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Abstract

Consider an irreducible algebraic space curve £ which is implicitly defined as the
intersection of two algebraic surfaces. There always exists a birational correspondence
between the points of € and the points of an irreducible plane curve P whose genus
is the same as that of €, Thus C is rational iff the genus of P is zero. When f and
¢ are not tangent along C we present a method of obtaining a projected plane curve
P together with a birational mapping betweeen the points of P and C. Together with
[4], this method yields an algorithm to compute the genus of C' and if the genus is zero,
the rational parametric equations for implicitly defined rational space curves C. As a
biproduct, this method also yields the implicit and parametric equations of a rational
surface containing the space curve.
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1 Introduction

Consider an irreducible algebraic space curve C' which is implicitly defined as the intersec-
tion of two algebraic surfaces f(z,y,z) = 0 and ¢(z,y,2) = 0. We concern ourselves
with space curves defined by two surfaces since they are of direct interest to applications
in computer-aided design and computer graphics, sce Boehm, et. al [7]. Irreducible space
curves in general, defined by more than two surfaces are difficult to handle equationally and
one needs to resort to computationally less efficient ideal-theoretic methods, Buchberger
[9]. However general space curves is a topic with various unresolved issues of mathematical

and computational interest and an area of important future research, Abhyankar [1].

Now for an irreducible algebraic space curve C as above, there always exists a birational
correspondence between the points of C and the points of an irreducible plane curve P
whose genus is the same as that of C, see Walker [18). Birational correspondence between C
and P means that the points of C can be given by rational functions of points of P and vice
versa (i.e a I-1 mapping, except for a finite number of exceptional points, between points of
C and P). Together, (¢) the method of computing the genus and rational parameterization
of algebraic plane curves, Abhyankar and Bajaj [4], and (¢¢) the method of this paper of
constructing a plane curve P along with a birational mapping between the points of P and
the given space curve C, gives an algorithm to compute the genus of €' and if genus = 0

the rational parametric equations of C.

In this paper we now show how, given an irreducible space curve C, defined implicitly
as the intersection of two algebraic surfaces, one is able to construct the equation of a plane
curve P and a birational mapping between the points of P and C. As a first attempt in
constructing P, we may consider the projection of the space curve C along any of the
coordinate axis yielding a plane curve whose points are in correspondence with the points
of C. Projecting C along, say the z axis, can be achieved by computing the Sylvester
resultant of f and g, treating them as polynomials in z, yielding a single polynomial in z
and y the coefficients of f and ¢. The Sylvester resultant eliminates one variable, in this
case z, from two equations, see Salmon [14]. Efficient methods are known for computing

this resultant for polynomials in any number of variables, see Collins [11], Bajaj and



Royappa [5]. The Sylvester resultant of f and ¢ thus defines a plane algebraic curve P.
However this projected plane curve P in general, 1s not in birational correspondence with
the space curve C. For a chosen projection direction it is quite possible that most points
of P may correspond to more than one point of C (i.e. a multiple covering of P by C)
and hence the two curves are not birationally related. However this approach may be
rectified, as explained in this paper, by choosing a valid projection direction which vields
a birationally related, projected plane curve P.

There remains the problem of constructing the birational mapping between points on
P and C. Let the projected plane curve P be defined by the polynomial A(Z, 7). The map
one way is linear and is given trivially by # = z and § = y. To construct the reverse
rational map one only needs to compute z = I(Z,#) where I is a rational function. We
show in this paper how it is always possible to consiruct this rational function by use of
a polynomial remainder sequence along a valid direction. In fact the resultant is no more

than the end result of a polynomial remainder sequence, see Bocher [6], Collins [10].

