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ABSTRACT

We confirm that the evidence for the Waldmeier effect WE1 (the anti-correlation
between rise times of sunspot cycles and their strengths) and the related effect WE2
(the correlation between rise rates of cycles and their strengths) is found in different
kinds of sunspot data. We explore whether these effects can be explained theoretically
on the basis of the flux transport dynamo models of sunspot cycles. Two sources of
irregularities of sunspot cycles are included in our model: fluctuations in the poloidal
field generation process and fluctuations in the meridional circulation. We find WE2 to
be a robust result which is produced in different kinds of theoretical models for different
sources of irregularities. The Waldmeier effect WE1, on the other hand, arises from
fluctuations in the meridional circulation and is found only in the theoretical models
with reasonably high turbulent diffusivity which ensures that the diffusion time is not
more than a few years.

1 INTRODUCTION

Waldmeier (1935) noted an anti-correlation between the rise
times of sunspot cycles and their strengths. In other words,
a cycle with a longer rise time is expected to have a weaker
peak at the maximum. This is known as the Waldmeier ef-
fect. We shall refer to this as WE1. There is another related
effect. The rise rates of cycles show a correlation with their
strengths: a faster rising cycle is likely to be stronger. We
shall call it WE2. Occasionally one uses the term Waldmeier
effect to also mean this second effect WE2, causing some
amount of confusion in the literature. For example, some-
times one talks of using the Waldmeier effect to predict the
strength of a sunspot cycle after it has just begun. In this
case, clearly WE2 which involves rise rates is meant rather
than WE1 which involves rise times. Shortly after a sunspot
cycle has begun, it becomes possible to estimate its rise rate,
but it is not possible to know the rise time until the cycle
has reached its maximum.

The aim of this paper is to explore whether the Wald-
meier effect can be explained with the flux transport dynamo
model, which presently appears to be the most promising
model for explaining the solar cycle. The flux transport dy-
namo model involves several parameters, some of which are
rather poorly known at the present time. One important
question is whether the Waldmeier effect is reproduced theo-
retically only for certain combinations of parameters. If that
is the case, then it should be possible to put some constraints
on the parameters of the flux transport dynamo by demand-
ing that the theoretical model accounts for the Waldmeier
effect. We also present a short discussion of the observational
data, in view of a recent controversy whether the Waldmeier
effect really exists. Hathaway, Wilson & Reichmann (2002)
found evidence for WE1 in both the Zürich sunspot numbers

and the group sunspot numbers. But Dikpati, Gilman & de
Toma (2008) claim that this effect does not exist in sunspot
area data. We argue that the rise time has to be properly
defined to obtain the Waldmeier effect. In our opinion, Dik-
pati, Gilman & de Toma (2008) failed to discover WE1 in the
sunspot area data because they had not taken proper rise
times. With a proper definition of the rise time, we show
that WE1 is present in various kinds of sunspot data. The
other effect WE2 seems more robust. Cameron & Schüssler
(2008) found evidence for WE2 in various kinds of sunspot
data, which we also confirm. Thus, in our view, both WE1
and WE2 are real effects which a satisfactory theoretical
model of the sunspot cycle should explain.

Let us mention some of the salient features of the
flux transport dynamo model, which has been developed
by many authors during the last few years (Choudhuri,
Schüssler & Dikpati 1995; Durney 1995; Dikpati & Charbon-
neau 1999; Küker, Rüdiger & Schultz 2001; Nandy & Choud-
huri 2002; Choudhuri 2003; Chatterjee, Nandy & Choud-
huri 2004; Choudhuri, Chatterjee, & Nandy 2004; Muñoz-
Jaramillo, Nandy & Martens 2009). The toroidal magnetic
field is produced in the tachocline by the action of differen-
tial rotation on the poloidal field and eventually rises to the
solar surface due to magnetic buoyancy to produce sunspots.
The decay of tilted bipolar sunspots gives rise to a poloidal
field near the surface by the mechanism first elucidated by
Babcock (1961) and Leighton (1969). The meridional circu-
lation, which is observed to be poleward in the upper half
of the solar convection zone (SCZ) and must have a hith-
erto unobserved equatorward component at the bottom of
SCZ to conserve mass, advects the toroidal field equator-
ward at the bottom of the SCZ and advects the poloidal
field poleward at the surface. This provides the theoretical
explanation of the equatorward drift of sunspot belts as well
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as the poleward migration of the weak diffuse magnetic field
on the solar surface. Lastly, we need a mechanism to trans-
port the poloidal field from the surface where it is generated
by the Babcock–Leighton mechanism to the bottom of SCZ
where differential rotation can act on it. This transport of
the poloidal field can be achieved by two means: through ad-
vection by the meridional circulation or through diffusion.
Yeates, Nandy & Mackay (2008) have divided flux transport
dynamo models into two classes: advection-dominated and
diffusion-dominated, depending on the transport mechanism
of the poloidal field from the surface to the bottom of SCZ.
Jiang, Chatterjee & Choudhuri (2007) and Yeates, Nandy
& Mackay (2008) were the first to point out many qualita-
tive differences between these two kinds of models. Many
authors (Chatterjee, Nandy & Choudhuri 2004; Chatterjee
& Choudhuri 2006; Jiang, Chatterjee & Choudhuri 2007;
Goel & Choudhuri 2009; Choudhuri & Karak 2009; Hotta
& Yokoyama 2010a, 2010b) have given several independent
arguments that the solar dynamo is likely to be diffusion-
dominated. We shall show in this paper that only diffusion-
dominated dynamos and not advection-dominated dynamos
can account for the Waldmeier effect WE1, further strength-
ening the case that the solar dynamo is diffusion-dominated.

