A Study of

Spliced Woodeia Tie-Beams

Graduate School
Arch. Eng.
1906

UNIVERSITY OF ILLINOIS -LIBRARY

Volume
1906
G97

A STUDY OF SPLICED WOODEN TIE-BEAMS

BY
JOHN C. GUSTAFSON

Thesis for the Degree of Architectural Engineer

COLLEGE OF ENGINEERING UNIVERSITY OF ILLINOIS

UNIVERSITY OF ILLINOIS

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

$$
\begin{aligned}
& \text { John Christopher Gustaf́son } \\
& \text { Entitled } \quad \text { A Stuảy of Spliced Wooden Tie-Beams }
\end{aligned}
$$

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE
of

Digitized by the Internet Archive in 2013

A STUDY OF SPLICED WOODEN TIF-BEAMS.

The object of all tests of building materials sinould be to determine facts and develope results that may be of practical value in futuro dosigning. In order that such facts and results may nave real value, threc conditions are nocessary; First, that the materials tosted snall be identical witn mat is commercially available in the opon markot; socond, that the conditions,motiods, and details of construction conform exactly to those obtainable in practice; third, that the tests conducted in a scientific manner. (Tests by the Roebling Co.)

Few tests, if any, have been made upon full-size timbers, in tension; none, so far as can be learnod, nave beon made to decide on tho officiency of the various types of splices commonly used in joining woodon beams in tonsion. This investigation is made to detormine those efficiencies; to decide winich type of splice is strongest, which is woakest and which is most economical, with due regard to ease in construction, the amount of matorial used, and tine nature of the material. To this end splices have been made using in one instance, woodon fish-pieces with bolts, in comparison with another type using wooden fish-pieces neld togetner by lagscrows instrad of bolts. Again, similar splices were con structod in winich steel plates were substituted for the wooden fisn-pieces.

Tho material used was identical with that commercially available in the local market. It was short leaf pine, shippod frorn Grandin, Mo., and supplied from stock by local dealers, Hunter, Rourke \& Co., Urbana, and was a material considerably used in
this locality for structural purposos.
The splices were designed, that so far as possible, cnnditions, metnods and details of construction should conform exactly to those found in practice. This means that thoy wore designed just as if tiney were to be used in actual construction. One exception occurred, rinere bolts and lagscrems were used to transmit tho stress; thesc were than designed to resist bending, only partially. They were so arranged, because of a difference of opinion, some arserting it to be necessary to calculate for bending, otiers nolding tinat bending may be neglected. When the computations were made, it was found that a mucn greater number of bolts and lagscrems was required than good practice or common sense would demand. An average of their opinions led to the use of winat was considered a safe number.

The following coefficients wore taken from tables furnished by Dr.N.Clifford Ricker and were used in the design. Safe values were employed in all computations. Snort Leaf Line:-

Snear, (fior.)	400	"	"	"	"	"	100	
Crusining, (par.)	6000		"	"	"	!	1200	

Tonsion	" 3000	$"$
Shear	" 2500	$"$
Crusing	$" 10000$	

Wrougnt Iron:-
Sinear . Safe 9000 lbs.
Tension
" 12000 "
The test pieces were framed together by an experienced carpenter; the workmansinip was of good quality, equal to that required for first class construction.

Several plans and methods suggested tinemselves for fixing the test pieces to the testing machine. The metnod finally adopted was devised and designed by Prof.Talbot. It sinould be stated. that the connection is far neavier than roquired for these special tests; but it was designed for use in future tosts, and was made of strengtin sufficiont to equal the capacity of the machine.

It consists of two eve-bars at eacin end, five feot long from center of pin hole to end of bar, six inches wide, and two inches tinick, placed on each side of the timbor, and secured to it by means of four pins, each two inches in diameter and placed nine inches on centers, with three pins one and one-nalf inches in diameter, placed four and one-inalf inches on centers. These eye-bars were in turn connected to a large eye-bolt, five feet lons and four and one-nalf inches in diarnetor at snank, by means of a five inch pin. Tinis oye-bolt passed througn a nole in the nead of tho machine and was secured by a large nut resting against an adjustable $\begin{aligned} \text { basher. The illustrations will fully explain the connections. }\end{aligned}$ The material used for this conection was soft steel.

The tosts were made in the laboratory of the University Experiment Station, upon the recently installed 600,000 Ibs.Reinlo tosting macinine. The stross was applied by lowering the traveling
base of the machine, the head being stationary. The elongations were taken at each increase of 5000 lbs by extensometers, made by Mann \& Co. of st.Louis. The instruments are shom by pinotograph. These were placed at tine top and bottom of the splice plates, and readings to the nearest one one-tinousandth of an inch wore taken on both sides of the test splice, the average of the two readings being taken in plotting tine curvos.

There wore seven types of test pieces, six of winich were spliced joints, the otner a solid tension momber. These types will now be considered, and the metiod of computations, fiven.

TYPE B.

TYPE C.

TYPE D.

TYPE E.

TYPE F

TYPE G.

Type A.

This was the solid piece. In order to make the sectional area of the stick loss than that througn the connection it was reduced in section as shown.

Design of Joint A.
Solid timber. No splice.
Deptin of cut one incin.
Net area of splice $=5-5 / 8^{\prime \prime} \times 3-5 / 8^{\prime \prime}=20.4 \mathrm{sq} \cdot \mathrm{in}$. Tensile strengti $=20.4 \mathrm{x} 900=18360 \mathrm{lbs}$.

