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1.

STATICALLY INDETERMINATE STRESSES

IN STIFF FRAMED STRUCTURES.

I. INTRODUCTION.

1. PRELIMINARY . Various forms of the statically indeter-

minate frame, which resists distortion by virtue of the stiffness

of its members and joints, have been used by engineers and build-

ers for many years, but in most cases the exact deterrainrt ion

of stresses has not been attempted. Instead, designers have gen-

erally preferred to make assumptions which would lead to safe,

though not economical designs, rather than to spend the time end

labor required for an analytical treatment of their perticulrr

problem. Further, since the statically indeterminate stresses

in a structure depend upon the relative sizes of the members, it

is necessary to make a preliminary design, and then to redesign

the structure after determining the stresses. It is evident that

the design of a structure having a large number of members, such

as a bent of a building, would entail a great amount of work.

In view of the extensive use of stiff frames, as noted

below, it is evident that an exact analysis is very desirable.

Structures designed by approximate methods are almost sure to be

inadequate at some point ^nd to have an excess of material else-

where. The saving that might be made in the cost of a structure

such as the reinforced concrete viaduct at Richmond, Vr.
t
which

is E800 feet long and from 14 to 70 feet high, should be consid-

erable.

The object of this investigation is to devise methods of
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determining stresses in stiff frames, which ere accurate and

which are short enough to be used in the design of structures.

2. ACKHOWXEDGMENT * The writer has used the Slope-Deflect-

ion method in this work. This method was first outlined by a

German scientist. Professor Otto Mohr, in 1892; but was independ-

ently developed recently by Mr. G. A. Maney, formerly Research

Fellow in Theoretical and Applied Mechanics at the University of

Illinois, and at present Instructor in Structural Engineering at

the University of Minnesota. Mr. Maney, in collaboration with

Mr. W. M. wilson, Assistant Professor of Structural Engineering

at the University of Illinois, used the method in an investigat-

ion of wind stresses in office buildings.

Acknowledgements are due to Professor Wilson, under whose

supervision this thesis was written, for helpful suggestions

and criticism.

3. IMPORTANCE Off STIFF FRAMED STRUCTURES . The stiff framed

structures analyzed in this investigation may be made of steel or

reinforced concrete. The most common examples in steel frame

construction are: frames of office and p511 buildings, inter-

mediate and portal frames of bridges, and riveted trusses.

The use of the stiff frame in reinforced concrete construc-

tion has become very extensive, principally within the last eight

or ten years. Because of the ease with which a member may be

moulded in any desired shape, this type of structure is econom-

ical and very adaptable. Examples of this type of construction

include: reinforced concrete buildings, elastic arches, railway

trestles and viaducts, subways, culverts, open type abutments,

hollow dams, reservoirs, coal pockets, craneways, and various
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forms of supports for water tanks, coal chutes, signal towers,

and like structures.





II. FUNDAMENTAL EQU/.TIONS.

4. STATICALLY INDETERMINATE SYSTEMS . A system of forces^

is said to be statically determinate when each force may be deter-

mined in magnitude, direction, and point of application by the

three equations of static equilibrium, namely: the algebraic sum

of the horizontal forces is equal to zero, the algebraic sum of

the vertical forces is equal to zero, and the algebraic sum of

the moments of all forces about any point, is equal to zero.

Each member of a structure composed of n members may be

treated as a free body, and the three equations of static equilib-

rium may be applied. Hence 3n equations may be written for the

whole structure.

There are three ways in which a member may move with res-

pect to another if unrestrained, namely: by moving horizontally,

by moving vertically, and by revolving about the center of the

joint* Therefore there will be three or less unknown quantities

at each joint, depending upon the conditions of restraint. If

one motion is restrained, as in the case of two members connected

by a long link, as shown in Fig. 1, there is only one unknown

quantity at the joint. If two

motions are restrained, as in the

case of the pin joint shown in Fig. 2,

there are two unknown quantities. If

all motion is restrained, as in the

o o
I

o o
!

case of the riveted joint shown in

Fig. 3, there are three unknown
/=>y. 3.
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quantities. Hence the number of unknown quantities in a given

structure is equal to the total number of restraints at all of

the joints, including the connections to the foundation or sup-

port. Denote the number of unknowns by a. Since there are 3n

equations, the problem may be solved by statics if a equals or

is less than 3n. If a is greater than 3n, it is necessary to

secure a-5n additional equations. The number of additional

equations required indicates the degree of indeterminateness, or

the degree of indeterminateness of a structure is equal to a-5n.

This applies to frames having redundant members as well as to

those having incomplete triangular framework.
above

When more than two members meet at a point theA principle

is applied by considering the number of restraints between any

one member and the remaining members. Por instance, three mem-

bers might meet at a pin joint A, as

shown in Pig. 4a. There are two rest-

raints between the members AB and AC,

and two restraints between the members

AB and AD. The effect may be considered

the same as if the members met at two

separate points as shown in Pig. 4b.

In general, when the number of members

which meet at a joint exceeds two, the

Fia. 4. effect of an additional joint for each

additional member is produced. A few examples will illustrate

the rules given above. The degree of indeterminateness found is

for the general case, and may be reduced by conditions of symmetry
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of loading and members.

#9 6.

fig. 7.

Fig. 5 represents one form of a three

hinged arch* The number of me bers consid-

ered here is two, so that n » £.

There are two unknowns at each of the three

joints, so that a = 6.

a m 3n : 6 -6 0. This shows that the

structure is statically determinate,

Fig. 6 represents a no hinged arch.

The arch rib may be considered as one mem-

ber, so that n = 1. There are three un-

known quantities at each support, so that

a = 6. a-3n = 6-3=3. The no

hinged arch is statically indeterminate to

the third degree.

Fig. 7 represents a pin connected

frame with a redundant member. There is no

connection between the two diagonal members

at the center. There are six members in the

frame, so that n s 6. Considering the

frame as having two pin joints at each cor-

ner where three members meet, and having

one pin connection and one sliding connect-

ion with the foundation, the number of un-

k owns is nineteen, so that a s 19.

a - 3n r 19 - 18 = 1. The frame is static-

ally indeterminate to the first degree.
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1

Fig. 8 shows a rectangular frame

with rigid joints. There is one hinged

and one sliding connection with the

foundation* The number of members here

is four, so that n s 4« As indicated

in the figure, the number of unknowns

is fifteen, so that a a 15.

a - 3n • 15 - IE r 3. This frame is

statically indeterminate to the third

degree*

Fig* 9 represents a frame of a build

ding, having rigid joints and rigid

connections with the foundation* The

entire length of each column will be

considered as one member. The total num-

ber of members is nineteen, so that

li » 19. The total number of unknown

quantities, as indicated in Fig* 9* is

102, so that a * 10£*

a - 3n « 102 - 57 « 45* The structure

is statically indeterminate to the fortyfifth degree*

There are exceptions to the above rule for the degree of

indeterminateness. Fig. 10 represents two elastic members, one a

hollow pipe, 8nd the other a solid rod inside the pipe, under com-

pression in a testing machine. It is assumed that the faces of

the machine heeds are always parallel, n, the number of members

considered, is 2. The unknowns are the four vertical reactions,
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so that as 4, a - 3n = 4 - 6 r -2.

Hence according to the criterion the reactions

are statically determinate; but this is not

the case since the only equation that can be

applied is ZV = 0. The reactions depend upon

F/9- /0 the relative deformations of the members , and

hence are statically indeterminate. Such exceptions to the rule

for degree of indeterminateness can be easily recognized, and are

usually hypothetical rather than practical forms of structures.

From the foregoing discussion it is seen that it is nec-

essary to apply relations in addition to those of statics, in the

treatment of a statically indeterminate structure. From the

example shown in Fig. 10, it is seen that the action of such a

structure depends not only upon the position of the members in

the structure, but also upon their relative sections. Similarly,

statically indeterminate bending stresses depend upon the relat-

ive stiffness of the members.

The methods which have been used in solving statically

indeterminate problems include the methods of Least Work, Virtual

Velocities, J^rea Moments, and Slope-Deflections. The last method,

which is used in this investigation, is here deduced from the

theorem of Area Moments; but it has been derived by other entire-

ly independent mathematical procedure. The principle of Area

Moments was first advanced by Prof. Greene of the University of

Michigan. A proof of the principle will be presented here in

order to make the mathematical procedure as complete as pos-

sible. /
——~'

<»
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6 * DERIVATION OF THEOREMS OF AREA MOMENTS. If, for a

straight beam in flexure, each ordinate of the bending moment

diagram is divided by the product of the moment of inertia of the

section and the modulus of elasticity of the material at that point,

the ordinates of what is termed the -JL. diagram are obtained.
EI

Upon the properties of this diagram, the following propositions

are based.

Statement of Theorems * 1. Considering any two points A and

B on the elastic curve of a beam in flexure, the deviation at B

from a tangent to the curve at A is equal to the statical moment

M
of the — diagram between A and B, about the point B.

EI "~

2. The change in slope of the elastic curve of a beam in flexure

Ii/T

between points £ and B, is equal to the area of the ~- diagram
EI

between A and B.

Proof. Consider the differential length ds of the elastic

curve of a beam in flexure shown in Fig. 11. The unit deformation

of a fibre at a distance g from the neutral axis is c*d©/ds; and

the unit stress in the same fibre is equal to Mc/l. By definition,

the modulus of elasticity E is the ratio of unit stress to unit

deformation. Hence
E r Mo/

I

s M ds.
c d9/ds I IS

straight beam is large, it may be
FiS- II-
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assumed that dx is equal to ds. Then I dx .

In Fig. 12 the curve AB rep-

resents the elastic curve of a por-

tion of the "beam. By the geometry

of the figure, dy - x d9

or, dy - Mx ds
EI

Assuming that dx = ds, gives

dy s Mx dx
EI

or, y = (Mx dx
EI

g-z P/o#rarn.

ft?. '2-

Now the shaded elementary area of

the m/EI diagram is equal to Mdx/EI;

and the entire erea of the diagram

is equal to / M dx
JA EI

The statical moment of the shaded area about the point B is equal

to x«Mdx/EI; and the statical moment of the entire area of the
MB

diagram about B is equal to / Mx dx

Hence it is seen that the change in slope 9, from A to B

s / M dx s the area of the M/EI diagram between l and B; and that
J

/t EI rB
the tangential deviation y, at B =

j
dx dx = the statical moment

•Ja EI
of the M/EI diagram about B. Both of these theorems are used in

the derivation of the fundamental equations which follow.

6. NOTATION. The following notation will be used through-

out the work.
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a distance from left end of s member to the point of

application of a concentrated load*

v
D distance from right end of a member to the point of

application of a concentrated load*

r\ couple acxing upon xne end oi a member*

D deflection of one end of a member with respect to the

other end*

E modulus of elasticity of the material*

e coefficient of linear expansion of the material*

a
Jr area or xne cenamg momenx diagram ox a simple oeam*

H horizontal reaction or shear*

n vertical height of a structure*

V slant height of a structure*

I moment of inertia of the section of a member*

J twice the sum of the values of K for all members meet-

ing ax a jomx in a oenx or a uunciing*

K ratio of moment of inertia to length of a member*

k • <.a fraction of the height or span of a structure*

L lengxn or a memoer*

M oenciing momenx* wnen used wixn xwo suoscripxs, as M^jj,

the moment at the end A of the member AB is denoted*

ID rax 10 oi h/±i ox one span xo oi Xhe adjacenx span

of a building frame*

U raXio of K of top member to £ of left hand column in

a four sided frame*

P JP a concentrated load*
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p s ratio of K of top member to K of bottom member in a

four sided frame.

R « D/L - deflection of one end of a member with respect

to the other end, divided by the length of member,

s a ratio of K of top member to K of right hand column in

a :our sided frame,

t m change of temperature in degrees.

V * vertical reaction.

W * total load on a member.

w * uniform load per unit length of a member.

Z * l/z * ratio of length of a member to the moment of

inertia of its section.

* the change in slope of the tangent to the elastic

curve of a member.

jU » ratio of the moment at the end of a member to the mom-

ent at the same point with ends of member fixed.

of a (n2-2n-2pn-3p). For four sided frame.

/3 m (6n-l-p). For four sided freme.

7. ASSUMPTIONS AND CONVENTIONS . The assumptions made in

this analysis are as follows:

1. All joints are perfectly rigid.

2. The change in length of a member due to direct stress

is equal to zero.

3. The eccentricity of a direct stress due to the deflect-

ion of a member is equal to zero.

4. The deflection due to internal shearing stresses is
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equal to zero*

5. The length of e member is the distance between the

neutral axes of the members it connects, or is the

distance from center to center of supports, as the cese

may be.

The first assumption is the only basis upon which any

logical analysis of statically indeterminate stresses can be

made. The assumption seems reasonable, and is borne out by the

result of tests made on large concrete frames by Prof. M. Abe

at the University of Illinois in 1914. Prof Abe makes the follow-

ing statement: "If a frame is carefully designed and well rein-

forced, there need be no anxiety as to the rigidity of a joint,

and a perfect continuity of members has been proven by these tests

While joints in steel structures are not usually made rigid, it

is undoubtedly true that such rigidity can be obtained by proper

care in designing the connections.

Assumptions 2,3, and 4 seem justifiable, since nearly all

textbooks on the theory of arches and other statically indeter-

minate structures which consider the theoretical effect of the

quantities mentioned, show that they are negligible because they

are within the usual limits of accuracy of calculation and design.

The last assumption is best explained by the equations for

moments in frames, as given in Section III. It is seen that the

moment at a point varies as the ratio of the values of K for

certain members, and hence varies as the ratio of the lengths of

the members. Although experiments indicate that the clear lengths

of members should be considered, the ratio of clear lengths will
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be about the same as the ratio of total lengths; so that the use

of either will not materially change the value of the moment. For

this reason, the length of members will be considered as stated,

thus making the equations simpler for use in calculation.

The following conventions will be followed throughout the

work, and must be observed in applying all formulas:

1. The change in slope is positive when the tangent to

the elastic curve is turned in a clockwise direction.

3. Distances and deflections are positive when they are

measured in the same direction from the base line as

are positive slopes.
sum of the

5. The bending moment is positive when theAmoments of all

forces to the left of a section in a beam is clockwise.

Moments will be plotted on the tension, or convex, side

of the member.

4. The deflection D is measured from base line to the

elastic curve of ^he member.

5. The distance QL s measured from base line to the

tangent to the iastic curv

,

6. The tangential deviation y is measured from the tan-

gent to the elastic curve, to the elastic curve.

All deflections are measured normal to the bsse line,

which is the unstrained position of the elastic curve.





15.

8. DERIVATION OF FUND/MENTAL EQUATIONS.

Case 1. Member in flexure carrying no external load.

In Fig. 13, A'B represents

the unstrained position of the

elastic curve of a member, and

AB represents the strained

position of the elastic curve

of the same member. The changes

in the slopes of the tangents

to the elastic -mrve at A and

B are GA and ©Bt respectively.