The readers should be cautioned that in the early
years of flux transport dynamo research sometimes the term
‘advection-dominated’ was used rather loosely and may not
always conform with our present usage. In this paper, we
shall use the terms ‘advection-dominated’ and ‘diffusion-
dominated’ following the careful classification introduced by
Yeates, Nandy & Mackay (2008; see their Fig. 7a). It should
also be noted that at the bottom of SCZ the advection of
the toroidal field by the equatorward meridional circulation
has to be the dominant process over diffusion, as emphasized
by Choudhuri, Schüssler & Dikpati (1995). If this were not
the case, then the dynamo wave would propagate poleward,
following the dynamo sign rule (Parker 1955; Yoshimura
1975; Choudhuri, Schüssler & Dikpati 1995; see also Choud-
huri 1998, §16.6). To ensure this dominance of advection at
the bottom of SCZ, the diffusion has to be very low in the
tachocline. However, the diffusion can be much larger within
the convection zone to make the transport of poloidal field
across the SCZ diffusion-dominated.

In order to explain the Waldmeier effect, we need to un-
derstand what makes the sunspot cycles unequal. In the flux
transport dynamo models, the period of the cycle roughly
scales as the inverse of the meridional circulation amplitude.
Different authors have reported scaling laws with the power
law indices fairly close to−1: Dikpati & Charbonneau (1999)
reporting an index of −0.89 and Yeates, Nandy & Mackay
(2008) reporting −0.885. Fluctuations in the meridional cir-
culation are expected to make the cycles unequal—making
some longer and some shorter. We discuss our present knowl-
edge (or lack of knowledge) of meridional circulation fluctu-
ations in §2 and then introduce these fluctuations in our
theoretical calculations. The other main source of irregular-
ities in the solar dynamo is the fluctuations in the Babcock–
Leighton process, which involves decay of tilted bipolar re-
gions. Since this tilt is produced by the Coriolis force acting
on the rising flux tubes (Choudhuri 1989; D’Silva & Choud-
huri 1993) and the rising flux tubes are buffeted by con-
vective turbulence during their rise, we expect a scatter in
the tilt angles (Longcope & Choudhuri 2002), introducing

a randomness in the Babcock–Leighton process. Choudhuri,
Chatterjee & Jiang (2007) identified this as the main source
of randomness in the solar dynamo. They argued that the
cumulative effect of these fluctuations is that the poloidal
field generated at the end of a cycle differs from the average
obtained in a mean field model. According to Choudhuri,
Chatterjee & Jiang (2007), the essential physics can be cap-
tured by multiplying the poloidal field above 0.8R⊙ at the
end of a cycle by a number γ having random values in a
range around 1. The poloidal fields produced in earlier cy-
cles are expected to be below 0.8R⊙ and are not affected.
We follow this procedure in this paper to study the effect of
fluctuations in the Babcock–Leighton process.

We check whether the effects WE1 and WE2 are pro-
duced in our theoretical models on introducing irregular-
ities due to fluctuations in the Babcock–Leighton process
and fluctuations in the meridional circulation. When the
meridional circulation (which determines the period in the
flux transport dynamo) is held fixed, fluctuations in the
Babcock–Leighton process make the strengths of the dif-
ferent cycles unequal, without varying the durations of the
cycles or rise times too much—especially if the dynamo
is diffusion-dominated, as we shall see. Hence WE2 is the
main effect which is relevant in this situation and not
WE1. We find that both diffusion-dominated and advection-
dominated dynamos show WE2 in this situation. On the
other hand, fluctuations in the meridional circulation make
the durations of cycles as well as rise times unequal, and one
can look for both the effects WE1 and WE2 in theoretical
models on introducing such fluctuations. We find that only
the diffusion-dominated model gives rise to these two effects
and not the advection-dominated model. The physical rea-
son behind this remarkable result can be given on the basis
of the analysis of Yeates, Nandy & Mackay (2008), as we
shall point out in the appropriate place.

2 INPUTS FROM OBSERVATIONAL DATA

We take a brief look at the sunspot cycle data to confirm
that the Waldmeier effect really exists and also discuss what
we can say about fluctuations of meridional circulation at
the present time.

2.1 Confirmation of the Waldmeier effect

We have studied four different data sets: (1) Wolf sunspot
numbers (cycles 12–23), (2) group sunspot numbers (cycles
12–23), (3) sunspot area data (cycles 12–23) and (4) 10.7 cm
radio flux (available only for the last 5 cycles). All data sets
have been smoothed by a Gaussian filter with a FWHM of
1 yr.

If the rise time is taken as the time for a cycle to develop
from a minimum to a maximum, then we have various dif-
ficulties. Usually we find an overlap between two successive
cycles and the position of the minimum may get shifted de-
pending on the amount of the overlap (Cameron & Schüssler
2007). Some cycles have plateau-like maxima with multiple
peaks, so that it is difficult to say when the rising phase
ended. If one of the later peaks is slightly higher than the
earlier peak and one takes the later peak to indicate the end
of the rise time, then one gets a “rise time” without any
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Figure 1. Observational evidences for WE1 (upper row) and WE2 (lower row). The upper row shows scatter diagrams plotting the
peak values of (a) sunspot number and (b) sunspot area against rise times (in years). The data points of cycles 21, 22 and 23 are shown
by stars in (b). The lower row shows scatter diagrams plotting the peak values of (c) sunspot number and (d) sunspot area against rise
rates (in units of sunspot number per year). The straight lines are the best linear fits of the data. The linear correlation coefficients and
the significance levels are also given on each plot.