Type B .
Tris typo is shown in the skotch. All the timbers and fish-pieces were of the same matorial. In order to nold the splice piecesin position and to prevent them separating under stress, $5 / 8^{\prime \prime}$ bolts were inserted as snown. In calculating the strength of the splice, no attention was paid to the resistance of these bolts.

Design of Joint B.
Deptin of notch $=I^{\prime \prime}$
Depth of timber $=5-5 / 8^{\prime \prime}=5.625^{\prime \prime}$
Net deptri of timbor $=3-5 / 8^{\prime \prime}=3.625$.

$$
" \quad " \quad \text { splice }=3.625 \div 2=1.8125 "=1-7 / 8^{\prime \prime}
$$

Effective area of timbor $=5.625 \times 3.625=20.4 \mathrm{sq} \cdot \mathrm{in}$.
Tensile strength of " $=20.4 \times 900=18364 \mathrm{lbs}$.
Tensile " per splice $=18364 \div 2=9180 \quad$ "
To find number of notcines:-

$$
\text { Bearing area req. }=9180 \div 1200=7.65 \text { sq.in. }
$$

" " per notch $=5.625$ sq.in.
Hence use two notches per splice.

To find distances betwcen notches:-

Type C.
Consists of wooden fish-pieces and cast iron keys. This piece also has $5 / 8^{\prime \prime}$ bolts as show, to hold the splice plates in position.

Design of Joint C. mith Cast Iron Keys.
Deptin of cut $=1 "$

$$
" \quad " \text { timbor }=5.625 "
$$

Net deptin of timbor $=3.625^{\prime \prime}$
" " " splice $=3.625 \div 2=1.8125 "=17 / 8^{\prime \prime}$
Tensile strengtin of timber $=20.4 \times 900=18360 \mathrm{lbs}$.
" " per splice $=18360 \div 2=9180$
To find no. of keys:-
Bearing area req. $=9180 \div 1200=7.625 \mathrm{sq} \cdot \mathrm{in}$.
" " per key $=5.625$ sq.in.
Hence usc 2 keys por splice.
To find distance apart of keys:Us $5 / 8^{\prime \prime}$ bolts.

Shear arca roq. $=9180 \doteqdot 1000=91.8$ sq.in.
Shear area req. par key $=91.8 \div 2=45.9 \mathrm{sq}$. in.
Add $2-5 / 8^{\prime \prime}$ bolt inoles $=2 \times 3.68=0.6133^{\prime \prime} "$

Total area rnquired $=46.573 \mathrm{sq} \cdot \mathrm{in}$.
Hence distance between weys $=46.513 \div 5.625=8-1 / 2$. . Type D.

Consists of wcoden fish-pieces and 1 inch bolts, which are designed to transmit the stress from the timber to the splice plate. In some preliminary tests made to ascertain the action of bolts in timber, it was found that when cut washers were used, the bolts bent considerably, causing the washers to crush into the sides of the timber so badly as to split it. To over come this tendency, both as to splitting the fish-pieces, due to the crushing of the wasners, and also to resist the bending of the bolts, cast iron washers wore used instead of the usual cut washers. These washers were $3-3 / 4^{\prime \prime}$ diameter and $7 / 8^{\prime \prime}$ thick. The calculations were made to include crusining of the bolts against the wood, shear of wood in front of the bolt, and also bending of the bolts.

Design of Joint D.
Using wooden fisin pioces and $I^{\prime \prime}$ bolts.
Gross area of timber $=5-5 / 8 \times 5-1 / 8=28.828 \mathrm{sq} \cdot \mathrm{in}$.
Deduct 1 nole $5-1 / 8^{\prime \prime} \times 1 " \quad=5.125 \quad "$ "
Net area of section $=23.703 \mathrm{~N} \mathrm{"}$
Stress in timber $=23.703 \times 900=21330 \mathrm{lbs}$.
Net area of splice plate $=11.85$ sq.in.
Tnickness " " " \quad " $2-5 / 8$ incinos.
Gross area of " " \quad " $2-5 / 8 \times 5-5 / 8=14.765$ sq.in.
Doduct I nolo $2-5 / 8 \times 1 \quad=2.625 \mathrm{"}$
Net area of splice plates $=12.14 \mathrm{~m}$
To find no. of bolts:-
Stress in nember $=21300 \mathrm{lbs}$.
Safe bearinc por bolt $=5.125 \times 1000=5125$ lbs.
Hence no. of bolts $=21300 \div 5125=5$ Bending:-
$M=10665 \times 1.50=16000$ in. 1 bs.
Allow $M=2210$
Hence no. of bolts $=8$.

Spacing of bolts:-

Sinear $=100$ lbs. per sq.in.
Snear por bolt $=10665 \div 8=1333 \mathrm{Ibs}$.
Shorr aroa req. $=1333 \div 100=13.33$ sq.in.
Length in front of bolt $=13.33 \div 5.125=2-7 / 16$ ins.
Hence ctoc of bolts $=2-7 / 16^{\prime \prime}+1^{\prime \prime}=3-7 / 16^{\prime \prime}$, say $3-3 / 4$ ins.
Type E.
Consists of wooden fish-pieces and lagscrews $3 / 4^{\prime \prime}$ diamator 8 inches long, winich, like the bolts in type D, are assumed to
transmit the stress to the fish-pieces, and tinence beyond the joint into the timber again. Cast iron wasners $33 / 4$ inches diam. and $3 / 4$ inch thick were used.

