

KISHI

A Study of the Characteristics & the Performance of Different Types of Steam Locomotives, by Means of Speed-Time & Speed-Distance Curves

Mechanical Engineering

M. E. 1909

MMURE CITY

UNIVERSITY OF ILL LABRARY

UNIVERSITY OF ILLINOIS LIBRARY

Book K64 Volume

Ja 09-20M

A STUDY OF THE CHARACTERISTICS AND THE PER-FORMANCE OF DIFFERENT TYPES OF STEAM LOCOMOTIVES, BY MEANS OF SPEED-TIME AND SPEED-DISTANCE CURVES

0

BY

TERUO KISHI

B. S. Tokio Technological College, 1899

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of

MECHANICAL ENGINEER

IN

THE GRADUATE SCHOOL

OF THE

UNIVERSITY OF ILLINOIS

1909

THE GRADUATE SCHOOL

May 12, 1909

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

TERUO KISHI

ENTITLED A STUDY OF THE CHARACTERISTICS AND THE PERFORMANCE OF DIFFERENT TYPES OF STEAM LOCOMOTIVES, BY MEANS OF SPEED-TIME AND SPEED-DISTANCE CURVES

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Mechanical Engineer

In Charge of Major Work

W. Musoss,

Recommendation concurred in:

1909 X64

1

Edward C. Schmist De Prickenidge

Committee

Head of Department

on Final Examination

144895

TABLE OF CONTENTS

A STUDY OF THE CHARACTERISTICS AND THE PERFORMANCE OF DIFFERENT TYPES OF STEAM LOCOMOTIVES, BY MEANS OF SPEED-TIME

AND SPEED-DISTANCE CURVES

	Page									
A statement of the problem	1									
Characteristics of the locomotive employed	1									
The tractive power of the locomotive - method of										
determining it at different speeds	2 - 6									
Tractive force curve	4a									
Train resistance and the acceleration of the train:										
Formula used in determining train resistance	7									
Method of plotting speed-time curves	8, 9									
Speed-time curves	9a									
Method of determining the work done during acceleration .	10									
Method of plotting distance-time curves	10									
Distance-time curves	10a									
Braking	11									
Method of plotting braking curves	12, 13									
Braking or retardation curves	13a									
The time required for the entire trip of 100 miles,										
with varying number of stops and different										
weights of train	14-16									
The steam consumption and coal consumption	16-21									
Tractive force-distance curves	17a									

	Page
Water consumption curves	19a
Coal consumption curves	190
Curves showing the effect of a varying number of	
stops on the water consumption	19c
Tables	22-39

(2)

A STUDY OF THE CHARACTERISTICS AND THE PERFORMANCE OF DIFFERENT TYPES OF STEAM LOCOMOTIVES, BY MEANS OF SPEED-TIME AND SPEED-DISTANCE CURVES

(1) In the development of the problem assigned, it is proposed to assume an Atlantic type locomotive possessing definite characteristics, and then to determine the speed at which it can handle trains of several different weights over a course of 100 miles of straight level track. Modifications of the problem will also permit a study of the effects of stops on schedule speed.

(2) The locomptive to be employed is assumed to possess the following characteristics:

These dimensions are characteristic of a class of locomotives built for the Southern Pacific Company by the Baldwin Locomotive Works of Philadelphia.

(3) It is proposed to assign successively to this locomotive, trains of 100, 200, 400, and 800 tons, respectively; and to determine the facility with which it can handle them.

(4) THE TRACTIVE POWER OF THE LOCOMOTIVE. - There are three elements which determine the tractive force of a locomotive, namely:

- (a) Adhesive weight on drivers.
- (b) Boiler capacity.
- (c) Cylinder capacity.

(a) When a locomotive is running at low speed, the steam consumption per unit time is comparatively small, although the engine is driven in full gear and with wide-open throttle, and there is no question as to the ability of the boiler to supply the necessary quantity of steam to the cylinders. Consequently the adhesive weight on drivers alone determines the tractive force of an engine at low speed. The maximum tractive force at the driving-wheel is generally believed to be one-fourth of the weight on drivers; or maximum available tractive force at the driving-wheel equals total weight on drivers divided by 4.

(b) When the engine runs up to high speed, the demand for steam increases more and more, and at last the boiler capacity will become insufficient to supply the demands of the cylinders; then the cut-off must be gradually shortened, and the tractive force diminishes and becomes less than the adhesion.

(2)

Hence it is not necessary to consider the adhesive weight, and the boiler capacity is the only factor which determines the tractive force at high speed.

(c) It is clear that in any case the cylinder capacity is a necessary factor in the determination of the tractive force of an engine, no matter whether the engine is running at high speed or low speed; but in modern locomotive practice, the cylinder volume is always large enough, compared with boiler capacity and adhesive weight on drivers, and there is therefore no failure caused by insufficient cylinder volume; hence it will not concern us in this case.

According to item (a) (denoting the maximum tractive force at the driving-wheel by T' and the weight on drivers by W'), we have

$$T' = 1/4 W'$$

To get the tractive force at the tender draw-bar, it is necessary to deduct the rolling and air resistance which acts upon engine and tender, from T'. The formula can be written as follows:

in which

 $T = 1/4 W' - W(2 + 1/3V) - 0.11 V^2 ----- (1)$

w' = weight on drivers in pounds.
w = weight of engine and tender excluding the
weight on drivers in pounds.

(3)

V = velocity of train in miles per hour.

and

truck and tender.

W(2 + 1/6V) = rolling resistance offered by the

0.11 V^2 = air resistance.

(See "Locomotive Performance" page 424)

T = tractive force at the tender draw-bar.

The values for T are given in Column 2, Tables 1, 2, 3, and 4 for all speeds which are below 15.96 miles per hour, and the upper part AB of the curve ABC, Fig. 1, was plotted from these values.