physical significance. This problem can be clearly seen in
Fig. 1 of Dikpati, Gilman & de Toma (2008), where peaks
in sunspot area for the cycles 21, 22 and 23 are seen to oc-
cur well after the cycles have reached the plateau-like tops.
We see in the correlation plot given in Fig. 2 of Dikpati,
Gilman & de Toma (2008) that these are some of the cy-
cles which produced the maximum scatter and made the
correlation disappear. To avoid the difficulties of ascertain-
ing the minima and the maxima of the cycles, we define
the rise time in the following way. Suppose a cycle has an
amplitude P . We take the rise time to be the time during
which the activity level changes from 0.2P to 0.8P . The rise
time defined in this way has a good anti-correlation with
the cycle amplitude for all the data sets, the linear correla-
tion coefficients and the significance levels for the four data
types being: (1) −0.50 and 90.16% for sunspot numbers; (2)
−0.42 and 82.12% for group sunspots; (3) −0.31 and 67.3%
for sunspot areas; and (4) −0.33 and 41% for 10.7 cm radio
flux. The results for sunspot numbers and sunspot areas are
shown in panels (a) and (b) of Fig. 1. It may be noted that
the data points of cycles 21, 22 and 23 which were largely
responsible for destroying the Waldmeier effect in the anal-
ysis of Dikpati, Gilman & de Toma (2008) are indicated by
stars in Fig. 1(b) and are now quite close to the linear line.

These results are very sensitive to the averaging bin size. If
we average the data with a FWHM of 2 yr instead of 1 yr,
we obtain the following correlation coefficients and signifi-
cance levels for the four data sets: (1) −0.63 and 97.28%;
(2) −0.60 and 96.13%; (3) −0.36 and 75.38%; (4) −0.67 and
78.34%. If we calculate the rise time differently by taking the
beginning and the end of the rise phase somewhat different
from 0.2P and 0.8P (and also vary the FWHM while aver-
aging the data), then we get somewhat but not significantly
different correlation coefficients which are listed in Table 1
for sunspot area data.

We also study the second Waldmeier effect WE2 in all
four data sets. We calculate the rise rate by determining
the slope between two points at a separation of one year,
with the first point one year after the sunspot minimum.
We find strong correlation between the rates of rise and the
amplitudes of the sunspot cycles. Results for sunspot num-
ber and sunspot area are shown in panels (c) and (d) of
Fig. 1. Cameron & Schüssler (2008) have computed the rise
rate slightly differently and obtained almost similar results.

We conclude that there is evidence for both WE1 and
WE2 in different kinds of data sets.
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Table 1. Linear correlation coefficients (r) and the significance
levels (s.l.) between the rise time and the peak value of sunspot
area data.

FWHM = 1 yr FWHM = 2 yr

Rise time r (%s.l.) r (%s.l.)

0.2P to 0.8 P −0.31 (67.3) −0.36 (75.4)
0.2P to 0.7 P −0.40 (79.9) −0.42 (83.0)
0.2P to 0.65P −0.43 (83.7) −0.35 (74.2)
0.2P to 0.6 P −0.47 (87.6) −0.43 (83.7)
0.15P to 0.8 P −0.32 (69.5) −0.40 (79.8)
0.15P to 0.7 P −0.43 (83.3) −0.46 (86.7)
0.15P to 0.65P −0.46 (86.7) −0.40 (80.4)
0.15P to 0.6P −0.50 (90.0) −0.48 (88.2)

2.2 Variations in meridional circulation

Only from mid-1990s we have reliable data on the variation
of meridional circulation. Hathaway & Rightmire (2010) an-
alyze these data to conclude that the meridional circulation
varies with the sunspot cycle, becoming weaker at the time
of the sunspot maximum. We should probably have to wait
for at least one more full cycle to reach a firm conclusion
whether this variation indeed has the same period as the
sunspot cycle. A systematic variation of the meridional cir-
culation having the same period as the sunspot cycle is not
expected to introduce any irregularities in the theoretically
computed sunspot cycles. Most of the dynamo calculations
presented by our group (Chatterjee, Nandy & Choudhuri
2004; Choudhuri, Chatterjee, & Nandy 2004; Choudhuri,
Chatterjee & Jiang 2007; Jiang, Chatterjee & Choudhuri
2007; Goel & Choudhuri 2009; Karak & Choudhuri 2009)
assumed a constant meridional circulation because even a
few years ago the available information about meridional
circulation variation was very scanty.

Since a periodic variation of the meridional circulation
with the sunspot cycle will not cause cycle irregularities,
let us consider possible variations with longer time scales
which may affect sunspot cycles. We have no direct infor-
mation about variations of meridional circulation prior to
1995. However, if we believe that the solar dynamo is a flux
transport dynamo and the period of a cycle is approximately
inversely proportional to the meridional circulation during
that cycle, then we can draw some conclusions about the
variations in meridional circulation in the past from the pe-
riods of past sunspot cycles. At the outset, we point out that
this is an unreliable and questionable procedure. Since we
have no better way of inferring about variations in merid-
ional circulation in the past, it is still worthwhile to see what
conclusions we can draw from this procedure.

Fig. 2 shows the periods of the various sunspot cycles
beginning with cycle 1. If two successive cycles had similar
periods, we may assume that the meridional circulation had
similar strengths during these two cycles. We have put a
solid line in Fig. 2 to indicate the trend of how periods of
different cycles varied. Whenever successive cycles had pe-
riods varying less than 5% of the average period, we have
made the solid line horizontal and indicative of the average
period of those cycles. Only when periods of two succes-
sive cycles differed by more than 5%, there is a jump in
the solid line in Fig. 2. If the solar dynamo is a flux trans-

port dynamo in which the period is set by the amplitude
of meridional circulation then the solid line should give an
idea how the meridional circulation varied in the past. It ap-
pears that during cycles 1–10, the meridional circulation had
a relatively short coherence time, but probably not less than
15 yr. On the other hand, during cycles 11–20, the merid-
ional circulation seemed to have a longer coherence time,
but probably not longer than 45 yr. With the limited data
we have, we cannot say whether the behaviour of cycles 1–10
is more typical in the long run or the behaviour of cycles 11–
20 is more typical. Looking at Fig. 2, we can only surmise
that the meridional circulation probably has long-time vari-
ations having coherence time lying somewhere between 15
yr and 45 yr. In §4 we shall present some simulations as-
suming the coherence time of the meridional circulation to
be 30 yr. Since meridional circulation and differential ro-
tation both arise from turbulent stresses in the convection
zone, one intriguing and troubling question is whether varia-
tions of meridional circulation would be associated with the
variations of differentia rotation. Since our theoretical un-
derstanding of this subject is still very primitive and also to
focus our attention on how variations of meridional circula-
tion affect the dynamo, we have taken differential rotation
to be constant in our paper.

