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Abstract. In this paper we construct a large class of multiplication operators on reproducing kernel
Hilbert spaces which are homogeneous with respect to the action of the Möbius group consisting of
bi-holomorphic automorphisms of the unit disc D. For every m ∈ N we have a family of operators
depending on m+1 positive real parameters. The kernel function is calculated explicitly. It is proved
that each of these operators is bounded, lies in the Cowen - Douglas class of D and is irreducible.
These operators are shown to be mutually pairwise unitarily inequivalent.

1. Introduction

A homogeneous operator on a Hilbert space H is a bounded operator T whose spectrum is con-
tained in the closure of the unit disc D in C and is such that g(T ) is unitarily equivalent to T for
all linear fractional transformations g which map D to D. This class of operators has been studied
in a number of articles [4, 6, 3, 12, 5, 11, 1, 9]. It is known that every homogeneous operator is
a block shift, that is, H is the orthogonal direct sum of subspaces Vn, indexed by all integers, all
non-negative integers or all non-positive integers, such that T (Vn) ⊆ Vn+1 for each n.

The case where dimVn = 1 for each n is completely known, the corresponding operators have
been classified in [5]. The classification in the case where dimVn ≤ 2 and T belongs to the Cowen -
Douglas class of D is complete and the operators are explicitly described in [12]. Beyond this there
are only some results of a general nature, and not too many examples are known (cf. [4]).

In the present article we construct a large family of examples. For every natural number m

we construct a family depending on m + 1 parameters. Each one of the examples is realized as
the multiplication operator on a reproducing kernel space of vector-valued holomorphic functions.
All of these reproducing kernel Hilbert spaces admit a direct sum decomposition ⊕n≥0Vn with
dimVn = n+1 if 0 ≤ n < m and dimVn = m+1 for n ≥ m. The reproducing kernels are described
explicitly. All our examples are irreducible operators and their adjoints belong to the Cowen -
Douglas class.

We have chosen a presentation as elementary as possible, based on explicit computations. This
seemed to be appropriate here since our goal was a complete explicit description of the examples. On
the other hand, it does not explain the deeper background of the results. To remedy this situation
we have added a final section which discusses a more conceptual approach to the examples. In a
planned expository article on the subject there will be more details about the various ways in which
one can arrive at the construction of our examples.

The more conceptual approach will play a leading role in the sequel to the present article, where
a description of all homogeneous Cowen - Douglas operators will be given albeit in a less explicit
way than our present examples.

This work was supported in part by DST - NSF S&T Cooperation Programme.
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2 ADAM KORÁNYI AND GADADHAR MISRA

Our results are also the subject of a short note presented to the Comptes Rendus de l’Académie
des Sciences, Paris [10].

2. Preliminaries

We denote by D the open unit disc in C and by G the group of Möbius transformations z 7→ az+b
b̄z+ā

,

|a|2 − |b|2 = 1. Let G0 be the group SU(1, 1) =
{(

a b
b̄ ā

)
: |a|2 − |b|2 = 1

}
. So, G = G0/{±I}. We

denote by G̃, the universal covering group of G.
All Hilbert spaces H considered in this article will be spaces of holomorphic functions f : D→ V

taking their values in a finite dimensional Hilbert space V and possessing a reproducing kernel K.
A reproducing kernel is a function K : D × D → Hom(V, V ) holomorphic in the first variable and
anti-holomorphic in the second, such that Kωζ defined by (Kωζ)(z) := K(z, ω)ζ is in H for each
ω ∈ D, ζ ∈ V , and

(2.1) 〈f,Kωζ〉H = 〈f(ω), ζ〉V
for all f ∈ H.

As is well known, if {en}∞n=0 is any orthonormal basis of H, then we have

(2.2) K(z, ω) =
∞∑

n=0

en(z)en(ω)∗

with the sum converging pointwise. Here we interpret a formal product ξη∗ for ξ, η ∈ V as the
transformation ζ 7→ 〈ζ, η〉ξ; when V = Ck, k ∈ N, and its elements are written as column vectors,
ξη∗ is just the usual matrix product.

We will be concerned with multiplier representations of G̃ on the Hilbert space H. A multiplier is
a continuous function J : G̃× D→ Hom(V, V ), holomorphic on D, such that

(2.3) J(gh, z) = J(h, z)J(g, hz)

for all g, h ∈ G̃ and z ∈ D. For g ∈ G̃, we define U(g) on on Hol(D, V ) by

(2.4) (U(g)f)(z) = J(g−1, z)f(g−1(z)).

It is easy to see that the multiplier identity (2.3) is equivalent to U(gh) = U(g)U(h).
Suppose that the action g 7→ U(g), g ∈ G̃, defined in (2.4) preserves H and is unitary on it, then

we say that U is a unitary multiplier representation of G̃.
Also, if the reproducing kernel K transforms according to the rule

(2.5) J(g, z)K(g(z), g(ω))J(g, ω)∗ = K(z, ω)

for all g ∈ G̃; z, ω ∈ D, then we say that K is quasi-invariant.

