. NELSON

The Specific Heat of Superheated Steam

Mechanical Engineering

B. S. 1911

UNIV.DE MAENOES

SLEPP ALESC

UNIVERSITY OF ILLINOIS LIBRARY

Class 1911 N33

22

Volume

 Σ

)ř

.

.

THE SPECIFIC HEAT OF SUPER-HEATED STEAM

 $\mathbf{B}\mathbf{Y}$

BENJAMIN NELSON

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

MECHANICAL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

Mary 29 1961

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Denjamin Nelson

ENTITLED The Apecific Heat of Auperheated

Alean

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF

Bachelor of Acrence in

Mechanical Engineering

G.a. Goodenough Instructor in Charge.

APPROVED: J. a. Goodenough

Cleting HEAD OF DEPARTMENT OF Mechanical Engineering

UIUC Kuning and

INDEX

PAGE.

I.	INTRODUCTORY STATEMENT	1.
II.	THEORFTICAL INVESTIGATION	1.
III.	SPECIFIC HEAT CURVES	6.
IV.	SAMPLE CALCULATIONS	8.
V.	TABLES OF SPECIFIC HEATS AND MEAN SPECIFIC HEATS	14.

Digitized by the Internet Archive in 2013

http://archive.org/details/specificheatofsu00nels

THE SPECIFIC HEAT OF SUPERHEATED STEAM.

I.

INTRODUCTOPY STATFMENT.

In 1910 Mr. A. S. Grossberg submitted as his thesis, a discussion on the specific heat of superheated steam together with charts of specific heat curves. This work was based on a theoretical development by Professor G. A. Geodenough. Since the completion of Mr. Grossberg's work it has appeared desirable to make changes in some of the constants involved in the discussion, necessitating a recalculation of the specific heats.

The recalculation of the specific heats using the new constants, is the object of this thesis. The historical sketch of the work on the determination has been omitted as it is given in Mr. Grossberg's thesis.

II.

THEORETICAL INVESTIGATION.

As early as 1867 Zeuner submitted a complete theory on the properties of superheated steam, based on the assumption of constant specific heat. Subsequent experimental data however, has proven that this assumption is erroneous and recent experiments at Munich, Germany, show conclusively that the characteristic equation derived in this theory is defective in form. Callendar has developed a general theory or the properties of steam, deriving equations for specific heat, entropy and energy, but again, the Munich experiments show that his fundemental equation is incorrect and that some of

his assumptions regarding C_p are invalid. Again Professor M Marks and Dr. Davis, as well as Professor Peabody have, without the aid of theory, constructed elaborate tables of the properties of superheated steam, getting the numerical results by graphic integration, having assumed specific heat curves to start with.

Professor Goodenough has modified somewhat, Linde's form of the characteristic equation and has developed from this equation, expressions for the specific heat, as well as for, heat content, total heat and intrinsic energy, which agree remarkably well, with the most recent experimental data.

The following discussion is condensed from Professor Goodenough's paper.

To derive this expression for specific heat, we have to start with the well known thermodynamic relation,

$$\left(\frac{\partial c_{\rm p}}{\partial p}\right)_{\rm T} = - \operatorname{AT} \frac{\partial 2_{\rm V}}{\partial {\rm T}^2} \tag{1}$$

and the modified form of Linde's characteristic equation, $p(V+C) \equiv BT-p(1+ap) = \frac{m}{T^{n}}$. Placing this in the form, $(V+C) = \frac{BT}{p} - (1+ap) = \frac{m}{T^{n}}$, we obtain by successive differentiation $\frac{\partial V}{\partial T} = \frac{B}{p} - \frac{mn}{T^{n+1}}$ (1+ap)

$$\frac{\partial^2 y}{\partial T^2} = -\frac{mn(n+1)}{T^{n+2}} (1+ap)$$
(2)

Substituting (2) in (1) we obtain

$$\left(\frac{\partial^{C} p}{\partial p}\right)_{T} = \frac{Amn(n+1)}{T^{n+1}} (1+ap)$$
(3)

Taking T as a constant and integrating (3) with respect to p, there results

(n)

•

-

 $C_{p} = \frac{Ann(n+1)}{T^{n+1}} p(1+\frac{a}{2}p) plus constant of integration.$ We must necessarily assume that, since T was held constant during the integration that the constant of integration will be a function of T. Hence:-

$$p = p(T) + \frac{Amn(n+1)}{T^{n+1}} p(1 + \frac{a}{2} p)$$
 (4)

0ľ

С.

