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Chapter I

If r be any positive integer greater than one^ a positive num-

"ber N may "be expressed in the form U = ar" + hr^ ^ + — pr^ +

qr + s in which the coefficients a, h, c, s are positive in-

tegers and each less than r, From this theorem v/e know that we may

select any positive integer as a radix or "base and to each hase will

correspond a number system. Theoretically, then, it would he possi-

ble to have an indefinitely large number of different systems in

which positive integers are used as bases, V/e shall attempt to

consider only the ones which have been in actual use and those

whose adoption has been advocated by mathematicians.

The first number systems developed slowly, forming gradually

as the number concept of primitive man grew. In general, what are

known as the natural systems, in which five, ten, or twenty are

used as bases, seem to have developed most extensively.

The quinary is one of the simplest and most primitive in its
i

I

structure of the natural systems. It developed among the races

where only the fingers of one hand were used in counting; the number

I

five being reached, the savage would use some expression meaning

,
five and one more, thus unconsciously forming a system to the base

;

five. The Eetoya language of South America gives us one of the
i

I

purest examples of a quinary system. Generally, however, the

I

quinary is not distinct from the decimal ai:id vigesimal. In fact ,
I

it is very rarely found as a pure system,

Conant in his "Number Concept" has given a list of the dif-

ferent tribes having a pure or mixed quinary system and a compari-
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^1

son of these lists shows that it is quite extensively used. "EYery

part of the world except Europe furnishes us examples of peoples

i who have used or are using such a system. No quinary system has

been found in any living European tongue nor does any earlier lan-

guage show a trace of it except, perhaps, the c>reek in the word

TT S Tf <k :S <^c^ t meaning to count "by fives, "^he Roman notation,

it is true, suggests quinary counting in IV, V, VI, etc. but the

Latin language does not contain anything which would prove conclu-

sively this tendency.

Ordinarily, the quinary system will develop into the decimal

or vigesimal and we will have a mixed system. In Africa, Oceanica,

and some parts of llorth America, the quinary almost always unites

with the decimal "hile in other parts of the world, the quinary

and vigesimal seem to have an affinity for each other,

?/hen considering the principal vigesimal systems of the world,

we note that this system was universal among Celtic races. The

Breton, Irish, Welsh, Manx, and Gaelic contain well-defined viges-

imal scales. It is also interesting to note in this connection

that the 'R'rench language contains a pe r si stent vigesimal element

as shown in the v/ords soixante-dix, quatr e-vingt , etc. With the

exception of the word soixante, the wench system is wholly vi-

gesimal from sixty one to ninety nine inclusive. Other examples

of the vigesimal method of counting are found among the jisques,

the Danes, a few tribes in Africa, and a larger number of tribes in

Asia, but by far the greatest number of tribes using this system

are found in North and South America.

The decimal system has an origin similar to that of the quinary

and vigesimal, beginning with those peoples who used the fingers of
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"both hands for counting. It has TDecome the most widely used of

any single systera.

"Besides the natural hases which we have considered briefly,

various other numhers have "been used as "bases or their use advocated.

Leibnitz proposed a binary system of numeration in which the sym-

bols used would be and 1, The number 2 would then be symbolized

by 10; 3, 4, 5, 6, 7, 8, etc. would be symbolized in this system

by 11, 100, 101, 110, 111, 1000, etc.

The binary system, as advocated by Leibnitz, did not receive

much attention, but instances are known where such a system has been

in use by primitive peoples, as by certain tribes in Australia,

south America, and Tasmania, Its origin among these tribe^ is

thought to be due to the habit of counting in pairs.

An occasional ternary trace is found in some number systems.

Such ternary traces have been found in the number system of the

Haida Indians of British Columbia and in the systems of certain

tribes in India and in Australia, but no pure ternary system is

known,

!
Aristotle advocated a quaternary system and there are different

instances of such a system being in actual use. Quaternary traces

jare found among the Indian languages of British Columbia, among the

I

ilanguages of certain tribes in South America and among the Hawaiian

and some other languages of the Pacific islands. The Hawaiian lan-

jguage furnishes a complete example of the quaternary-decimal system,

the quaternary element having modified the entire system which was

'originally decimal.

There seems to be no recorded instance of either 6, 7, 8, or

9 being used as the base of an entire number systera, but there are

Instances in which a fev7 numbers of a system to an entirely differ-





4

ent "base ehovf traces of counting by either 6, 8 or 9. Hov/ever,

eight has been advocated as a suitable number base, it being claim-

ed that the octonary system would be a much simpler one than the

decimal

.