Design of Joint E.
Using wood fisn-piecos, witn 3/4" lagscrews, 8" long.
Gross area of timber $=5-5 / 8^{\prime \prime} \times 5-5 / 8^{\prime \prime}=31.64 \mathrm{sq} \cdot i n$.
Deduct 2 noles $5-5 / 8 \times 3 / 4=8.43 \mathrm{"} \mathrm{"}$
Net area of section $=23.21 \mathrm{~N} \mathrm{"}$
Stross in mombor $=23.2 \times 900=20880$ Ibs.
" " splice plate $=10440$ "
Area per splice plate req. $=11.605 \mathrm{sq} . i n$.
Splice Plate 2-5/8"
Area of splice plate $=5-5 / 8 \times 2-5 / 8=14.765$ sq.in.
Deduct I hole $2-5 / 8 \times 3 / 4=1.959 \quad{ }^{\circ}$ "
Net area of splice plate $=12.795 \mathrm{\#} \mathrm{"}$ To find no. of lagscrews:-

Use an $8^{\prime \prime}$ lagscrews. Diam. base of thread $=.60$ inchos.
Bearing area req. per splice plate $=10440 \div 1000=10.14$ squars inches.

Bearing area per lagscrew $=2.625 \mathrm{x} .75=1.97 \mathrm{sq}$. in.
Honce no. of lagscrews $=10.44 \div 1.97=6$. To resist bonding:-
$M=10440 \times 1.50=16599$ in. 1bs.
$10=\frac{5 \pi d^{3}}{3 r}=s \times .098 d^{3}=25000 \times .098 \times 3 / 75=1035$ in. 1 ibs .
Hence no. of lagscrews $=16$.
Distance lagscrews c.to c.using 12 lagscrews.
Stress in splice $=10895$ lbs.
Snear area $=108.95$ sq.in.

```
Snear area por lagscrews = 108.95 % 12 = 9.03 sq.in.
Hence lengtin between lagscrews = 9.08\div5.5=1-3/4"
Hence dist. c to c = 1-3/4 + 3/4=2-1/2 Say 3"
```


Type F.

This type of splice is similar to type D; it consists of " $^{\prime \prime}$ bolts and 3/8" steel fisn-plates. The bolts, as before, are calculated to resist shear, bearing, and bending.

Design of Joint F.
Using stcel fisn plate and l' $^{\prime \prime}$ bolts.
Gross area of timber $=5-5 / 8 \times 5-1 / 8=28.825 \mathrm{sq} \cdot$ in.
Deduct 1 hole $5-1 / 8 \times 1=5.125 \mathrm{sq} \cdot$ in.
Net area of timbers $=23.703 \mathrm{n} "$
Stress in timber $=23.7 \times 900=21330 \mathrm{lbs}$.
To find no. of bolさs:-
Bearing area per bolt $=5.125$ sq.in.
Bearing per bolt $=5125$ 1bs.
Hence no. of bolts $=21330 \div 5125=4$.
To resist bending:-
$M=10440 \times 1.42=14825$ in. Ibs.
Allow $M=2210$ in. lbs.
Honce nu. of bolts $=6$
Bolts spaced $4-1 / 2^{\prime \prime}$ centers.
Type G.
Similar in design to Type E; but differing in that $3 / 8^{\prime \prime}$ steel fish plates were used instead of the woodon ones in the provious type. The lagscrews were $3 / 4^{\prime \prime}$ dian. and $5^{\prime \prime}$ long.

Design of Joint G.
Using steel'fisin plates witi 3/4" lagscrews 5" long.
Gross area of timbers $=31.68$ sq.in.
Deduct 2 noles 5 x. $75=7.50 \mathrm{n}$ "
Net area of section $=24.20 \mathrm{~m}$
Stress in timber $=24.2 \mathrm{x} 900=21780 \mathrm{lbs}$.
To find no. of lagscrovs: -
Bearing area per lagscrew $=2.55 \mathrm{sq} \cdot$ in.
" per lagscrow $=2.55$ z $1000=2550 \mathrm{lbs}$.

Hence no. of lagscrews $=5$.
To resist bending:-
$M=11550 \times 1.4=16170$ in. 1 Bs.
Hence no. of lagscrews $=16170 \div 1035=15$.
We shall use 8 lasscrews per splice plate.
Stress per lapscrew $=11550 \div 8=1444$ 1bs.
Snear area necessary per lagscrew $=14.40$ sq.in.
Lengtin betweon lagscrews $=1-3 / 1$
Dist. c to $c=1-3 / 4 \times 3 / 4=2-1 / 2$. Say $3^{\prime \prime}$

A study will now the marlo of the actual test pieces, and the causes of failure.

Type A.
Joint Al.
This piece was a good stick of timber with but few knots, these all at one end, as clearly shown in the picture.

The failure was due to longitudinal shear, on one side only. It started at the shouldor and extendod toward the connection until stopped by a knot, winere it broke across in tension. The sheared surface shows that there was a defect in the interior of tine wood, namely a place about ten inches long containing dry resin, whici separat the wood fibcrs, and thus greatly aided the piece to shear at this point.