Note additionally that the reverse rational map, 2 = I(%,7) where I is a rational
function is also the rational parametric equation of a rational surface containing the space
curve . Hence constructing a birational mapping between space and plane curves which
always exists, also yields an explicit rational surface containing the space curve. By an
explicit rational surface we mean one with a known or trivially derivable rational param-
eterization. For irreducible space curves ¢, a method of obtaining an explicit rational
surface containing C, is given (without proof) in Snyder and Sisam [17]. The technique
presented here is similar, but uses a subresultant polynomial remainder sequence, which
for an appropriately chosen coordinate direction, provides an efficient way of obtaining the

reverse rational map as well as an explicit rational surface containing C.

It 1s important to note that conversely knowing the rational parametric equations of a
rational surface containing a space curve, yields a birational mapping between points on
the space curve and a plane curve. Namely, if one of the two surfaces f or ¢ defining the

space curve C, or actually any known surface in I(f, g), the Ideal’ of the curve generated

*I(f,9) = {h(z,v,2) | h = af + Bg for any polynomials «(z,¥,2) and B(z,y,z)}.



by f and ¢ is rational with a known rational parameterization, then points on C are easily
mapped to a single polynomizal equation hA{s,f) = 0 describing a plane curve P in the
parametric plane s — ¢ of the rational surface. This mapping between the (z,y, ) points
of C and the (s,t) points of P is birational with the reverse rational map, from the points
on P to points on C being given by the parametric equations of the rational surface. For
space curves (' which have a quadric or a rational cubic surface in its Ideal, the plane curve
P and the rational mapping from the points on P to C are easily constructed by using
known techniques for parameterizing these rational surface, see Abhyankar and Bajaj [2,3],
Sederberg and Snively [16].

The rest of this paper is structured as follows. Section 2 describes a method of choosing
a valid direction of projection for the space curve C. This then also yields a projected
plane curve P in birational correspondence to €. Using these results, Section 3 describes
a method of constructing the reverse rational map between points on the plane curve P

and points on C.

2 Valid Projection Direction

To find an appropriate axis of projection, the following general procedure may be adopted.
Consider the linear transformation z = a1z + bjyy + c121, ¥y = @71 + boty + 1 and z
= agT1 + bayy + c3z;. On substituting into the equations of the two surfaces defining the
space curve we obtain the transformed equations fi(z1,v1,2) = 0and g1(z1,¥1.2) = 0.
Next compute the Res, (f1,01) which is a polynomial i(z;,y;) describing the projection

along the Z axis of the space curve C onto the z = 0 plane.

Since €' is nrreducible and f and g are not tangent along C, the order of h(z;,3)

1s exactly equal to the projection degree, see [1]. By order of k(zy,y;) we mean k, if

h(zl,yl) = (g(mlayl))k‘

to one. Hence, we choose the coefficients of the linear transformation, ¢;. b; and ¢; such

For a birational mapping we desire a projection degree equal

that (¢) the determinant of a;, b; and ¢; is non zero and (i) the equation of the projected

plane curve h{zy,y:) is not a power of an irreducible polynomial. The latter can be
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achieved by making the discriminant Res_, (h, h.,) to be non zero. Note, a random choice
of coefficients would also work with probability 1, since the set of coefficients which malke
the determinant and Res,, (h, ks, ) equal to zero, are restricted to the points of a lower
dimensional hypersurface. See [15] where the notion of randomized computations \-\-'ith
algebraic varieties is made precise. A suitable choice of cocfficients thus ensures that the
projected irreducible plane curve given by h(z;, ) is in birational correspondence with
the irreducible space curve and thus of the same genus. The parameterization methods of
Abhyankar and Bajaj [4] for algebraic plane curves are now applicable and thereby yield a

genus computation as well as an algorithm for rationally parametenzing the space curve.