The tractive force at high speeds, which was explained in item (b), can be calculated by the use of a formula from "Locomotive Performance", page 424, which is as follows:

 $T'' = 161 \frac{H}{V}$ (2)

in which

T" = tractive force in pounds, neglecting all loss in transmission from the cylinder

to the draw-bar.

H = heating surface in square feet.

V = velocity of train in miles per hour.

Taking 2855 square feet for H and substituting various values for V, the following vales of T" were obtained:

(4a)

V	*	15	: :15.9	6:	: 20:	: 25:	: 30:	: 35:	40:	45:	50
T n	•	28497	: :2678	3:1	: 21373:1	: 7098:]	: L4249:	: 1221 <mark>3</mark> :	: 10686:	: 9499:	8549
			*			•	•	•	•		

V	•	55	: 60	65	•	70.	•	75	: : 80		85
T "	•	7772	7124	6576	•	6107	• • • •	5699	5343 :	•	5029

Taking the values of "T" as ordinates and the values of V as abscissae, the curve DEF in Fig. 1 was plotted.

The formula for calculating the tractive power at the tender draw-bar was also taken from "Locomotive Performance", page 424.

 $T = 1Cl H - 3.8 \frac{d^2 L}{D} - W(2 + 1/6V) - 0.11 V^2 --- (3)$

where

H = heating surface of the boiler in square feet. V = velocity of train in miles per hour. D = diameter of driving-wheel in feet. d = diameter of cylinder in inches. L = stroke of piston in feet. W = weight of engine and tender in tons, excluding the weight on drivers.

(5)

and

3.8 $\frac{d^2 L}{D}$ = internal resistance of the engine in pounds.

W(2 + 1/6V) = rolling resistance in pounds. 0.11 V^2 = air resistance in pounds.

In the locomotive taken in this problem

H = 2655 d = 20 $L = 28 \div 12$ $D = 81 \div 12$ W = 127.5

Assuming several different speeds and substituting these values in equation 3, the values in Column 2 in Tables 1, 2, 3, and 4 for all speeds which are higher than 15.96 miles per hour, were obtained and the curve BC in Fig. 1 was plotted.

Two curves calculated by equations 1 and 3 will meet at the point B which corresponds to 25628 younds of tractive force and the speed of 15.36 miles per hour. This means, therefore, that the tractive force for speeds less than 15.96 miles per hour is limited by the adhesive weight on drivers; while for higher speeds it is limited by the capacity of the boiler.

(5) TRAIN RESISTANCE AND THE ACCELERATION OF THE TRAIN.- To compute the train resistance we have a formula suggested by "The Engineering News".

$$R = 2 + \frac{V}{4}$$

in which

R = train resistance in pounds per ton.

V = velocity of the train in miles per hour. This formula is generally used in American practice and gives generally reliable results; however, it is not theoretically correct. as it is an equation of a straight line, and the results obtained by experiment show that it is a curved line, also many authors believe it is not a straight line. Another equation, $R = 2.5 + \frac{\sqrt{5}}{30}$, gives a curved line, and if a curve is plotted by this equation, it falls below that given by the equation $R = 2 + \frac{V}{4}$ with an average difference of about 3 pounds. Adding, therefore, this 3 to the constant in $R = 2.5 + \frac{\sqrt{5}}{80}$. I obtained a formula which I believe to be more nearly correct in form, from the theoretical standpoint, and which is not greatly different in the results it gives from the "Engineering News" formula. The formula is as follows:

 $R = 5.5 + \frac{V^{\frac{5}{9}}}{80} - \dots$ (4)

Substituting values for the several assumed speeds, as in the case of tractive effort, in equation 4, the several values for resistance given in Column 4, Tables 1, 2, 3, and 4, were obtained. These and the remaining columns of Tables 1, 2, 3, and 4 were determined as follows:

(7)

Column 1 = speed of train in miles per hour assumed. Column 2 = tractive force at tender draw-bar calculated by equations 1 and 3.

Column 3 = available tractive force per ton of train = Column 2 ÷ weight of train.

Column 4 = resistance of train in pound per ton calculated by equation 4.

Column 5 = tractive force available for acceleration in pounds per ton = column 3 - column 4.

The general formula for acceleration is

$$a = \frac{F}{M}$$

where

a = acceleration, feet per sec. per sec. F = force to produce acceleration in pounds. M = mass of body.Considering a mass weighing 1 ton

$$M = \frac{2000}{32.2}$$

$$a = \frac{32.2}{2000} \times F$$

Assuming five per cent for the force needed to produce the acceleration of the rotating parts, we have:

$$a = \frac{32.2}{2000} \times \frac{F}{1.05} = \frac{F}{05.2}$$
(5)

If A denotes the acceleration in miles per hour ver

(8)

second,

 $A = \frac{F}{05.2} \times \frac{60 \times 60}{5280} = \frac{F}{95.6}$ (6)

The values in Columns 6 and 7 of Tables 1, 2, 3, and 4 were calculated by these equations, i. e.,

Column 6 = acceleration, feet per sec. per sec. calculated by equation 5.

column 7 = acceleration, miles per hour per sec. calculated by equation 3.

Column 8 = the mean of two consecutive values of acceleration in Column 7.

> = the sum of two succeeding values in Column 7 2

Column 9 = time in seconds required to produce the change in speed indicated in Column 1.

= <u>difference between two succeeding values in Col. 1</u> corresponding values in Column 8

The acceleration curves in Fig. 2 were plotted by taking the speed of the train (i. e., the values in Column 1) as ordinates, and the time required to produce the change in speed (i. e., the values in Column 9) as abscissae.