$+-5=$
$1{ }^{1 / 2}$

Joint A 2.
This is the same as joint A l, namely a solid tension piece without splice, reduced in section to $5-5 / 8^{\prime \prime} \times 3-5 / 3^{\prime \prime}$, with a net area of $20.4 \mathrm{sq}, j n$. Season checks extended tine full lengtin of the piece on the $3-5 / 8^{\prime \prime}$ face; tinese season cinecks were not large ones, nevertineless, in ordor to reduce the tondency to shear a long the linc of pins, three half-inch bolts were inserted, one botwoen the last two $2^{\prime \prime}$ pins, one between the tinird and fourtn $2^{\prime \prime}$ pins, and one between the first two $1-1 / 2^{\prime \prime}$ pins. There were no mota of such size or character as to be harmful. Dry rot existed in the lower nalf of the timber, and well up into the reduced section. It may be noted that the carpenter, in looking over the lumbor before making the tost pieces, considered tinis stick the best in the entire pile; there was no indication of defect on the outside, and it was only winen tho piece nad beon cut into that dry rot was revealed.

Failure took place in the lower connection, it shearing out along the line of pins, and extending to the shoulder of the reduced section. Tine shear, within the connection, followed the soason checks. There is no doubt that the piece would nave stood the test considerably better had there been no dry rot.

$$
\bullet
$$

Joint A 3.
Similar in design to the two preceding. There were two lnots in the reduced section, one at each end, about five inches from the shoulder. In the lower connection there was a large knot at the third large pin and also a smaller one at tine second large pin. At these places there was some cross grain. Season checks ertended the full length of the piece on the 5-5/8" face.

Failure took place in the lower connection, because of shear along the line of pins. The manner of failure was peculiar. The piece sheared off betweon the last two inch pin, and the end; this failure was followed by a loud report, and immediately the mood sheared along the line of tho remaining pins. As in the previous case $1 / 2^{\prime \prime}$ bolts were inserted in the connections.

An examination of the ruptured end, revealed dry rot in the intorior of the piece along the neutral axis. Between the first and second $2^{\prime \prime}$ pins the wood was so badly rotted as to leave a cavity fully $\mathrm{g}^{\prime \prime}$ in diameter. The dry rot extonded well down in to the $1-1 / 2$ inch nole and up toward the next 2 " nole. It was evidently caused by a small nole in the knot at this place. A similar, although not so serious a defect, was found in the other end of the timber also caused by the presence of a small hollow knot. The holes in these knots were very small, and were discovered only after careful examination.

Type B.
Joint B 1.
This piece was of good sound material, naving a few sligit season checks, but not of sucn a character as seriously to lessen the strength of the stick. There were no knots in the lower nalf; there was a bad one in the upper nalf about twenty inches above tine joint. The splice pieces were in excellent condition.

The lower nalf of the splice sinowe very little effect of the stress to winich it was subjected, otner than a few cracks at the shouldere, snowing that there was a tondency to sinear along tine plane from sioulder to sinoulder.

Failure took place in the upper nalf of the splice, due to shear of the snoulders on the nortin splice piece and the timber. These having sneared the shoulder of the stick, directly opposite sheared also. There was a great amount of bearing against the snoulders.

The bolts in the splice were badly bent, snowing tinat, althourn not calculated to carry any of the stress, they were subject to consiaerable of it. It is most likely that the greater part of this bending was caus a after failure due to shear nad
begun. So badly were these bolts bent that the cut wasiors were pulled into the wood, crusining and splitting the ends of the splice-plates. The sinear followed the grain of the wood, and presents a clean even cut.

The fibers in front of the bolts were badly injured, and presented a wedge like appearance. This wedge action of the fibers is greatly marked and undoubtedly accounts for the condition of the splice, the fibers of winicn were twisted, torn and, as may be seen in the cut, curled back upon eacn otner.

Joint B 2.
The condition of this piece maybe best understood by a glance at the picture, wicn shows a bad defect in the upper nalf, varying in deptin from $1 / 4$ to $3 / 4$ of an inch, $3^{\prime \prime}$ wicle, about 12" long, and filled witn dry resin. In addition to this defect there is a long oval knot about $2-1 / 2 \times 1-1 / 2$ inches diameter, $8-1 / 2^{\prime \prime}$ above the joint, but extonding partially througn the stick. The splice pieces arc of good clear material, of straignt grain, and witn but a fow small knots.

Failure took place in the upper nalf of the splice due to. shear and tension. The first failure took place in the upper shoulder of the south splice piece, this snearing off completely; then sinear began at the lower end of the top shoulder of the stick itself, extonded for a few inches, then broke across in tension on a 45 degree line, and finally sineared off on the upper end of the opposite shoulder. The appearance of tine fracture is rougin and jogged. See picture.

East View.

West Viow.

$$
\begin{aligned}
& \text { L19. } 4 x^{\prime} \\
& \text { UHIVERSITY + +1.111... }
\end{aligned}
$$

Joint $B 3$.
In this thore was a bad knot one foot above, and, also a small cound knot two feet above tine joint. Tnere was also a bad knot at the top pin in the lower connection; some sligint season checks and cross grain also existed. The splice plates were of excellent material, containing no knots, no season checks and no cross grain.