The total movement of A normal

/*>y. to A'B is D. The m/EI diagram

is shown by Fig. 14, in which E and I are considered constant. Now

consider the quantities shown at the point B. The deflection D is

composed of two quantities; the tangential deviation y^ t and the

displacement due to the change in slope at A, or Before ex-

pressing these quantities in terms of the bending moments, it is

well to note that the algebraic sum of the areas of the M/EI dia-

gram is equal to the algebraic sum of the areas abe and ede. Hence

the position of the point q need not be located. The tangential

deviation of B is represented by and is equal to the static-

al moment of the M/EI diagram about B. Therefore

D - ©AL * It

eT

r
HI + MB (a).

The change in slope of the elastic curve from B to A is represented
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by 9g- 9A , and is equal to the area of the M/EI diagram. Hence

q q L
|

m
/ + E

]
(*).

Multiplying equation (a) by 3, and equation (b) by L, and combin-

ing, gives

3D - 30AL . g

©t>1» - © AL * f£B A El

1 £
t 4

8 2

29AL + 9BL - 3D s -
f or

EI 2

Similarly,

2EI
ZQA f 9B - 3D/L • • • • •

L2
3D - 36 a L s „A IT

*A + %

26BL - 20AL - ±-

20BL t 9aL - 3D = L2 . MB , or
IT 2~

2Ej:

L
20B + A - 3D/l

These equations are made more convenient for use by substituting

K r i/L, and R r D/L, whence

MA = -2EK (20A B - 3R,

MB z 2EK (20B t 9A - 3R) ,

(1).
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Case 2. Member in flexure parrying £ concentrated exter-

nal load P at a dist ance a from the end B. Fig. 15 represents a

member similar to the one shown

in Fig. 13, except that a con-

centrated load P is applied at

a distance a from B. The M/EI

diagram shown in Fig. 16 is

similar to the m/EI diagram for

the member shown in Fig. 14, with

the M/EI diagram for a simple

beam carrying the load P, super-

imposed upon it. Now consider

the deflection at the point B. The tangential deviation is equal

to
D - AI

which reduces to

m
I 'MBL + MAL Pab (i

* EI [ 6 3 J
+ EEIL ["

(Is
,

*Ja f b fa f b\

3 \ 3/

D - AL *
MBL Mj.L Pab .

, (c).

The change in slope from B to A is expressed by ©
B

- 9^,

A EI

MB Ma £sib

r +
f- t jr

Combining equations (c) and (d) to eliminate MB , gives

2©AL + ©BL 3D s
EI

/
-MAL - Pa2b

2L
, or

2EI
2©A + 9B- 3L/lj Pa2b

- %T •
•
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Similarly, combining equations (c) and (d) to eliminate M .gives

20BL + ©AL
- 3D

EI
— + -T~\ 2

_ L

IT

2n

whence

2.L'

Eeb2

L2
'

Substituting Kr i/l, and R» D/L, the equations for and M-g

MA = -2EK ( 2©A + 9B T-3R) - Pa2b/L2 ^

M-g s 2EK ( 2©
fi

+ ©
A -*r 3R) - Pab2/L2 J

become

(2).

Case 3. Member in flexure carrying a series of loads

symmetrical sbout the middle of the member . Fig. 17 shows a mem-

ber carrying a series of loads

which is symmetrical about the

middle of the member. The M/EI

diagram for this member is

similar to that of Fig. 14,with

the M/EI diagram of a simple

beam carrying the same loads,

superimposed upon it. Let the

area of this superimposed dia-

gram be represented by F.

The deflections at the point B will now be considered. The tangent

ial deviation is given by

D - 9.L s Z~A EI

-nil M.L FB + 1 +
6 3 2

» • • • • • ( e )

.
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The change in slope from B to A is given by

Q 1 f MJ& M,L

EI
B%;^r f F (f).

Combining equations (e) and (f) to eliminate MA , gives

E9 L t 6
4 L - 3D s 1

B A EI 2
T
2

whence

and similarly

MB s 2EK ( 2©B + 9A
- 3R) - F/L

MA s -2EK( 20A + ©B - 3R) - F/L,

..(3).

It is seen that these equations can be applied to a member

carrying a uniform load, concentrated load at middle, equal con-

centrated loads at the third point, or any loading which is sym-

metrical about the middle of the beam.

The preceding equations give an expression for the moments

at the ends of a member. It may be desirable to know the moment

at the middle of a member, or under a concentrated load. From the

geometrical construction of the moment diagram, it is seen from

Fig. 19 that in Case 1, the moment at any

point c is equal to MAX + u2{L-* ] T in Case
L

2, referring to Fig. 20, the moment under the

concentrated load is equal to
^a^tMAa +^BD

•

L

lllii ft

1
L

a

"a

If a s b » L/2 in Fig. 20, as in the case of

a concentrated load at center , the moment at

the center is equal to Pl/4 + -|(M^+ ^or say- other loading in

Case 3, replace Pl/4 by the maximum moment in a simple beam.

F/g go.
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9. SUMMARY OF FUNDAMENTAL EQUATIONS * The following tab-

ular summary of equations will be useful for reference*

TABLE I .

.Fundamental Equations *

The equations give the moment in sign as well as magnitude.

Condition of load/ng /yooient D/agram. auattends.

9'
fix

/to infermediate

externa/ /oac/s.

Afo - 2£/r[2ea+0A -3/?]

= A/ax + tfoU_z*) (/a.)

8

3in<p/& Concentrated

load a/ any /?0t'/?f.

A/a -- -terffea* +00-3/?] -
.

€)'

5/r>g/e Concentrated

Laad af m/'o/a'te.

ffn = 2£^[2&0 -3/?]- ^

£1 tf/PrA/s
A ? (3a.)

To fa/ {//?/ ^>rrr?/oao'= W,
C

IIIIIIIHIIMIIIIIIITT
ft

l/n/form/y D/s/ribated

Loaa* orer the c~r>T/re

/&nq/h

.

C* A/ddle of Member

Aiff= 2£tf[200-r0A-3/fJ- /2

fo'-ze/rfete+ea -3/?]-

(4J

(4a),
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TABLE I.- Continued.

Covd///on of Load/hq Womenf ram

l/nifermJ] P/sfribufedlood of

u) I6, perfti a td/j/an&ff

a from each 0nd. The iota/

load* Zuia.

C* Middle of Member.

/f/t* - ?£/<{2fy r 0# -3/?]- ^ *(J* "J

~z He

/IC- 2 g

t/nrform/tf P,strs6«f*d taad'

sS/jfaiee &t r^rorrr 4>*ch of.

rhe f*fa/ /acre/* t*>

CO * /oad p er~.

3 ni

Me- 2£^,^-3^]-^^>ab
+ L^ 3

))

/fc* %'(b-aj fb+3a) t tf*Mf* - - - -(C.J

6 r

4'
Me

Md= ?EKJ26& + 3* -3/?]'. PaJ>

77ro tf^fa/ 5ymmeTr/ca//y

Spared <r**c-arJ?'/-**f'*>*' /a^t/j

.

Ik

Afc* Fa -f Ms^-fs
1 7a.)

ToTal /oad on /ne/nbers l*"

C v. Mb

Ik
(S.J

P/str/ iu/ad loocf^ /ncreas-

i/7f aniforrn/y -from Zfirp af£>/?ds

To max im «rrr at sender

7m
/oih/ load a*i fftfi7 )V

C Ms

D/str/buted lead, /^creas/rjf

(,/mfarm/y from Zero "t

CanTffr' To cr rT7aK /rrrU/77

ff/f* -ZE/Tf20#+00 -3/?J -

(9J

(9 a.S





22.

10. OUTLINE OF METHOD OF ANALYZING STRESSES IN STIFF

FRAMED STRUCTURES . Any framed structure may be analyzed by break-

ing it up into its component members, each of which may be acted

upon by moments, shear, and direct stress. By applying the fund-

amental equations of Table I, the bending moments in each member

can be expressed in terms of the changes in the slopes end the

deflection of the ends of the member. These equations, together

with the equations of static equilibrium, give as many equations

as there are unknowns. They may be solved by either one or the

other of two methods, as follows:

1. The moments may be eliminated and the equations solved

for the slopes and the deflections. These slopes and deflections

may then be substituted in the original equations, and the moments

determined.

2. The slopes and deflections may be eliminated, and the

moments determined directly.

The first method can be used to best advantage when a num-

ber of members intersect at one point. The second method is

especially applicable when only two members intersect at one point,

or where certain slopes and deflections are known from the con-

ditions of the structure.

Both methods were used in this thesis. Algebraic express-

ions for the moments were determined in the case of the simpler

frames, where not more than four simultaneous equations were in-

volved. In the remaining problems only the general equations for

the structure were written. The solution of these equations is

illustrated by numerical examples.
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III. ANALYSIS OF STIFF FRAMES.

A* CONTINUOUS BEAMS.

1

Fig- 2/.

11. BEAM WITH FIXED ENDS . CONCENTRATED LOAD AT ANY POINT .

Pig. 21 shows a beam fixed at the ends and carrying a load at eny

point. The tangents to the elastic curve at the ends are horizontal

and the two ends are on the same

level* Therefore G^sO, ©B«0,
and

RrO. Equation 8; of Table I, gives

MB = -Pab2/L2 (10,

MA * -Pa2b/L2 (11).

It follows that MA + MB s -Pab/L. Hence it is seen that with a con-

centrated load, the sum of the negative moments at the supports of

a beam with fixed ends is numerically equal to the positive max-

imum moment in a simple beam with the same loading. Also, the mom-

ents at the supports vary inversely as their distances from the

load, in the same manner as the vertical reactions of a simple beam,

12. BEAM WITH FIXED ENDS . CONCENTRATED LOAD AT ANY POINT .

EFFECT OF SETTLEMENT OF SUPPORT . The beam shown in Fig. 22 is sim-

ilar to the one shown in Fig. 21,

except that the support A has set-

tled a distance D. The tangents to

the elastic curve at the two ends

F/g-22, are horizontal as before. Hence

eA= ^» ®BS °» 8nd ^ ~ The application of equation 2, gives

MB - -6EID/L2- Pab2/L2 (12).

MA = 6EID/L2- Pa 2b/l2 (13).
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If the tangents at A and B do not remain horizontal, equation 2

applies directly.

MB s 2EK(2©
B 4 ©

A -3R) - Pab2/L2 and

MA =-2EK(2©A 4 ©B -3R) — Pa2b/L?

13. BEAM WITH FIXED ENDS . SYMMETRICAL LOADIMG.

(a) . Single concentrated load at the center. See Fig.

23. As before, ©
A«0,

©B=0, and R»0. Applying equation 3 of Table

I, gives MA s MB s-PL/8. (14).

(b) . Uniformly distributed load to. See Fig. 24.

Equation 4 of Table I gives
MA r MB s-WL/12. (15).

P

Y 3 z nnnnnmmoniffliiffli] innmn n n

i

I-

Fig. S3.

From the fundamental equations the following rule may be

established. For a beam with fixed ends on the same level, and

with loading symmetrical about the middle, the bending moment at

the ends is numerically equal to the average bending moment in a

simple beam with the same loading. This is seen to be true in the

case of the beams shown in FiRS. 23 and 24.

14 » BEAM CONTINUOUS OVER THREE SUPPORTS . Fig. 25 repres-

ents two spans of a beam

which is continuous over a

number of supports on the

•fltf
seme level. The beam carries

a,
s. .

L,
: *. }

^3
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coneeatrated loads. Equation 2, when applied to each span, gives

» 2EI(29
1
t ©

g )
-(P

1
a
1
(l

1
-a

1
)2/l

1 )
#

Mg^ r-2EI(26
2t 9^ -(^(I^-G^) 8.*/^) .

M2L2 = 2EI(2©
2+ ©3 )

-(P2a2 (L2-a2 )
2/%)*

M
3
L
2

=-2EI(29
3+ 9

g
) - (Pgdg-a,,) ag/Lg) .

Combining these equations to eliminate values of 8, gives

M-jLt*2M2L1+2M2L2+M3L2 = -Il(a1L1-a|+2a|) (^-e^
I»i

2a
g
L
2
-2a|+8| ) (

L

2
-a

g )

.

L2

If there are several loads on each span, the equation may be writ-

ten,

M
1
Ilt2M2 (l1+L2 )tM3L2 ^Lfl^-lfl-ZPsLl^-^l) . . . .(16).

11 2 2 2

This is the usual form of the equation of three moments. If the

beam carries a uniform load on each span, a similar procedure gives

M1L1t2M2 (L1+L2 )tM3L2 s -i'^Lf -iWgL§ (17).

G

Equations similar to the ones which have been written for

the two spans shown in fig. 25, may be written for the other spans

of a beam extending over any number of supports. This will give

as many equations as there are unknowns.
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15. CONTINUOUS BEj\M OYER THREE SUPPORTS . EFFECT OF SET-

TLEMENT OF SUPPORT . Fig. 26 shows a beam similar to the one shown

in Fig. 25, except that the left hand support has settled an am-

ount equal to D. The equations for this beam are

UjJ^ = 2EI(20
1
-^ 9

2- £0/1^) -(P
1a1 (L1-a1 )2/L1 ).

M2L1 s-2EI(2©£+ ©x- 3DAi) -(P^lx-a^af/l,-^.

M2L2 as 2EI(20
2+

©3 ) - ( Pgfigdg-ag ) &A2 ) •

M3L2 s-2El(2©3+ 92 )
-(P2 (L2-a2 )ag/L2 )

.

Combining these equations to eliminate values of 9, gives

MiV^B t Ll+L2> +%L2 « eEI^-P.L^fl-g) -P^fe!^). . .

11 2 2 2
. . . • • • .(13).

The deflection is negative and therefore the value of D t when sub-

stituted in the equation, must have a negative sign before it.
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B. FRAMES UNDER VERTICAL LOADING. FRAMES

AND LOADING SYMMETRICAL ABOUT A VERTICAL CENTER LINE.

16 . GENERAL. Fig. 27 represents any frame symmetrical

about a vertical center line. If the l08ds are symmetrical, the

horizontal deflections of the points A and B are equal to zero, and

the slopes of the tangent to the elastic curve at A and B are equal,

but opposite in sign* Therefore ,
equations 1 and 3 of Table I

when applied to the member AB take the form shown in equations 19

and 20 of Table II; ^ : applied to the member AD, take the

form shown in equations 21 and 22 of Table II, with the loadings

designated*

TABLE II.

Special Forms of the Fundamental Equations .

Member l/a/i/e5 of &z a /£"<d ucf //on.

'G £> //o fx. ferna/ lead. 0fl*-0B D'O A/A- 2£/T0* - A/b f/9j.

'G 1
*

1 O* Symmefr/'tra/ load. Ma= 2£/f&# -f = Sl3 {2a)

(

T77777T.

y

D

fta fxtamo/ load.
=-2tf0 (21).

D/stance -to -the

c

(

y

,0

flofjtfernalload. -3K0*£- {22).

17. THL THREE SIDED FRAME WITH 20STS HINGED AT BASE . Refer-

ring again to Fig. 27, from Table II, the moment M^ at the left

hand end of AB is given by the equation M^b sZESLjQa -F/L'. Hence,
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r <x, \

/vy. 27-

the top of AD is given by the equation

MAD a ~3EKoeA' whence QA = - ^AD .

3EKq

Equating the two values of substit-

uting MA for MA£ and M^j,, and n for Kl .

K
gives

JP -3
MA * Li

(37^T ) • • • -(23).