Proposition 2.1. Suppose H has a reproducing kernel K. Then U defined by (2.4) is a unitary
representation if and only if K is quasi-invariant.
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Proof. Assume that K is quasi-invariant. We have to show that the linear transformation U defined
in (2.4) is unitary. We note, writing ω̃ = g−1(ω) and ω̃′ = g−1(ω′),

〈U(g−1)K(·, ω)ξ, U(g−1)K(·, ω′)η〉 = 〈J(g, ·)K(g(·), ω)ξ, J(g, ·)K(g(·), ω′)η〉
= 〈K(·, ω̃)J(g, ω̃)∗−1ξ, K(·, ω̃′)J(g, ω̃′)∗−1η〉
= 〈K(ω̃′, ω̃)J(g, ω̃)∗−1ξ, J(g, ω̃′)∗−1η〉
= 〈J(g, ω̃′)−1K(ω̃′, ω̃)J(g, ω̃)∗−1ξ, η〉
= 〈K(ω′, ω)ξ, η〉

and it follows that U(g−1) is isometric.
On the other hand, if U of (2.4) is unitary then the reproducing kernel K of the Hilbert space H

satisfies the transformation rule (2.5). A reproducing kernel K has the expansion (2.2). It follows
from the uniqueness of the reproducing kernel that the expansion is independent of the choice of
the orthonormal basis. Consequently, we also have K(z, ω) =

∑
`=0(Ug−1e`)(z)(Ug−1e`)(ω)∗ which

verifies the equation (2.5). ¤

When we are in the situation of the Proposition and if we can prove that the operator M de-
fined by (Mf)(z) = zf(z) is bounded on H, then M is a homogeneous operator. This is well-
known and trivial: Clearly, (g(M)f)(z) = g(z)f(z) and hence (MU(g−1)f)(z) = zJ(g, z)f(g(z)) =
J(g, z)g−1(g(z))f(g(z)) = (U(g−1)(g−1(M))f)(z), for all g ∈ G̃, f ∈ H, z ∈ D. If, in addition,
dimker(M − ωI)∗ = n and the operator (M − ωI)∗ is bounded below, on the orthogonal comple-
ment of its kernel, for every ω ∈ D then M∗ is in the Cowen-Douglas class (see [7]) Bn(D).

In the case of reproducing kernel Hilbert spaces of scalar functions (i.e. when dimV = 1) the
unitary multiplier representations of G̃ are well-known. We describe them here because they will
be used in the next section. They are the elements of the holomorphic discrete series depending on
one real parameter λ > 0. They act on the Hilbert space A(λ)(D) characterized by its reproducing
kernel Bλ(z, ω) = (1− zω̄)−2λ. Here B(z, ω) = (1− zω̄)−2 is the reproducing kernel of the Bergman
space A2(D), the Hilbert space of square integrable (with respect to normalized area measure)
holomorphic functions on the unit disc D.

For g ∈ G̃, g′(z)λ is a real analytic function on the simply connected set G̃×D, holomorphic in z.
Also g′(z)λ 6= 0 since g is one-one and holomorphic. Given any λ ∈ C, taking the principal branch
of the power function when g is near the identity, we can uniquely define g′(z)λ as a real analytic
function on G̃ × D which is holomorphic on D for all fixed g ∈ G̃. The multiplier jλ(g, z) = g′(z)λ

defines on A(λ)(D) the unitary representation D+
λ by the formula (2.4), that is,

(2.6) D+
λ (g−1)(f) = (g′)2λ(f ◦ g), f ∈ A(λ)(D), g ∈ G̃.

An orthonormal basis of the space is given by
{√

(2λ)n

n! zn
}

n≥0
, where (x)n = x(x+1) . . . (x+n−1)

is the Pochhammer symbol. The operator M is bounded on the Hilbert space A(λ)(D). It is easily
seen to be in the Cowen-Douglas class B1(D).

3. Construction of the Hilbert spaces and representations

Let Hol(D,Ck) denote the vector space of all holomorphic functions on D taking values in Ck,
k ∈ N. Let λ be a real number and m be a positive integer satisfying 2λ−m > 0. For brevity, we
will write 2λj = 2λ−m + 2j.
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For each j, 0 ≤ j ≤ m, define the operator Γj : A(λj)(D) → Hol(D,Cm+1) by the formula

((Γjf))` =

{(
`
j

)
1

(2λj)`−j
f (`−j) if ` ≥ j

0 if ` < j,

for f ∈ A(λj)(D), 0 ≤ ` ≤ m. Here ((Γjf))` denotes the `th component of the function Γjf and f (`−j)

denotes the (`− j)th derivative of the holomorphic function f .
We denote the image of Γj by A(λj)(D) and transfer to it the inner product of A(λj)(D), that is,

we set 〈Γjf, Γjg〉 = 〈f, g〉, for f, g ∈ A(λj)(D). The Hilbert space A(λj)(D) is a reproducing kernel
space because the point evaluations f 7→ (Γjf)(ω) are continuous for each ω ∈ D. Let B(λj) denote
the reproducing kernel for the Hilbert space A(λj)(D).

The algebraic sum of the linear spaces A(λj)(D), 0 ≤ j ≤ m is direct. This is easily seen. If∑m
j=0 Γjfj = 0, fj ∈ A(λj)(D), then f0 = ((Γ0f0))0 = 0 since ((Γjfj))0 = 0 for j > 0. Similarly,

f1 = ((Γ1f1))1 = 0 since ((Γjfj))1 = 0 for j > 1. Continuing in thpositive numbersis fashion, we see
that fm = 0. It follows that we can choose m positive numbers, µj , 1 ≤ j ≤ m, set µ0 = 1, write
µ = (µ0, µ1, . . . , µm), and define an inner product on the direct sum of the A(λj)(D) by setting

(3.1) 〈
m∑

j=o

Γjfj ,
m∑

j=o

Γjgj〉 =
m∑

j=0

µ2
j 〈fj , gj〉, fj , gj ∈ A(λj).