Twelve has also been suggested by mathematicians as a base

which combines within itself many advantages. It is said that

Charles XII of pv/eden advocated its establishment and in the seven-

teenth century we find F-imon Steven of Bruges advocating the use of

the same system. Buffon also remarks that twelve may very well be

used as a base on account of the number of its divisors giving inte-

gral quotients. A duodenary system is in actual use in measurements

of length and of quantity. For length measurements, we have^ 12

in, make one foot.

For measurements of quantity, we have:

12 units - 1 do^en

12 doz. 1 gross

12 gross s 1 great gross

The old Roman metrology also used twelve as the base and in ancient

French measurements, we find the following table:

1 foot « 12 inches

1 inch s 12 lines

1 line r 12 points

One of the largest numbers used as a base appears in the sexa-

gesimal system used in measuring time and angular magnitude.

Cauchy in considering how the present number system could be

simplified without changing the base proposed to reduce the number

of symbols by giving to each symbol tv/o significations; one additive,

the other subtractive, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
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in such a system would he 1, 2, 3, 4, 5, IT, 13", 1^, 11, 10, 11,

12, etc. The multiplication tahle v/ould be much simplified and

would be as follows:-

1 2 3 4 5

2 4 14 12 10

3 14 11 12 15

4 12 12 24' 20

5 10 15 20 25

This system would introduce negative number concepts at the very

beginning and, as we have stated, would simplify multiplication,

but it seems questionable if there would be any great gain from its

use.

L, Lalanne has applied the same method of notation to a ter-

nary system. Unity in this system is represented by the s^/mbol f.

The numbers of the system then are i)
,
rjf, f6jf. etc.

"Besides the systems to different bases which have been enum-

erated, it has been suggested that a number system could be con-

structed in which no stated base would be used, the numbers being

made to progress in their natural order or succession. In other

w^rds, every number may be made to serve as a base for a certain

period of time. T-he originator of this system, llr . Eissfeldt, does

not claim for it any practical value but presents it simply as a

mathematical curiosity, "^he system is formed by corrections, each

ntjraber being used as a base on which the correction is made, A few

examples will show the principle on which the system is constructed,

1 corrected by - 1

1 " " 1 a 2

2 •* "0-3
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2 corrected 1 s 4

2 n II 2 m 5

3 11 •1 B 6

3 n II 1 - 7

3 tt 11 2 m 8

3 II II 3 • 9

4 II fi • 10

4 tt II 1 - 11

4 n II 2 — 12

4 It II 3 - 13

A'± It II 4. 14

5
It It 15

etc.

The first twenty letters are then taken to represent the first twen-

ty nuinl)ers and is represented "by X . Then we have:

ax s 1 cb z 8 fc z 24

aa <a 2 cc -i 9 fd - 25

"bx X 3 dx X 10 f e i 26

ba * 4 ------- ff 1 27

bb « 5 fx r 21 —
cx « 6 fa m 22 230 s. tt

ca * 7 fb « 23 231 x fxx

¥e shall now attempt to compare with the decimal system, sys-

tems constructed to the bases which have been advocated by differ-

ent mathematicians, namely, the binary, octimal, and duodecimal.

In favor of the binary system, we may say that the only fund-

amental operations of any extent needed in this system are numera-

tion and notation. Only two symbols are used, and 1, Both these

characteristics lead to considerable simplification, but the system
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is apt to "became cumbersome on account of the number of places re-

quired for expressing a number in it, approximately about three and

one-third times as many as in the decimal.

Eight, as a number base, has the advantage that successive

]

binary divisions may occur v/ithout producing fractions while ten

admits of only one binary division v/ithout fractions occurring. Its

multiplication table is also much simpler than the decimal, two

s:/mbols less are required and only approximately ten-ninths as

many places are used in expressing a number in this system as in

the decimal.

In 1859 Alfred "B. Taylor of Philadelphia gave a somewhat

lengthy report on "this system before the American Pharmaceutical

Association. The object of the report was to discover some system

which v/ould be more practical than the decimal for measurement

purposes. The octimal system in its more elementary operations

has been quite fully worked out by George cooper and presented in

"Octimal Notation," one of the books of the Western Mathematical

series.

The base of the duodecimal system, as has been mentioned, has

the advantage of having the largest number of divisors giving in-

tegral quotients of any number that has been suggested by mathema-

ticians as a base. For this reason ordinary fractions with denom-

inators three, six, nine, or twelve give terminating radix-fractions

in this system while these same common fractions do not give ter-

j

minating decimals. Two more symbols are required in this system

than in the decimal and the multiplication table is more complex.