Equation 23 is applicable to frames with either inclined or vert-

ical posts. The values of f/L for different conditions of loading,

to be used in equation 23 and all following equations of Section

B, are given in Table III, page 29.

The direct stress in the posts varies as the secant of the

angle of inclination with the vertical. The assumption of no

shortening of members due to direct stress is equivalent to saying

that the top member is rigidly supported at A and B. Hence, making

the angle of inclination equal to 90° the above equation for

holds true in the case of a continuous beam of three spans, with

hinged ends. The supports at A and B relieve the direct stress in

the members AD and BC.

18. THREE SIDED ffRAME WITH P0ST£ ftyt?.t> *t BASE ; inferring

to Fig. 28, end proceeding as in paragraph 1? :

By equations 20 and 21 of Table II,

M
/J)

.-4EK A , or QA = -
M£D
4EKq
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T/J3LE M.

'/alues of £ for nsr'rio'us Syrr/merr/cc?/ /.oatf/ngs

Area of /foment D/ agram , 3//77p/e3ectm

L» Lenq/h of load&d A/ember

Pesif/on of looas. /foment- P/ agrom.

±

To,ra/ /aoet^fi/.

•
' '""i! ' i- =

:

1 1 1 1

:

I""'
1 m

To*-a/ Load -- 2 fa
'. b

fc

*—*
p ±

ToTai 1*00

- —

—
//c X'-'77^/77

/Vomer/.

PL
4-

2

r
fafve or -j;

~2

uJ(o^aj (or3a}.

TnTTii 1
1

1 nn Pa.

IT PL
3

Pi

6

.'2

6 Z

l<0

43

/6
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M mrs 2EK.9 .-2?/3^ whence - JS^f^ .AB 1 A A 2EKl

Equating the values of 9^, and substitut-

ing n for Ki/K , gives

(24),

Values of F/L for different loadings are

given in Table III, page 29,

19. BUILDING FRAME . A type of frame which is often encount-

ered in building construction is shown in Fig. 29. Consider all

members which meet at the joints A and B.

Let AB be the only beam which carries e

vertical load. Then certain bending mom-

ents are produced in the members meeting

at A and B. The far ends of these members

are restrained; the degree of restraint

being between that of a hinged and that

of a fixed end. The moments will now be

determined for these two limiting con-

ditions of end restraint.

(a). Consider the case in which the far ends of the members

are hinged. The members taken together as a free body are shown in

Fig. 30. Equations 20 and 22 of Table II

are applied to the moments at the point A*

Mai = -^f/r« f30A>.

Mad * -EATo (3 6*).

Mah = -£/r3 < 30a).

/v> 29.

* i

"*S -5'

L,

1—

1

3"

i2 J

* \ a

4
> 1

c
)
—1

O

F/g. 30.
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Equaling values of gi^es.

(25).

,///*////

--5

o
www/

3?

i.3

I*

(b). Consider next the case in which the

far ends of the members are fixed. The

members taken together as a free body are

shown in Pig. 31. Prom the equations of

Table II,

Mai = -(zk/Cz

tfsto* -2£/<c

Ma* --ZEKsCje/i).

A?az+ Mad +M#H=M/ra = 4e„£{X'z+K'o

Fig. 3/ whence A- - ^j7Z

7.. .(26).

It is seen that the bending moments at A and B do not vary app-

reciably in the two cases. Diagram I, page 32, shows curves plot





Effect- <rftf/r)ged ondf/xed £nd±

upon tfre Moment in Member AB.

32.

1—pj
—~~

Let Kt>*rtz*K3

M iS
*T

h

-I.

D C

ill 1 ! i
: t

1

!
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ted for equations 25 and 26, with different values of K. .From

this it is evident that the actual moment in the symmetrical

frame of a building subjected to symmetries! loads is determined

within quite narrow limits.

20. DEGREE 0£ RESTRAINT OF THE END OF A MEMBER . As has

been briefly noted above, referring to Fig. 29, the resistance

to a change in slope at the joint A, which is exerted by a member

AD, depends not only upon the stiffness of the member, but also

upon the condition of restraint at the end D. When the degree of

restraint at D is known, as in the cases of hinged or fixed ends,

the restraining effect of this member on the rotation at the

point A can be determined. The relative restraining effect of the

different members will be proportional to the bending moments

produced in them by a change in the slope at A. Table II, page

27, shows that for a change in slope at A, the relative restrain-

ing effects of the members for which equations 19, 21, and 22 are

written, are in the ratio of 2K, 4K, and 32, respectively.

ing a load as shown in Fig. 32. The degree of restraint at A

may vary from zero for e simple besm , to unity for a beam with

Consider any symmetric si frame, with the member AB carry-

fixed ends; and similarly, the moment

M. B may vsry from o|! to !•
J! . The
L

degree of restrsint at the end A of the

member AB may be defined as the ratio

of the moment at A to the moment which

would exist at A if the end was fixed.
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Therefore, the degree of restraint may be written as a coefficient

of F/L. Equations 25 and 26 show that the degree of restraint at

A is equal to the ratio of the restraining effect of the unloaded

members, to the restraining effect of all members at the Joint,

For example, suppose the unloaded members of Fig* 32 are hinged at

the far ends. The degree of restraint //at A is given by the

equation - 3k + 3 ks + 3/<2 + 3^

1

If the same members were fixed at the far ends, the value

of jb( is given by the equation

In each case, M^g =//£ •

21. BUILDDIG FRAME . MOMENT IN MEMBERS ADJACENT TO LOADED

BEAM . Refer again to Fig. 30, for the frame having members hing-

ed at' the ends. The moment M^ is given by equation 25. Consider

the moment? in the members meeting at A.

A/ap = -3EKo&a or A *
3E*r

/¥/)&-- or tf*3+Z

£ oucjhna i^a/ues of , ana/ s/m/o/ify/nj,

/=-[
- 3^o 7

f~ J 3/^3 7
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Referring to Fig. 31, for the frame having members fixed st

ends, the moments at D, H, and I, are found by a procedure similar

to that above. The equations are as follows:

-2/Co
Jj . . . . ( 26s )

.

HAH*.-2</i*4 -£ [rAt +;£%x.3 +d . • • .(86D).

2/& +^/Ce

A7/IZ* -2A7z# ~£
— 2K-

>J.
. . .(26c)

Special forms of the above equations for building frames

subjected to symmetrical vertical loads are shown in the summary on

page 113.

22. BUILDING PRME . COLUMN MP BEAM ENDS HINGED . ALL BEAMS

LOADED . Referring to Pig. 33, let F^ te firea of the moment

diagram for AB, considered as a simple beam; and F
g

be tl e area of

a similar diagram for BP and IA. Consider the member IA, which is

H & under a symmetrical load. Prom equation

3,

M
I1 = =2EK2 (29 I+©A ) - F2/L2 .

MAI - - 2EK2 (20A+©!) - F2/L2 .

Eliminating 9j from these equations, and

applying the equations of Table II to. the

other members of the frame, gives
f/f.33.

c

V
Ll -

L,

rr

4IIIIIIIIIIIIIIIIIIIIIIIIIIII NlllllwlllllllllllllJ

< > 1

3
a
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AJai* -3£sr2 - J4± (a).

AfaO' ~ 3£fiZ &A . (b).

/y*" - -^£^3 &/? ( c ) •

Mag - 2^at,^ ^ ^ -- * ^ (d).

Equating values of 9^, and substituting mF^/L^ - Fg/l^, S^ves

It is interesting to note that if m is equal to 2/3, MAB

will become -JPj/l^, 88 in the °sse of a beam with fixed ends, and

9A will become equal to zero. If m>2/3, MAB> -ff^/l^, and 0^

will be negative.

%D» MAH» and MAI mev fee expressed in terms of F^/L-l, as

follows: From equations (b) and (d),sbove

Substituting the vslue of M^g from equation 27, gives

Similarly, /y * * - ^, I J/ra +j?a-3 + 3A1*.

From equations (a) and (d), above

Substituting the value of M from equation 27, as before, gives

(27c).
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It is seen from equations 27a, 27b, and 27c, that if ro- 2/3,

M
AI)

= M^H s 0, and MA j r -jF-j/L^* It should be noted that while

Fig. 33 shows a uniform loading on the beams, the equations apply

to any symmetrical loading.

23. BUILDING FRAME . COLUMN AND BEAM ENDS FIXED . ALL

BEAMS LOADED. This frame is represented by Fig. 34. Applying the

equations of Table II, a procedure similar to that used in par-

agraph 22, gives

H

12

hi

D

i.. >-2

if

As in paragraph 22, m is the ratio of Fg/L2 to F-j/L^. From the

above equations it is seen that when m - 1, M^g - M^j s -Fj/L^,

and M^p s M^g s 0. It is also seen that the equations may be

modified to the form of the equations of paragraphs 19 and 21, by

making Fg/L^ : 0, or m 0. These equations can also be applied

to simpler frames by letting the value of K of any member equal

zero. Thus by letting and K
Q

equal zero, equation 28 applies

to the continuous beam of three spans, with fixed ends. Several

special forms of these equations are given the summary on page 114,
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24. FOUR SIDED FRAME. SYMMETRICAL LOAD Oil TOP BEAM. See

Fig. 35. Applying equations 1, 19, and 20, and substituting UzKi/Kq

and p s K1/K3, gives

tfpc p* -*£&o (a).£

Mo* n = ?£f?#D ^&*)<
f b )

.

A < r iK \

/%f^ - ^<^f * (e).

/>f/IDr?°-&£ f?0/l+e*). (d).

from Faucrf/0ns faJ and -r? &£> -Jt/p 0& &/? • °r

Substituting this value of in (d), gives

' * fit i

1. 1

}

Substituting this value of 9^ in (c) t
and writing M^sM^-gsM^, gives

Then (29).

From Fyucrf/on CoJ, =
~

/*7 y-^7 *
'

From £ouc?f/Or? CcJ
y 0# = ^f* * Z7

£orr?6//?//*?

^

S7 +2/?
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25. THREE SPAN VIADUCT BENT . COLUMNS HINGED AT BASE . LOAD ON

MIDDLE SPAN ONLY . This type of frame is used t especially in

Europe, in reinforced concrete viaduct construction; and also in

the open type concrete "bridge abutment, which is being developed

to a considerable extent in this country. The same type of struc-

ture has been used for reinforced concrete traveling crane runways

Such a frame is shown in Fig. 36. W represents any vert-

ical loading symmetrical about the vert-

ical center line of the frame. Owing to

the symmetry of loading and frame, there

will be no horizontal deflection at the

upper ends of the columns. Consider the

points I and A. Applying the eouations

of Table II, gives

Mm * 2£/<2f (a).

Afs* - ~3£/<3 e-z . ( b )

.

-2£*rz (2&/? (c).

Af/fo - -3£Xo <9/r. ( d )

.

A7rt&= ZfK&s? • fe).

+Z3

12

22. A<i

3XT, )

From equation 22, if there was a hinge at I, M^j would equal 3EKgO^
#

From equation 21, if there was a fixed end at I, M^jwould equal

4E£2©£. From the above expression for M^j, it is seen that its

value may vary between these limits. At the point A, the degree of
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restraint,//, may "be expressed by the equation

J Ars Ariz /

from eyua?/on CeJ, 0# * Therefore, expressing the

. . (30).

moments at A and I in terms of 9^, and substituting the velue ot/u/fB%

gives

r f
-3'/To 7

r T-4/f*f*%i%® 7
fi|M|1

. (30c).

26. THREE SPAN VIADUCT BENT. COLUMNS FIXED IT BASE. LOAD

ON MIDDLE SPAN ONLY . See Pig. 37. W represents any loading, sym-

H
wft»

P
7T7, 777

X 3

*-2

^7

metrical about the verticel center line

of the bent. The equations of Table II

which are applied are as follows:

/ft» = -4EK3&2. - -*Af#/. . . . . ( e ).

f A7 = K2 {20j r ( b )

.

AfAf - -/'^^^ (e).
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/yjp= = (a).

A7*3= &s?-zr. (e).

By a procedure siroiler to that of paragraph 25, the following

expressions for the moments in the various members are obtained.

™*>-
- ^#3§y * 4*W

—

(310)

87. THREE SPAN VIADUCT. COLUMNS HINGED AT BASE. LOAD ON

ALL SPANS . See .Fig. 38. represents any loading symmetrical

about the vertical center line of the middle span. represents

any loading symmetrical about the vert-

ical center line of the outside span.

Applying equations 3, 20, and 22, gives
X

A//h= -3£/f3 &j ( a ).

/V/a - ezHzfze* .... (b).

/%^>- (d).

= (e).
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Combining equations (a) and (b), and solving for Qj, gives

Substituting this value of ©j in (c), gives

Combining equations (d) and (g) , since M^j -I- = M^-g
,
gives

0* —

Substituting this value of ©^ in equation (e), and letting mi^/l-^

equal Jfg/Lg, &ives

, , (32).
Prom equations (e) and (32),

Substituting this valae of ©A in ecnations (e),(c),(d), and(f),

the values of the remaining moments are found.

(328)

(32c)
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3K-* * 4K2
If m s -=rrr t^t- , in the equations 32, 32a, and 32b, it is

oKg + ^^2

seen that M^B r MAI = -^/L^ and MAD = 0. Also
,
putting m equal t<

zero for the case in which there is no load on the outer spans, eq-

uations 32, 32a, 32b, and 32c take the same form as equations 30,

30a, 30b, and 30c of paragraph 25.

28. THREE SPAN VIADUCT BENT * COLUMNS ?IXED AT BASE * LOAD

ON ALL SPANS . See Fig. 39. iV-^ represents any load symmetrical ab-

out the vertical center line of the middle span. Wg represents any

load symmetrical about the vertical center line of the outside span.

^> 3

Equations 3, 20, and 21, as appl-

ied here, give

-4-£Ks&z (a).

A//}/ * -£>£Kz> .( c )

.

A7/*d= -«?£/fo&*. (d).

A7ab = ££/f,9* ...(e).

The entire procedure is similar to that of paragraph 27, and gives

the following expressions for the moments at different points of

the frame.

^ .

/r^M-/^M)-«7 f1.,

V

a/ad- &I-

~ °~ m{Ĵ 3
-WMl 7 f88b )
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"""Ufa ,/rJl/r*f ^1 '
- (33c) -

A//H =2/7*/; and WAD ** J?A7£M.

If m s =3 2
f

in equations 33, 33a, and 33b, it is
2£3 + 3K2

seen that MAB MM x -^/l^, and MAD 0. ilso, putting m equal

to zero for the case in which there is no load on the outer spans,

equations 33, 33a, 33b, and 33c take the same form as equations

31, 31a, 31b, and 31c, of paragraph 26.

In these last two paragraphs it should be remembered that

the loading on the two spans need not be of the same kind. For

instance, there might be a uniformly distributed load W^»on the

middle span, and concentrated loads whose sum equals tfg on each of

the outer spans; or concentrated loads whose sum equals #1 on the

middle span, and a uniformly distributed load W2 on each of the

outer spans; or any other combination of loads so placed that the

loading on a span is symmetrical about the center of the span.

Values of F/L for different loadings are given in Table III, page 29.

The foregoing analysis should prove to be of value in the

design of viaduct bents. It will be supplemented in Section F by

an analysis of the stresses due to horizontal traction and wind

loads on the structure.
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C. RECTANGULAR FRAMES.