We obtain a Hilbert space in this manner which we denote by A(λ,µ)(D). It has the reproducing
kernel B(λ,µ) =

∑m
j=0 µ2

j B(λj).

The direct sum of the discrete series representations D+
λj

on ⊕m
j=0A

(λj) can be transferred to

A(λ,µ)(D) by the map Γ = ⊕m
j=0µjΓj . It is a unitary representation of the group G̃ which we call

U . Its irreducible subspaces are the A(λj)(D).
We will show that U is a multiplier representation. For each A(λj)(D) separately this is fairly

obvious by checking the effect of Γj . The important point is that the multiplier is the same on each
A(λj)(D).

We need a relation between g′′(z) and g′(z). The elements of G0 are the matrices
(
a b
b̄ ā

)
, |a|2 −

|b|2 = 1, acting on D by fractional linear transformations. The inequalities

(3.2) |a− 1| < 1/2, |b| < 1/2

determine a simply connected neighborhood U0 of e in G0. Under the natural projections, it is
diffeomorphic with a neighborhood U of e in G and with a neighborhood Ũ of e in G̃. So, we
may use a, b satisfying (3.2) to parametrize Ũ . For g ∈ Ũ , z ∈ D we have g′(z) = (b̄z + ā)−2 and
g′′(z) = −2b̄(b̄z + ā)−3, which gives a relation

(3.3) g′′(z) = −2cg′(z)3/2,

where c = cg depends on g real analytically and is independent of z; the meaning of g′(z)3/2 is as
defined earlier. Since both sides are real analytic, (3.3) remains true on all of G̃× D.

Definition 3.1. Let J : G̃× D→ Cm+1×m+1 be the function given by the formula

(3.4) J(g, z)p,` =

{(
p
`

)
(−c)p−`(g′)λ−m

2
+ p+`

2 (z) if p ≥ `

0 if p < `,

for g ∈ G̃. Here c is the constant depending on g as in (3.3)
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The following Lemma is used for showing that U is a multiplier representation.

Lemma 3.1. For any g ∈ G̃, we have the formula

(
(g′)`(f ◦ g)

)(k) =
k∑

i=0

(
k
i

)
(2` + i)k−i(−c)k−i(g′)`+ k+i

2
(
f (i) ◦ g

)
.

Proof. The proof is by induction, using the formula (3.3). For k = 0, the formula is an identity.
Assume the formula to be valid for some k. Then

(
(g′)`(f ◦ g)

)(k+1)

=
k∑

i=0

(
k
i

)
(2` + i)k−i(−c)k−i

{
(` +

k + i

2
)(g′)`+ k+i

2
−1g′′

(
f (i) ◦ g

)
+ (g′)`+ k+i

2
(
f (i+1) ◦ g

)
g′

}

=
k∑

i=0

(
k
i

)
(2` + i)k−i(−c)k−i

{
(2` + k + i)(−c)(g′)`+ k+i+1

2
(
f (i) ◦ g

)
+ (g′)`+ k+i+2

2
(
f (i+1) ◦ g

)}

=
k∑

i=0

(
k
i

)
(2` + i)k−i(2` + k + i)(−c)k+1−i(g′)`+ k+i+1

2
(
f (i) ◦ g

)

+
k+1∑

i=1

(
k

i−1

)
(2` + i− 1)k+1−i(−c)k+1−i(g′)`+ k+i+1

2
(
f (i) ◦ g

)
.

Now, we observe that

(
k
i

)
(2` + i)k−i(2` + k + i) +

(
k

i−1

)
(2` + i− 1)k+1−i

= (2` + i)k−i

{(
k
i

)
(2` + k + i) +

(
k

i−1

)
(2` + i− 1)

}

= (2` + i)k−i

{((
k
i

)
+

(
k

i−1

))
(2` + k) + i

(
k
i

)
+ (i− 1 + k)

(
k

i−1

)}

= (2` + i)k+1−i

(
k+1

i

)
.

Thus
(
(g′)`(f ◦ g)

)(k+1) = (2` + i)k+1−i

(
k+1

i

)
(−c)k+1−i(g′)`+ k+i+1

2 completing the induction step.
¤

We can now prove the main theorem of this section.

Theorem 3.1. The image of ⊕m
0 D+

λj
under Γ is a multiplier representation with the multiplier given

by J(g, z) as in (3.4).

Proof. It will be enough to show

Γj

(
D+

λj
(g−1)f

)
= J(g, ·)((Γjf) ◦ g

)

for each j, 0 ≤ j ≤ m. We compute the p’th component on both sides.
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For p < j, both sides are zero by definition of Γj and knowing that J(g, z)p,` = 0 for ` > p. For
p ≥ j, we have using the Lemma,

(((ΓjD
+
λj

(ϕ−1)f)
)
)p =

(
p
j

) 1
(2λj)p−j

(
(g′)λjf ◦ g

)p−j

=
(
p
j

) 1
(2λj)p−j

p−j∑

i=0

(
p−j

i

)
(2λj + i)p−j−i(−c)p−j−i(g′)λj+

p−j+i
2 (f (i) ◦ g)

=
(
p
j

) 1
(2λj)p−j

p∑

`=j

(
p−j
`−j

)
(2λj + `− j)p−`(−c)p−`(g′)λj−j+ p+`

2 (f (`−j) ◦ g)

=
m∑

`=j

p!
j!(`−j)!(p−`)!

1
(2λj)`−j

(−c)p−`(g′)λj−j+ p+`
2 (f (`−j) ◦ g)

=
m∑

`=0

J(ϕ, ·)p,`(((Γjf) ◦ g
)
)`.