Chapter II
q

The method of expressing any positive integer N to any inte-

gral "base r greater than one has "been stated in the previous chap-

ter. In "this chapter it will "be proved that any proper fraction

TT in lowest terras can "be expressed in the form ^ = rf^ ^a B r, r; r, r; ^

"Fir r "^t certain restrictions "being placed on p, p, ,

, p . several theorems regarding such fractions will he given.

It will also "be shown that radix and decimal fractions are only

special cases of fractions expressible in the form given above and

certain theorems regarding decimals will be proved,
A

Any proper fraction "B in lov/est terms can be expressed in the

-p^yrr. 4 s ^'^ —^ + — + + V Where td rform ^ r, r r, r: r r, r r —-r^ ^ *
wnere P < r

,

p <. r p < r and p s or can be made as small as we

please by taJdng a sufficient number of the integers r^
,

r^
,

r^ ,

t-'Jl-- _il _IlL3L. -. ^ • ^'
. But 3-- -

B Br^ r, r, ^, J^i ^ ' B r^ B

r, r^ B

Finally, q^-/ . p^ 1

B " r^ r^* B

substituting, - a ^' + + — + —
B r, r^ r, r, r, r^ r, — -r;^ B

A
yftien r^ r , ^r^ are given, the resolution of B can be effect-

ed in only one way.

Assume the resolution can be effected in two ways.

Then A s 2' + .^Py + -

i; r, r, —r^ B

and A _ p'+ pj ^

B r, r, r^





Therefore, + + -^^^ - £/ + + ^-„Jrl__

r, r, i^,— ^r^B r, r, r^
^

r, ---r^B

Multiplying by r , p + —
• = P + + -^'^^^

Therefore, ; p^ since the integral part must be equal. The

same process can he repeated to show that p^ 2 » etc.

The necessary and sufficient condition that vanishes and the

series ^ - + — + Pa + ^- termi-
B " r, r, r^ r, r, r^ r^ —-r^B

nates is that (r^ , ,
r^ ) he a multiple of B.

Let is + +— ^^Zyj±.
B r, r, r^ r r^

The right hand member of the eq^jation may be made an integer

by multiplying by r^ , - —= -
,
r^ . Then the left hand member must

also be integral when multiplied by r^
,

r^ . Hovirever, the

only condition by which the left hand member can be made integral

is that r^ , ,
r^ be a multiple of B, It is very evident that

this condition is sufficient.

Since the {nfl)-term vanishes when qjj » 0| the number of

Aterms in the series representing ^ is the same as the ninnber of

factors in rj r^ > , .

If B contains factors of r^ ,
,
r^ , as v/ell as other

factors, the common factors may be removed and after a certain

number of terms, the fraction will have the same series as some

fraction whose denominator is prime to B,

Let A ^ _ , P/ + __P». + _

B i; r^B' r, r ,
— -r^s'

Multiplyinc: both members of the equal ity by r^ ,
v/e have,

Integer + ^ - P r + p + +
/

Then - = ^ +

b' r^ r3 r^
' r r ---b'
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The same method of proof applies if B contains any other factors of

Any rational fraction ^ in lowest terms v/hose denominator is

prime to ij^- -rj^ is periodic.

Since the series representing ~ is oMained "by always using
B

B as the divisor the process must recur, there beinc only B re-

mainders possible.

The fraction ^ will now "be considered and its period will "be
B

determined in respect to the series , "'"^'h • ^"^ then "be

shown that the length of this period is independent of the value of

the numerator,

Finding the period of 4 with regard to r , , r consists
B 111

in finding the exponent to which r,
^ -"--^rn belongs, mod. B. If

(r^ rn ) 5 1» ^» period has n terms; if (r^

rn) "belongs to exponent K, mod. B, the period has Kn terms.

Given i - + -Ei. + S:!^:.^

B r^ r^ r^ r^.——̂ ^B

From the method followed in building up this series, r - q,

mod B

r, = 4^ , raod B,

and in p:eneral, r ,
----

, ? (1 . laod B,

If s 1, ,
r^ z 1, mod B, and there are n terms in the

period. In order to obtain the period if q^^ is different from one,

the series must be continued until (r^ »---,rn) Z I» B,

and the period will then consist of Kn terms.

The number of terms in the period is independent of the value

of the numerator.

Let i - P' + -2^ + - = ^3j^^
B r^ r, r^ (r,-—

>
r^) B
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Then A t » ^»

and A 5 , niod B

and in general A(r^3—>r^ ) E Q^, ^od B.

In order that there may "be a period, either q^^ , or qgn » etc, must

equal A. If q^ s A, A(r, , ^-^n) s A, mod B, or (r^j -^n ^ s 1|

mod B. Then, in general, if q-^^ s A, k{r^ ,""r^ ) s A, mod B, and

[r^/— -jTri ) r 1, mod B, Thus when qj^ is the first q which equals

A, the period would consist of Kn terms, "but when this condition

exists, (ij; rn ) r 1, mod B, or ^ has a period of Kn terms.

