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1. Introduction. In aseries of papers published during the past four years, the classical
problems pertaining to the various sequences of ellipsoidal figures of equilibrium of
homogeneous masses have been reconsidered with a view to clarifying the many aspects
of the sequences which had been only partially or imperfectly examined in the earlier
literature. In this paper, we shall attempt to explain in general terms the origin of some of
the more striking aspects of the sequences.

2. The different ellipsoidal sequences. We shall first briefly describe the different
sequences which have been considered noticing particularly those features which appear
to call for some explanation.

a) The Maclaurin and the Jacobian sequences. These are the figures of equilibrium
of uniformly rotating masses. The Maclaurin sequence 1s a sequence of oblate spheroids
along which the eccentricity (e) of the meridional sections increases from zero to one.
A feature of the sequence which caused considerable surprise, at the time it was discovered
by D’Alembert, is that along the sequence the square (22) of the angular velocity of rotation
is not a parameter of unrestricted range; and that for each value of 92, less than a certain
determinate maximum, there are two permissible spheroidal figures of equilibrium. It
was indeed this last circumstance that led Jacobi first to suspect, and then to verify, that
a sequence of genuine tri-axial ellipsoids of equilibrium branches off from the Maclaurin
sequence. This is the first of several points of bifurcation which distinguish the permissible
sequences of figures of equilibrium of uniformly rotating homogeneous masses. Besides
the point along the Maclaurin sequence where the Jacobian sequence of ellipsoids branches
off, greatest interest has been attached to the point of bifurcation, discovered by Poincaré,
along the Jacobian sequence, where a new sequence of pear-shaped configurations
branches off.

b) The Jeans sequence. The Jeans sequence is a sequence of prolate spheroids in
equilibrium under the constant tidal action of a fixed rigid spherical mass M’. (This problem
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is «unphysicaly to the extent that it considers the two objects as at rest and ignores the
relative accelerations to which they must be subject.) The parameter which measures the
intensity of the tidal field and determines the eccentricity (¢) of the Jeans spheriod is

1) i = GM'[RS

where R is the distance between the centers of mass of the two objects.

Along the Jeans sequence, the eccentricity of the spheroids varies from zero to one.
But equilibrium figures do not exist when R is less than a certain minimum value; and
for each value of R, in excess of this minimum, there are two permissible figures of
equilibrium.

¢) The Roche sequences. Roche’s problem is concerned with the equilibrium of a
ho.nogeneous mass M rotating about a rigid spherical mass M’ in a circular Keplerian
orbit of radius R . Under these circumstances, the mass M is subject not only to the centri-
tugal force appropriate to the angular velocity given by

2) Q2= G(M+ M)k,
but also to the tidal action of M’; the magnitude of the latter is measured by (1). By writing

3) 22=(1+p)u where p= M/M',

it is clear that we obtain different sequences for different initially assigned values of p .

Along each Roche sequence, £2 attains a maximum value (and simultaneously, R
attains a minimum value); and there are two figures of equilibrium for each allowed
separation.

In the limit p — oo, the Roche sequence tends to the combined Maclaurin-Jacobi
sequence (which consists of the Maclaurin sequence up to the point of bifurcation and of
the Jacobian sequence beyond). Also, by letting p take the «unphysicaly value -1, we for-
mally obtain the Jeans sequence. The relationships between the Maclaurin, the Jacobi,
and the Roche sequences are exhibited in Figure 1.

d) The Darwin sequence. Darwin’s problem is concerned with the equilibrium of two
homogeneous masses rotating about one another in a manner which maintains their relative
dispositions. It differs from Roche’s problem in that allowance is made for the centrifugal
and the tidal distortions of otk components.