Failure was caused by horizontal snear of the shoulder in the splice plates. Tno lower shoulder on tine nortn splice plate failed first, and was then followed by the shearing off of the one above on the same side;shortly aftor, the two sioulders abovo the joint on the othor plate gave way. Tnere was considerable crusning on the snouldor of the stick itself. The bolts in the splice were considerably bent, with same great crusining of the washers into the splice plates. The failurc of this piece is very much like tinat of joint $B 1$.

Type C.

$$
\text { Joint C } 1 .
$$

Contained a bad knot 30 inches above the joint; and was season checked the full length of the piece. There was also cross-grain 14 inches above and 20 incines below the joint.

The piece failed in sinear at the first key above the lower end of the south splice plate, the siear following along the cross grain, and finally breaking in tension at the first small pin in the lower connection. Tne bolts in the splice were but sliginty bent; there was no crusining or pulling in of the wasners, and no crusning or splitting of the splice-plates, winich, witn the except-
ion of sone vory sligint crusning due to the keys, appear as before tho test. The noles for the keys prosent a remarkably good appearance; there is little crusning of the fibres; and the sides of the noles in the splice plates and in the stick, the lower ones excepted, are in the same norzontal line. Considerablo tendency of the keys to rotate was noticed winile tine load was being applied. Tnis tendency was seen almost diroctly stress was applied and continued until final failure, whon tho keys returnod to their original positions.

Joint C 2.
In this the stick itself was in good condition, having but a fem season checks, and only one small knot in the lower
nalf of the splice, just below the lowest key on the soutin side. The splice piecos were not of proper material; a glanco at the picture will snow tho defects.

Failure in this case was due to shearing of the shoulders on the splice plate. The first failure took place by the shearing off of the top sinoulder on the soutin plate. Tinis plate snowed signs of weakness under a load of 10000 lbs . winen it was noticed that a crack started at the key directly below tho joint. It was not until under a load of 49000 lbs . that failure of the nortin splice plate was noticed, when it shearod at the key below the joint, then broke in tension at the first bolt below the joint. At 35000 Ibs. there were continued cracking sounds, and bending of tine test piece toward the nortn; the splice plates also drow away from the timber at botin ends. Tine keys began to rotate as early as 10000 lb ., winich rotating in tnis case was excedingly great, consquently tinere was considorable crusning of tine fibers at the sides and edges of the noles. It may be noted that tine two upper keys on the soutn side, and the two lower keys on the nortin side rotated the most, the rotation of both pairs beinc about equal; comparatively little rotation took place on tine other two sets of keys.

Joint C 3.
Contained some slight season checks in the lower nalf, and a small knot at the lower key. The upper nalf of the stick was in fair condition, there being only a few small, sound knots. The failure was due to shear and to rotating of the keys. Snear took place at the lower snoulder of the nortin, and also at the upper sioulder of the soutn splice plato. At the otner shoulder cracks appeared. The sinear planes, instead of being clear and clean cut as in the previous cases, were rougn and uneven, due probably to the presence of the holts. The end bolts were bent considerably; the washers were crusned into the splice plates so badly as to split them to the end. The keys rotated badly; and again those keys in the lower north, and the upper soutin sides snow the worse condition; the noles were badly distorted and out of Iine, while the remaining four were in fair condition. This piece also bent; but toward the soutn instead of the north , as in Joint $\mathrm{C} 2 ;$ this bending was noted at about 50000 lb . Tine rotating of the keys was first noted at l00001bs. Because of this rotating of the keys the splice plates wore pusiner away from the main member fully $1 / 8$ of an incil. The joint was opened to 15/16 of an inch, and so remained.

Showing condition of keys at ond of test.

Type D.
Joint D.
Contains a small sound knot at the second bolt from the lower ond of the splice, in the 6x6, and on tine 10" face;on the other side there was also a knot 1 inch in diametor 14 inches above the joint, and likevise another at the edge of the $6 x 6$ near the end of the splice plate.

The piece failed in tension at the first bolt from the end of the splice piece, the failure occuring in the 6x6. The fracture revealed dry rot in the main member, winich rot existed at the point of fracture and for some six or eignt incines up into tine timber.

The motion of the extensometer was, for the most part, unstoady, at first moving slowly and evonly, then increasing in motion uneven and irregular. The bolts showed signs of bending at 40000 lbs ., as evidonced by tho appearance of the bolt neads against the washers. An examination of the bolts aftor the test, showed then to be but sliçintly bont; it also showed that the greatest bending occurred at the bolt nearest the end of the splice, the bending decreasing toward the joint.

[^0]I

Joint D 2.
This piece,in the lower half,was a fairly good stick; in the upper nalf, there was a large knot a fow inches below the first snall pin, and also another large had knot above the first $2^{\prime \prime}$ pin. At these knots tinere was considerablo cross-grain. The piece was also badly season checkod, as wero also the splice plates.

The failure occurred at the knot near the first pin in the top connoction, broaking there, and then snearing along the Iino of pins to the knot at tine first $2^{\prime \prime}$ pin, winere it broke in tension. The piece furtner failed by sinear along the pins in the lower comection.

Joint D 3.
This sticl was of good material, but sligntly season checked, and witin but few small sound knots. It failed in the lower connection, due to shear and bearing, and the pins pulling out througn the timber. The fractured end shows uneven bearing of

the pins against the wood, one side of the noles being badly crusined, the other showing only small signs of crusining. The wedge like action spoken of above, is vory marked; tine fibers are twisted, torn, and curled back one upon anothor. Tho throe nalf-inch bolts, put in tne connection to strengtnen it against shear, were badly bent; the washers were pulled into the sides of the piece causing cracks to open at tnose places.