 $C_{p} \equiv \phi(T) + f(p_{1}T_{1}) \qquad (4')$

(5)

Assuming that the characteristic equation is correct, then the expression for C_p given by (4) must be of the right form and it is readily seen that if the function, $\phi(T)$ can be determined, there results an explicit expression for C_p , in terms of p and T.

To determine now, the proper form of this function of T, $\emptyset(T)$, is the all important element of this investigation. If p is made equal to zero, equation (4) becomes $C_p = \emptyset(T)$. Callendar holds that at zero pressure C_p should have a constant value, but Knoblauch and Jakob, from their direct determinations by experiment, show that C_p cannot be a constant.

Professor Goodenough has established the form of this function by quite a different line of reasoning. An inspection of equation (4) shows, that the term $f(p_1T)$, having the term T^{n+1} in the denominator, grows smaller as the temperature increases. At moderately low temperatures (T I 100°F - 1000°F), this term has an appreciable value but as the temperature increases to say 2000°F, this term becomes negligible and there results, for all pressures

$C_p = p(T)$

If we plot curves showing the relation between Cp and T,

(3)

.

,

.

-

.

at constant pressures, for several pressures, we obtain a series of curves, all of the same general slope, fairly wide apart near saturation but continually approaching one another as the temperature increases, finally merging at high temperatures. $C_p = \emptyset(T)$, is an asymotote to each one of these curves.

It is necessary then, in the determination of $\mathcal{P}(T)$, to determine the relation between Cp and T at high temperatures, where the influence of the pressure is negligible. The data obtained, from the explosion experiments of Mallard and La Chatelier at high temperatures, those of Langen and the two sets of calorimeter experiments by Holborn and Henning, was investigated. Values of C_D were calculated from equations for C_n, obtained from each of the above mentioned experiments and curves were plotted with these values. These curves agreed as far as general form is concerned, but were far from being coincident. A curve was then constructed which agreed fairly well with the curve of Mallard and La Chatelier at high temperatures and which was made to agree fairly well with the curves determined for lower temperatures by the experiments of Holborn and Henning. The curve chosen to represent $\phi(T)$ coincided at high temperatures with this mean curve mentioned above, but at lower temperatures fell below the mean curve, due to the introduction of the $f(p_1T)$ torm, which becomes appreciable for temperatures moderately near the saturation point. This curve has an equation of the third or fourth degree.

as $p(T) \equiv a + bT + cT^2$

or $\phi(\mathbf{T}) = \mathbf{a} + \mathbf{b}\mathbf{T} + \mathbf{c}\mathbf{T}^2 + \mathbf{d}\mathbf{T}^3$

(4)

This equation gives a curve of parabolic form but for technical appliance we are concerned only with a relatively small range, about $300^{\circ} - 600^{\circ}$ F and for this range, we can replace the curve by a straight line having approximately the same slope. We can assume then, for our work the $\phi(T)$ expressed by the linear equation,

$$\phi(\mathbf{T}) = \mathbf{\alpha} + \mathbf{\beta} \mathbf{T} \tag{6}$$

Equation (4) then becomes

$$C_p = \alpha + (3T + \frac{Amn(n+1)}{T^{n+1}}p(1+\frac{a}{2}p)$$
 (7)

Since the constant a, and m, are known there remains to be determined α and 3. These are determined by means of the experiments of Knoblauch and Jakob. From these experiments curves of specific heat against temperatures were plotted for pressures of 2, 4, 6, and 8 Kg. Then since a, and m, are known, values of α , and 3, were assumed so that the equation (7) fitted these experimental curves.