The results for the case, when the two components are of equal mass and are further
congruent, are shown in Figure 2. It will be observed that along the Darwin sequence
the maximum angular velocity of orbital rotation does not occur at the distance of closest
approach.
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Fig. 1. The relationships among the Maclaurin, the Jacobi, the Jeans, and the Roche sequences. The
ordinates and the abscissae are the normalized values, @1 = a1f/(a1aza3)Y/3 and a2 = az/(a1azas)V/3, of two
of the principal axes of the equilibrium ellipsoid (or spheroid). The undistorted sphere is represented by S,
the Maclaurin sequence by SM3"”, the Jacobian sequence by M2 ], the Jeans sequence by ST, and the Roche
sequences (labeled by the values of p = M/M’ to which they belong) are confined to the domain bounded
by the combined Maclaurin-Jacobi sequence, SM:J, and the Roche sequence, SRo, for p = 0. The first
point of bifurcation along the Maclaurin sequences occurs at Mz (e = 0.8127); at Ms' (e = 0.8993) and
Ms"” (e = 0.9694) occur further neutral points belonging to the third harmonics. At the points O2(e = 0.9529)
and O3 (e = 0.9670) the Maclaurin spheroid becomes unstable by modes of overstable oscillation belonging to
the second and the third harmonics; and at Mumax (e = 0.9300), {22 attains its maximum values along SMs"".
The Jacobi ellipsoids become unstable by a2 mode of oscillation belonging to the third harmonics at [J3
(@1 = 1.8858; a2 = 0.8150) where the pear-shaped sequence branches off; also, along the entire sequence MsJ
the Jacobi ellipsoids are characterized by a neutral mode of oscillation belonging to the second harmonics.
At the points T2 (e = 0.8830) and T's (e = 0.9477) the Jeans spheroids become unstable by modes of oscilla-
tion belonging to the second and the third harmonics. The Roche limit where £22 and p attain their maxima
along the different Roche sequences is represented by the dashed curve joining M2 and T ; and the locus
of points where instability sets in by a mode of oscillation belonging to the second harmonics is shown by
the heavy curve joining M2 and T2 . The locus of the neutral point (belonging to the third harmonics) is shown
by the curve joining Ts and Js. Note that the Jacobi ellipsoids are to be considered unstable in the limit
p —> .
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Fig. 2. The variation of the distance (R) between the centers of mass of the two components and of the
semi-major axis (41) along the Darwin sequence of congruent components of equal mass. Along the sequence
we distinguish the points T; , T, | and Qmax where the total angular momentum of the system (1ly) , the
orbital angular momentum and the angular momentum of only one of the components (11lz) , and the angular
velocity (£2) attain their extreme values. At R;, where the curves %]_2 and a1 cross, the two components are
in contact; contact occurs very nearly at the distance of closest approach. The Roche limit (where the equilib-
rium ellipsoid can be deformed into a neighboring equilibrium ellipsoid by an infinitesimal solenoidal dis-
placement of the form (21)) occurs at R. L.; and instability by a mode of oscillation belonging to the second
harmonics sets in at S. L. The results for the Roche sequence for the case M/M’ = 1 are included for com-
parison; along this sequence, besides the Roche limit (R. L.) and the stability limit (S. L.), we have also the
point (P) where instability by a mode of oscillation belonging to the third harmonics sets in.

3. Integral properties derived from the virial theorem and its extensions.
The principal features of the different sequences described in the preceding section are
most easily understood in terms of the integral properties one obtains by taking the first
and the second moments,* with respect to the space co-ordinates x;, of the equation of
motion governing the fluid.

For the case of a mass rotating uniformly with an angular velocity £2 about the x3 -axis,
the moment equations are:

* The zero-order moment is related to the motion of the center of mass and is not of interest in the present
connection.
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4 @By + L2 Ly — 043 135) + 115 = 0
and
(5) ABsjsx + Wirss L+ 22 (Lije — Se3 Iagx) + 11 0ps + g 855 =0,
where
© = f pax, = [ pusax
14 14

(7) Iij = f 0XiXj dx , Iij/c ==z f OXiXjXk ax ’

|4 14

1 1
(8) %ﬁ=-——§f9@zjdx, %ij;k=—§fg By xx dx,

14 WV

and By; is the tensor potential

©) By =6 | o) 22 g
/

x—x' |3

In the foregoing definitions, the integrations are effected over the entire volume ¥V occupied
by the fluid; also, p denotes the pressure and p the density.