D 3, incorrectly marked E 5 , sinowing condition of failure.

The above picture shows the condition of the bolts after the test.

As seen the bolts are sligintly bent, even more than in the preceding tests; it also snows, that the greatest bending was at the bolt nearest the joint; and tiat maximum bending oocurred in the center of the 6×6. Type E.

Joint EI.
This piece was quite good, above the joint, but below, contained some bad knots. A fow inches below the splice plates, there were two large knots, winich extended tinrough the stick, weakening it at tinis place. In the connection ther was anotier knot sligntly smaller. Cross grain existed at these places

Failure was caused by tine piece breaking at tine two large knots below the aplice plates; and then shearing along the line of pins to the knot in the connection, and breaking off complotely at this point.

The indicator moved very slowly and steadily at first readings, but soon began to move more rapidly, with sudden jumps and jerks. The sounds were peculiar, and wers as if the threads on the lagscrew tended to pull out of tineir places and take a new hold on the wood. The larscrews are bent but little, such bending taking place at about the neutral axis of the piece. Tney appear to nave tilted sligntly away from the joint.

E 1 Snowing condition of failure.

E 1 Showing condition of lagscrows after failure.

Joint E 2.
The upper inalf of this piece was good clear material witnout knots, por cross-grain. The lower half had a small knot at the edge of the joint, also one and tinree-fourth of an inch in diameter, on the center line 18 inches and another 23 inches below the joint. There was some gross-grain.

Failure took place in tine lower connection, sinearing along the line of pins, and breaking at tine first small pin. The sinear lay in the samo plane, was clear and even, and followed mostly the grain of the wood.

The lagscrews bent very little as is shom in the above cut.

Joint E 3.
This was a fairly good piece of mood, containing only a few knots, as shown in the cut. The picce failed in the upper connection at the first small pin, then shearing between the first and second small pins, broke at tine second, and finally sneared along tine annular rings to the joint. The failure is best seen by the examination of the cuts.

The appearance of the lagscrews after failure is the same as in the two preceding tests.

E 3. Showing feilure of test piece.

E 3. Snowing character of failure.
ligucry
UNIVERSITY OF ILLINOIS.

E 3. Showing condition of laçscrows aftor failure. Type F.

Joint, F 1.
On the edge of the face containing the splice plates there was a large knot about four inches above the top of the plates; and also anotier on the other face about the same distance above the plate. There mas also a small knot about 1-I/n" from the firet

Failure tonk nlace in the splice, tearing out at the firat and second bolts from the lower end of the sylice platos, thon shonine slone tho annuler rings to the joint. It was impossible to tell much of the condition of the bolts, because they had been removed before they could be examined.

Joint F 2.
The upper half of piece contained a large oval knot 3 x I$1 / 2$ inches in diameter, just above the last bolt in the splice, wicn knot diminished on the opposite side to $1 / 2$ inch in diamoter In otiner respects the stick was a good one.

It failed in tension at this last bolt, and then sneared along the bolts to the joint. The sineared surface is not clean and smootin, but rough and uneven, as if both shear and tension were acting at the same time. Tnere was considerable bearing of tine bolts against the wood, as evidenced by the distorted appearance of the holes, in botin the fractured section and in the lower nalf of the splice.

Toint F 3.
Short season checks existed along the center of the upper nalf on one side; there mere no knots in tinis nalf. Below the joint on the same side, about 15 inches below, was a large knot, extending from the center to the south edge. Otherwise the gtick wes very good indeed.

It failod in tension between the first and second bolts from the end of the splice -plate, breaking across between tho bolts on a 45 degree line, and then following tine annular rings to a point eleven incines above tine first bolt.

The motion of the indicator throughout wes steady; in the beginning the motion was slow, but increased gradually until breaking.

The bolts in the splice were bent to a noticable degree; those on the"nead-side," so to speak, ran straigint a short distance and tinen bent up toward the joint. It was also noted that the greatest bending occurred at the bolt nearest the end of the plate, the bending decreasing toward the joint. The bolt nearest the joint was not bent, but inclined upward toward tne joint; the one below wes straigint from tho nead for about 2 incines, and then bent upward gradually until the othor ond was $1 / 4$ inch above the "nead-end;" the noxt bolow was straignt for an inch and a nalf, and then bent up $1 / 4$ inch.

Type G.
Joint G 1.
This was a good clean stick, with few defects, namely
a small knot 10 inches below the first pin in tine upper connection. It contained some slicint season chocks and cross-grain.

It failed by shear along the line of lagscrews to a knot where it broke in tension on the opposite side. The shear surface was quite fibrous, and snowed the wedgeing of tine fibers winen any obstacle, such as a bolt or lagscrow interferes with the shearing.

The cut snows tine condition of the fracture.

Joint G 2.
This piece broke in the connection, breaking in tension between the first and second small pins. There were two knots above the pin at winin the failure first began.

There was evidently considerable crusining of the screws against the rood, the holes being distorted into a sligint oval, the long diameter being $3 / 32$ to $1 / 8$ of an incin longer than originally. Slight cracks also appeared along the line of lagm screas.