It may be seen from this figure that the acceleration of the train is high at the start and low at high speeds; also that a heavy train requires more time to reach its maximum speed than does a light train, but that the increase of time for increasing weight will gradually decrease as the weight of the

(9)

train increases.

The work done during acceleration, the rate at which speed is increasing, and the distance which must be passed over in bringing the train from rest to its maximum speed are summarized in Tables 5-1 and 5-2. The derivation of Tables 5-1 and 5-2 is as follows:

Column 1 = time in second.

Column 2 = area under acceleration curve in Fig. 2 bounded by the lines of times, corresponding to Column 1, values determined by means of planimeter.

Column 3 = Average speed, miles per hour, for the time intervals in Column 1.

= (Column 2 ÷ corresponding base in inches) x 10. Column 4 = total distance run over during the time interval in Column 1.

> = Column 3 x 5280 x difference two consecutive times in Column 1 60 x 60

The distance curve in Fig. 3 was plotted by taking the values in Column 1 as abscissae and the values in Column 5 as ordinates.

The lightest or 100-ton train reached its maximum speed at a distance of about 28,600 feet from the start, while the 200-ton train required a distance of 37,577 feet, notwithstanding

(10)

the fact that its maximum speed is far lower than that of the 100-ton train.

Further increase in the weight of train leads to opposite results, that is, it decreases the distance required to be run during the period of acceleration; for example, a 400-ton train is required to run 34,958 feet, while an 800-ton train is required to run but 25,862 feet. Therefore within the limits which have thus far been studied, it may be stated that the distance in which the train can reach its maximum speed will be short for both light and heavy trains and comparatively long for the train of medium weight.

(6) BRAKING.- It is a well-known fact that the brake shoe friction is great when the speed of train is low, and at high speed it becomes small. This variation in the coefficient of friction can be calculated by the next formula.

A review of the report of the Master Car Builders' Association shows that when the speed is 70 miles, the coefficient of friction may be expected to be 0.1, and when the train comes almost to rest, the coefficient is about 0.3. Results of the tests show that such values are attained in service. Using these values for the purpose of making an equation, I get the formula

 $f' = \frac{.3}{1 + .02857 V}$

----- (4)

(11)

(12)

where

f = coefficient of friction.

V = velocity of train in miles per hour.

This formula gives results which coincide approximately with the values for the average coefficient of friction determined by modern experiments.

The force applied at the wheel is 30 per cent of the load upon the wheel. Therefore the brake shoe pressure per ton of load is 2000 x .8 = 1600 pounds, and

f x 1600 = braking force.

Results obtained under these conditions are shown by Tables 1^{B} , 2^{B} , 3^{B} , and 4^{B} , derived as follows:

Column 1 = speed of train, miles per hour.

Column 2 = coefficient of friction calculated by formula 4. Column 3 = friction per ton = Column 2 x 1600.

Column 4 = retardation in miles per hour per second, calculated by the formula $A = \frac{P}{95.6}$ as in the case of acceleration.

Column 5 = average retardation for each interval (the sum of two consecutive values in Column 4) \div 2.

Column 6 = time in seconds required to produce the change in speed indicated in Column 1.

> - <u>difference between two consecutive values in Col. 1</u> Column 5

The braking curves of Fig. 4 were plotted from the values in these tables, and the values in Table C were derived by the process employed in determining the values in Tables 5-1 and 5-2 in the case of acceleration.

As may be seen in Fig. 4, the four curves of retardation have quite similar shape, but the rate of retardation for the low speed train is greater than that of the high speed train. In order to compare these four curves, the average retardation for each case was calculated as follows:

Average retardation in miles per hour per second:

For	800-ton	train	=	$\frac{39.5}{12.4} = 3.18$
11	400-ton	ŧ	-	$\frac{52.7}{18.4} = 2.86$
Ħ	200-ton	ŧ	=	$\frac{35.9}{25.4} = 2.57$
Ħ	100-ton	12		$\frac{78.3}{33} = 2.37$

Thus the average retardation in miles per hour per second for the 800-ton train is 34 per cent greater than that for the 100-ton train, due to the fact that the lighter the train, the higher the initial speed.

The schedule speed of the train is an average speed for the entire trip, including the dead time of stops. Therefore each stop of the train lowers the schedule speed on account of

(13)

dead time and the low average speed during acceleration and retardation.

(7) THE TIME REQUIRED FOR THE ENTIRE TRIP OF 100 LILES WITH VARYING NUMBER OF STOPS AND DIFFERENT WEIGHTS OF TRAIN.-The data and equations which are necessary to find out the times are tabulated in Table 7, the explanation of which is as follows:

Column 1 = weight of train assumed.

Column 2 = distance run during acceleration and retardation = sum of Column 5, Tables 5-1 and 5-2, plus sum of Column 5, Table 6.

Column 3 = time required during acceleration and retardation,

i. e., for 100-ton train

(sum of Col. 9, Table 1) + (sum of Col. 7, Table 1^B)

for 200-ton train

(sum of Col. 9, Table 2) + (sum of Col. 7, Table 2)

for 400-ton train

(sum of Col. 9, Table 3) + (sum of Col. 7, Table 3^{B})

for 800-ton train

(sum of Col. 9, Table 4) + (sum of Col. 7, Table 4^{B})

Column 4 = Maximum number of stops between which the train can reach its maximum speed = 100 ÷ Col.2.