29. USES OF RECTANGULAR FRAMES. A large number of struc-

tures are rectangular frames. As has been stated before, there is

no complete analysis of the stresses in such structures in suitable

form for practical use in designing.

Examples of this kind of framing are seen in the intermed-

iate and portal frames of through bridges, concrete bridges, tun-

nels, subways, culverts, sewers, aqueducts, reservoirs, and other

structures.

The writer has attempted, in analyzing these frames, to put

all formulas in as simple a form as possible for use in computation.

Several numerical examples are given at the end of this Section,

which illustrate the use of these formulas.

30. RECTANGUL/R FRAME fflTH VERTICAL CONCENTRATE! LOAD ON

TOP. (a). Load at anjr Point . In Fig, 40, let the load P act at

a distance a from the point A. For con-

venience in algebraic procedure, substi-

tute l/Z for K in the fundamental equat-

ions, and transfer Z to the left hand

side of the equations. Applying equations

1 and 2, gives

MLAZ * 2E(20D+0A-3R) - . (a).

%DZ s -2E(2©A+©I)
-3R) (b).

Mj^Zx s 2E(2©A+P? )- Peb^x/L-2 • . • • (<*)•

MBAZ 1 ' -2E(29BVfe /
)- Pa^bZ-j/L2 . . . .(d).

fig- 4o.
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MBCZ2 =

MCBZ 2 =

MDCZ5 s — 2E( 2©j^©Q )• « * • • • .(h).

Let H represent the horizontal shear in AD and BC, Then

MDA " MAD = ^
Mqb " MBC = Hh, or

MdA - M/X) - Mqb f Mbc = (i).

Equations (a) to (h) will now be combined to eliminate all values

of 9 and R. Adding equations (a) to (h), and letting M^sM^sM^ B ,

and similarly for Mg, Mq, and Mj), gives

M.A (Zo^Zi) + MsfZi+Zg) + MC {Z E+Z3 )
+MD (Z3+Z ) s -£f^i

L ( 5 ) <

Adding equations (b) and (e); two times equations (a) and (f);and

three times equations (g) and (h), gives

MAZo+ MBZ 2 f Mc(2Z2f3Z3 ) + Md(2Z +3Z3 ) = (k),

Adding equations (d) and (g); two times equations (e) and (f); and

subtracting equations (a) and (b), gives

- MAZ + MB (2Z 2+Zi) f MC (2Z 2+Z3 ) - MdZo = - £f^£l . . (1)
L L

This gives the four equations, (i), ( j
) ,

(k), and (1), containing

the four unknown moments. Let n=Zo/Z]_ t PsZ3/Zi, SsZg/Z^, and,kaa/L #

When these values are substituted in equations (i), (j), (k)
t
and

(1), they take the form shown in Table IV f on the next page.

======^ -
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TABLE IV.

Equations for the Rectangular Frame

with Concentrated Load ©t any Point on Top.

Equation Mc % Known Term.

j n + 1 1 + 8 8 + p p + n - Pab/L.

k n 8 2s + 3p 2n + 3p C

1 - n 1 + 2s 2s + p - n - Pebk/L.

i - 1 + 1 - 1 + 1

In the above table, the quantities in each column are the

coefficients of the moment indicated at the head of the column, and

the quantities in the last column are the right hand members of the

equations.

Solving these equations simultaneously for the moments, gives

(34c),

tr/iere A - -[22(spn -hsp+sn+np) +2(spz+5p+npi-ph + s\s+n 3+n)+6(sn^-s*n+p+p)l
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If l£ e Iqi so that the frame is symmetrical about the vert-

ical center line, s = n, and equations 34, 34a, 34b, and 34c become

(35)

v £ -a- f^b).

and fi= (on + / -hp.

( b ) . Load at Middle . Frame symmetrical about the vertical

center line . With the load at the middle, ks-§-,and (£ 0«

Equations 35, 35a, 35b, and 35c then become

M*=A/0= §Y- (36).

tfc*Af/>* _n_) (36a)

From equations 29 and 29a of paragraph 24,

f-lO±3&). (29).

(29a)

The last two equations are essentially the same as equations 36 and

36a.
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(c). Uniformly Distributed Load . Frame Symmetrical about

the Vertical Center Line. The uniform load is equal to W/L pounds

per lineal foot. In this case F/L equals WL/12, and equations 29

end 29a become

'/fo.tfm-44£(- &OL±3£.J (37).

(37e)

(d). Two Point Loading . Frame and Loads Symmetrical about

the Vertical Center Line . See Fig. 41. Here F/L equals Pab/L.

Equations 29 and 29a become

Af*-/ie* €^Jo(- 2"+**
) .... (38).

A/c*/y*= £r J (38a)

If a « L/3 , these equations become

faff*. *£(- (39).

41.
Afc=A?£> = ^( -Qr ) (39a)

For other symmetrical loadings, see values of f/L in Table III,

page 29, to be substituted in equations 29 and 29a.

31. FBAME VtfITH HORIZONTAL LO/D ON COLUMNS .

(a). Concentrated Load at any Point . Fig. 42 shows a rect-

angular frame with a concentrated load applied on member AD, at a
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distance a from the bottom. Applying eq-

uations 1 and 2, substituting Z for l/x,

and transferring it to the left hand mem-

ber of the equation
, gives

MdAZ = 2E(29d+9a-3R) - £f^0.^ . .(a).
h h

M/JDZ = -2B(B©A+0D-3R) - £f^
Z.Q,a . .(b).

n h

MABZ! = 2E(29A +9B ) (c).

MBAZl = -2E(29B+9A ) (d).

MBC Z 2 s 2E(29B+9C -3R) (e).

McBZ2 = -2E(29C+9B-3R) (f).

MCDZ3 « 2E(29C +9d) (g).

MdCZ3 = -2E(29^9C ) (h).

Let the shear in AD below P be represented by and the shear in

BC by H2 . Then MB = -Hixi,

= Hi(h-^) - Pb,

s -H2 (h-x2 )

.

MC = H2x2 .

Adding these four equations, gives

Ma -Mb +Mq -Md = Ph - Pb s Pa. . . . (i).

Combining equations (a) to (h), to eliminate all values of 9 end R,

gives

Ma (Z +Z;l) * MB {Zi+Z 2 ) + Mc(Z 2*Z3 ) Md(Z 3+Z ) = -PabZ

MAZi + MBZi - Mc(2Z3+Z2) - M£(2Z3*Zo) =
PabZ

(J).

O.b .... (k).
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MAZi + MB(2Zi+3Z 2 ) + Mc(2Z3+3Z£) * MdZ3 = (1).

The last four equations are rewritten in Table V.

TABLE V.

Equations for the Rectangular .Frame

with Concentrated L08d at any Point on Column.

Eouation MA Known Term.

i 1 - 1 1 - 1 Pa.

n * 1 1 + s s + p p + n - Pabn/h.

k 1 1 -(2p + 8} -(2p + n) Pabnlyh.

1 1 2 + 3s 2p i 3s P 0.

In the above table n * Z /zlt p a Z3/Zlf s * Z2/Z1, and

k * b/h. The four equations can be solved simultaneously, but the

resulting expressions for the moments are very long. It is simpler

to substitute the numerical values of the quantities in Table V,

and determine the moments by a process of elimination.

If the frame is symmetrical about the vertical center line,

Iq r I2 » an(i equations (i) t (j), (k), and (1) are much simplified.

Letting s = n, a solution of the above equations gives

-(40).
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4^ • • (40b).

/>? /v/l/ch a = n2
+ 2/>n -t2n +-3 p.

and /&= 6 n + I +p-

(b) . Concentrated Load at Top . Frame s mmetrical about the

Vertical Center Line . In this case k s 0, and ash. Hence, equat-

ions 35,.35a
v

35b, and 35c become

/f*.Ph(-2Jli£) UD.

rte.ftif-Siff!) («.,.

M./ty-jgfl) uw .

tfe*Ph(-3t0) (410 ).

(c) . Concentrated Load at Middle of Column . Frame Symmetric -

al about the Vertical Center Line . In this case a = |h, and k s §-•

Equations 35, 35a, 35b, and 35c become

( 42 ).

**&^-»hg0] ,4,.,.

^^[^-nrn0] imu

fi-fgH-HpZ -nOga>] (420) .
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(d). Uniformly Distributed Load on one Column . Frame Sym-

metrical about the Vertical Center ^ine . Referring to Fig. 43, let

the uniform load equal iff, and the unit

load will equal w/h pounds per lineal foot.

In equations 40, 40a, 40b, and 40c, replace

P by the elementary load Wdy/h; let a be

replaced by the variable distance y, and

k will equal (h-y)/h. This gives
F/q. 43.

J ~h L h z 2<* I {3/ 2P J

7 Jo 7} L Z/3 h (2/3 go<J h z ^

Sirailer expressions are obtained for MB and Mp. Performing the in-

tegrations indicated, and simplifying, gives

/f/h F-nfn+3p) + 3f2>n +p)l (43).
/Z L 2c* (3 -J

/y3 * ^[-nfn±3£) - 3/
?£2g£)J (43s )

.

Mc - + 3f4n+/) 7 (43t )

.

/2 L 2** /3 J

(43c).

(e). Uniformly Distributed Load on Both Columns . Frame Sym

metrical about the Vertical Center Line . Consider the load £ rpp-

lied to each column. The total moment at A is equal to the moment

at that point due to the load on the left hand column plus the
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moment at the same point due to the load on the right hand column.

These two moments are given by equations 43 and 43a
, respectively.

Adding the two quantities, gives

/ffi./fo- ($f
-n fn+3

p)J (44).

Similarly,

(44a).

(f). Hydraulic Pressure on one Column to a Height H. Frame

Symmetrical about the Vertical Center ^ine . See ^ig. 44. Let the

total pressure on the column equal Bf, and

the maximum unit pressure will equal w.

Also, the unit pressure at a distance y

from D will be designated by w 1
. Then

ws 2W/H, and ;v'= w(^^) = M(H-y). Replace
H H2

P in equations 40, 40a, 40b, and 40c, by

the differential load, w'dy; and let asy

and k s (h-y)/h. Taking the summation of

the moments due to the elementary loads, gives

The expressions for and Mp are similar to those for and Mc .

Integrating the right hand members of these equations and simpli-

fying, gives

(45).
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(g). Hydraulic Pressure on Both Columns to a Height H. .Frame

Symmetrical about the Vertical Center Line . Let W equal the total

pressure on one column. Applying the same method es used in par-

agraph (e), the following equations are obtained,

Sk.MB~(g[-£(/0-S£)-n(l^f/0-,0%+3ffi]')] . . . . (46s)

(h). Hydraulic Pressure on Entire Height of one Column*

.Frame Symmetrical about the Vertical Center Line , Let W equal the

total pressure on the column. By the equations of paragraph (f),

making H • h,

4&[-n(2n±2P) + f3n+2p )l (47).
tz L sc* 73 J

fife* /Vh[-n( - (3n+2j?)l
(47a)<

rfe . tz£L n(3n +8) + (en+2)7

rfo= m[-n(3n+8) -(2I2+-&]
. . (470) .
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(i). Hydraulic Pressure on Entire Height of Both Columns *

Frame Symmetrical about the Vertical Center line . Letting H = h,

the equations of paragraph (g) become

/fr.tf*- ^[-2r?(Zn£[P)J (48).

tfc = A/o= yf£njL&)J (48a).

32. FRAME WITH VERTICAL LOAD ON BOTTOM MEMBER . FRAME SYM-

METRICAL ABOUT THE VERTICAL CENTER LINE .

(a). Any Symmetrical Loading. Fig. 45 shows a rectangular

frame with loads on the member CD. Applying equations 1 and 3 to the

members of the frame, and substituting Z s l/K, these equations are

then combined as in paragraph 30, to eliminate all values of 9 and R.

Four equations containing the four unknown moments are obtained, as

shown in Table VI. As before n - Zq/Zi, and p - Zg/Zj .

TABLE VI.

Equations for the Rectangular Frame

with Symmetrical Loading on the Bottom Member.

Equation MA MB MC MD Known Term.

a 1 2 + 2n n 0.

b 1 + n n p - pF/L.

c 2 + 2n 1 n 0.

1 n n + p - pF/L.
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A solution of the equations of Table VI, gives

Fig. 45.

(b) . Concentrated Load at Middle of Beam . For this kind of

loading, F/L is equal to PL/8. Therefore equations 49 and 49a take

the following form.

i%tf^P) (50).

gfppz*
9

- y (so»)

(c) . Uniformly Distributed Load on Beam . For this kind of

loading, p/L is equal to «YL/l2, where W is the total uniform load.

Hence equations 49 and 49a take the following form •

A/*»/fo- &£{--4P-) (51).

tfc*Mo* £jL(Pten+3.J) (5l8)

(d). Two Equal Symmetrical Loads on Beam . See Fig. 46. Here

F/L is equal to Pab/L, and equations 49

and 49a become

/famrf3 m &kfz£p~) (52).

Mr. m tip. 7) ( 5g8 )

is

fig 46.

Is

For values of F/L for other symmetrical

loadings, see Table III, page 29.
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33. NUMERICAL EXAMPLES OF THE APPLICATION OF FORMULAS FOR

RECTANGULAR FRAMES.

(a). Intermediate Cross Frame of a Through Railway Bridge .

Fig. 47 shows a half elev-

ation and a section of s

through bridge. Consider

the bending stress which

is transmitted from the

floor beam to the verticals by rigid joints at C and L. Such stress-

es are not usually considered, and are termed secondary stresses.

The members of the frame at U^L^ have the following sections*

Verticals
, 4/s, 6x4xg laced. 20" back to back. I0= 992 in.

9
? *

Floor beam, 50"x i^pl. ,4/e 6"x 6"xy£— . Igs 8856 in.
4

4
Top strut, same as verticals. lis 992 in.

h r 30* and L = 16i'. Hence n
992 x 50

.,
. 1.818

992 x 16i

992
P= 8856 « .112

o( =( 1.818 x 1.818) 3.636 +(3.636 x.112) + .336 « 7.678

2n + 3 s 3.636 + 3 - 6.636

Referring to Fig. 48, the maximum stringer reaction is

188,000 lb. The maximum moment in the floor beam, considered as s
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simple beam is Pa. Pa r 188,000 x 60 = 11,284,000 in. lb.

Pa x b/L = 11,284,000 x = 7, 850,000 in.lb.