¤

4. The orthonormal basis and the operator M

The vectors ej
n(z) := Γj

(√ (2λj)n

n! zn
)

clearly form an orthonormal basis in the Hilbert space
A(λj)(D). We have, by definition of Γj ,

(4.1) ((ej
n(z)))` =





0 ` < j or ` > n + j
(
`
j

) √
n!

(n−`+j)!

√
(2λj)n

(2λj)`−j
zn−`+j ` ≥ j and ` ≤ n + j.

We compute the reproducing kernel B(λj) for the Hilbert space A(λj)(D). We have

B(λj)(z, ω) =
∞∑

n=0

(
(Γje

j
n)(z)

)(
(Γje

j
n)(ω)

)∗

=
(
Γj

∞∑

n=0

ej
n(z)

)(
Γj

∞∑

n=0

ej
n(ω)

)∗

= Γ(z)
j Γ(ω̄)

j Bλj (z, ω),(4.2)

since the series converges uniformly on compact subsets. Explicitly,

(4.3) B(λj)(z, ω)p,` =

{(
`
j

)(
p
j

)
1

(2λj)`−j

1
(2λj)p−j

∂(p−j)∂̄(`−j)Bλj (z, ω) if `, p ≥ j

0 otherwise.

In particular, it follows that B(λj)(0, 0) is diagonal, and

(4.4) B(λj)(0, 0)`,` =

{
0 if ` < j(
`
j

)2 (`−j)!
(2λj)`−j

if ` ≥ j.

Then

(4.5) B(λ,µ)(0, 0)`,` =
m∑

j=0

B(λj)(0, 0) µ2
j .
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A more general formula for B(λ,µ)(z, ω) can be easily obtained using (2.5). For z ∈ D, we set

pz = 1√
(1−|z|2)

(1 z
z̄ 1

)
∈ SU(1, 1). We also write pz for the corresponding element of G̃ such that pz

depends contnuously on z ∈ D and p0 = e. Then pz(0) = z; p−1
z = p−z. By Theorem 3.1, formula

(2.5) holds for Bλ,µ and gives

(4.6) Jp−z(z)Bλ,µ(0, 0)Jp−z(z)∗ = Bλ,µ(z, z).

We have p′−z(ζ) = 1−|z|2
(1−z̄ζ)2

; p′−z(z) = (1 − |z|2)−1. The −c of (3.3) corresponding to p−z is z̄
1−|z|2 .

So (3.4) gives

Jp−z(z)p,` =

{
(1− |z|2)−λ−m

2
(
p
`

)
z̄p−`(1− |z|2)m−p p ≥ `

0 p < `,

which can be written in matrix form as

(4.7) Jp−z(z) = (1− |z|2)−λ−m
2 D(|z|2) exp(z̄Sm),

where D(|z|2)p,` = (1 − |z|2)m−`δp,` is diagonal and Sm is the forward shift on Cm+1 with weight
sequence {1, . . . ,m}, that is, ((Sm))`,p = `δp+1,`, 0 ≤ p, ` ≤ m. Substituting (4.7) into (2.5) and
polarizing we obtain

(4.8) B(λ,µ)(z, ω) = (1− zω̄)−2λ−mD(zω̄) exp(ω̄Sm)B(λ,µ)(0, 0) exp(zS∗m)D(zω̄).

In general, let H be a Hilbert space consisting of holomorphic functions on the open unit disc D
with values in Cm+1. Assume that H possesses a reproducing kernel K : D × D → C(m+1)×(m+1).
The set of vectors H0 = {Kωξ : ω ∈ D, ξ ∈ Cm+1} span the Hilbert space H. On the dense set of
vectors H0, we define a map T by the formula TKωξ = ω̄Kωξ for ω ∈ D. The following Lemma
gives a criterion for boundedness of the operator T .

Lemma 4.1. The densely defined operator T is bounded if and only if for some positive constant c

and for all n ∈ N
n∑

i,j=1

〈(c− ωjω̄i)K(ωj , ωi)xi, xj〉 ≥ 0

for x1, . . . , xn ∈ Cm+1 and ω1, . . . , ωn ∈ D. If the map T : H0 → H0 ⊆ H is bounded then it is the
adjoint of the multiplication operator on H.

The proof is well-known and easy in the scalar case. We omit the obvious modifications required
in the general case.

It is known and easy to verify that for every ε > 0, the multiplication operator M (ε), defined
by

(
M (ε)f

)
(z) = zf(z), is bounded on A(ε). Consequently, the kernel Bε satisfies the positivity

condition of the Lemma above for ε > 0. Fix m ∈ N. Consider the reproducing kernel B(λ,µ). We
recall that B(λ,µ) is a positive definite kernel on the unit disc D if and only if λ > m/2.

Theorem 4.1. The multiplication operator M (λ,µ) on the Hilbert space A(λ,µ) is bounded for all
λ > m/2.

Proof. Let ε be a positive real number such that λ−ε > m/2. Let us find µ′ with µ′j > 0, 0 ≤ j ≤ m,
such that

(4.9) B(λ,µ)(z, ω) = (1− zω̄)−2εB(λ−ε,µ′)(z, ω).



8 ADAM KORÁNYI AND GADADHAR MISRA

Since the multiplication operator is bounded on the Hilbert space whose reproducing kernel is
(1−zω̄)−2ε for every ε > 0, it follows that we can find r > 0 such that (r−zω̄)(1−zω̄)−2ε is positive
definite. Assuming the existence of µ′ as above, we conclude that (r − zω̄)B(λ,µ)(z, ω) is positive
definite finishing the proof. To find such a µ′, it is enough to prove B(λ,µ)(0, 0) = B(λ−ε,µ′)(0, 0),
because then (4.6) and (4.7) (or (4.8)) immediately imply (4.9).