Therefore, — which is any proper fraction in lov/est terms has the
^ 1

same numher of terms in its period as —
, or the length of the

B

period is independent of the value of the numerator.

The resolution of ^ into the series + + gives
^ r, r, r^

a simple method of expressing any fraction as the si>ira of a number

of fractions with unit mAmerators. r^, r^ being arbitrary may be

chosen in such a way that, when the series is formed, p^ , P^>""~j

will alv/ays be unity. If r^>---> r;^ are given the smallest values

possible in order to have p^ , Pj_-"=«- p^unity, the remainders dimin-

ish to zero and the series is terminating.

For example:- ^ _ i: -i- —i + ^

3 3.4 3.4.7

5.1 + ^ +11-3 3.3 3.3.11

4 may also be resolved into a series of fractions whose numera-

tors obey other laws. For instance, r , r , may be so se-
j

lected that p^ a P^-i + "%.2 where p^^ , P^-i Pn-2 »
succes-j

sive nurrerators, p being taken equal to 1 and p s 2. when the





numerators have this form, i; s Ep^ + 1, r^ s EP^ + 1 and r^ r BP^ +

lorr„-rv.T +r„o -1. The following series shov/ this law of

formation.

11^2^3^ 5 _ ^ ^ 8 ^
2~3 3T5 3.5.7 3.5.7.11 3.5.7.11.17

1^1+^ ^ __5 ^
6 7 7.13 7.13.19 7.13.19.31

1^1+^ + 3 . ____

7 8 8.15 8.15.22

If r a r « r s ---- r ,
A _ P,+ £«.+ Ps+ P-«+

The series thus obtained is an important special case of the general

form since "by it, can "be expressed to any integral base r, r

greater than one. If in this series r has the value 10, the frac-

tions which are known as decimals are obtained. Then since every

rational fraction — , B being a proper fraction in lowest terms,
n * n ^ »

may be expressed as a decimal, it is in order to investigate when

the decimal will be terminating, periodic, or of unlimited extent.

The necessary and sufficient condition that a decimal terminates

is that n must be of the form 2 5 where oC and (3 may both be posi-

tive integers or either or ^ may be zero.

Assume — i + -3 + =. E. w-,

n 10 10 10 10'

The right hand member of the equation may be reduced to an integer

by multiplying by the highest power of ten occurring in the denom-

inators, say 10 . Then B must be multiplied by 10 and the re-
n

suit must also be integral in order to preserve the equality''. How-

ever, the only v/ay in v/hich 10 . Ht could be integral would be

for n to consist of factors of 10 only, or to be of form 2 5

The given condition is also sufficient.

Let !_ - ^ + "5. + and let Y be the highest
2*^5** 10 tO 10
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power of either 2 or 5 occurring in the denominator. Tiien -^t^Q

. lo'^ equals an integer. 10^
(^^ + ^a""- ) ^^st also equal

an integer, or in other words, the decimal must "be terminating.

prom the proof given for the previous theorem, it is clear that

the highest power of either 2 or 5 occurring in the denominator

n, determines the power of 10 used as multiplier and, therefore, ,

determines the length of the period, c-everal numerical examples

will serve to illustrate this statement.

__3 J
160 2 T .00625, period five.

J].,. _ .007 , " three.
1000 "25

.012 , " three._ 3 _ _

250 ^ 2.5
"

If n contains powers of 2 and 5 as well as other factors, the

powers of 2 and 5 may "be removed, and after a certain number of

places, the fraction will have the same mantissa as some fraction

with a denominator prime to 10.

n 2*^5^^' - 10 10* 10*^ lo"^^ 10-^^

and assume ? 3 • T^-® same proof applies if <k< (5 or tjC^ (3

Then 10*^ + — - + i +
2*'5^n' 10 lO*" lOt 10 10*

or Integer + ^ — Integer + 1 + -
n' 10 10

Therefore, — — + +
n'~ 10 10*-

The denominator n' "being prime to ten, S after a certain number of
n ,

places will have the mantissa of some fraction whose denominator is

free from factors of ten,

For illustration:-





J- .03 i
28 ~ 2 .7 ~ 7

Having proved that every fraction whose denorainator is of the

form 2 5 is terminating and also that a fraction whose denorain?.tor

is of the form 2^ 5^
, n' being prime to 10, has the same man-

tissa as after a certain numlaer of places, the following theorem

may "be stated:

Any rational fraction B , n "being prime to 10 is periodic. It
n

is assumed that is a proper fraction in lowest terms.