The values decided on were for the Centigrade scale

 α = 0.367
 (3 ± 0.00018)

 Then
 $\beta(T) \pm 0.367 \pm 0.00018T$ (8)

 For the Farenheit Scale.

$$q = 0.367$$
 $(3 = 0.0001)$

otin(T) = 0.367 + 0.0001 T (9) With these values of the constants α and (3), the calculated curves agree with the experimental curves except at 350°C, and this is due probably to an experimental error. The C_p at saturation can be calculated by means of the formula

$$C_{p} \text{ sat.} = \frac{dH}{dT} - \frac{r}{T} - AT \frac{dp}{dT} \left(\frac{\partial V}{\partial T}\right)_{p}$$
 (10)

ч

Where H denotes the total heat of saturated steam and r, the latent heat of vaporization, $\frac{dP}{dT}$ is derived from the relation p = f(T) that applies to saturated steam, and the derivative $\left(\frac{\partial V}{\partial T}\right)_p$ can be found by means of the characteristic equation of superheated steam.

A table has been prepared showing the differences in the specific heats, as taken from the surves and as calculated at saturation and the values from 15 pounds per square inch to 300 pounds per square inch are here tabulated, for comparison.

Pressure 1b. per	Value	s of (Cp)	Sat. Marks		Percent
sq. inch	from 10	from 7	and Davis	Diff.	Diff.
15	0.4995	0.4775	0.472	-4.4	-5.4
50	0.5157	0.5228	0.508	-1.4	-1.5
100	0.5609	0.5609	0,565	-0.0	-0.7
150	0.5917	0.5876	0.630	-0.7	-6.5
200	0.6143	0,6097	0.705	-0.8	-15.0
300	0.6565	0.6454	0.898	-1.6	-36.0

From this discussion it seems safe to assume that formula (10) can be adopted for finding values of C_p for the range commonly used in technical practice.

III.

SPECIFIC HEAT CURVES.

Taking a range of pressure from $O_{\#}^{\#}$ to $300_{\#}^{\#}$ absolute and degrees of superheat from O^{O} to 600^{O} , values of the specific heat at constant pressure were calculated and a series of curves were plotted as shown on page (17). Then another series of curves were drawn showing the relation between C_{p}

(6)

-

*

- ь.
- £

and temperatures as shown on page (18).

While these curves are of value as representing theoretical conclusions, they are not of much practical or direct value, since what we are concerned with is, the mean specific heat between saturation and the known degree of superheat. Curves therefore, of mean C_p were calculated by integrating the area bounded by every 100° of superheat, the X axis and the curve. From this area the mean height above the X axis was found, or in other words the mean C_p . These curves are found on pages (19) and (20). For purpose of checking, the mean C_p at 300° and 600° superheat were calculated for each pressure, by means of formula.

(7)

$$C_{pm} = Q + \frac{Q}{2} (T + T_s) + \frac{Amn(n+1)p(1+\frac{Q}{2}p)(\frac{1}{T_5} - \frac{1}{T_5})}{T - T_s}$$
 (11)

Tables giving values of C_p and mean C_p are found under headings, Table I and Table II, respectively.

The derivation of the equation for mean specific heat is as follows:-

Mean
$$C_p = \frac{\int_{T_s}^{T_c} dT}{T_c - T_s}$$
 (12)

which becomes by substitution,

Mean
$$C_p = \frac{1}{T - T_s} \int_{T_s} \left[q + \beta T + \frac{Amn(n+1)}{T + 1} p(1 + \frac{a}{2} p) \right] dT =$$

$$q' + \frac{3}{5}(T + T_{s}) + \frac{Amn(n+1)p(1+\frac{a}{2}p)(\frac{1}{T_{s}} - \frac{1}{T_{s}})}{(13)}$$

T-Tg

IV.

SAMPLE CALCULATIONS.

Calculations for $C_{\rm F}$ at 50 pounds per square inch prossure and 100° superheat.