By (4.5), writing L(λ)`j = B(λj)(0, 0)``, the question becomes whether we can find positive num-
bers µ′j satisfying the equations

(4.10)
∑

j

L(λ)`j µ2
j =

∑

j

L(λ− ε)`j µ′j
2
.

By (4.4) each L(λ)`j is continuous in λ,; also L(λ)`j = 0 for ` < j, and L(λ)00 = 1. It follows that
for small ε > 0, the system (4.10) has solutions satisfying µ′0

2 = 1, µ′j
2 > 0 (1 ≤ j ≤ m). ¤

Next we compute the matrix of M with respect to the orthonormal basis {µje
j
n(z) : n ≥ 0; 0 ≤

j ≤ m}. Let H(n) be the linear span of the vectors {ej
n−j(z) : 0 ≤ j ≤ min(m,n)}. It is clear

that M maps the space H(n) into H(n + 1). (The subspace H(n) of A(λ,µ)(D) is a “K-type” of the
representation U .) We therefore have

Mµje
j
n−j =

m∑

k=0

M(n)k,j µk ek
n+1−k.

Let E(n) be the matrix, determined by (4.1), such that
(
ej
n−j(z)

)
`
= E(n)`,jz

n−`, n ≥ j, 0 ≤ j ≤ m.
In this notation,

E(n)`,jµj =
m∑

k=0

M(n)k,jE(n + 1)`,kµk.

In matrix form, this means

E(n)D(µ) = E(n + 1)D(µ)M(n), which gives

M(n) = D(µ)−1E(n + 1)−1E(n)D(µ),

where D(µ) is the diagonal matrix with D(µ)`,` = µ`. (These are the blocks of M regarded as a
“block shift” with respect to the orthogonal decomposition of A(λ,µ)(D) = ⊕∞n=0H(n).)

To get information about M(n), we note that, as n → ∞, Stirling’s formula gives, for any fixed
b ∈ R,

Γ(n + b) ∼
√

2π(n + b)n+b−1/2e−(n+b) ∼
√

2πnn+b−1/2(1 + b
n)ne−(n+b) ∼ ebnn+b−1/2.

Applying this we immediately get, by (4.1),

E(n)`,j ∼ n`nλ−m/2−1/2E`,j ,

where E is the matrix with entries

E`,j =

{(
`
j

)√Γ(2λ−m+2j)

Γ(2λ−m+`+j) ` ≥ j

0 ` < j

independent of n. Using the diagonal matrix d(n) with d(n)`,` = n`, we can write

E(n) ∼ nλ−m/2−1/2d(n)E.
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It follows that

M(n) = D(µ)−1E(n + 1)−1E(n)D(µ)

∼ ( n

n + 1
)λ−m/2−1/2

D(µ)−1E−1d(n + 1)−1d(n)ED(µ).

Since n
n+1 = 1 + O( 1

n), this implies
M(n) = I + O( 1

n),

where I is the identity matrix of order m + 1 and O( 1
n) stands for a (m + 1)× (m + 1) matrix each

of whose entries is O( 1
n).

We denote by U+ the operator on A(λ,µ)(D) defined by U+ej
n−j = ej

n+1−j (0 ≤ j ≤ min(m,n),
n− j ≥ 0).

Theorem 4.2. The operator M on A(λ,µ)(D) is the sum of U+ and of an operator in the Hilbert-
Schmidt class. In particular, M is bounded and its adjoint belongs to the Cowen-Douglas class.

5. Irreducibility

Let H1 and H2 be two reproducing kernel Hilbert spaces consisting of holomorphic functions on
D taking values in Cm+1. Suppose that the multiplication operator M on these two Hilbert spaces
are bounded. Furthermore, assume that the standard set of m+1 orthonormal vectors ε0, . . . , εm in
Cm+1, thought of as constant functions on D, are in both H1 and H2. Since

(∑m
i=0 pi(M)εi

)
(z) =∑m

i=0 pi(z)εi for polynomials pi with scalar coefficients, it follows that the polynomials p(z) =∑m
i=0 pi(z)εi belong to these Hilbert spaces. We assume that the polynomials p are dense in both

of these Hilbert spaces.
Suppose that there is a bounded operator X : H1 → H2 satisfying MX = XM . Then

(Xp)(z) =
(
X

m∑

i=0

piεi

)
(z) =

(
X

m∑

i=0

pi(M)εi

)
(z) =

( m∑

i=0

pi(M)Xεi

)
(z) =

( m∑

i=0

pi(M)Xεi

)
(z).

Now, if we let (Xεi)(z) =
∑m

j=0 xj
i (z)εj , then (Xp)(z) = ΦX(z)p(z), where ΦX(z) = ((xj

i (z)))m
j,i=0.

Since the polynomials p are dense, it follows that (Xf)(z) = ΦX(z)f(z) for all f ∈ H1.
We calculate the adjoint of the intertwining operator X. We have

〈XK1(·, ω)ξ,K2(·, u)η〉 = 〈ΦX(·)K1(·, ω)ξ,K2(·, u)η〉 = 〈ΦX(u)K1(u, ω)ξ, η〉
= 〈K1(u, ω)ξ, ΦX(u)

tr
η〉 = 〈K1(·, ω)ξ, K1(·, u)ΦX(u)

tr
η〉

for all ξ, η ∈ Cm+1, that is,

(5.1) X∗K2(·, u)η = K1(·, u)ΦX(u)
tr
η,

for all η ∈ Cm+1 and u ∈ D. Hence the intertwining operator X is unitary if and only if there
exists an invertible holomorphic function ΦX : D0 → C(m+1)×(m+1) for some open subset D0 of D
satisfying

(5.2) K2(z, ω) = ΦX(z)K1(z, ω)ΦX(ω)
tr
.

