direction, the Res:;[j(x, y, z), g(x, y, z)] ;;::;; Res.=[F1 , F2]

is non-zero and not a multiple of some irreducible polynomial. This holds for any two sur

faces f = F i _ 1 and F j in the polynomial remainder sequence where each of the subresul

tants is also not a multiple of some irreducible polynomia1. To complete the argument, it

remains to see that by induction if F i_ 1 and F,. are of say degree three and two respectivel;y

and F i+1 is independent of z then the Res:(Fi _ ll Fj ) is equal to some h3(x,y), which is

impossible.

Hence in the polynomial remainder sequence there exists a polynomial remainder which

is linear in z, i.e., Fr _ 1 = Z<lll(X, y) - !P2(X, y) = O. Thus on computing the polynomial

remainder sequence and obtaining Fr _ 1 , one is able to construct the required inverse map,

z = ~2(t' 11), which also is a rational surface containing the space curve. The rational
1 Z, y

parameterization of this mtional swface is trivially given by x = s, y = t and == :~~:: ~l.
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4 Conclusion

The method of the earlier sections of constructing the inverse rational map as well as a

rational surface containing the space clln'e can be applied for reducible as well as irreducible

curves, defined implicitly as the intersection of two surfaces. The one limitation however is

the assumption of non-tangency of the surlaces meeting along the space curve. It remains

open to construct a birational map as well as a rational surfa.ce containing a space curve

when the two surfaces defining the space curve are also tangent along the entire curve.

Acknowledgements: We wish to thank Chris Hoffmann for bringing reference [17] to

our attention and Joe Warren for many useful discussions.
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