Column 5 = time required for whole trip through 100 miles				
with no stops. The processes are as shown				
by the equation in each line, for instance,				
in the case of 100-ton train:-				
100 - 5.845 = distance in miles for full				
speed run.				
78.3 = full speed, miles per hour.				
$\frac{100 - 5.845}{797}$ time in hours for full				
speed run.				
$(100 - 5.845) \times 60 \times 60 + 326 = total$				
78.3 time for whole trip				
in seconds.				
Column C = time in seconds increased by each stop. In the				
case of 100-ton train:-				
326 = time required during acceleration				
and retardation.				
$\frac{5.845 \times 60 \times 60}{78.3} = \text{time in seconds required}$				
to cover at full speed, the dis-				
tance required for acceleration				
and retardation.				
$326 - 5.845 \times 60 \times 60 = additional time 78.3$				
(in seconds) required for each				
stop.				
Calculations for the three other trains				

(15)

The Tables 1° , 2° , 3° , and 4° were derived from this table, i. e., assuming n = number of stops.

Column 1 = number of stops.

Column 2 = time in seconds required for entire trip with no dead time at stops.

(Col. 5, Table 7) - n x 58

Column 3 = Average speed for above trip.

 $= 100 \div 001. 2 \div 00 \times 00$

Columns 4, 6, 8, and 5, 7, 9 are similar to Columns 1 and 2 respectively.

By inspection of Tables 1°, 2°, 3°, and 4°, it can be easily understood how the number of stops affects the schedule speed, and Table 7 shows that a heavy train loses more time for each stop than the light train, due to the fact that the acceleration of the heavy train is far lower than that of the light train.

(8) THE STEAM CONSUMPTION AND COAL CONSUMPTION. - In order to find the water consumption, it is necessary to calculate the horse-power developed during the trip. For this purpose it will be convenient to plot a tractive force-distance curve.

Take the tractive force which is given in Fig. 1 as ordinates, and the distances which are given in the distance curve in Fig. 3 as abscissae, and by referring to the accelera-

tion curve, Fig. 2, we may construct a tractive force-distance curve as shown in Fig. 5. For instance, assume a point A in the distance curve. It corresponds to 16630 feet of distance and 400 seconds of time; therefore mark a point B as the abscissa in Fig. 5 equal to 16630 feet. Now draw an ordinate at 400 seconds on the acceleration curve of Fig. 2. This ordinate meets the 800ton curve at the point A', whose corresponding speed is 38.3 miles per hour. Referring to Fig. 1, we find that a speed of 38.3 miles per hour corresponds to a tractive force = 10880 pounds. At B in Fig. 5 we may now erect an ordinate equal to 10880 and we have determined one point on the desired curve. By repeating the same process for the several points, the tractive force-distance curves of Fig. 5 were plotted. The area under these curves shows the work done during acceleration, and if it is multiplied by some constant, it will also denote the horsepower consumed during acceleration; and we can thereby compute the water consumption and coal consumption. The procedure is as shown in Table 8.

In constructing Table 8 the following values were assumed:

32 lb. = water consumption per l h.p. per hour during acceleration.

28 lb. = water consumption per l h.p. per hour at full speed. 4.5 lb. = coal consumption per l h.p. per hour.

(17)

(17a)

Table 9 was derived from Table 8 by the following processes:

Column 1 = number of stops Column 2 = $4963 + 72.94 \times n$ Column 3 = $6588 + 38 \times n$ Column 4 = $5927 + 117.45 \times n$ Column 5 = $7848 + 66 \times n$ Column 6 = $7409 + 143.6 \times n$ Column 7 = $9819 + 36 \times n$ Column 8 = $9707 + 129.56 \times n$ Column 9 = $13059 + 71 \times n$ Where n = number of stops

It will be seen by Fig. 5 that during acceleration, the distance over which the engine can exert its maximum tractive force is only a small portion of the whole distance required for the train to reach its maximum speed. At the instant of starting, the tractive force is a maximum, after which it falls rapidly for a time and afterwards more slowly.

The rate of decrease of tractive force, as shown by the power distance curves, is greater for light trains than for heavier trains, due to the higher rate of acceleration of the lighter trains.

As an aid to the investigation of the water and coal

(18)

consumption as affected by the weight of the train and the number of stops, Figs. 6, 7, and 8 have been plotted.

The water consumption as shown by the black line of Fig. 6 was plotted from the values in line 10 in Table 8, and the curve for one ton of train was plotted from the same values divided by the values of corresponding weights of train. The coal consumption curves in Fig. 8 were plotted from the values in line 12 in Table 12 by the same method as that employed for the water consumption curve. The relation of weight of train to coal consumption is similar to that defined for the water consumption, as shown by the similarity in shape of the curves in Figs. 6 and 7.

The amount of water represented in Columns 2, 4, 6, and 8 of Table 9, plotted as ordinates upon Fig. 8, and the number of stops as abscissae, give the relation between water consumed and number of stops.

From Fig. 5 it can be seen that the curve which represents the water consumption for the whole train, is not of uniform curvature; its radius of curvature decreases as the train weight increases. This means that the increase in weight of train does not increase the water consumption in the same proportion. On the other hand, it may be seen by curve CD that the water consumption per ton of train decreases as the weight

(19)

of train increases, and the rate of decrease is greater for light trains than for heavy trains.

In Fig. 7 the coal consumption curves are similar to Fig. 6 in all respects, and the effect upon coal consumption of changes in the weight of train is also the same as in the case of water consumption. The greater economy of train operation would be secured by hauling heavy trains, the minimum limit of train weight for highest efficiency being somewhat beyond the range of conditions assumed.

The increase of water consumption as affected by the number of stops can be represented by a straight line as in Fig. 8, as the rate of increase is always constant for a definite weight of train; but the rate of increase varies somewhat for different weight of train. This variation can be seen by the inclination of water consumption lines in Fig. 8, that is, the angle made by the line which represents the water consumption and the abscissa is 7.5° for 800-ton train, and those of 400, 200, and 100-ton trains are respectively 9° , 7.2° , and 4.7° , showing that, in these four cases, the 400-ton train is more influenced by the increase in the number of stops than the others, a thousand pounds of coal being required for every 0.5 stops.