Let H be a Hilbert space consisting of Cn - valued holomorphic functions on D. Assume that H
has a reproducing kernel, say K. Let Φ be a n × n invertible matrix valued holomorphic function
on D which is invertible. For f ∈ H, consider the map X : f 7→ f̃ , where f̃(z) = Φ(z)f(z). Let
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H̃ = {f̃ : f ∈ H}. The requirement that the map X is unitary, prescribes a Hilbert space structure
for the function space H̃. The reproducing kernel for H̃ is clearly

(5.3) K̃(z, ω) = Φ(z)K(z, w)Φ(ω)∗.

It is easy to verify that XMX∗ is the multiplication operator M : f̃ 7→ zf̃ on the Hilbert space H̃.
Suppose we have a unitary representation U given by a multiplier J acting on H according to (2.5).
Transplanting this action to H̃ under the isometry X, it becomes

(
Ũg−1 f̃

)
(z) = J̃(g, z)f̃(g · z),

where the new multiplier J̃ is given in terms of the original multiplier J by

(5.4) J̃(g, z) = Φ(z)J(g, z)Φ(g · z)−1.

Of course, now K̃ transforms according to (2.5), with the aid of J̃ .

Lemma 5.1. Suppose that the operator M acting on the Hilbert space H with reproducing kernel K

is bounded, the constant vectors ε0, . . . , εm are in H, and that the polynomials p are dense in H. If
there exists a (self adjoint) projection X commuting with the operator M then

ΦX(z)K(z, ω) = K(z, ω)ΦX(ω)
tr

for some holomorphic function ΦX : D→ C(m+1)×(m+1) with Φ2
X = ΦX .

Proof. We have already seen that any such operator X is multiplication by a holomorphic function
ΦX . To complete the proof, note that

ΦX(·)K(·, ω)ξ = XK(·, ω)ξ = X∗K(·, ω)ξ = K(·, ω)ΦX(ω)
tr
ξ

for all ξ ∈ Cm+1. ¤

From the Lemma, putting ω = 0, we see that ΦX(z) = K(z, 0)Φ(0)
tr
K(z, 0)−1 for any self

adjoint intertwining operator X. Furthermore, X0 := ΦX(0) is an ordinary projection on Cm+1, if
K(0, 0) = I. The multiplication operator on the two Hilbert spaces H with reproducing kernel K

and H0 with reproducing kernel K0(z, ω) = K(0, 0)−1/2K(z, ω)K(0, 0)−1/2 are unitarily equivalent
via the unitary map f 7→ K(0, 0)−1/2f . The reproducing kernel K0 has the additional property that
K0(0, 0) = I. Therefore, we conclude that M is reducible if and only if there exists a projection X0

on Cm+1 satisfying

(5.5) X0K0(z, 0)−1K0(z, ω)K0(0, ω)−1 = K0(z, 0)−1K0(z, ω)K0(0, ω)−1X0.

This is the same as requiring the existence of a projection X0 which commutes with all the coefficients
in the power series expansion of the function K̂0(z, ω) := K0(z, 0)−1K0(z, ω)K0(0, ω)−1 around 0.
We also point out that K̂0 is the normalized kernel in the sense of [8] and is characterized by the
property K̂0(z, 0) ≡ 1.

For the rest of this section, we set B := B(λ,µ)(0, 0) and S := Sm, as in Section 3.

Lemma 5.2. The operator M := M (λ,µ) on the Hilbert space A(λ,µ) is irreducible if and only if there
is no projection X0 on Cm+1 commuting with all the coefficients in the power series expansion of
the function

(1− zω̄)−2λ−mB1/2 exp (−zS∗)B−1D(zω̄) exp (ω̄S)B exp(zS∗)D(zω̄)B−1 exp(−ω̄S)B1/2,

around 0.
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Proof. From (4.8), we have B(λ,µ)
0 (z, 0) = B1/2 exp(zS∗)B−1/2, where B(λ,µ)

0 := B−1/2B(λ,µ)B−1/2.
To complete the proof, using (4.8), we merely verify that

B̂0(z, ω)

=
(
B(λ,µ)

0 (z, 0)
)−1B(λ,µ)

0 (z, ω)
(
B(λ,µ)

0 (0, ω)
)−1

= (1− zω̄)−2λ−mB1/2 exp (−zS∗)B−1D(zω̄) exp (ω̄S)B exp(zS∗)D(zω̄)B−1 exp(−ω̄S)B1/2.

¤

Let Ds denote the coefficient of (−1)szsω̄s in the expansion of D(zω̄) and D̃s = B−1Ds. (The
choice of Ds ensures that the diagonal sequence in D̃s is positive.)

Lemma 5.3. If ((S∗iD̃sS
pBS∗qD̃tS

j))k,n 6= 0 for some choice of i, j, s, t, p, q in {0, 1, . . . , m} then

0 ≤ s ≤ m− k − i, 0 ≤ t ≤ m− n− j;

0 ≤ p ≤ k + i, 0 ≤ q ≤ n + j;

and k + i− p = n + j − q.

Proof. Recall that

S :

{
e` 7→ (` + 1)e`+1 if 0 ≤ ` ≤ m− 1
em 7→ 0 otherwise.