Joint G 3.
Was a good clear stick, with few knots and little cross grain. It failed in the splice due to, the shearing out of the mood in front of the lagscrew in the lower nalf. The lagscrews bent considerably at tine plate, but witnin tine wood were straigint and pulled over diagonally. They crusned considerably against the mood as may be seen by the cut.

Conclusions.

Types B and C.
Botr of these pieces failed in the splice because of longitudinal shear at the shoulders. Type B - winile it did not sustain such a hign maximum load as did type C, is stiffer, and tine loeds sustained are more closely in accord with each otner. As to winich is the better there is littlo choice and with proper designing and good workmansinip botn are to bo recommended as equally good.

Type D and E.
These, with one exception, D l, failer in the connection, due to defects in matorial, or possibly to defects in workmansinip. Type D is the stiffer. The curves sinow threo changes of curvature; it rises, showing sligint elongations, in a straignt line to 20000 lbs., it then abruptly changes direction, and again continues in a straigint linc to about 50000 lbs., where it acoin breaks suddenly and continues until failure.

Tho lagscrews, while not greatly bent, nave injured the wood to a marked degree; in rotating they compress the fibers in front of thom, forming a wedge, which greatly aids longitudinal snear to whicin thero is always a tondoncy. In addition to the wodge action, the rotating of the lagscrews themselves tonds to split the piece.

Type F and G.
These failcd in the splice, at less loadings
than did tre two preceding types. The preceding remaks apply nere as well. Both the lagscrews and the bolts nave bont considerably
$-$
more, than in the otner types, due undoubtediy to the greater stiffness and rigidity of the steel platos. The injury +o the fibers, because of the rotating lagscrews, is also far greater tinan in type D .

These tests show positively that lagscrews can not be recommended and used in first clase construction. Not only for the reasons nere stated, but also on account of the increased expense, botn in material and labor. More lagscrews are required tinan bolts to transmit, the stress; and also from two to four times as many noles must be bored for each screm, alao half of these noles are of different diameters.

Again, were there no differences in amount of material and labor, tine lack of stiffness would be sufficient to pronibit their use.

The results also show the neod of tests of full size pieces and also the unreliability of timbor for structural purposes, unless used in small sticks, of such sizes and dimensions that the matorial may be carefully selected and entirely free from knots and otiner defects. Wood is non-iomogeneous and deceptive in its charactor; it is unroliable and uncortain in its action, and nence it must give away to such matorials is steel, and concrete, the composition of winich is known dofinitely.

The coefficients used in the design of these test pieces Were taken from well known authorities, but are nere snown to be too large; or tine factors of safety are too small. In no case, did the pieces possoss tineir calculated ultimate strongtin. As an example, piece A 4, the solid stick reduced in section to 5-5/e"'
$x 3^{\prime \prime}$, with a net area of 16.9 sq.in. and a calculated ultimate strength of $152,100 \mathrm{lbs}$. failed in tension at $69,240 \mathrm{lbs}$. Only 45 percent of its computed ultimate strengtin and less than $2-1 / 4$ times the safe computed working stress. Tinis shows a factor of safety $2-1 / 4$, whereas all tables give a factor of safety of ten for snort leaf line in tension.

The coefficients for longitudinal snear are also too large and it is evident that nigner factors of safety should be used, and that the tables now employed should be revised.

In using cast iron keys, they should be made wider, at least, twice their deptin, to overcome the tendency to rotate.

In making the following comparison of efficiences, joint A 4 was taken as the standard. In order to make the comparisons, its unit stress was found, and the net areas of each splice multiplied' by this unit stress. It is shown by the following data, that the efficiences vary from 55 to 69 porcent. The tost pieces mitn Keys, type C, wooden splice pieces and lagscrews, type E, and stecl fish-plates witin lagscrews, type \mathcal{N}, show tine highest efficiences. This is due to their elasticity and to the rotating of the keys and lagscrews. The otncr types snow greater rigidity, and nence are to be recommended for use, in preference to any of the threc types showing the nigner percentages of efficency.

The rooden fish-pieces with bolts is the best type of splice all things considered; it is economical, and easily constructed. It looks clumsy and awkard, nowever, and it may sometimos be mecessary to use the steel fish-plates, for appearances, al-
thougn the trsts show this to be inferior in strongti and stiffness. Splices witn notched wooden fisn-pieces, type B, would be placed next in order of preference; keys should not be used unless made wide in comparison with deptn; whereas lagscrews should not be used under any circumstances.