Equations (4) and (5) are the second and the third order virial equations governing
the equilibrium of uniformly rotating bodies. They are entirely general: they are in no way
dependent on any constitutive relations that may exist; and, equations similar to them
can be readily written down for bodies subject to centrifugal and tidal forces, simultaneously.

Writing out equation (4) explicitly for the different components and eliminating I7
between them, we obtain the set of equations

(10) Ti3 =13 =10, @B13 = W23 = 0,

(11) B2 + 212 =0,

(12) @B11 — Wez + L2211 —122) =0,

and

(13) AB11 + MWeo — 2 sz + 22 (J11 + 122) = 0.

We can write down a similar set of «canonicaly equations for the third-order tensors
@Bis; % and Iy . But for the illustrative purposes of this paper, it will suffice to note the
following particular case of equation (5):

(14) 2 @B12;2 + 221122 =0,
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4. The points of bifurcation along the Maclaurin and the Jacobian sequences.
With the integral properties provided by the virial equations (4) and (5), it is a particularly
simple matter to exhibit and isolate the points of bifurcation along the Maclaurin and the
Jacobian sequences.

Considering first the point of bifurcation along the Maclaurin sequence where the
Jacobian sequence branches off, we observe that at this point we should be able to deform
the Maclaurin spheroid into a tri-axial ellipsoid without, in any way, affecting the equi-
librium. And this fact alene suffices, as we shall presently see, to isolate the point of bifurca-
tion in question.

Now an infinitesimal displacement % that deforms a spheroid into a tri-axial ellipsoid
and does not, at the same time, affect its angular momentum is

(15) §1=0x2,& = Px1,and &3 =0,

where a and f are two infinitesimal constants. A necessary condition that the displacement
does not violate the equilibrium of the spheroid is that the first variations of equations
(10) — (13) vanish.

It is evident that

(16) 0811 = 0 M2 =0 Wz =0and 013 = dlos =6 J13=013=0,

where 6QB11, 6 QB22, etc., are the variations in the respective quantities induced by
the displacement (15). Equations (10), (12), and (13) are, therefore, invariant tothe dis-
placement (15). But it is not true that the corresponding first variation of equation (11)
vanishes at an arbitrarily selected point along the Maclaurin sequence. A necessary condi-
tion for the occurrence of a point of bifurcation where a sequence of ellipsoids branches
off is, therefore,

(17) 0 QP12 + 226112 =

Tt can be readily verified that the condition which follows from equation (17) as a require-
ment for not violating equilibrium is exactly the same as the one which determines the
point where the Jacobian sequence branches off from the Maclaurin sequence.

In a similar way, the point along the Jacobian sequence where the sequence of the pear-
shaped configurations branches off can be isolated. Thus, an infinitesimal displacement
which will deform a tri-axial ellipsoid (with semi-axes a1, a2, and as) into a pear-shaped
body, preserving its homogeneity, is given by

3

— 0 x>
(18) £; = constant Er X1 (izl i 1) ,

where A is the larger of the roots of the equation
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3 1 1
19 =0.
( ) a12—l—ﬂ+a22-{—}.+a32—|—l

The application of the displacement (18) to an arbitrary member of the Jacobian sequence
will affect the equilibrium of the body; a necessary condition that it does not is that the
first variations, of the entire set of the «canonical equations» which follows from equation (5)
vanish. In particular, we must certainly require that (cf. eq. [14])

(20) 20 qBiase - 022011220 =10

where 8qB12;2 and 6 I122 are the variations in QB12;2 and I122 due to the deformation of
the ellipsoid caused by the displacement (18). And it can be verified that the condition
which follows from equation (20), as a requirement for not violating equilibrium, is equiva-
lent to the one which determines the point where the sequence of the pear-shaped con-
figurations branches off from the Jacobian sequence.