Reference to Fig. 3 will suggest a close coincidence between the distance run during the acceleration and the increas-

(20)

(21)

ing water consumption as affected by the number of stops, i. e., the train which covers a long distance during acceleration, requires more water for each stop than one which covers a short distance during acceleration.

1			(20)
T.	The mean: Time in seconds: of two :required to consecu- :produce the tive val-:change in speed ues in :indicated in Col. 7 Col. 1	6	н 2000 2000 2000 2000 2000 2000 2000 20
		0	алалалаланн 766666666666666666666666666666666666
PERFORMANCE DURING ACCELERATION TRAIN 100 TON	ation per ond Miles per hour	: 2	ииииииииииии 20000000000000000000000000
	Tractive Acceler force a- vailable Ft. per: for accel- second eration lb.per ton Col. 3 - Col. 4	6	ххххххххххххххххх С 2 2 2 2 2 2 2 2 2 2 2 2 2
		2	аямамиялиянны 4 7777777777774 4 9 4 19 10 любулалиги 4 6 9 4 19 20 любулалиги 9 6 6 8 7 7 00 200 4 4 0 20 либила 20 8 7 7 00 10 2 7 2 7 2 8 2 8 0 7 8 либила 20 8 7 7 00 10 2 7 8 7 7 8 2 8 0
	Resistance of train pounds per ton	4	нанана и и и и и и и и и и и и и и и и и
	Available: tractive : force per: ton of train Col 2 ÷ 100	3	С С С С С С С С С С С С С С
	Tractive force at tender Draw bar pounds	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Speed Miles per hour	1	н п м 4 м 2 м 2 м 2 м 2 м 2 м 2 м 2 м 2 м 2

TABLE 1.

TABLE I^b

.

.SNO	The sum: of times: in Col. 6:	7	инни и и и и и и и и и и и и и и и и и
TRAIN 100 T	Time in seconds required to pro- duce the change in speed in- dicated in Col. 1	9	ахааааанцццццц 000004 хидовсод 4 хидо 00005 4 хидовсод 4 хидо 0007 200 200 200 200 200 000 200 200 200 200
N	The mean of two con secutive values in Col. 4	Z	1111000000044 2001040000044 2001040000044 2001040000440 2001040000440 2001040000440
IING RETARDATIO	Retardation in miles per hour per second $A = \frac{P}{95.6}$	4	нчччччааааааааааааааа 7779789000077900000 8007909004440040000 8000444400400000
PORMANCE DUF	Friction per ton Col. 2 x 1600	2	11111111111111111111111111111111111111
PERI	Coefficient of friction	5	002 00 00 00 00 00 00 00 00 00 00 00 00
	Speed miles per hour	r-1	677007044 87070707070707070 2

(23)

			deadtime sad stop	Average speed miles per hr.	6	2000 1000
	THE RUN	0 TONS.	5 minutes in each do	Time in seconds	ω	111 00000 1000000
	SPEED DURING	S. TRAIN 10	s dead time ch stop	Average speed miles per hour	2	44000000000000000000000000000000000000
	AVERAGE	H OF STOP	2 minute in ea	Time in seconds	6	47777777777777777777777777777777777777
E Ic	TIME REQUIRED TO TRAVEL 100 MILES AND THE AS INFLUENCED BY THE NUMBER AND THE LENGT	THE NUMBER AND THE LENG 1 minute dead time in each stop	lead time th stop	Average speed miles per hour	2	77777777777777777777777777777777777777
ŢABI			Time in seconds	4	44777777777777777777777777777777777777	
		TFLUENCED BY	time	Average speed in miles per hour	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		AS IN	No dead	Time in seconds	2	4444444 000440000000000000000000000000
V V V V V V V V V				No. of stops	1	

(20)

2
63
E
AB
E

			(25)
Time in seconds re-	the change in speed: indicated in Col. 1:	6	828 828 777 777 777 777 777 777 777 777
The mean of two	consecu- tive val- ues in Col. 7	ω	1111111111 222222222222222222222222222
tion per:	Miles per hour	: 7	1111111111 102809292 102809292 102809292 10280 10280 100800 1008000 100800000000
Accelera	Feet per second	6	ППППППППППП СФВ ФФ Ф
Tractive : force a-	vailable for accel- eration lb.per ton Col. 3 -	5	1111111111111 112111111111 11211111111 112111111
OKMANCE L Resistance of train	ton ton	4	н 8 6 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Available: tractive :	force per: ton of train Col.2 ;	2	1129 129 129 129 129 129 129 129
Tractive: force at:	tender Draw bar pounds	5	и и и и и и и и и и и и и и и и и и и
Speed	miles per hour	I I	нчили от 4 годо об 0 годо од 0 годо

12	
1.0	
1	
[]	
17	
11	
23	
19	
11	
13	
11	
11	
11	
11	
H -	
11	
H I	
11	
11	
11	
ii -	
11	
11	
11	
11	
11	
11	
ii -	
11	
11	
11	
29	
11	
8.9	
11	
11	
-11	
18	
11	
11	
11	
11	
1.	
11	
11	
11	
12	
12	
11	
£.	
11	
11	
11	
11	
11	
11	
11	
6.0	
29	
L e	
H	
11	
18	
11	
18	
1.	
1	
15	
11	
*1	
29	
11	
81	
11	
11	
17	
88	
11	
11	
15	
14	
11	
11	
12	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
12	
11	
11	

TABLE 2^b

PERFORMANCE DURING RETARDATION TRAIN, 200 TONS.