3 Constructing the Birational Map

We choose a valid projection direction by the method described in the earlier sectiom.
Without loss of generality let this direction be the Z axis. Let the surfaces f(z,y,z) = 0
and g(z,y,z) = 0 be of degrees m; and m, in z, respectively. Again, without loss of

generality, assume m; > m,. Let F; = f(z,y,2z) and F; = g(z,y,2) be given by

Fi = foz™ + fiz™V 4+ L+ faaz + f

F2 = Jo z7? + [#51 zm2_1 + . + Gmz=-1 % + Hma (1)

with f;, (7 = 0...my) and g, (k = 0 ... my), denoting polynomials in z,y. Then, there
exist polynomials Fi;5(z,y,2), fort = 1 ..k, such that 4; F; = @Q; Fiyx + B: Fiyp with
Miy2, the degree of z in Fi1,, less than myy;, the degree of z in F}4; and cerizin polynomials
Adz,y), Qi(z,y,z) and By(z,y). The polynomials Fiyz, i = 1,2, ... form, what is known
as a polynomial remainder sequence and can be computed in various different ways, as we

now describe.

Let lc(4) denote the leading coefficient of polynomial 4, viewed as & polynomial in 2,
(i.e. coefficient of term with highest z degree). Further let ¢; denote Ic(F;). To compute
Fi;y from F; and Fiy; we first begin with R? = F; and then,

for k =1 ..,m —mi+1+1



if Il(RF-1) =0
then RF = RF-1

else Rf = cyy RETH — 2 etk (R P (2)
The polynomial B ~ ™**! is known as the psuedo-remainder of F; and Fi.;. Using
Collin’s reduced PRS method [10], one constructs the polynomial Fi, = 53%;;-1:—1-
where dg = 1 and d; = cfy; """, Using Brown’s subresultant PRS scheme [8],
one constructs the polynomial Fiy, = (—1)™ - ™l E% where E,,, = 1 and
E = i,:*l_mll—r As shown by Loos [13], both the above methods, as well as others,

mi41 Ern: 41—
follow naturally from the subresultant theorem of Habicht [12].

Thus starting with polynomials F; and F3 one constructs the polynomial remainder
sequence, I3, 5y, F;, ... F;, .. F, with m;, the z degree of F; less than m;_, the z degree
of F;i_; and m, = 0 (i.e. F; being independent of z}. We choose the subresultant PRS
scheme for its computational superiority and also because each F; = 5, _ 1,1 £ 7 < 7,

where S, is the &** subresultant of F} and Fy, see [6, 8, 10, 12].

Now for any i, if F;_; and F; are of degree greater than two and F},, is independent of z
then the Z axis is not a valid projection direction. This may be seen as follows. Since the Z
axis was chosen as a valid projection direction, the Res.[f(x,y, 2), ¢(z,y,2)] = Res.[F}, F3]
is non-zero and not a multiple of some irreducible polynomial. This holds for any two sur-
faces f = F;_, and F; in the polynomial remainder sequence where each of the subresul-
tants is also not a multiple of some irreducible polynomial. To complete the argument, it
rernains to see that by induction if F;_; and F; are of say degree three and two respectively
and Fi;y is independent of z then the Res.(Fi_;, F;) is equal to some h3(z,y), which is
impossible.

Hence in the polynomial remainder sequence there exists a polynomial remainder which
is linear in z, i.e., Fry = z®;(z, y) — ®o(z, y) = 0. Thus on computing the polynomial

remainder sequence and obtaining F,_;, one is able to construct the required inverse map,

z = %’1{—(3:'—’;—), which also is a rational surface containing the space curve. The rational
parameterization of this rational surface is trivially givenbyz = s,y = tandz = %f{-i:—%.
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Conclusion

The method of the earlier sections of constructing the inverse rational map as well as a

rational surface containing the space curve can be applied for reducible as well as irreducible

curves, defined implicitly as the intersection of two surfaces. The one limitation however is

the assumption of non-tangency of the surfaces meeting along the space curve. It remains

open to construct a birational map as well as a rational surface containing a space curve

when the two surfaces defining the space curve are also tangent along the entire curve.

Acknowledgements: We wish to thank Chris Hoffmann for bringing reference [17] to

our attention and Joe Warren for many useful discussions.
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