It 1s clear that at points of bifurcation, likeIthe two we have considered, there must
occur neutral modes of oscillation belonging to zero proper frequencies. But one cannot
be certain, on this ground alone, that instability occurs in the sense that on one or the
other side of the point of bifurcation the object is characterized by an imaginary (or a
complex) frequency of oscillation in an analysis of its normal modes. Thus, along the
Maclaurin sequence, in the absence of any viscous or dissipative mechanism, the normal
mode that becomes neutral at the point of bifurcation has real proper frequencies on both
sides of the point; but if viscosity is present* instability (with an e -folding time dependent
on the magnitude of the viscosity) does occur on the side of the Jacobian sequence. On
the other hand, along the Jacobian sequence, where the sequence of the pear-shaped con-
figurations branches off, true instability sets in: beyond the point of bifurcation, there
exists, for the Jacobi ellipsoid, a proper mode of oscillation belonging to an imaginary
characteristic frequency. That such an unstable mode (belonging to the third harmonics)
exists for the Jacobi ellipsoid was established by Cartan in 1924. But the underlying charac-
teristic value problem was solved only recently; and Figure 3 exhibits the behavior along
the sequence of the characteristic frequency which leads to the instability of the Jacobi
ellipsoid.

We may refer to two related matters. First, along the entire Jacobian sequence, there
exists a non-trivial neutral mode of oscillation belonging to the second harmonics. A Jacobi
ellipsoid has thus only four modes of oscillation, with finite frequencies, which belong to
the second harmonics; this is in contrast to the Maclaurin spheroid which has five such
modes. This curious circumstance is due to the fact that the equation which determines

* 'To avoid possible misunderstandings, it may be stated that allowance for viscosity has no effect either
on the structure of equilibrium configuration or on the location of the point of bifurcation.
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Fig. 3. The squares of the characteristic frequencies 62 (in the unit 7Gp) of the two lowest modes of
oscillation (belonging to the third harmonics) of the Jacobi ellipsoid. The instability of the Jacobi ellipsoid
sets in via the mode labeled by 1.

£22 along the Jacobian sequence coincides with the condition (17) without any prior require-
ments*,

Second, even as the condition (20) enablesTus to determine the onset of instability
along the Jacobian sequence by a mode of oscillation belonging to the third harmonics,
analogous conditions (derived from appropriately generalized virial equations of the third
order) enable us to determine the corresponding points of instability along the Jeans,
the Roche, and the Darwin sequences.

5. The occurrence of a maximum Q2 along the Maclaurin and the Roche
sequences. We have already remarked that along the Maclaurin and the Roche sequences,
2 attains a maximum. We shall now show that this attainment of a maximum 2, in
the two cases, has a common origin.

Quite generally, we ask: can we deform an equilibrium ellipsoid into a neighboring equilibrium
ellipsoid which belongs to the same sequence ?

* From another point of view, the real «curiosity» (as Kelvin has expressed) is the existence of the Jacobi
ellipsoids: for, if ellipsoidal figures of equilibrium exist, then their equilibrium cannot be affected by a simple
rotation about the x3 -axis ; and this is exactly what the displacement (15) accomplishes: it rotates the ellipsoid
about the x3 -axis by the infinitesimal angle dp = (aas® + fai?)/(a22 — a1?) . In other words, the invariance
of the equilibrium to rotations about the x3 -axis requires that the angular velocity be determined consistently
with equation (17)!
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Now a tri-axial ellipsoid can be deformed into a neighboring ellipsoid by the dis-
placement

(21) &; = o4 x; (no summation over the repeated indices),

where the a; ’s are infinitesimal constants satisfying the condition,

3
(22) Z =0,
i=1
required to preserve the homogeneity of the ellipsoid.
In general, the deformation of an ellipsoid by the displacement (21) will affect its

equilibrium. Thus, in the case of uniformly rotating masses, the condition that equilibrium
be unaffected, will require, in particular, that (cf. egs. [12] and [13])

(23, 0 AB11 —- 6 Waz + 22(6 [11 — 6123) = 0
and
(24) 011 + 0 W22 — 2 0 IBasz + 22(6 111 + 0122) = 0,

for the deformation caused by the displacement (21); the remaining equations (10) and (11)
are clearly invariant to this displacement.