To summarize, even though it is difficult to draw firm
conclusions, it seems that meridional circulation has fluc-
tuations having coherence times somewhat longer than a
cycle—probably of the order of 30 yr. It may be noted that
Charbonneau & Dikpati (2000) argued that the meridional
circulation would have fluctuations with coherence time of
the order of a month, which is the eddy turnover time of
solar convection. We do not find any observational signa-
tures for such short-time fluctuations and such short-time
fluctuations of the meridional circulation are not considered
in this paper.

3 MATHEMATICAL FORMULATION

All our calculations are done with the code SURYA for solv-
ing the axisymmetric kinematic dynamo problem. An ax-
isymmetric magnetic field can be represented in the form

B = B(r, θ)eφ +∇× [A(r, θ)eφ], (1)

where B(r, θ) and A(r, θ) respectively correspond to the
toroidal and poloidal components. The standard equations
for the kinematic dynamo are

∂A

∂t
+

1

s
(v.∇)(sA) = ηp

(

∇
2
−

1

s2

)

A+ S(r, θ, t) (2)

∂B
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+

1

r

[

∂

∂r
(rvrB) +

∂
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]
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(
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2
−

1

s2

)

B

+s(Bp.∇)Ω +
1

r

dηt

dr

∂

∂r
(rB) (3)

where s = r sin θ. Here v is the meridional circulation, Ω
is the internal angular velocity of the Sun, S(r, θ, t) is the
source term for the poloidal field by the Babcock–Leighton
mechanism and ηp, ηt are the turbulent diffusivities for the
poloidal and toroidal components.

Since the internal rotation of the Sun has been deter-
mined by helioseismology, most of recent dynamo models use
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Figure 2. The points show the periods of last 23 solar cycles against cycle number. The solid line is indicative of the trend in variations
of period as explained in the text.

a profile of the angular velocity Ω consistent with helioseis-
mic findings. Equation (8) of Chatterjee, Nandy & Choud-
huri (2004) gives an analytical expression for Ω which is
a good fit to helioseismology results. The profile of Ω ob-
tained from this expression is shown in Fig. 1 of Chatterjee,
Nandy & Choudhuri (2004). We use this Ω in all our cal-
culations. While the angular velocity is now observationally
constrained, different authors have modelled the meridional
circulation, the poloidal source term and the turbulent dif-
fusivities somewhat differently. This has given rise to vari-
eties of solar dynamo models. In the last few years, however,
two models have been studied fairly extensively—a high dif-
fusivity model first developed by the group in Bangalore
(Chatterjee, Nandy & Choudhuri 2004) and a low diffusiv-
ity model first developed by the group in Boulder (Dikpati &
Charbonneau 1999). The turbulent diffusivities used in these
models are shown respectively in Fig. 4 of Chatterjee, Nandy
& Choudhuri (2004; solid line) and Fig. 1(D) of Dikpati &
Charbonneau (1999). Both these models use a fairly low
diffusivity in the tachocline (where turbulence is weak) to
ensure that the advection of the toroidal field by meridional
circulation dominates over diffusion there. However, the tur-
bulent diffusion within the convection zone is assumed to be
much larger. What Chatterjee, Nandy & Choudhuri (2004)
call their ‘standard model’ was produced with a diffusivity
of 2.4×1012 cm2 s−1 for the poloidal field within the convec-
tion zone, leading to a diffusion time of a few years across the
convection zone. On the other hand, what Dikpati & Char-
bonneau (1999) call their ‘reference solution’ was produced
with a much lower diffusivity of 5 × 1010 cm2 s−1, corre-
sponding to a diffusion time of several centuries so that the
magnetic fields are virtually frozen during the period of the
dynamo. According to the classification scheme introduced
by Yeates, Nandy & Mackay (2008), the model of Chatter-
jee, Nandy & Choudhuri (2004) is a ‘diffusion-dominated’
model, whereas the model of Dikpati & Charbonneau (1999)
is an ‘advection-dominated’ model.

Jiang, Chatterjee & Choudhuri (2007; §5) gave several
arguments that the diffusivity within the convection zone is
likely to be fairly high as assumed by the group in Bangalore.
Subsequently several other authors also have argued for high
diffusivity (Goel & Choudhuri 2009; Choudhuri & Karak
2009; Hotta & Yokoyama 2010a, 2010b). It appears that
such a high diffusivity is needed for getting the correct par-
ity without an extra poloidal source term within the convec-
tion zone (Chatterjee, Nandy & Choudhuri 2004; Hotta &

Table 2. The original values of the parameters in the standard
model (§4 of Chatterjee, Nandy & Choudhuri 2004) along with

the changed values we use here are given.