 $Amn(n+1)p(1+\frac{a}{2}p)$ Cp = q + B T + 7 n11 p = 50.00 T = 840.58 **—** 0.367 E 0.0001 a = 0.0006 T = 0.084058 $\log 144 \operatorname{Amn}(n+1) = 14.425053$ log Tn+1 = 17.54747 (1+ar) <u>-</u> 1.0150 $\log (1-ap) = 0.00454$ 144 Amn(n+1)p(1+ 3 p) - 2.58109 log Tn11 71 = 0.038114 C_p = .367 +.084058 + .038114 = .48917

.

SAMPLE CALCULATIONS (CONT.)

Calculations for C_{pm} at 250 pounds per square inch pressure and 300° Superheat.

	Amm(n+1)p(1+ $\frac{a}{2}$ p)($\frac{1}{T_{3}^{2}} - \frac{1}{T_{5}}$)
$v_{\rm pm} = Q + \bar{2}(1 + 1_3) +$	T . Ty
$T_{e} = 860.7$	$\log T_{s} = 2.934852$
$T+T_{\rm S} = 2021.4$	$\log T_{g}^{5} = 14.674200$
(1+ap) = 1.075	$\log T = 3.064720$
p(14ap) = 268.75	$\log T^{3} = 15.323000$
$1/T_{s}^{5}$ = 2.117 x 10 ⁻¹⁵	$\log 1/T_{a}^{5} = 15.325740$
$1/T^5 = .47468 \times 10^{-15}$	$\log 1/T^5 = 16.675400$
$\left(\frac{1}{T5} - \frac{1}{T5}\right) = 1.64242 \times 10^{-15}$	$\log(\frac{1}{15} - \frac{1}{15}) = 15.315480$
5	$\log 268.25 = 2.429348$
	$\log m = 13.725080$
	log sum = 1.369908

Number whose $\log = 1.369908 = 23.437$ $\frac{23.437}{300} = .0781$

 $C_{pm} = .0781 + .367 + .10107 = .54617$

(9)

·

(10)

TAFLE I.

V. Calculated Values of Specific Heat.

Absolute Pressure (p)	1	2	3	5	10
Saturation Temp. (ts)	101.83		141.5	102.3	193.2
C _p at Saturation	.43165	.43891	.44404	.45295	.46590
Degrees Superheat 20	.43204	.43800	.44301	.45150	.46300
40	. 43275	.43850	.44261	.44900	.40037
60	.43379	.43892	.44269	.44845	.45859
80	.43499	.43969	.44313	. 44 83 5	. 45750
100	.43635	.44069	. 44387	.44860	.45694
120	.43783	.44188	.44481	.44918	.45681
140	.43941	.44322	.44596	.45200	.45704
160	.44106	. 44467	.44725	.45102	.45755
180	. 44278	.44621	.44866	.45220	.45830
200	.44456	.44784	.45016	.45351	. 45924
250	.44911	.45216	.45425	. 45722	. 46224
300	.45383	.45667	.45864	.46136	.46588
350	.45865	.46137	. 46323	.46577	.46994
400	.46352	.46615	.46794	.47036	.47428
· 450	.46843	.47101	. 47274	. 47507	.47880
500	. 47337	.47590	. 47760	.47985	.48346
550	. 47832		. 48249	.48470	.48820
600	.48329	.48576	. 48744	.48959	. 49301