So

Sp :

{
e` 7→ ιe`+p if 0 ≤ i ≤ m− 1
em 7→ 0 ` > m− p,

where ι = (` + 1)` · · · (`− p). Also,

D̃s :

{
e` 7→ ce` if 0 ≤ ` ≤ m− s

em 7→ 0 ` ≥ m− s + 1,

where c is a non-zero constant depending on `, s. Therefore

Q := S∗iD̃sS
p :

{
e` 7→ c′e`+p−i if 0 ≤ i ≤ m− p− s and ` + p− i ≥ 0
em 7→ 0 otherwise

for some non-zero constant c′. Hence the full condition for Qk,` 6= 0 is

(5.6) i− p ≤ ` ≤ m− p− s, k = ` + p− i.

Let R := S∗qD̃tS
j . By what we have just proved, it follows that R`,n 6= 0 if and only if

(5.7) q − j ≤ n ≤ m− j − t, n = `− j + q.

The conditions (5.6) and (5.7) simplify as follows:

(5.8) 0 ≤ ` = k + i− p = n + j − q = ` ≤ m, k + i ≤ m− s and n + j ≤ m− t.

¤

Let a(`) denote the coefficient of zm+`+1ω̄m+` in the polynomial A with

A(z, ω) = exp (−zS∗)B−1D(zω̄) exp (ω̄S)B exp(zS∗)D(zω̄)B−1 exp(−ω̄S)

=
∑

(−1)i S
∗i

i!
zi(−1)sD̃sz

sω̄s Sp

p!
ω̄pB

S∗q

q!
zq(−1)tD̃tz

tω̄t(−1)j Sj

j!
ω̄j ,

where the sum is over 0 ≤ i, j, p, q, s, t ≤ m.
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Lemma 5.4. For 0 ≤ ` ≤ m− 1, a(`)k,n =

{
not zero if k = m− `− 1 and n = m− `

zero if k − n 6= 1 or k > m− `− 1
.

Proof. Clearly, A(z, w) =
∑

Aijpqstz
i+s+q+tω̄s+p+t+j , where the sum is over 0 ≤ i, j, p, q, s, t ≤

m. Therefore, a(`) =
∑

cS∗iD̃sS
pBS∗qD̃tS

j , where the sum is over all i, j, p, q, s, t such that
s + t + i + q = m + ` + 1 and s + t + p + j = m + `; c = (−1)i+j+s+t

i! j! p! q! .

It follows from the preceding Lemma that if a(`)k,n 6= 0, then i− j + q − p = n− k. However, for
the terms occuring in the sum, we now have i − j + q − p = (s + t + i + q) − (s + t + p + j) = 1.
Thus if a(`)k,n 6= 0 then n− k = 1.

Furthermore, if a(`)k,n 6= 0, then we also have m+`+1 = (s+t+i+q). Hence m+`+1−(s+t+i) =
q ≤ n + j from the last inequality of the preceding Lemma, that is, s + t + i + j ≥ m + ` + 1− n.
This along with s + t + i + j ≤ 2m − k − n, which is obtained by adding the first two inequalities
of the preceding Lemma, gives k ≤ m− `− 1

The proof of the second part of the Lemma is now complete.
If k = m−`−1 and n = m−`, for the terms occuring in the sum for a(`), we have s+t+i+j = 2`+1.

It follows that a(`)m−`−1,m−` is a sum of negative numbers. This proves the first part of the Lemma.
¤

Theorem 5.1. The multiplication operator M := Mλ,µ on the Hilbert space A(λ,µ) is irreducible.

Proof. Suppose there exists a non-trivial projection P commuting with B̂0(z, ω) for all z, ω ∈
D. Then by Lemma 5.2 such a projection must commute with B1/2A(z, ω)B1/2 for all z, ω ∈ D.
However, Lemma 5.4 shows that there is no non-trivial projection commuting with the set of matrices
{B1/2a(`)B1/2 : 0 ≤ ` ≤ m− 1}. This completes the proof. ¤

6. Inequivalence

Let pr : ET → D be the holomorphic vector bundle corresponding to an operator T ∈ Bk(D). The
operator T is homogeneous if and only if for any g ∈ G, there exists an automorphism ĝ of the

bundle ET covering g, that is, the diagram

ET
ĝ−−−−→ ETypr

ypr

D g−−−−→ D

is commutative.

Theorem 6.1. If T is a homogeneous operator in Bk(D) then the the universal covering group G̃

of G acts on ET by automorphisms.

Proof. Let Ĝ be the group of automorphisms of ET . This is a Lie group. Let p : Ĝ → G be
the natural homomorphism. Let N = ker p, the automorphisms fixing all the points of D. Then
Ĝ/N ' G, and for the corresponding Lie algebras, we have ĝ/n ' g. Since g is semisimple, by the
Levi decomposition, there is a subalgebra ĝ0 ⊆ ĝ such that ĝ = ĝ0 + n, where the sum is a vector
space direct sum. Let Ĝ0 be the corresponding analytic subgroup.

There is a neigbourhood U of e ∈ Ĝ0 such that p|U is a homeomorphism onto a neighbourhood
p(U) of e ∈ G. But then p(ĝU) = p(ĝ)p(U). So, p is a homeomorphism of a neighbourhood of any
point ĝ ∈ Ĝ0 to a neighbourhood of p(ĝ) in G. It follows that the image of p is an open subgroup
and so must equal G. Therefore, Ĝ0 is a covering group of G.
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Now, Ĝ0 acts on ET by automorphisms and projects to G. The universal cover G̃ now also acts
on ET .