Parameter Standard Model This Model

ηSCZ 2.4× 1012 cm2 s−1 3.0× 1012 cm2 s−1

v0 −29 m s−1 −23 m s−1

Rp 0.61R⊙ 0.635R⊙

α0 25 m s−1 30 m s−1

β2 1.8× 10−8 m−1 1.3× 10−8 m−1

Γ 3.47× 108 m 3.0253 × 108 m
r0 0.1125R⊙ 0.1286R⊙

dtac 0.025R⊙ 0.03R⊙

Yokoyama 2010b), for ensuring that the hemispheric asym-
metry of magnetic activity remains small as observed (Chat-
terjee & Choudhuri 2006; Goel & Choudhuri 2009), for ex-
plaining the observed correlation of the polar field with the
strength of the next cycle (Jiang, Chatterjee & Choudhuri
2007) and for keeping the polar field small in accordance
with observational data (Hotta & Yokoyama 2010a). It may
be noted that straightforward mixing length arguments also
suggest a high diffusivity, Parker (1979, p. 629) conclud-
ing that the turbulent diffusivity within the convection zone
should be of order 1–4 × 1012 cm2 s−1. We carry out our
calculations with the high diffusivity model and show that
the theoretical model predicts the Waldmeier effect roughly
in accordance with the observational data. For the sake of
completeness, we also explore the low diffusivity Dikpati-
Charbonneau (1999) model and find that this model is un-
able to explain WE1.

The ‘standard model’ of Chatterjee, Nandy & Choud-
huri (2004) produced a period somewhat larger than 11 yr.
Also the value of the meridional circulation near the sur-
face was somewhat larger than what is observed. For the
calculations presented in this paper, we have changed some
parameters of the ‘standard model’ to make the period 11
yr and to make the meridional circulation at the surface
equal to 23 m s−1. Table 2 lists the values of those param-
eters which have their values changed in this paper from
the values used by Chatterjee, Nandy & Choudhuri (2004).
Except the values of these parameters listed in Table 2, our
model remains the same as the ‘standard model’ of Chatter-
jee, Nandy & Choudhuri (2004). We make a few comments
on some aspects of this model. The meridional circulation
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in the northern hemisphere is obtained from Equations (9)–
(11) of Chatterjee, Nandy & Choudhuri (2004), from which
we get the meridional circulation in the southern hemisphere
by antisymmetry. Although we now choose some parameters
of the meridional circulation slightly differently from Chat-
terjee, Nandy & Choudhuri (2004) as listed in Table 2, the
streamlines of meridional circulation still look almost the
same as in Fig. 2 of Chatterjee, Nandy & Choudhuri (2004).
The meridional circulation used by us penetrates slightly be-
low the bottom of the convection zone, which is essential for
confining the butterfly diagram to lower latitudes (Nandy
& Choudhuri 2002). It may be noted that there is a contro-
versy at the present time whether the meridional circulation
can penetrate below the convection zone—arguments having
been advanced both against it (Gilman & Miesch 2004) and
for it (Garaud & Brummel 2008). Recently Chakraborty,
Choudhuri & Chatterjee (2009) have argued that the early
initiation of torsional oscillations at latitudes higher than
the typical sunspot latitudes is possible only with such a
penetrating meridional circulation, providing another strong
support for it. The diffusion coefficients ηp and ηt are shown
in Fig. 4 of Chatterjee, Nandy & Choudhuri (2004), where
the justification for using two different diffusivities is dis-
cussed. Basically diffusion of the toroidal field is suppressed
inside concentrated flux tubes. Since these flux tubes are
not resolved in the mean field theory, we capture this effect
approximately by making ηt smaller than ηp in the mean
field equations.

For checking whether a low diffusivity model can ex-
plain the Waldmeier effect, we have used the model of Dik-
pati & Charbonneau (1999). It may be noted that this
model, which produces butterfly diagrams extending to high
latitudes, was subsequently modified by Dikpati et al. (2004)
to build what they call a ‘calibrated flux transport dynamo’.
It is this ‘calibrated flux transport dynamo’ model which was
used by Dikpati & Gilman (2006) to predict that the cycle 24
will be very strong. However, this ‘calibrated flux transport
dynamo’ of Dikpati et al. (2004) has so far not been repro-
duced by any independent code of any other group. Some of
the other groups who tried to reproduce this model were un-
able to do so (Jiang, Chatterjee & Choudhuri 2007; Hotta
& Yokoyama 2010a). We also have tried to reproduce the
results of Dikpati et al. (2004) and could not, although we
are able to reproduce the results of Dikpati & Charbonneau
(1999). Jiang, Chatterjee & Choudhuri (2007) noted that
the ‘reference solution’ of Dikpati & Charbonneau (1999)
was reproduced when the amplitude of meridional circula-
tion was taken u0 = 20 m s−1 rather than u0 = 10 m s−1 as
reported by Dikpati & Charbonneau (1999). We also confirm
this. We have, however, taken the value u0 = 14.5 m s−1 to
ensure that the dynamo period comes out to be 11 yr. Every-
thing else in the low diffusivity model we use in this paper
remains the same as in the ‘reference solution’ of Dikpati &
Charbonneau (1999).

To study whether the theoretical models can explain
the Waldmeier effect, we have to introduce irregularities in
the theoretical model to make the cycles unequal. In the
next section, we describe how we introduce fluctuations in
the poloidal field source term and in the meridional circula-
tion, and we present the results we get by introducing these
fluctuations. To look for the Waldmeier effect, we need to
find out how the sunspot number varies with time. Charbon-

neau & Dikpati (2000) proposed that the magnetic energy
density at latitude 15◦ at the base of the convection zone
(r = 0.7R⊙) can be taken to be a good proxy of the sunspot
number and used this to produce the sunspot number plots
which they presented. We also take this as a proxy for the
sunspot number in this paper for both the high diffusivity
and low diffusivity models.