i mis oft	of times in Col. 6:	7	нццццияяяя 27.00 27.00 28.00 28.00 20
Himo in coorde	required to pro- duce the change in speed indi- cated in Col. 1	9	олалаанныны 76.38 1,868,400 1,868,40,967,967,96 1,868,40,867,867,967,96
	Ine mean of two consecu- tive val- ues in Col. 4	Ъ	ннчааааааааа Себо на40000044 Учнаисисина00440
	herardation in miles per hour $A = \frac{5}{95.6}$	4	ЧЧЧЧИЙИИИИЮЮ47 778800907700070000 4000004ЧЧЮОЧ080
	Friction per ton Col. 2 x 1600	2	ннчччааа 2000 2000 2000 2000 2000 2000 200
	Coefficient Of friction	2	40000000000000000000000000000000000000
	Speed miles per hour		00000000000000000000000000000000000000

챩캱턌뒲챯챵쒅봕녎횱뢡깑탼쑵햜멻햜겯밙켡햜큟랦홾쮤톎됕햜턌탼╝쓌땹쒼햜쒏涗갼믵쉹윹홿程옚킛왕쒸벐护묷럯챵뇄닅눱꿗덣놧롐삔녌캊护믬햜녌벖댦챵됕갼뎹뢟쒸놰쒸*쨔쒸粡씪쓕*쓕옚셵쨔뎶됋

(26)

		,	1		1	
	N AS	O TONS.	s dead time dead stop	Average specd miles per hour	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0
	NG THE RUI	TRAIN 200	5 minute: in each	Time in seconds	ω	5822 65197 65722 88477 8822 9197 95722 103222 103222
	SPEED DURI	WEIGHT OF	dead time 1 stop	Average speed miles per hour	7	00000000000000000000000000000000000000
	HE AVERAGE	OF STOPS.	2 minutes in each	Time in seconds s	9	5642 5837 6032 6617 6617 7202 77202 7987 7987 7982 7982
7 ALLA	MILES AND T	D THE LENGTH	dead time ch stop	Average peed miles per hour	2	60000000000000000000000000000000000000
) TRAVEL 100	IE NUMBER AN	l minute in ea	Time in . seconds .s	4	725 667 667 70 667 70 667 70 70 70 70 70 70 70 70 70 7
	EQUIRED TO	INCED BY TI	d time	Average speed in miles per hour	24	00000000000000000000000000000000000000
	TIME	INFLUE	No des	Time in seconds	<l< td=""><td>77777777777777777777777777777777777777</td></l<>	77777777777777777777777777777777777777
			.No. 01	stons		0HUM4720200HUM

000

T T CT V U

(27)

				(28)
	Time in seconds : required to pro- duce the change :	in speed indicated: in Col. 1	6	21 26 27 26 27 27 27 27 27 27 27 27 27 27
I 400 TONS.	Mean of : two con-: secutive:	values in Col. 7	œ	779999999999777 200000000000000000000000
I. TRAIN	ttion per sond	Miles per second	7	47000000000000000000000000000000000000
PERFORMANCE DURING ACCELERATION	Accelera	Feet per second	9	Ста Ста Ста Ста Ста Ста Ста Ста
	Available:Resistance: Tractive Tractive : of train : force a- force per:pounds per: vailable	for accel- eration lb.per ton Col. 3 - Col. 4	2	44 <i>22222222222222222222222222222222222</i>
		ton	4	н 89777777777777777777777777777777777777
		ton of train Col. 2 + 400	77	6666 644444444444600 66666 6666 6666 66
	Tractive: force at: tender	Draw bar pounds	N	<i>ачачачачача</i> <i>кулукукуку</i> 2000,000,000,000,000 2000,000,000,000,0
	: Speed: miles:	per hour:		н чим47200007070707070707000 0000000000000000

3.

TABLE

TABLE 3^b

PERFORMANCE DURING RETARDATION TRAIN 400 TONS.

The sum of times n Col. 6	7	
Time in seconds required to pro- duce the change in speed indi- cated in Col. 1 :	Q	наачччччччч 2000-0-0-0-0 0,40000000000000000000000000
The mean of two consecu- tive val- ues in Col. 4	ъ	0000000044 0104600000140 40000140
Retardation in miles per hour per second $A = \frac{P}{95.6}$	4	00000000000000000000000000000000000000
Friction per ton Col. 2 x 1600	3	ннийиии 90101470000044 01004000000000000000000000
Coefficient of friction	Q	2000 2011 2011 2011 2010 2020 2000 2000
Speed miles per hour		77744 907070707070 С

(29)

TABLE 3^c

TIME REQUIRED TO TRAVEL 100 MILES AND THE AVERAGE SPRED DURING THE RUN AS

INFLUENCED BY THE NUMBER AND THE LENGTH OF STOPS. WEIGHT OF TRAIN 400 TONS.

							and a second sec	A second s
No. of	No des	ad time	l minute in c	e dead time ach stop	2 minutes in ea	dead time ch stop	5 minut	es dead time each stop
stors	Time in seconds	Average speed in miles per hour	Time in seconds	Average speed miles per hour	Time in seconds	Average speed miles per hour	Time in seconds	Average speed miles per hour
Ч	N	м	4	м	9	2	∞	6
РО	6926 7021	51.98	7081	50 . 84	7141	50.41	7321	49.17
01 10	: 7211 : 7211	. 50.59 49.92	7250	44.72	01222	4 4 0 - 7 4 - 7 7 - 7 4 - 7 7 -		44 44 00 00 00 00 00 00 00 00 00 00 00 0
4 20	: 7306 : 7401	79.27 48.67	7546	47	1008 1008	44.99 44.99		40.07×
0 ~	7591	470 472 472 472 472 1		47.02 44.94	0470 8431 7772	420 420 420 420 420 420 420 420 420 420		う
00	7281	440.05 460.05	00100 00250 00100	44 47 60 70 70	8861	40.63 20.63	10481	4 4 7 7 7 0 1 7 0
010	1262 1262	455. 745. 7271	0 2 0 2 0 2 2 0 2 2 0 2 2 0 2 2 2 0 2	41.47 40.07	9291 9506	200 200 200 200 200 200 200 200 200 200	11271	31-94 86
4777	8161 8256	44.11 45.60	8941 9096	29.58 66	9721 9936	36.23	12061	29.85 28 .90

and the permit we have a

(30)