From paragraph 32, M^z ^ ).

y .112 x 6.636
Hence, UA z 7,850,000( ) - 208,000 in.lb. This moment

. . . . _ 208,000 x 10
would cause a maximum unit stress of or 2100 lb. per

992
sq. in. both in the verticals and in the top strut, llso from par-

agraph 32, M-n r
ge£(p(2P + 5)) « 7, 850, 000 r 11

^ f„^'
656

) g 760,000
oC 7.6/8

inch pounds. This moment would cause a maximum unit stress of

760
' 992

X 10
= 7650 lb * per sq * in# in the vertiC£ls *

Since the vertical in this case is a hanger, it is designed

to carry 16,000 lb. per sq. in. on the net area of the section;

hence it is seen that if the connection at D is perfectly rigid,

the stress due to bending is 48> of the primary stress for which

the member is designed. Further, it is evident that the maximum

primary stress in the hanger will occur simultaneously with the

maximum secondary or bending stress. Since the hanger is designed tc

carry only tension, it follows that it would be best to make the

member as flexible as possible in the plane of the floor beam, in

order to reduce the secondary stress. In any case, the bending

stress increases with the depth of the member; so that if two mem-

bers have the same moment of inertia, but different depths, the

maximum unit stresses due to bending will be in the ratio of the

two depths. Verticals other than hangers are not likely to have

maximum primary and secondary stresses at the same time.
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(b). Cross Section of a Subway Bent . The loading on a sub-

way bent shown in Fig. 49

* B *

I
a

c M** \

/S'

49. /7y. So.

is that used on the New

York Subway System as de-

scribed in the Engineering

Record, April 10, 1915.

For the numerical case,

assume that a s 9 1

, c s 8

J

and that the section of

the subway is 15' sauare.

The lateral earth pressure on the sidewalls is taken as that of a

liquid weighing 33 l/3 lb. per cu. ft. The dead load, including the

weight of the sidewalls, is assumed to be uniformly distributed

over the bottom of the invert. The dead load is taken at 100a, and

is equal to 900 lb. per sq. ft. for this case. The weight of side

walls is taken at 200 lb per sq.ft. of the surface of the invert.

The total loads on the bent are shown in Pig. 50. Let n= l,

and p r 1.5, whence o< r( 1*2+3+4-!) = 10|-. Consider the five differ-

ent kinds of loading on the bent.

1. For the vertical loads on the top, W r 22,500 lb. Applying

equations 37 and 37a, gives

MA = = - 17,400 ft. lb.12^ o(

T WL, n i

l
T> = T2< ^ ) = 2,680 ft. lb.

2. For the upward thrust on the invert, Iff = 16,500 lb. Apply-

ing equations 51 and 51a f
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Ma z = 2,970 ft. lb.
IE o<

MD . =
WL(-p(2n*3p))

= - 19,200 ft. lb.

3. For the uniform load on both sidewells, iff = 4500 lb.

Applying equations 44 and 44a,

MA z **r2d&*£±) - - 2940 ft. lb.

Md = j%(-n(nt5) ) . - 2140 ft. lb.
12 oc

4. For the hydraulic load on full height of sidewalls, W is

equal to 3750 lb. .Applying equations 48 and 48a,

M Wh,-2n(3njM3) \MD = i2( —^T~ ) =-1960 ft. lb.

5. For the hydraulic load to a height of 8 1 on the sidewallj

W = 2000 lb., and H/h = 8/l5
# Applying equations 46 and 46a,

MA = Hf 1
§7§(5.52)-

1
4
7
2|(7.33))« -790 ft. lb

MD = ^(--1^2(7.33)- 2.0(5,52)). .935 ft>lb* ou 10.5 10.

5

Hence MA for the combined loading is equal to the Alge-

braic sum of these five moments, which is equal to -23,290 ft. lb.

Similarly Mjp -21,555 ft. lb. The moment at the middle of the top
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member z PL/8 + Hi, = 22,500 x 15 _ 23)290 . + 18,850 ft. lb.

The moment at the middle of the invert =
16

t
500 x 15 ^1,555, and

is equal to 9,400 ft. lb. The moments at the joints are seen to be

of greet relative importance. The shears and direct stresses in

all members may now be found by the usual methods of statics.
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D. SYMMETRICAL THREE SIDED FRAMES

WITH COLUMNS HINGED AT THE BASE.

34. GENERAL. The three sided frame , with either hinged or

fixed column ends, is used to a considerable extent in culverts,

viaducts, building construction, and in concrete bridges and abut-

ments. There is often a great deal of uncertainty as to the degree

of restraint of the columns at the base. Usually the ends of the

columns are restrained, but they are not held perfectly rigid.

However, action as a hinged joint may be secured by using a pin

joint; or, in the case of concrete columns, by having the column

rest in a socket in the foundation. The last method was used on

the Richmond Viaduct which was referred to in the introduction.

35. FRAME WITH LOADS ON TOP.

(a). Concentrated Load at any Point . Fig. 51 shows a three

sided frame with a load P on AB, at a distance a from the point A.

This frame may be considered as a spec-

ie

hp
1

f;9 . s/.

iel case of the rectangular frame, in

which the moment of inertia of the bot-

tom member is zero. In equations 35,35a,

35b, and 35c, for the rectsngiler frame,

if I3 = 0, p s I1/I3 soo, Hence, divid-

ing both numerator and denominator of each equation by p, and put-

ting p equal to zero, gives
A/<z = A7d =
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(b). Concentrated Load at Middle . In equation 53 of para-

graph 35, let a = b s This gives

- - ' 54 )
•

This agrees with the equations of paragraph 17. For any-

other symmetrical vertical loading, see Table III, page 29, for

values of f/l.

36. FRAME WITH HORIZONTAL LOADS ON COLUMN.

(a). Concentrated Load at any Point . Fig. 52 represents a

frame with a concentrated load P on the

column AD, at a distance a from the

point D. Reducing equations 40, 40a,

40b, and 40c, for the rectangular frame

as in paragraph 35, by making p soo, gives

^z7

f/*~ &>ff/c-2)«S2 +/J (55).

Fig 52.

55e).

(b). Concentrated Load at Top of Column . In equations 55

and 55a, let k - 0, and a = h, This gives

ff/f'2 S£ (56).

tf3 = -&2 (56a).
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{ c ) . Uniformly Distributed Load on one Column . The total

load on the column is equal to W. Substituting p a oa in equations

43, 43a, 43b, and 43c, gives

^'W§tm>)" < 5^

(d) . Uniformly Distributed Load on Both Columns . Each column

carries a load nv« The loadings on the two columns are opposite in

direction. Substituting p - co in equations 44 and 44a, gives

4&/i£&J (58).

(e) . Hydraulic Load on one Column . See Fig 53. The total

load on the column is represented by W.

W s -|-wh, where w is the maximum unit

pressure. Substituting p =cv in equations

47, 47a, 47b, and 47c, gives

W SfJ>n+3)J (59).

AT*- !5(2n+3)J* ' * ' * ' -(598).

(f )• Hydraulic Load £n Both Columns . W represents the load

on each column. Substituting p -co in equations 48 and 48a, gives

(60)
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37. INFLUENCE LINES FOR REACTIONS AND MOMENTS . HORIZONTAL

LOADS ON THE COLUMNS . A very interesting study of the effect of

the position of a horizontal load, and also the effect of variations

in the value of n,upon the stresses in a frame , can he made by the

use of equations 55 and 55a. Values of n will be taken at -§-,1,2,5,

10, and oo , while the values of k are varied from to 1.0. The equ-

ations will be rewritten here for reference. They are

//ho, He- *g = -f He.

anJ Ho = P-Hc.

The calculations are arranged in tabular form. Let C = n
„ «

2n-3

Values of C for different values of n are given in Table VII.

TABLE VII.

' Values of C for Different Values of n.

n .5 1 2 5 10 oo

C .1250 .2000 • 2857 .3846 .4348 . 5000,

Values of ju for different values of k ere given in Table VII; .

Substituting values of C from Table VII in Table VIII gives values

of ^ for different values of n and k. From the equations above it

is seen that the stresses in the frame vary directly with jj • The

values of ^ are shown in Table IX.
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TABLE VIII.

Values of// for Different Values of k.

k 1-k k-2 (k-2)kC H
1.0 -2.0 = 1.0 ^1.0

.1 .9 -1.9 -.190 -.1710 -.9 -.1710 -.9

.2 .8 -1.8 -.360 -.2880 -.8 -.2880 -.8

• 3 .7 -1.7 -.510 -.3570 -.7 -.3570 -.7

.4 .6 -1.6 -.640 -.3840 -.6 -.3840 -.6

.5 .5 -1.5 -.750 -.3750 -.5 -.3750 -.5

• 6 .4 -1.4 -.840 -.3360 -.4 -.3360 -.4

.7 .3 -1.3 -.910 -.2730 -.3 -.2730 -.3

.8 .2 -1.2 -.960 -.1920 -.2 -.1920 -.2

.9 .1 -1.1 -.990 -.0990 -.1 -.0990 -.1

1.0 -1.0 -C

TABLE IX.

Values of for Different Values of k and n.

H
Values of n.

k
* i

- 10

1.0 1.0 1,0 1*0 1.0 1.0

.1 .8784 .8658 .8512 .8343 .8255 .8145

Ha
.2 .7640 .7424 .7179 .6890 .6748 .6560

.3 .6554 .6286 .5980 .5630 .5450 .5215

.4 .5520 .5232 .4905 .4520 .4330 .4080

.5 .4531 .4250 .3930 .3560 .3360 .3125





TABLE IX- - Continued- 68.

Values of// for Different Values of k end n.

/

Vclues of n.
k

.5 1 2 5 10

.6 .3580 .3328 .3042 • 2708 • 2540 • 2320

.7 .2659 • 2454 .2220 .1950 .1810 • 1635

Ha

.8 .1760 .1616 .1452 .1263 .1165 .1040

Q
• •/ OA7A hoop D71 7• Will HAT Q

• UO / u • 0505

1.0 .0

Uniform
Load. .4688 • 4500 • 4286 .4022 .3920 .3750

1.0 1.0 1.0 1.0 1.0 1. O

.1 . 9214 .9342 . 9488 .9657 • 9745 • 9ooo

.2 .8360 .8576 .8821 .9110 .9252 ^ a a r\
• 9440

.3 .7446 .7714 .8020 .8370 .8550 • 8765

• 4 .6480 .6768 .7095 .7480 . 7670

.5

.6

.5469

.4420

.5750

.4672

.6070

.4958

.6440

. 5292

.6630

.5460

.6875

• 5680

.7 .3341 .3546 .3780 .4050 .4190 • 4£ot>

.8 .2240 .2384 .2548 .2737 .2835 • £960

. 9 . 1124• *X> *X> *C • 1198 .1283 . 1381• JL \J \J JL - 1430 • 1490

1.0 .0

Uniform
Load. .5312 .5500 .5714 .5978 .6080 .6250

The data in Table IX are plotted as influence lines in

Diagram II. This diagram shows that a variation of n from §- to o°

has comparatively little influence on the moment or reaction
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produced by a given loeding, the average variation being only ten

to fifteen per cent. On the other hand, a slight change in k prod-

uces a large change in the moments and reactions.

These results are of interest when applied to the "bent of a

mill building. In Fig. 54, if the kneebrace is a solid gusset plate,

as is often the case, a rigid connec-

tion exists between the truss and the

columns? and the bent may be consid-

ered as a three sided frame with a

top girder of variable moment of

inertia. Since the least value of

n is undoubtedly greater than

and since a change in n does not have very much effect on the value

of H, it follows that the probable value of H will lie between the

curves for which n » % and n «oo
f
on Diagram II. Hence the leeward

reaction due to a uniform horizontal wind load j£ on the side of the

building will be about ,3 f , and the reaction on the windward col-

umn will be about ,7 |, This is quite different from the customary

assumption that the horizontal resctions on the columns of a mill

building are equal. Since the maximum moment usually occurs at the

upper end of the leeward column, its value is only about . 3Wh in-

stead of .5tfh as usually assumed. If the sides of the building

were open, so that the only horizontal load is that on the roof,

the usual assumption would be fairly accurate.

The conditions are somewhat different in the bent shown in

fig. 55. The column is not rigidly connected to the truss, but is
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free to bend between A and B. At some

point between A and B, however, the

changes in slope of the axis of the col-

umn and of the truss are equal. Hence the

length of the column to be considered is
o

I ^
-| greater than BC and less than AC. This

F/'$ ss' will affect the value of n somewhat, but

since a truss of this kind is usually quite deep, the value of n

will in all cases be large; and the conclusions as to the react-

ions of the bent considered above will also apply to this bent.

A mill building bent is susceptible of exact analysis, by

the use of the slope deflection method applied to the column, com-

bined with a displacement diagram of the truss* The writer made

such an analysis of a bent shown in i?ig. 55. and obtained an inf-

luence line for the reactions. This influence line is shown

on Diagram III. The line is seen to agree very closely with

the line for a - §, as determined by the equations for a three

sided frame. The irregularity of the upper part of the curve is

due to the fact that the column section changes at a point 25 feet

from the base, and also that the shortening of the truss is con-

sidered in the exact analysis. The vertical component of the wind

load on a roof with steep pitch would be considerable. Hence the

influence lines for reactions due to vertical loads should also be

of use in the analysis of a bent.

The example given above indicates that the influence lines

for the reactions of the three sided frame may be applied to any

mill building bent, with a considerable degree of accuracy.

/\/ V \/A/\
St X, f̂ar/a6/e).

- 1' 1*1*

D
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£• SYMMETRICAL THREE SIDED FRAMES

WITH COLUMNS FIXED AT THE BASE.

38. FRAME WITH LOADS ON TOP .

(a). Concentrated Load at any Point. Fig. 56 shows a three

sided frame with a load P on AB, at a distance a from the point A

Jl^ . This frame may be considered as a special

case of the rectangular frame, in which

the moment of inertia of the bottom mem-

ber is infinite. In equations 35, 35a,

35b, and 35c, for the rectangular frame,

if I3 zoo, p a I1/I3 = 0» Substituting

p = in these four equations, gives

(M&zL )7
1 G>r-)+lJJ

(61).

(61a).

(61b).-tm,)]

^=^[ 2̂ v#&;7 f«i«).

(b). Concentrated Load at Middle . In the equations of the

preceding paragraph, let a « b = -§!•, and k s -g-. This gives

/*-^5»-^/^7-f/^J'. . . . (62).

*&/**2fM -GlMaJ (6£8)

For any other symmetrical vertical loading, see Table III,

page 29, for values of F/L.
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39. FRAME WITH HORIZONTAL LOADS ON COLUMN .

(a). Concentrated Load at any Point . Fig. 57 represents a

frame with a concentrated load P on the

column AD, at a distance a from the

point D. Reducing equations 40, 40s,

40b, and 40c, for the rectangular frame

as in paragraph 38, by making prO, givesp
www

#*-qrp-*)[-ffira -/fe] (63a)

* -%l*n/"+V+' - ^^^J

—

A?r~ F£ 3n Q+k) +1 _ kn+k+kn) 7
. . ( 63c)

(b). Concentrated Load at Top of Column * In equations 63,

63a, 63b, and 63c, let k = 0, and a s h. This gives

(64).

#g . &[^*q.J (64a)& L 6 r> + /J

A7c= &[32±fJ (64b).

3n+/
<£>n+J ( 64c )

,
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(c). Uniformly Distributed -Load on one Column . The total

load on the column - W s wh, where w is the load per lineal foot,

Substituting p = in equations 43, 43a, 43b, and 43c, gives

r/" T2L2
n =L_7

h i J (65^.

//c- -J2L <5n+J 2rn+2.)j • • • (65b).

A/n - /Vh f_ 3(4nH) n +3 7 , A _ *r/° Tal few JTnTzJJ • • (65c) -

(d) . Uniformly Distributed Load on Both Columns . Each column

carries a load W. The loadings on the two columns ©re opposite in

direction. Substituting p = in equations 44 and 44a, gives

/m-ve* Wf-p&J (ee j.