4 RESULTS FROM THEORETICAL MODELS

We now present the results obtained by using both the high
diffusivity (or diffusion-dominated) model and the low dif-
fusivity (or advection-dominated) model introduced in §3.
After introducing irregularities in the models, we generate
the sunspot number plot for a particular run by using the
magnetic energy density at latitude 15◦ at the base of the
convection zone as the proxy of the sunspot number. Then
the rise time and the rise rate are calculated exactly the
way they were done for the observational data as described
in §2.1. We shall first present the results obtained by intro-
ducing fluctuations in the poloidal field generation and then
present results with fluctuations in the meridional circula-
tion. It may be noted that Charbonneau & Dikpati (2000)
presented some results by introducing these two kinds of
fluctuations in their low diffusivity model. However, we in-
troduce the fluctuations somewhat differently and, in one
important case, we find a result which is opposite of what
Charbonneau & Dikpati (2000) presented, as we shall point
out.

4.1 Fluctuations in the poloidal field generation

As argued by Choudhuri, Chatterjee & Jiang (2007) and
Jiang, Chatterjee & Choudhuri (2007), the cumulative ef-
fect of fluctuations in the Babcock–Leighton process which
produces the poloidal field can be incorporated by stopping
the dynamo code at every minimum and then multiplying
the poloidal field above 0.8R⊙ by a factor γ. We now present
results of runs for both the high and low diffusivity models
in which γ at a minimum was taken to be a random number
lying in the range 0.5–1.5.

First, let us look at the lower panels of Fig. 3 which
show the correlations between the rise rate and the peak
sunspot number in the high and low diffusivity cases respec-
tively. In both the cases, it is found that cycles with stronger
peaks tend to have higher rise rates, in accordance with the
observed WE2. It is easy to understand why this is so. As
long as the meridional circulation is held constant, the peri-
ods of various cycles in a flux transport dynamo do not vary
too much. However, fluctuations in the poloidal field genera-
tion make the strengths of different cycles unequal. A strong
cycle has to rise to a higher value of peak sunspot number
compared to a weak cycle in approximately the same amount
of time. Therefore, a stronger cycle has to have a higher rise
rate. This is true irrespective of whether the diffusivity is
high or low. We thus conclude that fluctuations in poloidal
field generation can easily account for the effect WE2.

Although we believe that the effect WE1 involving the
rise time is primarily produced by fluctuations in the merid-
ional circulation, the upper panels in Fig. 3 show the corre-
lations between the rise time and the peak sunspot number
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Figure 3. Theoretical plots of WE1 (upper row) and WE2 (lower row) obtained by introducing fluctuations in the poloidal field at the
minima. The upper figures (a) and (b) show the scatter diagrams between the rise time (in years) and the peak sunspot number, whereas
the lower figures (c) and (d) show the scatter diagrams between the rise rate (in units of sunspot number per year) and the peak sunspot
number. The left figures (a) and (c) are from the high diffusivity model, whereas the right figures (b) and (d) are from the low diffusivity
model. The straight lines are the best linear fits of the data. The correlation coefficients and the significance levels are also given on each
plot.

when fluctuations in the poloidal field generation alone are
present. For both the high and low diffusivity cases, the
theoretical results (a positive correlation) are the opposite
of the observational effect WE1 (anti-correlation). In the
high diffusivity model, the fluctuations in the poloidal field
generation do not cause much variations in the cycle peri-
ods and the variations in rise time are seen to be rather
small in Fig. 3a. On the other hand, we see in Fig. 3b that
rise times have a much larger spread for the low diffusiv-
ity model. Presumably fluctuations in the high diffusivity
model are damped out within a few years and cannot cause
so much variations in the durations of cycles. On the other
hand, fluctuations in the low diffusivity model persist for
times much longer than the period of the dynamo and can
affect the durations of cycles. In both cases, however, fluctu-
ations in poloidal field generation alone cannot account for
WE1. We need something else—presumably fluctuations in
the meridional circulation.

It may be noted that Charbonneau & Dikpati (2000) re-
ported a weak anti-correlation between cycle duration and
cycle amplitude on introducing fluctuations in the poloidal
source term (see their Fig. 6C). It is true that Charbonneau
& Dikpati (2000) treated the fluctuations in the poloidal

source term somewhat differently from what we are doing
and plotted the cycle amplitude against the cycle duration
rather than the rise time. However, we repeated their pro-
cedure for the low diffusivity model and found that we still
get a weak correlation similar to our Fig. 3b rather than
the weak anti-correlation seen in their Fig. 6C. It should be
noted that, when runs are repeated with different realiza-
tions of random numbers, the correlation coefficients turn
out to be somewhat different. It is true that we and Char-
bonneau & Dikpati (2000) got rather small correlation coeffi-
cients of opposite sign: r = 0.18 and r = −0.23 respectively.
To some extent, these differences may be due to statistical
uncertainties in different numerical realizations of the same
problem involving fluctuations created by random numbers.
However, in the several runs we performed, we never got
a negative correlation coefficient. It will be worthwhile for
other groups to check this independently.

The fact that fluctuations in the poloidal field gener-
ation do not introduce much variations in cycle durations
in the diffusion-dominated model but introduce more varia-
tions in the advection-dominated model has another signifi-
cance. The arguments we have given in §2.2 about variations
in meridional circulation are based on the assumption that
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Figure 4. Theoretical plots obtained by introducing fluctuations in the meridional circulation. The four figures correspond to the same
things as in Fig. 3.

periods of cycles do not vary much as long as the meridional
circulation is held constant. As we now see, this is strictly
true only for the diffusion-dominated dynamo. As we believe
the solar dynamo to be diffusion-dominated, the arguments
we have given in §2.2 should be valid for the meridional
circulation in the Sun.