		·····
Time in seconds required to pro- duce the change in speed indicated in Col. 1	6	и 0 00000000000000000000000000000000000
Mean of two con- secutive values in Col.	ω	нииииииииииии 977777777779079079 74 08 68 7-0774 07770047
tion per nd Miles per hour	2	наяяяяя 74,900,000,000,000 9,000,000,000,000 9,000,000
Accelera seco Fect per second	9	27654444444 277654644444 2776000000 2777000 2400000000 240000000 24770000 2777000 27770000 27770000 27770000 277700000000
Tractive force a- vailable for accel- eration fol. 3 - Col. 4	Ъ	40000000000000000000000000000000000000
Resistance of train pounds per ton	4	ч 8 2 7 7 7 7 7 7 7 7 7 7 7 6 7 8 9 0 1 4 0 4 0 0 7 8 7 9 0 9 0 9 0 7 7 7 1 1 4 7 0 4 0 7 8 7 9 0 9 8 4 0 4 7 9 8 7 9 8 7 9 0 9 8 4 0 4 7 9 8 7 9 7 9
Available tractive force per ton of train Col.2 ÷	N	00000000000000000000000000000000000000
Tractive force at tender draw bar pounds	2	22222222222222222222222222222222222222
Speed niles per hour		н ни и и и и и и и и и и и и и и и и и

TABLE 4.

TABLE 4^b

9 of times: The sum 3.86 7.26 10.10 12.37 5.63 8.75 11.31 in Col. ~ required to pro-: Time in seconds duce the change cated in Col. 1 inspeed indi-PERFORMANCE DURING RETARDATION TRAIN 800 TONS. 1.84 1.06 9 1.92 1.49 1.35 **1.21** 1.77 1.63 : The mean consecutive val-3.06 4.70 3.36 2.44 2.82 4.14 of two ues in Col. 4 2.61 3.71 5 Retardation per second per second in miles 95.6 Рч 3.90 4.38 2.36 2.93 3.20 5.51 5.02 2.51 2.71 4 11 A Friction : Col. 2 x 1600 per ton 240 280 306 336 373 419 480 259 226 3 .. Coefficient friction .300 .150 .210 .262 .162 .233 .175 .191 141 of N 39.5 :miles : hour Speed : per 30 10 35 20 22 12 5 0 ----

(32)

	-
4 ^c	
ABLE	
E	

4 c

TIME REQUIRED TO TRAVEL 100 MILES AND THE AVERAGE SPEED DURING THE RUN AS

				(33)
T ONS.	s dead time ach stop	Average speed miles per hour	6	ССС ССС СС СС СС СС СС СС СС СС СС СС С
FRAIN 800	5 minute in 6	Time in . seconds	ω	00111111111111111111111111111111111111
WEIGHT OF 1	dead time ch stop	Average speed miles per hour	2	холого соло со
OF STOPS.	2 minutes in ca	Time in seconds	9	66000000000000000000000000000000000000
ID THE LENGTH	e dead time each stop	Average speed miles per hour	2	<i>хохилий</i> 8 7.9 7.7 4 4 7.2 7.1 4 4 0.0 9 0.2 3.0 9 7.8 4 7.9 7.1 4 4 0.0 9 0.2 3.0 4 7.8 4 7.9 7.4 6 4 6 4 6 7 8 4 0 4 7.8 7 7 0 4 6 7 6 4 6 7 7 7 6 7 8 6 7 0 4 7.8 7 7 0 4 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
NUMBER AI	l minute in e	Time in seconds	4	99799 99799 10050111 10050111 100505 100500000000
CED BY THE	d time	Average speed in miles per hour	2	888877797774447898888777997477898887779974778988899999999
INFLUEN	No dea	Time in seconds	୍ୟ	9234 9234 9234 9235 9235 9235 9235 9235 9235 9235 925 925 925 925 925 925 925 925 925 92
	.No. of	.stops	اسم •••••••	• - См + 200 - См + 2

TABLE 5 - 1

TRAIN 100 TONS.

			I.	a second	
	Total distance in feet	2	7290 12526 18055 23716 28601 = 5.42 miles		5163 9211 13611 18180 22903 22903 22510 32510 7.12 miles
	Distance run : during the time interval in ft. :	4	2699 2677777 26699 2661 2661 77 20177		1 804 4048 4048 47969 7067 7067 111 1200 7067
	Average speed miles per hour, for the time in- tervals in Col. 1	3	36.8 62.6 72.1 70.0 70.0 70.0 70.0		и 4 10000000 4 1000 4 10101 Фаа и о и 4 4 Фао
	Area under the accel- eration curve	N	-1.00000 8.1.7.7.8.6 4.07.7.00 6.07.00 6.07.00	200 TONS	
TWITT	Time in seconds		0 150 2500 292.7	TRAIN	11000 11000 11000 100

外方行联邦政府经济的政府投资部联邦公式投资物价格投资物为力提供的计划 化环环化试验化合作 结婚性的过去式和过去分词 化过过设验 建铁环酸植物 建铁合计过程分别

(34)

TABLE 5 - 2

(35)

TABLE 6.