Tv/o proofs of this theorem may "be given. If the fraction ^
is considered, there can he only a finite number of different re-

mainders possible when the indicated division is performed. Each

place of the remainder can he filled in only a finite number of

ways. The product of the number of v/ays in which each place may be

filled will give the number of possible remainders and this must

always be a finite number. This rule gives a maximum for the

length of the period, but does not always give the length of the

period, i?or instance, the maximum number of places in the period

13for would be eighty-seven while the actual period has only

twenty-oight places.

The second proof for the theorem is as follows

Let —S3 .abode-
n

f(n)m ,A^(^) V , «10^ — n 10^ .abode-"--
n

But 10^^^^
I 1, mod n.

Then 10*^"^ = (Kn+ 1) ^ = K + H .

n n n

Therefore, a certain period K v/ould be obtained and then that

period repeated.

The converse of the theorem just proved, or every periodic dec-
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imal is a rational fraction is true except for the case when the

period is .999

Let . abed abed be a periodic decimal. Then s s —
1 - r

4 3 2
a.-^_J:P._- 5-_'.Jl-P,_JtAJL^ which is a rational fraction.

10^ - 1

When the period is .999 it is clear that s will equal 1,

The general rules which govern the number of places in the

decimal period, considering the fraction as having unity for a

numerator will now be considered, and then it will be shown th.'it

the length of this period is independent of the value of the

numerator,

r^iven any fraction it , p being an odd prime, finding the

period of this fraction consists simply in finding the exponent to

which 10 belongs, modulus p. If 10 is a primitive root of p, the

period will be of length p - 1. If 10 is not a primitive root of

p, the exponent to which p belongs will be some divisor of ^ (p)

according to permat's theorem.

If in the fraction ^ , n is the product of different odd primes,

the period of A is equal to the L, C. M. of the periods of the
n

primes into which n can be resolved. This theorem is proved by the

following well-known theorem: If n - p q'^r where p, q, r, etc.

are different primes and if f, g, h, ---- are the exponents to which

a belongs, moduli p , q^ , r then t being the L. C, M, of

f, g, h , a^ - 1, mod. n , V/hen a Z 10, 10* s 1, mod n, or

the required period is of length t.

6 - 2 -

7or example, 10 - 1, mod 13, and 10 s 1, mod 11.

Then 10^ £ 1, mod (1.1x13) or the period of -j^^ is six.

If n is of form p*^ and -^^p—^ is prime to p, s being ex-

ponent to which 10 belongs, modulus p, then the length of the re-
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suiting period is equal to the length of the original period

multiplied by p

When 10 is a primitive root of p and also a primitive root of

2
p , then 10 belongs to exponent p - 1, m.od p, and to exponent

2 2
(j)(p ) or p (p-l), mod p . j^rom the theory of primitive roots, it

is known that in order that 10 may be a primitive root of p and

2 10^"-1
also a primitive root of p , then — = nust be prime to p.

If 10 is not a primitive root of p, then it must belong to

some exponent which is a divisor of p - 1, say f , Then 10 - 1,

mod p.

I. lO'a 1 + K p.

Raising both sides of the equality to the p th . power,

II. lO^P - (1 + K p)P s 1 + p . Kp + —
fp - 2

or 10 a 1, rood p , if K is prime to p. Eut if K is prime to p,

10 - /
from Equation I, p " is prime to p.

p
If the exponent to v/hich 10 belongs, modulus p , is not

fp, it must be some divisor of fp. This exponent then must be f,

p, some divisor of f as s, or sp.

prom Equation I we see that 10 cannot belong to exponent f

,

2
modulus p , K being prime to p in this equation.

1. mod p, and therefore l(f^ 1, mod p^ . By hypothesis

f is the exponent, to which 10 belongs, mod p, then 10® ^ 1, mod

+ 2
p, and 10 ^ 1| lood p ,

10® - X+ m p

Then lO^P ^ (x + mp)P = xP + mp2 +

10®P = , mod p^'
.

Bi;t xP ^ 1, mod p2 .

Therefore, 10®^
^ 1, mod p^ .





--pjr

10^^ is then not only congruent to one, modulus , but fp is

2
the exponent to which 10 belongs, modulus p , when K is prime to

p.

2 ^
Any primitive root of p is also a primitive root of p and

! the theorem holds for this case. If 10 is not a primitive root of

2
p , from Equation IT, it is evident that if the theorem holds for

2
p , it also holds for p

The length of the period will in any case be independent of

the value of the numerator.