· ·

			(11)			
		TAELE	I (CONT.)		
bs. P. (r)	15	20	25	30	40	50.
Sat. Temp. (ts)	213.0	228.0	240.1	250.3	267.3	281.0
op at Sat.	.47757	.48628	.49398	.50090	.51267	.52256
Degrees Sup.20		.48031	.48708	.49312	.50358	.51250
40		.47577	.48179	.48718	.49656	.50500
60	.46620	. 47237	.47776	.48259	. 49099	.40817
. 80	.46433	• 46989	.47475	.47909	•48666	.49310
100	.46312	.46816	. 47256	. 47649	.48335	.48917
120	.46268	.46704	.47104	.47461	.48086	.43616
140	.46220	. 460 45	.47009	.47334	. 47906	. 48389
160	.45898	.46620	. 46957	.47357	. 47780	.48226
180	. 46269	. 46633	. 46943	. 47220	.47704	.48115
200	.46354	.48672	.46961	.47391	. 47667	.48047
250	.46576	.46866	.47112	.47330	.47640	.48029
300	.46899	.47156	.47356	.47560	.47889	.48165
- 350	.47276	.47507	. 47701	.47870	.48162	.48405
400	.47689	.47903	. 48079	. 48253	.48498	.48716
450	.48126	. 48326	.48491	.48633	. 48877	.49078
500	. 48582	.48770	.48924	.49061	. 49288	.49475
550	.49046	.49229	•	. 49504	.49721	. 49897
600	.49520	.49697	.49840	.49962	.50170	.50337

•

- -

-

.

.

.

- 1	٦.	0	
1	7	64	1

TABLE I (CONT.)

Abs. P. (p)	60	80	100	125	150	200
Sat. Temp.(t _s)	092.7	312.0	327.8	341.4	358.5	381.9
C _p at Sat.	.53210	.54476	.56076	. 57203	. 28798	.61005
Degrees Sup.20	. 52063	.53246		.55947	.57120	.59116
40	.51178	.52247		.54064	.55731	. 57541
60	.50468	. 51.438	.52578	.53617	.54582	.56226
80	.49903	.50786	.51806	.52756	.53740	.55130
100	.49455	. 50262	.51187	.52052	.52900	. 54234
120	.49106	. 49848	.50685	.51475	. 52250	. 53456
• 140	.48839	.49520	.50282	.50997	.51740	. 52826
160	.48639	. 49268	.49965	.50633	.51290	.52306
180	.48496	.49080	. 49718	.50336	. 50900	.51.888
200	.48401	.48944	.49532	.50105	.50627	.51535
250	.48326	.48788	.49278	. 49755	.50190	.50951
300	,48421	.48823	.49232	. 49646	.50016	.50805
350	.48631	.48987	.49340	. 49702	.50023	.50586
400	.48920	.49241	. 49552	. 49875	.50158	.50656
450	.49264	.49560	. 49807	.50130	.50384	.50831
500	. 49647	.49923	.50176	.50445	. 50694	.51083
550	.50059	.50319	.50553	.50803	.51017	.51342
600	.50498	. 50739	.50958	.51194	.51394	.51906

	(13)			
	TABLE I. (CONT.)			
Absolute Pressure (p)	250 300			
Saturation Temp. (t _s)	401.1 417.5			
C _p at Saturation.	.62853 .64586			
Degrees Superheat. 20	.60595 .42767			
4 C	.59070 .60498			
60	.57622 .58922			
80	.56405 .57592			
100	.55424 .56471			
120	.54529 .55326			
140	.53816 .54709			
160	.53220 .54384			
180	.52727 .53777			
200	.52321 .53265			
250	.51724 .52349			
300	.51229 .51814			
- 350	.51093 .51544			
400	.51089 .51474			
450	.51185 .51538			
500	.51462 .51704			
550	.51656 .51945			
600	.52046 .52242			

•		
•		

.

(14)								
TA	BLE II.	- Mean	Specifi	c Heat.				
Absolute Pressure (1) 1 <i>1</i>	2#	3#	51	10#	15#		
C _p at Saturation.	.4316	. 4389	. 4440	. 4529	.4659	.4775		
Degrees Superheat 20	.4320	.4381	. 4 4 3 7	.4518	. 4641	.4748		
40	.4324	. 4380	.4435	.4509	. 4626	. 4727		
60	.4329	. 4382	.4433	.4504	.4617	.4710		
80	.4335	.4385	. 4433	.4495	.4605	.4694		
100	.4340	.4388	.4435	.4424	.4595	.4685		
120	. 4342	.4390	.4456	. 4493	.4592	. 4674		
140	.4347	. 4397	• 4 1 3 7	.4494	. 4589	. 46 67		
160	.4358	.4405	.4440	.4495	. 4588	.4660		
180	.4362	.4411	.4442	.4197	.4588	.4657		
200	.4372	.4415	.4445	. 4499	.4590	.4653		
250	.4386	.4430	.4460	.4510	.4592	.4653		
300	.4411	.4450	.4477	.4524	. 4602	.4657		
350	.4430	.4467	.4495	.4547	.4615	.4664		
40	.4457	.4490	.4517	. 4555	.4624	.4673		
450	.4477	.4517	.4536	.4575	.4637	.4680		
50	.4500	.4535	.4561	.4595	.4659	.4695		
55	.4523	.4560	.4577	.4625	.4675	.4717		
60	.4543	.4580	. 46.06	.4850	.4699	.4732		