383 425 = .0805 miles miles miles miles Total distance ł 11 H 830 1093 1384 1282 773 828 157 1030 1446 2044 2246 2246 2246 611 5 Average speed : Distance run miles per hour, :during the time for the time in-: interval in terval in Col. 1:Col. 1, in ft. 7744201 480147074 0400200 348 263 7,72 243 140 42 472 767 197 202 48 48 4 PERFORMANCE DURING RETARDATION. 11 28 27 11 28 27 11 22.52 - 47 22.52 - 4 22 - 57 - 4 53.1 19.1 S Area under braking 000400 4000404 40002000 1.91 curve N 12.37 27 Time in ч н и и и о л о л о л 4 seconds 01010 NIAAT SNOL 007 SNOT 008 200 TONS SNOT OOL MEIGHL OF

(36)

(37)													
Lost time for each stop (accel eration and re- tardation) com- pared with full speed run	9	$326 - (\frac{5.845 \times 60 \times 60}{78.5})$ = 58^{B}	$478 - (\frac{7.582 \times 60 \times 60}{65.9}) = 75^{3}$	$558 - (\frac{6.777 \times 60 \times 60}{52.7})$ = 95^8	$574 - (\frac{4.981 \times 60 \times 60}{39.5}) = 120^{5}$								
Time required for whole trip of 100 miles with no stop		$(100-5.845) \times 60x60$ + 326 = 4655 sec. = $1^{h} 17^{m} 35^{s}$	$\frac{(100 - 7.582) \times 500 \times 60}{5447^{5}} + \frac{65.9}{5447^{5}}$ $= 1^{h} 30^{m} 47^{8}$	$\frac{(100-6.777) \times 60 \times 60}{52.7} + \frac{52.7}{558} = 6926^{8} = 1^{h} 55^{m} 26^{8}$	$\frac{(100-4.981) \times 60 \times 60}{574} + \frac{39.5}{9234^{8}}$ $= 2^{h} 55^{m} 54^{8}$								
Maximum No. of stops between which the train: can reach its maximum speed	4	17	13.	4L	୦ N								
Time re- quired dur: ing accel- eration & retardation	×	325.67 say 326.	477.9 sey 478.	558.09 538.09 558.	573.61 say 574.								
Distance run during accel- eration and retardation in miles	N	5.845	7.382	6.777	4.981								
Weight of train tons		100	500	400	600								

TABLE 7.

							7	(38)						
	Train 800 ton	25862	425	10822	561.2	15.788	1023	5103	1080	129.56	80915	2079	13059	71	
	Train 400 ton	34958 :	828	8111	539.7	16.404	11 OF	5302	7911	143.6	61759	7409	9819	86	
	Train 200 ton	37577	1384	6486	452.5	14.087	1132.	4553	679	117.45	49408	5927	7848	66	
	Train 100 ton	28601	2246	5459	292.7	9.248	1149.5	2989	608	72.94	41367	4963	6588	38	
ω.	Line No.	-	2	3	4	5	9	7	∞.	6	10	11	77	15	
TABLE	DESCRIPTION.	Distance run during acceleration, in feet :	Distance run during retardation, in fect :	. Tractive force during full speed run	: Time required during acceleration, in second :	Area under the curve in Fig. 5, in sq. in. :	Horse power during acceleration (5) x 4000 x 5000 33000 x ((4) - 60)	Water consumption during acceleration $_{jin}$ lb (6) x $\frac{32}{50}$ x (4) + 60	Increase in water consumption for each stop, in lbs. (7) $-((1) + (2)) \cdot x (3) \times 28$ 33000×60	Increase in water consumption for each stop. in gallons (8) + 8.3356	<pre>Water consumption for whole 100 mile trip : with no stop in 1bs.(7) + (100 x 5280 - (1) - (2)) x (3) x 28: 35000 x 60</pre>	Water consumption for whole 100 mile trip with no stop in gallons (10) + 8.3356	Coal consumption for whole 100 mile trip with no stop, in lb. $(\frac{(6)x(4)}{50} + \frac{(100 \times 5280 - (1) - (2)x}{500}, \frac{(5)x}{50}, \frac{(5)x}{50})$	Increase in coal consumption for each one stop in 1bs. $((6) \times (4) - (11) + (2)) \times (3) \times 4.5$ $(60 \times 60 - 33000$	

TABLE 9.

						(3	9)		••			a 5 a						•••	••••		
	Coal con- sumption in lbs.	6	13059	13130	13201	13272	13343	13414	13485	13556	13627	13698	13769	13840	12911	13982	14053	14123	14195	14337	14479
80	Water con- sumption in gallons	0	. 2076	9837	9966	: 10096 :	: 10225	10355	: 10484 :	10614	10743	: 10873 :	11003	11152	11262	11291	11521	11650	11780 01011	12039	12298
00	Coal con- sumption in lb.	2	9819	9905	1666	10077	10163	10249	10335	10421	10507	10593	10679	10765	10851	10937	11023				
4	Water con- sumption in gallons	9	7409	7553	7696	7840	: 7983 :	8127	8271	8414	8558	: 8701	8845	89.9	9132	9276	9419	• • •	•••		
00	Coal con- sumption in lbs.	2	7848	791.4	7980	8046	8112	8178	8244	8310	8376	8442	85 0 8	8574	8640	8706					
2	Water con- sumption in gallons	4	5927	6044	6162	6279	6397 :	0514	6632	6749	6867	6984	71.02	7219	7336	7454	· · ·			00 00	
	Coal con- sumption in lbs.	20	6588	6625	6664	6702	6740	6778	6816	6854 .	6892	6930	6968	7006	7044	7082	7120	7158	7196	7254	
100	Water : con- sumption : in : gallons :	2	4963	5036	5109	5182	5255	5328	5401	5474 :	5547	5619	5692	5765	5838	2611	5984	6057	6130 :	6203	
Weight: of	No. of stops		0			N	. 4	ۍ ۲		:	- 00	5	10		21		41	· \c 			610