If n is any given number, there are always <|)(n) different num-

bers less than n and prime to n. Then if ^ is any proper fraction

in lower t terms, there will always be ^ (n) different fractions with

a denominator n having numerators prime to n and less than n. "But

the (J)(n) different numbers less than n and prime to n form a group

in respect to multiplication, modulus n. Therefore, the numerators

of the given fractions also form a group in respect to multiplica-

tion, m.odulus n.

For every fraction H , n prime to 10, 10 will be one of the

^(n) numbers, if 10 < n. If 10 > n, some residue of 10, mod n, will

occur. The powers of 10, mod n, form a cyclic sub-group of the

larger multiplication group G.

All the fractions having numerators belonging to will have

a period of the same length as i .

1
Assume 10 — 1» raod n, or that the period of contains X

places. Then i_ — . a a , ^,a a a . Multiplying by 10 simply
n ' * y ' 2-

changes the decimal point each time one place to the right, or the

length of the period for each fraction whose numerator belongs to

Gj is of the same length as that of -i , There is only a cyclical

I interchanf^e of the numbers composing the period.
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An operator of not in multiplied "by an operator of Cr^

will give some distinct element of the group not in the cyclic sub-

Then suppose ^ z: (5» p>3 (^» (^i. • Multiplying "by 10

group. Let K be any operator of Cr which does not occur in

K
n

simply moves the decimal point one place to the right, therefore, the

multiples of — "by powers of 10 will have a period of the same length

as ~ . But it has been assigned that 10 belongs to exponent X mod

K
n

same length as that of the original period of the cyclic sub-group.

n, or = 1, mod n, therefore ^ , 10^ gives a period of the— n

If the operators of G are not yet e^driausted, another operator not

already used may be chosen and the above reasoning repeated. It is

then clear, since all fractions with numerators belonging to G^ have
1

the same period as n and all others have the same period as fractions

whose numerators belong to (5^ , that the length of the period is

independent of the value of the numerator,

A concrete example will serve to illustrate these statements.

Assume n -s. 39, Then ^(39) s ^(3) . ^(13) r 24 and the fractions

having numerators prime to 39 are as follows: ^ ^ ^ ^ Z,

39 ' 39* 39* 39* 39

^-i^iiMiiiZii^O __22 23 25 28 29 31

39 39 39 * 39 * 39 * 39 ' 39 ' 39 * 39 * 39 * 39 * 39 * 39 * 39*

32 2i ^ ^ and 1§ ,

39 * 39 * 39* 39 * 39
*

In this case, the cyclic sub-group G, of the numerators will be

10, 22, 25, 16, 4, 1,

.256416 — = ,410256 —

-

39 39

22 _ .564102 — - ^ _ .102564
39 39

"*

II = 641025 — - 4 = .025641 —

'

39 39
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Taking 2 as an operator, another set of six numbers would "be

given "by the fractions 52, ii, -2., -5.. The periods
39 39 39 39 39 39

would "be a cyclical interchange of the numbers .512820.

•z-i rin -I q
Using 7 as an operator, the fractions would he ^ _ ZL

39* 39* 39'

5^ JL, the periods of which would "be formed hy the cycle
39 39 39

.794871.

The remaining set of fractions is 21, 51, iliand
39 39 39 39 39

14 with the cyclic period ,589743,

39

The number of different cyclic sets, or periods of the same

length for each denominator n is equal to ())(n) divided hy the ex-

ponent to v/hich 10 belongs, modulus n, f^his is true since (j)(n)

gives the numher of fractions having numerators in the multiplica-

tion group G and the exponent to which 10 belongs gives the number

of these fractions in each cyclic set.

The number 10 belongs to exponent 6, m.odulus 39, and ^(39) is

24, Therefore, there are four different cyclic sets for n = 39,

as was seen in the previous example, "^Hrhen n = 7, 10 belongs to

exponent 6, mod n, and there is only one cyclic set. In this case

the periods of i-,
|-,

l, 1, j consist of the numbers ,142857

arranged in different order. Prom this we see that 142857 multiplied

by any number less than seven will always give the same numbers,

only in a different oraer.

The operation of finding the numbers composing the different

cyclic sets of the ())(n) fractions is very much shortened by the

fact that, in general, the different cyclic sets, or periods, occur

as complements of each other.

Let ^ and - 5^ ^® fractions differing only in sign,
n n
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_2. = .ajL ^2 ^-3 ^''^^ " ~ ^2 * then the siAm

of the two fractions must equal zero and, therefore, a^ is the com-

plement of "b^^
, a2 the complement of "bo, etc.