^g?/- nt3] (66a).

(e) . Hydraulic Load on one Column . See tfig. 58. The unit

pressure varies from w lb. per lineal ft.

as the base to zero at the top. The total

load W s -i-wh • Letting p r in equations

47, 47a, 47b, and 47c, gives
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/^=4#/C r7~, - 9"~h2 7 • • • (67b),/2 I &(n+2) (Sn-h lJ

(f). Hydraulic Lo ad on Both Columns . W represents the load

on each column. Substituting p s in equations 48 and 48a, gives

^•^.-W-A/ (68) -

/fc = Afc>- hth [- 7 . . . (68a),

40. INFLUENCE LINES FOR REACT IONS AND MOMENTS . HORIZONTAL

LOADS ON THE COLUMNS. Influence lines similar to those of para-

graph 37 are given for this type of frame in Diagrams IV and V.

As in the previous case, the effect of a variation of n from 1

to oo is seen to be small in comparison to the effect of a slight

change in the position of the load. The variation in the position

of the point of contraflexure in each column is also shown in

Diagram V • Equations 63, 63a, 63b, and 63c were used in calcul-

ating the moments; and from the values obtained, the horizontal

reactions at the point of contraflexure and the positions of the

points of contraflexure were obtained by applying the relations

of static equilibrium. Table X gives the value of all moments in

terms of Ph/£; Table XI gives the Value of the horizontal react-

ions in terms of |P; and Table XII gives the height to the point

of contraflexure of each column in terms of the total height, h.
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Values of Moments for .Different Values of k and n.

..lUiilCli L» XII V CtX U.C n -p yiv x xi.

terras of |£
2 k ± s D 1 oJ.U

CO

• u A Pft AA1 Aft'* A01 *S000

« ±u non
. Oc\J . OOO . OOO • OOI

on OHO
. COC P^P . cOO « X V fc-"

. ou « iOl 1 RP . xOX 1 PO. X C\J . 098

. J.UO • uyo 07%. U i o O AQ• UO; -036

M
A

AO OA A
. UO O or 1*. uoo . UO J.

OP'*. \JCO .000

AO o**7. UO f . \JCO 007 — nop '.016

70 01 8 — 007 7018

.80 .006 .003 -.003 -.007 7012

.90 .001 .000 -.001 -.002 7 004

1.00 .000 .000 .000 .000 .000

Uniform
Load*

.115 .112 .101 .095 .083

u A Pft RAT Aft 1* AQ1 . 500

. ±U "37A• Of* Al A A AO AAA .486

on
. £U ft

. OxO ^AO. oou AO! API .448

• ou •*oo. ouu HA O
. o*± C . OOO .392

• 4U on o
» </U c p^ft. oOO P7A PQ7 - 324

-% AO• OU T 7ft oi n . CCO .250

AO. OU n nn
• JLUU

1 CO
. ±CC T AA 1 AQ. X07 .176

.70 .069 .073 .089 .095 • 108

.80 .028 .034 .042 .046 .052

. 90 .007 .009 .011 .012 .014

1.00
Uniform
Load.

.000

.171

.000

.196

.000

.221

.000

.233

.000

.250
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TABLE X, -Continued.

78.

Value of Moments for Different Values of k cs mH yiCtliU. XI.

Moment in Vol v X 11.

terms off 'k ] 2 5 10 CO

.0 .571 .539 .517 .509 . ouu

.10 .517 .496 .488 .486

.20 .450 .440 .440 .443 AAA

.30 .378 .374 .379 .382

.40 .302 .301 .309 .314 . 0£ffc

.50 .226 .228 .236 .241 PRO

.60 .154 .158 .166 .169 . J. f O

.70 .094 .096 .100 .104 . 1UO

.80 .044 .046 .048 .050 AGO

• 90 .012 • 012 . 013 • 013 . UJ.*fc

1. UU
Uniform
Load

• 000 • 000

PAP

• 000

PA. 1
*,

• 000

PAA

.000

.250

.0 .571 .539 .517 .509 . ouu

.10 .589 .555 .529 .518 . OUffc

.20 .599 .568 .540 .528 p;i p. ox C

.30 .603 .574 .548 .535 ai h

.40 .590 .565 .542 .530 PIT A

.50 .559 .541 .523 .513 • OUU

.60 .508 .495 .481 .474 AAA. ft Oft

.70 .430 .421 .412 .408

.80 .322 .317 .313 .311 • oUo

.90 .180 .179 .177 .177 T 9A
• 1(0

1.00
Uniform

Load.

.000

.468

.000

.450

.000

.434 .

.000

.426

.000

.417
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Value of Horizontal Reactions for Different Values of k and n.

H. in terms Values of n.

of -5-P
k 1 2 5 10 CO

1.0 1.0 1.0 1.0 1.0

.1 1.109 1.089 1.062 1.048 1.028

.2 1.232 1.200 1.159 1.136 1.104

.3 1.363 1.326 1.279 1.255 1.216

.4 1.496 1.461 1.415 1.389 1.352

.5 1.625 1.594 1.554 1.536 1.500

. 6 1.746 1.720 1.688 1.672 1.648

.7 1.847 1.831 1.811 1.801 1.784

.8 1.928 1.920 1. 910 1. 904 1.896

.9 1.981 1.972 1.976 1.975 1.972

1.0
Uniform

Load.

2.000

1.583

2.000

1.562

2.000

1.536

2.000

1.521

2.000

1.500

1.0 1.0 1.0 1.0 1.0

.1 .891 .911 .938 .952 .972

.2 .768 .800 .841 .864 .896

.3 .637 .674 .721 .745 .784

.4 .504 .539 .585 .611 .648

.5 .375 .406 .446 .464 .500

.6 .254 .280 .312 .328 .352

.7 .153 .169 .189 .199 .216

.8 .0718 .080 .090 .096 .104

.9 .019 .021 .024 .025 .028

Uniform
Loed. .417 .438 .464 .479 .500
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TABLE XII.

Position of points of Contraflexure for Different Values of k snd n.

Position ii l Velues of n,

terms of h, k 1 - 2 5 10 CO

.0 .571 .539 .517 • 509 • 500

.10 .531 .510 .497 .494 .490

.20 .485 .473 .466 .465 .464

.30 . .442 .433 .428 .426 .426

In
.40 .395 .386 .384 .383 .381

uo j.uinn .50 .344 .339 .337 .334 .333

AD.
.60 .291 .288 .285 .283 .281

.70 .233 .230 .228 .227 .225

.80 .167 .165 .164 .163 .1625

.90 .091 .090 .089 .089 .089

1.00 .000 .000 .000 .000 .000

Uniform
Load.

.0
,

.571 .539 .517 .509 .500

.10 .579 .544 .520 .511 .500

.20 .586 .550 .522 .513 .500

.30 .593 .554 .525 .513 .500

In .40 .600 .558 .528 .514 .500

uoiumn .50 .602 .562 .529 .515 .500

BC.
.60 .606 .564 .530 .516 .500

.70 .614 . 567 . 530
'

. 517 . 500

.80 .615 .569 .530 .517 .500

.90 .619 .571 .532 .518 .500

1.00
Uniform

Load.

.000

.590

.000

.552

.000

.524

.000

.513

.000

.500











»
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Diagrams IV and V show the relative magnitude of the moments

and reactions, and also the position of the po. nt of contraflexure

as calculated in Tables X, XI, and XII. The value of moments and

reactions due to a uniform load, as calculated by equations 65,

65a, 65b, and 65c, are also shown. It is seen that the lines for

uniform loading represent the average abscissae of the influence

lines, for the respective quantities.

These results may be applied to the bent of a mill building,

as was done in paragraph 37. .From Diagram V, the maximum, moment

shown for a uniform loading is is Ljj, which has a value of about

• 24 Ph. P is the total load and h is the height of the frame. In

the design of a mill building, it is often assumed that the two

horizontal reactions are each equal to -§-P, and that the point of

contraflexure is at a distance h/3 from the base of the windward

column. .From this the maximum moment occurs at the point B, and

is equal to .333 Ph, which is nearly 40^ greater than that found

above.

An exact analysis of the bent shown in ij'ig. 55 was made,

considering the columns to be fixed at the bases. Influence lines

for the horizontal reactions are shown on Diagram VI, and compared

with similar lines from Diagram IV. As in paragraph 37, it follows

that the influence lines for the three sided frame may be applied

to the bent of a mill building with a very satisfactory degree of

accuracy, with roofs of steep pitch, it may be desirable to use

influence lines for vertical as well as horizontal loads, to get

the best results.
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41. NUMERICAL EXAMPLES Of THREE SIDED FRAMES.. fig. 59 shows

a bent of an elevated railroad structure, under vertical loads due

to two trains. The dimensions and loads are shown in the figure.
<k>. fa.

1
fa

S

c

i! r 25,000 in4 , and

Iq - 1,250 in4 , whence

n * Iih/lol a 15.

Referring to fig. 60 , the average ord-

inate to the moment diagram for a sim-

ple beam is equal to f/L. In this esse,

W/L m
3x560+6x440+4x160

u a81 500 ft-llbj

f/'f. 6o-

ged at the bases,

M

(1). Considering the columns to be hin-

= _=3 f .,8 x 581,500 ..34
f

7

oo ft. lb.
cXL+£> L 33

(2). Considering the columns to be fixed at the bases,

\r -2 f -2 x 381.500 .„ QnnMA = i+T" L = Tr^ =-44,900 ft. lb.

MD z r 22,450 ft. lb.

in the columns
Hence for vertical loads, the greatest bending stress^ occurs

when the ends of the columns are fixed.
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F. THREE LEGGED BENT,

4£. THE OPEN TYPE ABUTMENT . The following analysis applies

especially to the open type abutment, which has unsymmetrical mem-

bers and is subjected to 1 orizontal loads. The framed abutment of

reinforced concrete is a recent development in railway bridge con-

struction in this country. This structure affords great economy of

material and minimum obstruction to the waterway, and also has a

very pleasing appearance. Since the abutment has an open cross-sec-

tion, it does not have to support the lateral pressure of the earth

fill behind it; and therefore it is especially suited to conditions

requiring a very high abutment. Such abutments, used on the Lind

Viaduct near Lind, Wash., were made 77 feet in height. These struc-

tures are usually unsymmetrical because the columns supporting the

bridge seat are necessarily much larger than the rest. The bases

of columns may be either hinged or partially fixed.

Paragraphs to 28 give equations for the three legged bent

under vertical loads, so the following analysis will consider only

the case of a horizontal traction load on the top girder.

43. BENT WITH COLUMNS HINGED AT BASE. HORIZONTAL LOAD AT

TOP OF COLUMN. See Fig. 61. It is evident that the horizontal def-

lections at A, B, and P, are equal. Hence D s Roho= R2h2 * R4h4.

Applying equation 1 to all members , and substituting Z » l/K,

gives

MDAzO « 2E( 2©])t©A-3Ro : s (a).

M A#0 = -2E(2Q A+Qj)-3Bq) (b).
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2E(29A+9 B ) (c).

-2E(29 B+9A ) (d).

2E(20c+9B-3R2)s (e).

-2E( 2© B+9C-3R2 ) (f).

2E(29B+9^) (g).

-2E(29ji*9B ) (h).

2E(29
j}
v*9E-3R4)

-2E(29E+9ir3R4 ) .Q. . . . . (j).

Since M/j/hQrHQ, MBc/b2=H2. and-M^E/n4=H4

.

MadAo MBc/n2 " Mj?s/n4 s P. . . • (k).

Combining equations (a) to (j), to eliminate all values of 9 and R,

gives

MAB2 1+2MBA2 1+2MB£,Z3*MFBZ3 =

2M1h (Zo*Z1 )4-MBAZiho-2MBc2 2h2-2MB^Z3h£-MFBZ3h2 = 0. . (m).

2M^hQ (Zo 4-2i)*-MBAZiho+2M^h4(Z3*-Z4)+MBi>Z3h4 = (n).

Substituting MBc s Mjjj? - ^Bk* reduces the number of unknowns in

equations (k), (1), (m), and (n) to four. The equations are rewrit-

ten in Table XIII.

TABLE XIII.

Equations for Moments in Three Legged Bent.

Columns Hinged at Base.

7
/Ye.

n. zh {Z +Zt ) Z, ho Z3 h4 2h4(Z3 +ZA )

/ 2Z3

m. 2h (Z, +Z) z,hQ +2 Z2 hz -2h2 (Zzi-Z3 ) - z3 h2

K.
ho

1 1

- TU P

i3

MABZi

MBAZ 1

MCBZ 2

MBCZg

MJ12Z4

M£j?Z4
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It is possible to solve these four equations algebraically,

but the resulting equations would be quite long and complicated.

It is simpler to substitute numerical values of the terms involved,

and then to solve the four equations by a process of elimination,

A numerical example is given here, using date given by Mr.

N. M. Stineman in a treatment of the same problem by the method

of Least Work. See Proc. western Society of Engineers, Sept, 1914

In Fig. 61, let

I4 = 10.

I 2 = 1-

II = 13 = 8-

P . 120,000.

h4 = 42.5]

h2 = 34.01

h = 29. 75:

Li = L3 = 17. 0:

Zo = 29.75.

Z2 = 34.00.

Zi = Z3 = 2.125.

Z4 = 4.25.

Putting these values in the equations of Table XIII, the equations

are solved as shown in Table XIV, below.

TABLE XIV.

Solution of Numerical Example of Three Legged Bent.

Columns Hinged at Base.

^quo f/on
7

f/o.

n (£3 , Z/<53 O

7
/.o Z, O z. & O

m /096* J-tZzs- _ 7Z- SJToo O

. 0336 - , o-z&4 + . z9-f / C, (2 O O

n /.o + . 0333 .0476 + . + 3f &7&,

1 /.o + /, a

m /o 4- /. 2^2"? _ /, _ , a

K /.a -
, S7<f<> - - 70 ° &
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TABLE XIV.- Continued.

/ /r* Af/*

?-H «>).
o + 2 £73-0 y / /2S0 / 7000 - 3, •0"7o, 0ao

}-n M. ¥ /• ?>$67 + /. 9SZ4 + -7/43 a

m-n cp. •r* / 2/90 - /.34Z^ ?2>3& o

+ /.0 + . 3?/3 + , J"?/?

+ /<? + , 36 3Z o
1- /.o - /, /0/S -

.

a

o-p (D / /. 432 8 + J 24/,

p-Cj (sj + . 6z&& CP

r + /. o + ,
JT74o - &3/, 7

S .3 0O2-

r-s (f) j-,273g - S3 /, PSS-

t /.a - 3/ 030, 04O

From equation (t), My = -3,038,040 ft. lb.

From equation (s), MBF= 912,140 ft. lb.

From equation ip f
197,875 ft. lb.

From equation (1), MA = 818,010 ft. lb.

Since Mbc=Mbf~mBA» Mbc= 714,265 ft. lb.