· · ·

.

· · ·

r.

			(15)				
		TAR	LE II.(CONT.)			
Abs. Pr.(p)	20#	25#	30#	40#	50#	60#	80 <i>"</i>
Cp at Sat.	.4863	. 4939	.5009	. 5126	. 5225	.5321	. 5447
Deg. Sup. 20	.4826	.4905	.4960	.5070	.5165	.5250	.5385
40	.4800	.4877	. 4930	.5035	.5123	.5200	• 5336
60	.4780	.4853	.4900	.5000	.5082	.5160	.5285
80	.4765	.4835	.4880	.4975	.5054	.5130	.5240
100	.4750	.4817	.4858	.4950	.5034	.5095	. 5200
120	.4741	.4800	.4842	. 4936	.5004	.5073	.5165
140	. 4734	.4786	. 4832	.4916	.4985	.5044	.5140
160	.4723	.4774	.4816	.4895	. 4961	.5027	.5110
180	.4718	.4762	.4804	.4880	.4946	. 5007	.5090
200	.4708	. 4755	. 4793	. 4869	.4936	.4910	.5074
250	.4700	.4744	.4782	.4850	. 4903	. 4956	.5036
300	.4700	.4741	. 4777	.4840	.4890	.4938	.5018
350	.4705	. 47 42	. 4775	.4836	.4885	.4925	.5000
400	.4710	.4747	.4779	. 4837	. 4876	. 4920	. 4986
450	.4720	.4759	.4784	.4838	. 4874	.4918	. 4980
500	.4736	.4765	.4795	.4840	.4875	. 4920	.4980
550	.4750	.4770	.4804	.4850	.4880	. 4925	.4984
600	.4766	4792	.4820	. 4860	4888	4935	. 4987

l

		(16)									
TABLE II. (CONT.)											
beolute Pressure (p)	100#	125#	1507	200#	250%	300#					
Cp at Saturation.	. 5607	. 5720	.5879	.6100	.6285	.0458					
Degrees Superheat. 20	.5520	.5845	.5790	.5978	.6175	.6340					
40	.5460	.5584	.5715	.5899	.6075	.6242					
60	.5404	. 5525	.5645	.5820	.5990	.6146					
80	.5356	.5475	.5587	.5755	.5910	.6056					
100	.5312	.5430	.5538	.5700	.5850	.5989					
120	. 5277	.5390	. 5488	.5650	.5792	.5915					
140	.5245	.5350	.5445	.5602	. 5740	.5856					
160	.5217	.5315	.5406	.5560	.5692	.5801					
130	.5191	.5290	.5370	, 5523	.5646	.5758					
200	.5120	.5260	.5341	. 5420	. 5606	.5714					
250	.5120	.5200	. 5279	.5410	.5525	.5674					
300	.5085	.5160	.5238	.5350	.5458	.5550					
350	.5060	.5138	. 5201	.5313	.5408	. 5496					
- 400	.5045	.5119	.5180	.5286	.5370	. 5458					
450	.5040	.5105	.5165	. 5260	. 5340	.5425					
500	,5038	. 5096	.5151	. 5245	.5320	. 5395					
550	.4038	.5092	.5145	.5235	. 53 02	. 5375					
600	.4038	.5090	.5146	. 5224	. 5292	. 5358					

•

· ·

· ·

.

.

~

~