For the displacement (21), the first variations of the diagonal elements of QB and Iy
do not vanish. Equations (22) —(24) provide, in fact, a set of three linear homogeneous
equations for the a;’s. The existence of a non-vanishing solenoidal displacement of the form
(21) requires, as a necessary condition, the vanishing of the determinant of the equations
for the a;’s which follow from equations (22) —(24). It can be readily shown that, when
applied to the Maclaurin sequence, this condition is the same as the one which determines
the maximum of £2 along the sequence.

Similarly, by using the appropriate generalizations of equations (23) and (24), we
find that the condition, that a Roche ellipsoid allows an infinitesimal solenoidal displace-
ment which will deform it into a neighboring equilibrium ellipsoid, is met exactly where
£22 attains its maximum value.

In the context of the foregoing remarks relative to the Roche ellipsoids, it should
be noted that, along the Darwin sequence, the point at which a Darwin ellipsoid allows
deformation by a solenoidal displacement of the form (21), without violation of its equi-
librium, is quite different from the points where £22 and R attain their respective extremes
(see Fig. 2).

6. The point where instability sets in along a Roche sequence. It is clear from
the remarks in Section 5 that we have no basis for associating with our ahility to deform
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a Roche ellipsoid into a neighboring equilibrium ellipsoid any indication relative to its
stability or instability. Indeed, a rigorous theory of small oscillations shows that instability
occurs, by a mode of oscillation belonging to the second harmonics, subsequently to the
attainment of the maximum of 022 at the so-called Roche limit. Moreover, at the point
where instability occurs, one of the characteristic roots ¢2 (belonging to modes with a
time-dependence of the form e?°t) vanishes; and £22 does not attain its maximum at this
point. It is important to note that, in this context, no simple consideration, based on the
equations governing equilibrium, can correctly predict the onset of instability since
at that point the corresponding normal mode is not stationary: its dependence on time is
that of a polynomial in # (which is not inconsistent with ¢2 = 0 with an assumed time de-
pendence of the form e?9?); and this particular dependence arises from two characteristic
roots vanishing simultaneously at the point. Thus, we have here an example in which 62 = 0
at the onset of instability; but the corresponding normal mode is not stationary. It is
on this last account that there is no point of bifurcation along a Roche sequence.

And finally, it is worth noting that according to the theory of the small oscillations
(referred to in the preceding paragraph), in the limit p — oo, the entire Jacobian part of
the combined Maclaurin-Jacobi sequence must be considered as unstable.

7. Concluding remarks. In the earlier discussions relative to the stability of the
various ellipsoidal figures of equilibrium, criteria that were mostly used were based on
the occurrence of points of bifurcations (as in the case of the Maclaurin and the Jacobian
sequences) or on the occurrence of a maximum or a minimum of some particular parameter
which labels the configurations along a sequence (as in the case of the Jeans, the Roche,
and the Darwin sequences*). In the case of the Roche sequences, such criteria have been
shown to have no real relevance to the question of the onset of instability. But in the case of
the Darwin sequence, the question has been only partially settled. In this latter case,
Darwin and Jeans have used as criteria for distinguishing stability, the occurrence of
minima in the total angular momentum of the system or in «that part of the angular mo-
mentum which is liable to variation when tides cannot be raised in the secondary» (Jeans).
The points where the minima of these quantities occur are denoted by 11 and Tl2 in
Figure 2. But instability, in the strict sense we are using that term, certainly does not arise
at either point by any natural mode of oscillation of either component by itself. The question
still remains whether the tidal coupling between the two components can induce a further
instability or at least a neutral mode of oscillation. No treatment of such coupled oscillations
exists at the present time; and it would appear that only by such a treatment can criteria
similar to those of Darwin and Jeans emerge.

Manuscript received, April 16th., 1964.

* And sometimes, even the Maclaurin sequence!
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