4.2 Fluctuations in the meridional circulation

We now study the results of introducing fluctuations in the
meridional circulation. As we argued in §2.2, fluctuations in
the meridional circulation seem to have a coherence time of
about 30 years if we believe that the periods of past cycles
were indicative of the variations in meridional circulation.
We run our code by changing the amplitude of the merid-
ional circulation abruptly after every 30 years. It appears
that the high diffusivity (or diffusion-dominated) model re-
quires a stronger fluctuation in the meridional circulation
compared to the low diffusivity (or advection-dominated)
model to introduce the same kinds of variations in cycle
periods. We use a 30% amplitude fluctuation in the high
diffusivity model and a 20% amplitude fluctuation in the
low diffusivity model.

The results are shown in Fig. 4. For both the models,
the rise rate is correlated with the peak sunspot number,
as seen in the lower panels of Fig. 4. In other words, the

effect WE2 is reproduced from the theoretical models easily
whether the diffusivity is high or low. However, we see a dra-
matic difference between the two models when we look at the
plots of peak sunspot number against rise time (the two up-
per panels in Fig. 4). For the high diffusivity model, we find
that the rise time is anti-correlated with the peak sunspot
number, in accordance with the Waldmeier effect WE1. On
the other hand, the low diffusivity model shows a correla-
tion, which is the opposite of the observed Waldmeier effect
WE1. We point out that Charbonneau & Dikpati (2000) also
reported such a positive correlation (opposite of the Wald-
meier effect) on introducing fluctuations in the meridional
circulation in their low diffusivity model (see their Fig. 4C),
although they introduced the fluctuations differently from
what we are doing.

To understand the physics behind this dramatic differ-
ence between the two models, the readers are advised to
refer to Fig. 5 of Yeates, Nandy & Mackay (2008) and the
associated discussion. Let us summarize the main argument.
Suppose the meridional circulation has become weaker dur-
ing a cycle. Then the duration of the cycle will be longer and
the magnetic fields will spend more time at the bottom of
the convection zone. This will result in two opposing effects.
Diffusion will have more time to act on the magnetic fields,
trying to make the cycle weaker. On the other hand, differ-
ential rotation will have more time to act on the poloidal
field, building up a larger toroidal field and making the cy-
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Figure 5. Theoretical plots obtained by introducing fluctuations in both the poloidal field generation and the meridional circulation.
The four figures correspond to the same things as in Fig. 3.

cle stronger. Whether the cycle will be weaker or stronger
will depend on which of these two effects win over. In the
high diffusivity (or diffusion-dominated) model, diffusivity
acting on the magnetic fields is the more important effect.
Hence, when the meridional circulation is weaker, the cycle
duration (as well as the rise time) is more and the strength
of the cycle is lower, leading to the anti-correlation in ac-
cordance with the Waldmeier effect, as seen in Fig. 4a. The
opposite of this happens in the low diffusivity (or advection-
dominated) model, where the differential rotation building
up a stronger toroidal field is the more important effect. A
weaker meridional circulation causing a longer rise time will
be associated with a stronger cycle, opposite of the Wald-
meier effect WE1, as seen in Fig. 4b.

We thus see that the high and low diffusivity models
give very different results when fluctuations in the merid-
ional circulation are introduced. Only the high diffusivity
model can explain the Waldmeier effect WE1, while the low
diffusivity model gives the opposite result. The effect WE2
is, however, explained by both the models.

4.3 Effect of combined fluctuations

Finally we present results for cases where fluctuations in
both the poloidal field generation and the meridional circu-
lation are present. As we already mentioned, we have intro-

duced fluctuations in the poloidal field generation in §4.1 in
a way somewhat different from what Charbonneau & Dik-
pati (2000) had done. In the calculations presented in §4.1,
we have introduced the cumulative effect of poloidal source
fluctuations by multiplying the poloidal field above 0.8R⊙ by
a number γ at each minimum. We have also done some cal-
culations by introducing fluctuations in the poloidal source
term by the methodology of Charbonneau & Dikpati (2000),
in which the amplitude of α is changed randomly after a co-
herence time of 1 month, the level of fluctuations in the am-
plitude of α being another parameter in the problem. The re-
sults obtained by the two methodologies are found to be very
similar. Here we now present results in which fluctuations
in meridional circulation are introduced exactly as what we
had done in §4.2, but fluctuations in poloidal field source are
introduced by the methodology of Charbonneau & Dikpati
(2000) which involves a fluctuation in the α-effect (Choud-
huri 1992). Both for the high and low diffusivity models, the
amplitude of α is changed after the coherence time 1 month,
the level of fluctuations being 100% for the high diffusivity
model and 200% for the low diffusivity model. Charbonneau
& Dikpati (2000) had also used 200% fluctuations in their
low diffusivity model.

The results are shown in Fig. 5. Since both kinds of
fluctuations taken individually produced a direct correla-
tion between rise rate and peak sunspot number in both the
high and low diffusivity models (the lower panels in Figs. 3
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and 4), we naturally expect such a correlation to arise when
both kinds of fluctuations are combined. This is clearly seen
in the lower panels of Fig. 5, indicating that WE2 is a robust
result and can be produced in theoretical models irrespec-
tive of whether the diffusivity is high or low. However, when
we look for the Waldmeier effect WE1 in the correlation
between rise time and peak sunspot number, then the sit-
uation is more complicated. For the low diffusivity model,
both kinds of fluctuations taken individually produced a di-
rect correlation between them, which is the opposite of the
Waldmeier effect (Figs. 3b and 4b). Not surprisingly, we see
a direct correlation when the two kinds of fluctuations are
combined. We thus conclude that the low diffusivity model
cannot explain the Waldmeier effect WE1. For the high dif-
fusivity model, we had a direct correlation when fluctuations
in poloidal field generation alone were present (Fig. 3a) and
an anti-correlation when fluctuations in meridional circula-
tion alone were present (Fig. 4a), the spread in rise times
being rather small in Fig. 3a. When both these kinds of fluc-
tuations are combined, we find an anti-correlation as seen
in Fig. 5a. Thus the high diffusivity model reproduces the
Waldmeier effect WE1. To sum up, the Waldmeier effect
WE1 is reproduced theoretically only in the high diffusivity
model and not in the low diffusivity model when fluctua-
tions in both the poloidal field generation and meridional
circulation are included.