Since -1 and +1 always occur among the pin) numhers of G,

the ^(n) fractions whose numerators differ only in respect to sign,

mod n, have periods occurring in complementary p&irs. Then if a

period has "been obtained, its complementary period is found hy

subtracting each digit of the first period from nine. For instance,

in the example already given for n = 39, the period of the fractions

having numerators 10, 22, 25, 16, 4, 1 is the cyclic set ,256416.

Then the period for the complementary fractions iZ, il, £5=,

39 39 39 39

35 , and 38 will he the cyclic set obtained "by subtracting the

numbers 2, 5, 6, 4, 1, from 9 or the cyclic set .743589,

If 10 is a primitive root of n, then -1 is in the cyclic sub-

group . ffhe period is in this case of even length and the

second half of the period is obtained by subtracting the digits

of the first half from nine. The period is of even length since

G^ then contains an operator of order two and the order of the

operator must divide the order of . If -1 is not in G, , then

the index of G, under G must be even since the periods are com-

plementary.
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Chapter III

The complex number systems which we shall consider in Chapter

III are quadratic complex systems restricted to certain integral

domains. The term integral domain will he understood, as usual,

to mean a totality of integral elements which is invariant v/ith re-

spect to addition, subtraction, and multiplication. The special

dom-ains to v/hich the quadratic complex systems in this case v;ill be

restricted are algebraic domains formed by adjoining an irrational

algebraic number to the ordinary integral domain,

An algebraic integer is a root of the equation x^ + a^^x^"^ +

n-2
a2x: + a-n ~ where a-j^, ag* are rational integers.

An algebraic quaaratic integer is a root of the above equation

when n = 2, All algebraic quadratic integers are of form x + y /m

when m = 2 or 3, mod. 4, and of form x + y— wnen m s i, mod.

4, It will be assumed that m is not divisible by any square

greater than 1 and tha.t x and y are integral.

An integral algebraic domain can then be formed by adjoining

to the ordinary integral domain. This algebraic integral

domain will be denoted for brevity by w and some of the properties

of a quadratic complex system in it will first be discussed.

It is well known that numbers which are primes in one domain

may be composites in another and also that numbers can be resolved

into prime factors in more than one way in some domains. The quad-

ratic complex system in w will be considered with special reference

to these two points.

All ordinary primes of the form 24Z + 1 and PAZ + 7 are com-

\
posite in w.

Prom the theory for binary quadratic forms, it is know that D,
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the determinant of the form, must he a quadratic residue of m,

where m is the numher to "be represented hy the form. The numher

-6 is a quadratic residue of primes of form 24Z + 1, 24Z + 7, 24Z

+ 5, and 24Z + 11. There are only two reduced forms for D = -6,

namely, + 6y^ and 2x^ + 3 y^ . The form 2x^ + 3y^ will not give

complex factors in w so need not he considered. Then all ordinary

primes which are composite in w ntust he represented hy x^ + 6y^ .

2 2
If m is the prime to he represented, m = x + 6y and, there-

2 2
fore, X = m, mod, 6. But x =1, mod, 6, and, therefore, all

ordinary primes represented hy x^ + 6y^ are of form 24Z + 1 and

24Z + 7 and only primes of these forms can he factored,

(1 - f^) (1 + VQ) =7; (5 - V^) (5 + vQ) = 31

(7 -f 2y/^) (7 - 2y^) = 73; (5 - 3 V^) (5 + Z^) = 79

Primes of the forms 24Z + 1 and 24Z + 7 can he resolved into

their complex factors in only one way.

2 2
There are four representations of x + 6y which give the same

2
prime m. There are two solutions of the congruence, n = -6, mod.

2 2
m, and two suhstitutions transforming x + 6y into an equivalent

2 2
form. Therefore, a prime numher can he represented hy x + 6y

in only one way and consequently primes of form 24Z + 1 and 24Z

+ 7 can he resolved into prime complex factors in only one way.

In order that a composite rational integer may he resolved into

complex factors only in w, it must he of the form»m = a B c d

where a represents primes of the form 24Z + 1 and 24Z + 7 and (c^ )

the numher of primes in a; B primes of the form 24Z + 5 and 24Z +

11 and(^) the numher of prim.es inB; c = 2, d = 3, (p) + y + 8

is an even numher and y + 8 Jj^ ( p ).

The determinant of the form or - 6 must he a quadratic residue
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2 2
of any composite number m properly represented "by x + 6y and,

therefore, must "be a quadratic residue of every prime factor of m.