44. BENT fllTH COLUMNS PIXEL AT BASE . HORIZONTAL LOAL AT

TOP OF COLUMN. Fig. 62 shows a bent similar to that of Fig. 61, but

having the columns fixed at the base. The horizontal deflection at

A, B, and F, is equal to D. LsRoho=S2h2=R4h4. The slopes at the

fixed ends C, D, and E, are equal to zero. Applying equation 1 to

each member of the bent, gives the following equations.
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P „ fi
r*x tjr

V1

c

B

t-3

MAD :

MaB:

Mqb=

MBG =

Mb^=

M^b-

EEK (@i * 3R ) f £ )«

-2EK (2©^ 3R ) (b).

2EKi(29A 9B ) (c).

-2EKi(29B * 9A ) (d).

2EK2 (9C - 3R2 ) (e).

-2SK2 (29C - 3R2 ) (f).

2EK3 (20B + Op) (g).

-2EX3 (29p- + 9B ) (h).

2EK4(e^ - 3R4) (i).

-2EK4(29?- 3R,,: ) ....... .Q).

Since M/j, -M])AsHoho t MBC-McB=H2k2. end M£p-MpE=H4h4

,

MAD " %A
f

MBC - MCB
;

MEi? " %E
no H2 *4 (k).

Since there ere seven unknown moments, the easiest method of sol-

ving these equations is to equate moments at each of the joints,

and solve for the four unknowns.. 9A , 9g, 9q, and D.

it the point A, MAb " MAD - °» whence

2(Z +K1 )9i K^b -(3K /h )DsO (1).

At the point B, Mbc - Mbf * Mb/ = 0, whence

2K29b -3(K2/h2 )D + 2K39b + K39p f 2Ki9B * Kl9A*0. (m).

It the point ? t Mje " MFB = 0, whence

K39B * 2(K3*£4)9p «(3K4/h4 )D = (n).

Expressing equation (k) in terms of 9 and R, gives

3(KoAo)®A " 6(K /h§)D t 3(K2/h2 )9B -6(K2/h§)D

f 3(K4/h4 )9p- 6(£4/h|)D r -P/2E. . . . (o).
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Equations (1), (m), (n) t
and (o), are written below in Table

XV.

TABLE XV.

Equations for Slopes and Deflections in Three Legged Bent.

Columns Fixed st Base.

/to.

0* 03
T<£f~rn.

O.
Ko
ho

Kz
ha h*

_ F3

m
ft z

I 2[
- 3

fro
O

n

.

*3 2fa + ft] O

These equations are to be solved by putting in the numerical

values of K and h, and solving the equations by elimination. After

finding the values of QA ,
QB ,

QF , and D, it remains to substitute

these values in equations (a) to (j) to obtain the values of the

moments.

A numerical example for the case of fixed column ends is

given here. The dimensions of the bent and the loading are the

same as those used in paragraph 43, page 87. In addition to the

dimensions given 6m page 87, the following quantities are used.

Kq - .03361. K2 = .02941. K4 =.2353. KX = % = .4706.

For convenience in calculation let E = 20,000. After substi-

tuting these values in the equations of Table XV, the resulting

equations are solved by elimination, as shown in Table XVI.
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TABLE XVI.

Solution of Numerical Example of Three Legged Bent.

Columns Fixed at Base.

&/? /*/ fsOrrf? /*^' ' ' '

/. 72 97 .&as~o 3". *jT3<£o -.3873 — /.o

m /. 94/2 ^706 O

I. / 0O&4 _ , O 3 4- O

n. 4706 7 4/ /& -.0/66 O

. 7.o $004 -. 34-20 -, ttSz.

m /.c + /2^9 y. /.OOCO O

7, /.a + ,4666 -
. 0034. <?

o-m. (pJ - J.3JT93 -. 3373 - StfSz

+ 3.€»S'(33 / o<poo - . CO-2./

P- t AO - / . 76/7 f
. / PC-? +.2633-

9. + 7.0 y .2733 _
t e> & O

/?. y- S. 0000 -, 03S3 O

n-p (rj. O + 4./£// 7*3S7 -.S'iS33'

<?-<?• N + 2, 7?67 03^-7 O

+ / 0326 6 33

3, / 7.0 - .0/27

r-s - (tj O - ,a/9<? -.0633

t. + 7.0 7033

s + /.o + .04- o&

+ /,0 - .009/

o. t.O/40

Substituting these values of 9 end R in equations (e^ to (j), gives

MdA » -411,000 ft. lb. Mad * 392,100 ft.lb.

Mcb s -341,820 ft.lb. MfiA * 64,860 ft.lb.

Mb^ - 417,600 ft.lb. jfBC s 352,080 ft.lb.

MFF--1, 353, 000. ft.lb. MEF-- 1731, 000 ft.lb.
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G. SYMMETRICAL BENT OS A BUILDING

UNDER VERTICAL LOADS.

45. TEE SYMMETRICAL BENT OF A BUILDING . The bent of a

building several stories in height is statically indeterminate

to a high degree. The bending stresses in columns of steel frames

due to vertical loads are not generally considered, because of

the somewhat flexible girder connections. However, in monolithic

concrete structures, the joints are known to be rigid. It has

been recognized that a loading of alternate girders in a building

produces large bending stresses in the columns, but the writer

has seen no exact analysis of the problem. In the following par-

agraph, the moments due to vertical loads in a bent of four col-

umns and five stories are determined. The method may be applied

to any type of bent.

46. GENERAL EQUATIONS ffOR A FOUR COLUMN . ^IVE STORY BENT .

MEMBERS AND LOADS SYMMETRICAL ABOUT VERTICAL CENTER LINE OF BENT .

Because of the complexity of the frame, the usual conventions

for the sign of bending moments are hard to apply to this case.

Hence, the resisting couple acting upon the end of a member will

be used as the statically indeterminate quantity to be determined.

The moment of the couple is considered positive when it acts in a

clockwise direction. With this convention, the fundamental eq-

uation 4 may be rewritten for a beam BA, carrying a uniformly

distributed load.tf. See Fig. 63. The couple at B is equal to
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the bending moment at that point, but the couple at A is equal to

, but of opposite sign. The equations for the couples at A. end

B, are

llllllllllllllllllllllllllllllinTtTTTT iiiiiiiiii in

CB s 2EK(£9B^©A-3R) - *VL/l2.

CA r 2E£(2eA*©B-3R) »VL/l2.

The general equations for the building are written in such

a form as to be applicable to different conditions of loading.

The numerical subscripts shown in .Fig. 64. indicate different in-

tensities of loading. By making certain of these intensities equal

to zero, the equations for the different cases of loading are

determined.

In Fig. 64, the columns ere fixed at their bases, so that

s the slopes at these points are

o

mnmn

TTTTTTTmT

to*
nnnnnn

iiiinimii

Bnnfflfam]

am

JV3
lllllllllllllliT

3

Mi
llllllllllll

iiiiiiiiii

±2

3'

equal to zero. The notation used

to designate the different joints

of the frame is shown in the

figure. Writing the equations

for the resisting couples acting

upon each member, and equating

the sum of the couples at each

joint to zero, gives

fa.)
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#f fa, fzfaf +z/fta4+2tf?4} Pa, + fib**** +/r*aj03+ r-fas-'00^ =

tff Js, {3Jfrjrj-2tf9aj 0ffS + far. 0*4 +jfa0S 00S- = o (3).

J/m//ar/u, at 3,. f2/fa, +3faa, + Zfoz +2fae'j00, faa, fi/t, Pe* +¥06, '00,
'
=

// Ai ( nKfiBi ti*e3 +*Kae'z) 0bz + rt* e&,+f*02 0*% 0g3 0ol* #±zJ%h

M 03, (>*03 tifaffj +2fi'O4+>X'i3O'3)083 +40303; +4k*j**3 fr4^' t%pj^ ft

// 64J
{nro4+»raB4+%irof+*k'0O4) 0g4 +foA0o3 +#0940*4 *#0*0^4*004004' Ofe^-^* u)

Jnd at 0s, (War +2kitBr+JroB's-) 0&s + K30404 + faras-ffss + Y00s- 0o's = (Jj

From the symmetry of the frame end loeding, 9bs-©B Also, letting

twice the sum of the KFs for all members meeting st a joint equal

a constant, J, equations (e) to (j) may be written in simpler form,

as shown in Table XVII.

TABLE XVII.

General Equations for Five Story Symmetrical Bent. Vertical Loeds.

7 no. 0#, 08, 0#z &0Z 0*3 0&3

Tm Z<4£

f,

p. J&2 fa?B2

9. Z+B

ffffj

falz

h. tr*9 ffr?03 Tgfkh^ IY34
#3J. l -»'2i.z

/f004

—
1

fff?04
J04

f

-A-a'04 tf&3-
jr,i,-04iz

240
0, fas O
J. J&s~

,
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47. SOLUTION OF NUMERICAL CASE OF BUILDING BENT . The gen-

eral equations of paragraph 46 will now be applied to the numerical

case of a bent under five different conditions of loading. Since

the values of K for the columns and girders of both steel and

reinforced concrete buildings are often about equal, ell values

of K in this numerical case will be considered equal. Further,

since only the relative values of K affect the distribution of

bending moments in the structure, all values of K will equal unity.

In this numerical case the intensity of loading will be considered

equal on ell floors, so that o^sWgs'^sW^* and the spens L^ and L£

will slso be considered equal. Hence, the right hand terms in the

equations of Table XVII will be expressed in terms of «7iL-|/24E t

and all values of Q determined from these equations will be in

terms of W1L1/24E.

The five cases of loading used are represented in Figs. 65,

66, 67, 68, and 69. Since the variation of loadings affects only

the right hand terms of the general equations, all computations

may be carried along together. Substituting numerical values in

the equations of Table XVII, it is seen that the values of J are

JA1sJA2-JA3»JA4« 6, JA5« 4, Jb1*J.B2=JB3«JB4« 8, and Jb5*

The numerical solution of equations by a process of elimination is

given in Table XVIII.
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Values of 9, as determined for the five different cases of

loading, are given below in Table XIX. Substituting these values

of 9 back in the original equations gives the .values of the res-

isting couples at the ends of all members. The numerical values

thus found are coefficients of WiLi/12. Hence , for all girders,

these coefficients express the degree of restraint at the ends of

the member.

The values of the resisting couples in columns and

girders of the bent are given in Tables XX and XXI.

Diagrams VII and VIII show the bending moments in

columns A end B, for all stories and all cases of loading.

TABLE XIX.

Values of 9, in terms of W1L1/24E.

9 Case 1 Case 2 Case 3 Case 4 Case 5

•m .0130 .0579 -.0447 -.0295 .0426

e/5 -.0426 -.0731 .0305 .0130 -.0559

9B4 -.0225 -.2166 .1940 .1345 -.1572

eA4 .1572 .2344 -.0770 -.0225 .1796

®B3 -.0124 • 2241 -.2363 .1096 -.1219

©A3 .1219 -.1159 .2377 -.0124 .1343

®BE -.0131 -. 2353 .2222 .1105 -.1236

eA2 .1237 .2369 -.1133 -.0131 .1365

®B1 -.0195 .1865 -.2061 .1298 -.1493

©Al .1494 -.0706 .2200 -.0194 .1688





TABLE XX 101.

Resisting Couples in Columns.

Resisting Value of Resisting Couple in Terms of WlLi/ip,
Couple. Case 1 Case 2 Case 3 Case 4 Case o

*A 5-4 .0720 .0882 -.0160 .0035 .0678

VA 4-5 .2718 .3957 -.1235 -.0320 .3033

Li A X fTA 4-3 .4363 .3529 .0837 -.0574 .4935

WA 3-4 .4010 .0026 .3984 -.0473 .4482

A 3-2 .3675 • 0061 .3621 -.0379 .4051

A 2-3 .3683 .3579
.
.0111 -.0386 .4073

A c-1 .3968 .4032 -.0066 -.0456 .4418

Cat cA 1-c .4225 .0957 .3267 -.0519 .4741

WA 1-U .2988 -.1412 .4400 -.0388 .3376

v A U-l .1494 -.0706 .2200 -.0194 .1688

C T5 R ^
ij 0—4 .0035 -.1008 .1046 .0755 -.0720

C T2 A K -.0320 -.3753 .3433 .2395 -.2718

Cl2 / "X -.0574 -.2091 .1517 .3786 -.4363

C TJ 5 /^ JO 0-4 -.0473 .2316 -.2786 .3537 -.4010

C "D >Z « -.0379 .2129 -.2504 .3297 -.3674

-.0386 -.2465 .2081 .3306 -.3691

C "D O T -.0457 -.2841 .2383 .3508 -.3965

C"Q T O -.0521 .1377 -.1900 .3701 -.4222

r> 1-U -.0390 .3730 -.4122 .2596 -.2986

Cg o-lX> x/ J-
-.0195 .3.865 -.2061 .1298 -.1493
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TABLE 221.

Resisting Couples in Girders.

Resisting
Couple.

Value of Resisting Couple in Terms of i^In/12.
Case 1 Case 2 Case 3 Case 4 Case 5

-.0722 -.0883 .0163 -.0035 -.0692

C-D K -.0166 .0427 -.0589 -.0460 .0293

C A HA -.7081 -.7478 .0400 .0895 -. 7980

C 13 A/1 1.1122 .8012 .3110 • 2465 • 8652

C a la** -.7686 -.0077 -.7609 .0848 -.8533

V J3A£ 1.0971 . 3323 .7651 . 2068 . 8905

C A "DO -.7657 -.7615 -.6044 .0843 -.8506

C t3 A O 1.0975 .7663 .3311 • 2079 .8893

C A T2Tw AB± -.7207 .0453 -.7661 .0910 -.8117

Chat 1.1104 .3024 .8078 • 2402 .8702

CBB5 .0130 .0579 -.0447 -.0295 .0426

C BB4 -1.0225 -. 2166 -.8060 -.8655 -.1572

C BB3 -1.0124 -.7759 -.2363 -.8904 -.1219

CBB2 -1.0131 -.2353 -.7778 -.8895 -.1236

C BB1 -1.0195 -.8135 -.2061 -.8702 -.1493
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48. EFFECT OF ECCENTRIC LOADS ON COLUMNS . For the par-

ticular bent analyzed, the following conclusions are drawn;

1. The effect of fixed column ends at the base, and of

no load on the roof, is noticeable upon the moments in the col-

umns at the first and fifth stories; but the third story may be

regarded as a typical story for a bent having four columns.

2. The exterior columns receive a little greater moment

than the interior columns in most cases.

3. The maximum bending moment in any column is about

WL/24, or one half as much as the moment which exists at the

end of a fixed girder.

4. The moments in the columns change abruptly at the

joints, which would cause high bond stresses in a reinforced

concrete column.

5. The loading of Cases 4 and 5 produces slightly great

er and more variable moments in the columns than that of Cases

2 and 3.

6. The moments in the interior columns, with all spans

loaded, are negligible.

7. The negative moments at the ends of loaded girders

vary from .7WL/12 to 1.117/L/12. The greatest values occur at

joints with the interior columns, when all spans are loaded.

8. While further analysis of bents with uneaual spans

and varying values of X are needed for a complete treatment of

this subject, the above conclusions should apply to ordinary

structures of this type.
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G. MISCELLANEOUS APPLICATIONS

OF FUNDAMENTAL EQUATIONS.

49. DEFLECTIONS. Since the fundamental equations of Table

I express the relation between tending moments, slopes, and def-

lections, it follows that when the moments in a structure have

been determined, the equations can be applied to determine the

slope and deflection at any point. The few examples which follow

illustrate the method to be followed.