		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$			$\begin{gathered} 8 \\ 4 \\ 4 \\ 4 \end{gathered}$		$\begin{aligned} & y \\ & \text { y } \\ & \text { e } \end{aligned}$							\because		$\begin{aligned} & \text { y } \end{aligned}$	$=$					
－ 018	OT×ロん゙ノル OILUSNOTA	$\begin{aligned} & \hat{N} \\ & 8 \end{aligned}$	N	\geqslant	5	$\stackrel{N}{N}$	है	\mathbb{N}^{N}		$\begin{array}{ll} 0 & 2 \\ 1 \end{array}$		nे		yै		8		4				
2）N	71） 1 －1ヨ18							－		$\stackrel{m}{6}$							2		N			
$2 \times$	131315－13				$\begin{aligned} & 20 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & \hline \end{aligned}$	N N B		a h 0 3			$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{gathered} \circ \\ v i ้ \\ v i \end{gathered}$		$\cdots 3$	0			
	HONTMAZLS 						$\begin{aligned} & 0 \\ & y^{2} \\ & \infty \\ & m \end{aligned}$	－		－	$=$	N		$\begin{gathered} 0^{2} \\ n^{2} \end{gathered}$		N	$=$	N N O				
	サNヨコレS くBんILTク	$\begin{gathered} 8 \\ 8 \\ 1 \\ v^{2} \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ \omega^{2} \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ \hline 0 \\ 0 \\ 0 \end{array}$	$$	会	$\begin{gathered} 5 \\ 5 \end{gathered}$	$\stackrel{y}{2}_{8}^{2}$		$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \circ \\ 0 \\ 6 \\ 6 \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \hat{N} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ n^{2} \\ \hat{n}^{\prime} \end{gathered}$	${ }^{2}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 8 \\ \hline \end{gathered}$	（1）	8			
	CSNzaIs 11033.185	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{3}{2} \end{aligned}$		$:$	$\sqrt[0]{2}$		$\begin{aligned} & 0^{0} \\ & v^{2} \end{aligned}$	：		－	s	$\begin{aligned} & \text { n } \\ & \text { ñ } \\ & \text { Nै } \end{aligned}$	：	$\begin{aligned} & \infty \\ & \infty \\ & \text { \&) } \end{aligned}$		$\begin{gathered} 0 \\ n^{2} \end{gathered}$		N				
is	HLSWN37																	¢				
$\begin{aligned} & \text { e } \\ & \text { b } \end{aligned}$	W WICI														－			＊${ }^{*}$	：			
$\stackrel{k}{k}$	276\％1TM													N	：			0	－			
12	二／bICl						b		－	$=$	＝	$\sqrt{2}$	－			＊						
ev	2ヨ®1LTK						\downarrow	：	－	\checkmark	，	∞	＝			b	－					
x^{3}	NO1L376						（100			＝	－	\％	＝				：	：$=$	：			
$\begin{aligned} & \text { y } \\ & \text { s } \\ & \text { b } \end{aligned}$	HLSN． 77						：${ }^{\circ}$				－	$\hat{N}^{\prime N}$	：	6	＝	＂		：				
67	316 L．3N	1			0		$\begin{array}{\|l\|} \hline 7 \\ 5 \\ 0 \end{array}$		＝		$=$	$\begin{aligned} & \text { N} \\ & m \\ & 8 \end{aligned}$	$=$	$\begin{gathered} 2 \\ 2 \\ 2 \end{gathered}$	，	N		（ $\begin{aligned} & \text { N } \\ & \text { N } \\ & \\ & \end{aligned}$				
	N01．2．76				$\begin{array}{\|c} \left.\begin{array}{c} m \\ \vdots \\ 6 \\ n \end{array} \right\rvert\, \end{array}$			－	＊	：	－	－	$=$	\％		n 4 6 6		気				
	LNIOK	N	$\sqrt[2]{n}$	8	v	3	2		${ }^{2}$	V	${ }^{3}$	N	N	4			\pm	$\sqrt{2}$				

JOINT.

LOAD	REF DING	REMARKS.		
0	0	0	0	
10000	2	2	2	
20000	3	5	$4 \frac{1}{2}$	first cracking
30000	5	7	6	
40000	6	10	8	indicator fell back 2 points, then jumped forward
46200	7	18	$12 \frac{1}{2}$	loud crock ing and failure.

JOINT AZ

JONYTA3.

TOINT A A

JOINT A5

TOINTふ」

JOLST BR.

JOINT BS.

LOAD	READINGS			
0	0	0	0	
5000	15	15	15	
10000	40	40	40	
15000	63	60	61	
20000	88	86	87	
25000	110	110	110	
30000	137	136	136	slight cracking sounds.
35000	161	160	160	cont.
40000	212	186	199	out at bott om
45000	330	2414	277	big crack at top
47000	387	-	-	lower shoulders on north plates pulling
26000	425	370	388	

JOINT G

FONT CR.

JOINT CB

TOINT D.

TONYT DN.

JOIST D 3 ?

TOINTEノ

TONYTEZ

,TOIM'T FV.

TOIVT FO

JOINTFる

TOINTVGI

TONYTGZ

TOMTG3

60000^{7}

50000
elongations in liooo inctrex

が。

$$
\infty
$$

－

SOLIO STIGK，WITHIOUT SPLICE．
Joリソフラ 75

70000^{7}

60000

WODD FISH-PIECES WITH S"BOLTS.

$$
100 \begin{array}{ll}
1000 & 300 \\
\text { elongations in 1/rooo inches. }
\end{array}
$$

WOOD FISH-PIECES, $3 / 4 "$ " $\angle A G-5 C E E W S$.

Yo000

60000

50000

30000

20000

10000

100 | 300 | 300 |
| :--- | :--- |
| elonqutions in floos incher | |

70000

60000

60000

60000

40000

30000
20000
20000

$$
\begin{array}{llll}
100 & 300 & \text { too } 600 & 600 \\
\text { elongations in flo00 inches }
\end{array}
$$

60000

50000

40000

30000

20000

10000

100

$$
200 \quad 300 \quad 400
$$

$$
500
$$

600
plonqutions in llooo inches.

[^0]: 8