¤

Remark 6.1. With slightly more work one can prove that ĝ0 is an ideal and therefore the G̃ action
on ET is unique. If T is irreducible it is known independently (cf. [4]) that the G̃ action is unique.

Theorem 6.2. For every m ≥ 1, the operators M (λ,µ), λ > m
2 ;µ1, . . . , µm > 0 are mutually unitarily

inequivalent.

Proof. Suppose M (λ,µ) and M (λ′,µ′) are unitarily equivalent. Then the corresponding Hermitian
holomorphic bundles are isomorphic [7]. Hence the multipliers J and J ′ giving the G̃ action on
A(λ,µ) and A(λ′,µ′) are equivalent in the sense that there exists a invertible matrix function φ(z),
holomorphic in z, such that

Φ(z)J(g, z)Φ(gz)−1 = J ′(g, z)

on G̃× D which is nothing but (5.4). Setting here g = p−z, (4.7) gives

Φ(z) = (1− |z|2)λ−λ′D(|z|2) exp(−z̄Sm)D(|z|2)F (0) exp(z̄Sm)D(|z|2)−1.

The right hand side is real anlytic in z, z̄ on D. Since Φ is holomorphic, Φ(z) = Φ(0) identically.
Looking at the Taylor expansion, we obtain

SmΦ(0) = Φ(0)Sm.

This implies that Φ(0) = p(Sm), a polynomial in Sm. (Note that Sm is conjugate to S, the un-
weighted shift with entries S`p = δp+1 `, which is its Jordan canonical form. For S the corresponding
property is easy to see.) We write

D1,1 =
∂2

∂z∂z̄

∣∣∣∣
0

D(|z|2) = −



m
m−1

. . .
1

0


 ,

and for the Taylor coefficient of zz̄ = |z|2 we obtain

(λ− λ′)Φ(0) + D1,1Φ(0)− Φ(0)D1,1 = 0.

Consider the diagonal of this matrix equality. All diagonal elements of Φ(0) = p(sm) are the same
number x 6= 0 (since p(Sm) is triangular and invertible). Hence λ−λ′ = 0. Now, since the diagonal
entries of D1,1 are all different, Φ(0) must be diagonal. So, Φ(0) = xIm+1. Also, Φ(0) intertwines
the operators M (λ,µ) and M (λ′,µ′), hence Φ(0)B(λ,µ)(z, ω)Φ(0)∗ = B(λ′,µ′)(z, ω) as in (5.2). Using
this with z = ω = 0 and using (4.4), (4.5) we get |x|2µ2

j = µ′j
2 for all j. Suince µ0 = 1 = µ′0, it

follows that |x|2 = 1 and µj = µ′j for 1 ≤ j ≤ m. ¤

7. Some further remarks

We presented the operators M (λ,µ) in as elementary a way as possible, but this presentation hides
the natural way in which these operators can be found to begin with. One such way, which was
actually followed by the authors, is to start with an irreducible finite dimensional representation %m

of SU(1, 1) (it is well known that there is exactly one for every natural number m), observe that
J(g, z) = %m(g−1) can be used as a multiplier, then transform this multiplier to a more convenient
form, to construct a representation of G̃ and proceed from there. This was also the procedure of
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Wilkins [12] who worked with the identical (2- dimensional) representation of SU(1, 1). The authors
are planning to write an expository article in which there will be some details of this approach.

Another way, which is probably the most natural one, is to start with the process of holomorphic
induction to construct the homogeneous vector bundles which are to be the Cowen - Douglas bundles
of our operators. It is well known that every finite dimensional representation % of the triangular
subalgebra t of sl(2,C) (the Lie algebra of the stabilizer of 0 in SL(2,C) acting on the extended
complex plane) gives rise to a G̃-homogeneous holomorphic vector bundle, from which the % can
be reconstructed. Refining this statement, it is easy to see that the G̃-homogeneous holomorphic
Hermitian vector bundles are in one-to-one correspondence with the unitary equivalence classes of
representations % of t on on the finite dimensional Hilbert spaces Cn with the added property that
% is skew Hermitian on the (one-dimensional;) subalgebra k, the Lie algebra of the stabilizer of 0 in
SU(1, 1).

If we start with the restriction to t of the (m + 1)-dimensional representation %m of sl(2,C) and
we put on the representation space all possible inner products so that the requirement concerning
k is satisfied then we obtain a family of bundles parametrized by λ ∈ R and µ1, . . . , µm > 0. It can
then be shown that these bundles correspond to Cowen - Douglas operators if and only if λ > m/2,
and in this case corresponding operator is M (λ,µ).

One can use this approach starting with any finite dimensional representation % of t. Such a
% can always be written as ελ ⊗ %0, where ελ (λ ∈ R) is a one dimensional representation of
k ∼= R extended trivially to t and %0 is normalized in a certain way. There is always a corresponding
homogeneous Hermitian vector bundle and a number λ% such that for λ > λ% the bundle corresponds
to a homogeneous Cowen - Douglas operator.

In this generality one cannot expect as explicit results as in the present paper, but one can
proceed to still make fairly precise statements. In this way one gets a kind of classification of all
homogeneous Cowen - Douglas operators. This will be the subject of a second article in this series.

Finally we mention that many of our arguments extend without change to the case of operator
tuples and holomorphic vector bundles over bounded symmetric domains in several complex vari-
ables. There are, of course, a number of new features (cf. [2, 1]) as well in this general situation
which still have to be explored in the future.
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