Fig. 70 represents any frame in which

r~~— f
the members are symmetrical about the

E \

vertical center line. Consider the effect

of a uniform load w, on. the member AB.

Ft'g, 7o
If the point E represents the middle of

the member, is equal to zero, end the

maximum deflection will occur at this

point. Since 9^= -Og , equation 20 of

Table III applies to the member AB, so that

MA = 2EK!e A - S/L. or 9£ z
MA *A

. . . . ( a ).
2EK^

Applying equation 4 to the portion of the member, AE, gives

*(m) i2gC{m) ] "^ which simplifies to

MA = 4EK1 (29^6D/L) - WL/48 , from which

D = hi M* + iVL/48 ^ , n T /(Z ,
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Combining equations (a) and (b), and substituting P/L WL/12,

and MA zpWL/l2, gives the maximum deflection at the middle of the

member.

D = WL2 (4^ + 5 ) f 69 )

384EXi
1 } '

For a concentrated load at the middle of the member, a similar

procedure is followed. Applying eouations 1 and 20, end substitut-

ing PL/8 s and /^PL/8 = Ma, gives for the maximum deflection st

the center of the member

D . PLg(5^t 4
) (70)#

192EK!

Consider a member carrying no external loads , but acted upon

at the ends by two couples of equal magnitude and opposite direction

Then the slopes at the two ends are equal, but opposite in sign,

and the maximum deflection D, occurs at mid span. In a manner simi-

.lar to that of the preceding case, applying equations 1 and 19, gives

D = MAL/8EKi (71).

Applying equations 69 and 70 to the case of a simple beam,

M - 0, and the deflections are 5»VL2/384EKi, and 4PL2/l92EKi, for the

two conditions of loading. For a besm with fixed ends/0» 1, end the

deflections ere given by WL2/384EK1 , and PL2/l92EK1 »
respectively,

for the two conditions of loading. The above equations are
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especially applicable to the frames of Section B, in which values

of jj may be obtained from equations 23 to 33, for the various

frames.

The conditions of symmetry of frame and loading made the

solution of the above cases comparatively simple. However, when

the frame and loading are not symmetrical, a solution of the prob-

lem in general terms would be quite difficult. Instead, since the

application of the fundamental equations will always provide as

many equations as there are unknown quantities, a solution of any

particular case may be made by substituting numerical values in

the equations, and solving by elimination.

50. INFLUENCE OF CHANGE IN TEMPERATURE . The effect of a

change in temperature upon the structures which have been consid-

ered in this thesis is very important. It is evident that the ex-

pansion of members in a stiff frame will produce bending moments

in the members , unless all elongate proportionately; and even

then stresses will be produced if the frame is attached rigidly to

the foundation. Furthermore, there may be a variation of 20 or 30

degrees in the temperature at various parts of a structure, so

that the question becomes still more complex. It is evident that

since temperature stresses often amount to quite a large percentage

of the dead load stresses, any great refinement in the calculation

of the latter may be useless. The point to be emphasized in the

application of the fundamental equations to this subject is that
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fail

1

J

the change in length of a member is taken into account by the

term R, or D/L, in the equations for the adjoining members of the

frame. The three sided frame will be considered here as an illus-

tration •

Case 1. Symmetrical Three Sided Prame with Columns Hinged

at Base. See Fig. 71. Let j) represent the coefficient of linear

expansion , and let t represent a change

of temperature, in degrees. Then etL is

the change in the length of the member

AB, and eth is the change in the lengths

of D end BC. This change in length will

be too smell to affect the value of K,

in the fundamental equations which will

now be applied. Prom the symmetry of the

frame, the deflections at A and B will

each be -|-etL. Applying equations 1 and 19, gives

MAB= 2EKi9A (e).

Mxp -2EK (29A + ©d - 3D/h; .... (b).

MM= ZEKq ( 29j) f 8A - 3D/h) ... (c).

Combining equations (b) and (c), and solving for 9^, gives

-9A= MAd/3EKo +

Prom equation (a), 9A= Mab/2EK;l.

It is evident that MAD =MAB = MA . Equation the two values of 9A ,

and solving for M ,
gives the following equation.
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n = Ki/Zq, gives

Ma =
46EKlgQl)

_
v

. Substituting £etL «-D, and
h( 2X^3X0

)

ma = (2Iiet ir - 3
) (72).

h 2n+3

Case 2. Symmetrical Three Sided Frame with Columns Fixed

at -Base. In this case the slopes at the "bases of the columns are

equal to zero. Applying equations 1 and 19 t
a procedure similar to

that of Case 1, gives

MA s (EIiet)
>( - a

, mu
h n+2

and Md s ( EIiet )_ (
3(n4lh (74)

h nTn+2T

51. INFLUENCE OF SETTLEMENT OR SLIDING OF A SUPPORT . The

distribution of stresses in a stiff frame

may he greatly influenced by a slight

movement of one support. For example,

consider the effect of a vertical move-

ment of one support of a three sided

frame. Fig. 72represents a frame with the

columns hinged at the bases, the base C

having settled an amount CC'. The frame

LA'B'C may be considered as an upright

frame, in which the supports have spread apart through a distance

^, and which is acted upon by the components of the force P, nor-

mal and parallel to A'B'. The moments produced by these components
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may be determined by the use of equations 54, 56, and 56a, page

64. The effect of the bases spreading apart the distance /3 is

exactly the same as that due to a change in length etL, of the

member AB in paragraph 50. Hence, substituting & for etL in eq-

uation 72, the moment at A due to the movement ^ of the base C,

is equal to

=
5EKi£ (?5)#
h(2n*3)

If, instead of settling, the support C moves horizontally

through a distance A
,
equation 75 gives the value of the moment

produced at the point A.

Similar procedure may be followed for any case of the set-

tlement of a part of a structure, although a general solution

will be very difficult for the more complex frames.
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IV. SUMMARY.

52. SUMMARY Off EQUATIONS . The equations for some of the

more important frames considered in this thesis are given in the

tabular summary on pages 113 to 120. This summery should prove

very useful for reference.





113.

ft* ^- or^i
,

-for- any /number.

Far a g/r&/7 scf/r?rr?e tr/ca/ /a a>a//'n<j ana

/rtemeer, £ re/pre^er?-/^ //?e /vea/? ord-

inate to the momen-/ c/zayrorr? fena

team t//}de/~ th/5 /oac//nf. fa/i/**

of are 9/fen /'n Ta^/a-UT, peae

/s ar?y ser/es af /oad? an?

Sy/n/rJtfr/ca/ about the center- a/

/foment

AlAB

tfrnped End* at 6 P, F, O./i, und I.

Ff -3( Kz + Ko + h 3) 7

? L 3KZ +3Ko +3K3 + 2 A, J.

Fixed Ends af CD.FO, H, and I

F f
-2( Kz + K -hK3 ) 1

L I 2Kz +?Ko+Z K3 + K, J.

MAI F
f

~3Kz 7

L I 3Ki +3Ko +3K3 + 2K, J

F \ -2K2 7

Had F f -3Ko 7
L L 3/Tz i-3Ko +3f<3 +2K1-

£\ 7

L L 2f<2 4- 2Ko r2K3 +/<,}

F
f

-3K3 7
L- L 3h2 +3kb +3K3 *-2K,±

F [ _ -2*3 7
L L 2Kz + 2Ko + 2K3 /- K, J,

o

f Mah.

~i Had
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Sc/Sf/f/?#y &/= f r/OA'S ^/P &1/SID//Y6 /^&/lrt£3r Co^+shued

H

H'2
llllllllllllllll

Jut
\o c

<-2

A" a/?d ar<? tfef/nedon /-/?<? prec&f/ng peg?

^ rfprfjerrfs any ser/es of /aads
, 3c/m

metr/caj about- -/-he center df/?&
W2 repres en/s any ser/<?s

/oaa's si/ a?/r?&f r/ca/ about f/?te

center of /7I or 3F;

Afomeni. Hinoed Ends afCQ F,C, H, and I. Fixed Enets at C, P
y
F
t 6, H, and I.

L, L 2Ko +2K3 + 2rT2 + ft J,

W>£m& -h4im/C3 +3K2 +3mK, 7

A L 3'/To +3*3 3K2 +2f, J<

Fl \-(?mKo +2mK3 +2K2 +mK) 7

Map F, r Ko(4jm-3)
3 Ko +3K3

m-3). 1

+ 3Hz +2K, J. l-k L 2Ko +2K3+2H2

El f
K*(4jm-3) 1

L, L 3fo +3 K3 -t-3K2 J.

Ft f 2 If3 (m-i) -
I

t-, i 2'Ho + 2H3 +2

K

z + K, J

tin*

Mp/j o ± MfiD.





tf'f-jC/r-fc, for <fff?c/ mcmberr

far #/i/£/7 sy/nn7e/r/0a/ on

a member£represents the n?ear> orsf-

/n ate +o the moment d/agram, /or o

s/mp/e J?e0m under tf?/s /ood/ng, /aJuts

0/-£ are f/rfer? /n 7a£/eJZ7, p*fe 29.

frS /s /7/?y ser/e'j 0/ /ojJj *r6/ch <?re?

Sy/r?n?efr/ce/ a£oi/f f/?e cer?7&r of"

/foment 1 Endj H/ng0J at Ct Q <j. ana A.

L
[ 4 fell"3 + 3fr* )+3/To +2fffi K2 (-J±K^£l) r+Ko -h2K>i

tf*D ft
-3 Ko

K* (*1t9 +
3g') +4K°+2h

Af'H F
\

\3~h-3 + 4**1
rj t- L /f2 (^J^J^A.) +4 fib -i^]

1 /13 + /fa

A7hi

tfp/J

4? A1 jh.

Mad.
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#i ±g_

m

4,

/fanrffare de///?etS&? the />rt»c*J/*p pape.

W represents &/?yser/es e-f /o^Ss,

symme+r/ee/ 060"^ the fe/?7er 43.

re/>reserfs any ser/es <?f~

/cads 3y/nm*fr/c0/ t-/**

re/?fa- efjj *r

"MllljMTllll

_ o /&* r*t/0 of ^ to &~ -

F, \l-fo \(2tfz(3m'l) r 4mffo +2mt<\
4W^l +4/ro+2fr, A

-± Af/H.

-i Mao.
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- T, h

of - r? 2
t- 2 n/D y- 2r? t- 3p.

& = (3 r> +p + /'.

73-
l/a/ues of A//? ar>c/ A/g

l/se Up
/
0<?ro'/$r>s torf/si, ^.o^er far A/3

iimmmu

Pab [_ 2m-3p ,f/c __L)1
/ / 2ot *l/3 2/31}

/a/oes of A/a &r?a A/&.

(/seUpper 5/ gns for A/c, / over for A/a.

-rl2«+l/9 2/31}

Pabj~_ 2n r3p~j

/6 L cy }

M: f £2 7
/2 L <* J

s/=>/.r n
/<s

5#l[_ 2nf3pl
48 L of J 46L oj

HAL f 2n -f-3p 7

/6L & J

*

p

' L 2* i 2a
x
2/sr ~2j

J

ph^. 3n+ 2p _ n/n+3p ) ~j

/3

F>h [, 9n+2 nfn+3) 7alp 2°< J





1

- -
-

...
118.

L oadj'ng
^a/ues of ///? and Me.

\S** **s Msflsc^f %s t *f f 'J 1 1st / / /7 y ky' Crr / Cs( ' / 0.

t/a/ues of Mc and Mo.
is *~ isjL/JLsC r *S f tjr/j / Or / /C- , fc^c r / Csr / /Cs.

p

Ph[± S^J] '

Hh\'n(n+3p)± 3(2n+p)\ h/h\_ n(n+3) ± 3(4n+l)\
/2 I 20 p J

: W 1 E W J^h\_ n(n+3)l
/2 1 cX \

- n(f2±£P± i)(/0-^)^o[3ntp)\
2[ Of p )\ r) J 20 J

mb'V'*^ **)('<>- *z)

Z <X ' ft ' J

- n^(/o- *-#)]

wk Ml\-nf2n + 7p) + 3n +2jo 7
/z L so # J

IVh F n (3n+8) ± 9n +2 ]
/2 i 30. p J

USE
Mfo [- 2nf2n+7p)l
iz L so J

rVh f_ 2n [3n + 8)7
/2 I Sex J

P p/-£prz>n+3
)J

a P P
' b A

Pahj^_jDriJ Pa6
1^
pf2n+3

)J

""'"""I'll"

[L pn 7

/2 L J
k/L[Pf2n+3 Jl
12L J

J- t- L.

TTT
p p p

SFlf pnl SPL[P>f2n-+3 )]
/<5 L <> J





n 9
j(//n//?/Pr f<pt//ir/<?/ys /=&p r//#f£ &of& p&a/v/es.

i

Load/ng fa/ue of Ma.

1

(

p

i

PaAf- 3 7

2i. L 2n+3j,
f-3 . 7

(

i

'a *T 2 1
" p

•

>

%:[^3_ 7

/ 2n+3J,
& /:_§- 7

<

YV
llllllllllllllllll

< >

/2 L 2n-h3J, ~J£L 2r>+3J.

a
a b **•

p P

< >

/, L2ni-3J.

7

L, L2n+3j.

Parr/r-2)kn _/7
2n-h3 J-

—

<

i >

J=>

Ph
2 '

-Ph
2

1 1

iVhf S>(P-h2) 7

/2LZ(2n+£)J.
r-3{5n+£) 7

/2 L 2{2n+3)J-IV'

=

mi > <

Wh[-3n 7 pynl - 3n /

/2L 2r?+3J- -
W

> <

= w

%

>

//AT /3n+3o 7

S(2n+3)J.
U/hT [27n+3o)1
/2 L 5(2n+3)-i-

l <

M?L /4n 1
/2l 5(2ni-3)J-

JVZL. /4n 7
/2 L 5(2n+3)J-





s

U

o

£ .

120.

£0£t/A7/,5 F/XFP AT &AS£.

h* //- ——r

Loading /a/ues of A/a and Afs
Use Upper S/g/ii fer Afa^ lotser for Afs.

l/a/ues of Afc anaf
U^e Upper 5/c?r?s for A/c, /o^er for S/o.

; 1
/GO 1 f2n-l 1

2L I ft*2 '

fort? [j__ -r fz/r-i ) 7

to

TT

. i: j- J

p
' 8 L n+*J

>/

llllllllllllllll

1/ifLT-z 7

12 L n+zj 72 L

p p

T

Pabf -2_ ]

Psi h r / 7roo _' . /

l ln+2J

IT /7

_ / i \ T i n ffr> 1 Pa T± ?nf/+k'J+/ trfz+k+kn) 7

2 I <bn+/ n+2 J

p
rau JLH— 7

2 L 6r?+U

rr

/2L2(n+2) *n+U
t/h U 3f4n+u _ nt3 7
/2 L Gn+i 2(n+z)j

~7z L

hfh f n+3 7

/2 l~ n+2JIf E

~J2 L Sfn+Z)* 6f?+/J
tohr 3nt8 ± 9n+*

7
-f2~l O-fn+2) 6n + i }

WnL 4" 7
/2 L S(m-2"jJ

H^h[_ 2f3n+S)l
/2 L S(n+2 ~) J