It may be noted that, even in the high diffusivity model,
we need to make the coherence time of meridional circulation
fluctuations somewhat longer than the cycle period (we have
taken 30 yr for the results presented in Figs. 4–5) in order to
obtain the Waldmeier effect WE1. If the coherence time is
made comparable to the cycle period (10 or 15 yr), then we
do not get WE1. For a coherence time of 20 yr for meridional
circulation fluctuations, we still find the Waldmeier effect
WE1 with the correlation coefficient and the significance
level equal to −0.43 and 99.8% respectively for a particular
run instead of −0.80 and 99.9% indicated in Fig. 5a.

5 CONCLUSION

To the best of our knowledge, this is the first systematic
effort of addressing the question whether the Waldmeier ef-
fect can be explained on the basis of flux transport dynamo
models of the sunspot cycle. Along with theWaldmeier effect
that rise times of cycles are anti-correlated with cycle ampli-
tudes, which we call WE1, we also consider the related effect
that rise rates are correlated with cycle amplitudes, which
we call WE2. In view of a recent controversy whether the
Waldmeier effect exists in different kinds of data, we point
out that, if we define rise times and rise rates carefully, then
we find evidence for both WE1 and WE2 in different kinds
of data.

We can think of two main sources of irregularities in
the dynamo cycles: fluctuations in the Babcock–Leighton
mechanism and fluctuations in the meridional circulation.
We study the effects of both kinds of fluctuations on the
dynamo models. Since not much is known about long-term
fluctuations of the meridional circulation, we analyze the
periods of the past sunspot cycles in §2.2 to draw some
tentative conclusions about fluctuations of the meridional
circulation in the past.

The main conclusion of our paper is that the effects of
fluctuations are dramatically different in high and low dif-
fusivity models. This is not surprising. Fluctuations in the
high diffusivity model damp out in a few years. On the other
hand, fluctuations in the low diffusivity model take times
longer than the dynamo cycle to damp out. The left panels
in Figs. 3, 4 and 5 show results obtained with the high dif-
fusivity model, whereas the right panels show results for the
low diffusivity model. Even a cursory look at these figures
shows that similar fluctuations produce much larger disper-
sions in the low diffusivity model. As long as the meridional
circulation is held constant, durations of cycles do not vary
much in the high diffusivity model even after introducing
fluctuations in the poloidal field generation process. This is
seen in Fig. 3a. But this is not so true in the low diffusivity
model, as can be seen in Fig. 3b.

We find that the effect WE2 is very robust and is repro-
duced easily in different types of dynamo models subjected
to different types of fluctuations, as seen in the bottom pan-
els of Figs. 3, 4 and 5. Basically, a stronger cycle rises to its
higher peak at a faster rate. The most important result of
our paper is that the Waldmeier effect WE1 arises from the
fluctuations in the meridional circulation and this happens
only for the high diffusivity model. The low diffusivity model
gives the opposite result. We pointed out how we can under-
stand this physically on the basis of the analysis presented
by Yeates, Nandy & Mackay (2008). In the high diffusivity
(or diffusion-dominated) model, the longer cycle allows the
diffusivity to act for a longer time and results in the cycle
being weaker, in accordance with the Waldmeier effect. In
the low diffusivity (or advection-dominated) model, on the
other hand, a longer cycle means that the differential ro-
tation builds up the toroidal field to a stronger value, thus
giving the opposite of the Waldmeier effect. Jiang, Chat-
terjee & Choudhuri (2007, §5) gave several arguments why
the turbulent diffusivity inside the convection zone has to
be sufficiently high to ensure that the diffusion time is not
more than a few years. Several subsequent authors reinforced
this point (Goel & Choudhuri 2009; Choudhuri & Karak
2009; Hotta & Yokoyama 2010a, 2010b). The fact that only
the high diffusivity model can explain the Waldmeier effect
makes the case still stronger that the solar dynamo is a high
diffusivity or diffusion-dominated dynamo.

We finally come to the last question whether the high
diffusivity model reproduces the observational data not only
qualitatively, but also quantitatively. The unit of the sunspot
number in the theoretical plots is chosen in such a way
that the sunspot number of an average cycle comes out to
be 114.5 (which is the average value of the peak sunspot
numbers of last 12 cycles). With this choice of unit for the
vertical axes in Figs. 3, 4 and 5, the theoretical plots can
be readily compared with the observational plots. Perhaps
Fig. 5 with both kinds of fluctuations present is the ap-
propriate figure to compare with observations. We should
compare Fig. 1a with Fig. 5a and Fig. 1c with Fig. 5c. Al-
though the theoretical plots have more data points than the
observational plots, a comparison of the values on the hori-
zontal and vertical axes shows that the spreads in rise rate,
rise time and peak sunspot number are comparable in the
observational and theoretical plots. It is true that the ob-
servational plots seem to have a little bit more scatter com-
pared to the theoretical plots, which is particularly evident
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when we compare Fig. 1a with Fig. 5a. In spite of this, most
readers will hopefully agree with us that the comparisons
between theory and observations seem reasonably satisfac-
tory, suggesting that the characteristics of the fluctuations
we had assumed in our theoretical analysis probably are not
very far from reality. It should be kept in mind that such
calculations involving random numbers give slightly differ-
ent results for different runs. The run which produced Fig. 5
was repeated several times to ensure that the results for the
different runs were only slightly different.
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