2 2
X + 6y = m, or m must be a quadratic residue of 6. The number

-6 is a quadratic residue of primes of fonn 24Z + 1, 24Z + 7, 24Z

+ 5, and 24Z + l^^ . Primes of form 24Z + 1 and 24Z + 7 are quad-

ratic residues of 6 while primes of the form 24Z + 5 and 24Z + 11

are non-quadratic residues of 6. Then any numher m = B^*^^ is /a^,

2 2
representahle "by ic + 6y , or may "be resolved in complex factors

only in w> ( ^ ) "being even, since an even number of non-quadratic

residues is a quadra,tic residue,

I 2x^ + 3y^ = (x f2 + y yCi) ( X yT - y V^s)

II Then 2(2x^ + 3y^ ) = f2(x ^2 + y . f2{7L v/T - y sT^)

= (2x + y V/^) (2x - y f^) = (Z + y f^) (Z - y , Z

being an even number,

III Also 3(2x^ + 3y^ ) = /s" (y + x . f3'(y /? - x f^)

= (3y -I- X yTTe) (3y - x iT^) = (Z + x f^) ( Z - x j/^)

2 2
Primes 2 and 3 are not represented by x + 6y and are not

2 2
properly represented by 2x + 3y . Equations II and III t^ien show

that neither 2 ,
3~

, 2 3 are properly represented, or have

complex factors in domain Primes of the form 24Z + 5 and 24Z
2 2

+ 11, however, are properly represented by 2x + 3y and an in-

spection of Equations II and III will show that the product of

any such prime or B, by either 2 or 3 will give a number having

I complex factors in w, jqince neither 2 , 3^
, or 2 3 have complex

i

factors in w, but 2 B and 3 B have such factors, y cannot be

;

greater than (jS). (p) - (y+S) must be even since all primes

of form 24Z + 5 and 24Z + 11 are non-quadratic residues, modulus 6,

2 (y + 0) is even. Then ) +y+ 8 is an even number.
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25330 = 7 . 5. 11. 29. 2 = (1 - f^) (1 + (7 - (7 +

(2 + 3 i^) x(2 - 3 f^).

Any composite rational integer m = a B c* d representaole

2 2
by the form x*^ + 6y can "be resolved into its prime complex factors

in more than one way providing it contains at least two different

prime factors of the form 24Z + 5 and 24Z + 11 so that ( |3 )
-

(r + 8) ^ 2.

Let Kx represent the composite rational integer, x represent-

ing product of prime factors of form 24Z + 5 and 24Z + 11, K the

product of all other prime factors. K can "he resolved into complex

prime factors in only one way because primes of form 24Z + 1 and

24Z + 7 are resolvable into complex factors in only one way and
a x s

2 ,3 or 2 3 have no complex factors in the domain, it has

also been shown in the previous theorems that no prime of the

form 24Z + 1 and 24Z + 7 combined with either 2 or 3 or with a

single prime of the form 24Z + 5 or 24Z + 11 can be resolved into

complex factors only in v/, 2 B and 3 B, where B is any prime of the

form 24Z + 5 or 24Z + 11, can be resolved into complex factors in

only one way since 2 and 3 have no complex factors in w, From

these statements it is evident that the factoring in different

distinct ways must then depend only on the factors of x,

A number x can be represented or resolved into its complex

factors in w in 2 ways where u represents the number of differ-

ent prime factors. These u - 1 representations will be distinct

since primes of form 24Z + 5 and 24Z + 11 are primes in w,

55 = (1 + 3 f^) (1-3 iTTs)

55 = (7 + iiE) (7 - vnj)

145 = 29,5 = (11 + 2 yCe) (11 - 2 ) = (7 + 4 f^) (7-4 /^)





sr5"

I

385 = 7 . 5 . 11 = (13 + 6 V^) (13 - 6 V^) = (1 + 8 V^)

(1-8 V^) = (19 - 2 i^) (19 + 2 V^) = (17 + 4 f^)

(17 - 4 iT^) . These four representations or four sets of

complex factors for 385 are not distinct, (13 + 6 l/^) (13 - 6 V^)

I

and (1 + 8 1^) (1-8 "both have the same prime complex factors,

namely, (1 + ^/^) (1 - (7+ vCe) (7 - . Likewise (19 -

2 V'^) (19 + 2 V^) and (17 + 4 V^) (17-4 V^) have the same

prime complex factors (1 + ( 1 - V^) (1+3 V^) (1-3 V^)

.

The primes in the quadratic complex system in w comprise :-

(1) The real number primes which are congruent to 5, 11, 17,

19, and 23, modulus 24, and the primes 2 and 3,

(2) The number /-6 which corresponds to x = and y = 1

in x + y V^.

(3) The numbers x + y of which the norms are the ordinary

primes congruent to 1 and 7, modulus 24, Also the numbers x + y

whose norm contains only two prime factors, each such prime not

hemg representahle "by x + 6y ,
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