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1. Introduction

The main aim of this paper is to show how the work of De Concini and Procesi
[5] on classical invariant theory can be interpreted to suggest a generalisation of the
Hodge-Young theory (¢f. Hodge [11]; Hodge and Pedoe [12]) of standard monomials.
This generalisation is given as a set of conjectures* (Conjectures I and II) in
section 6. On the other hand, we also show that the results of De Concini and
‘Procesi [5] follow as consequences of this generalisation of the Hodge-Young
theory (cf. section 7).

Let G=SL (n) and P a maximal parabolic subgroup in G so that G/P is the Grass-
mannian of r-dimensional vector subspaces of an n-dimensional vector space. Let
f be a lowest weight vector in H°(G/|P, L), where L denotes the ample generator of
Pic G/P. If W(G) denotes the Weyl group of G, one sees that the subgroup of W(G)
which fixes the one-dimensional linear space spanned by f; is precisely the Weyl group
W(P) of P. The translates of f by W(G) can therefore be indexed by W(G)/W{(P)
and we set

Dr=r.f, 7€ W(G|W(P).
Let us call a standard monomial of length m on G|P, an expression of the following
form:
™ Pr Pr, - Pr; TLZZ Ty 22 vee 2Ty

where by =, > 7, etc. we take the canonical partial order in W{(G)/W{(P). By the
Hodge-Young theory we mean the theorem which states that distinct standard
monomials of length m on G/P form a basis of H°(G/P, L™), as well as its generalisa-
tion to a Schubert variety in G/P (¢f. section 2). Let us call an expression of the
following form

(T e Tuhy T € WOIWP), 7y Z 19> > 7y

*These conjectures have now been proved in collaboration with C. Musili.
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a Young diagram of length m in W(G)/W(P). We have a canonical identification
W(G)|W(P)= I(r), where

LN ={Cy s A< <iy... <i, <n}.
One knows that if 7=(j, .. ., i)=() and ry=(j,, .. ., )=C(j), then
= in QWP &= i > j, IS k<.

Thus Young diagrams in W(G)/W(P) are just certain types of Young diagrams taken
in the usual sense (Weyl [23]) and the Hodge-Young theory gives a canonical identi-
fication of the set of Young diagrams of length m in W(G)]W(P) with a basis of
H®(G/P, L™). One can define more generally what could be called Young diagrams
in W(G) (these are just the Young diagrams in the general sense as is usually under-
stood (Weyl [23])), by which we can similarly write a basis of H°(G/B, M), M being
an arbitrary line bundle on the flag variety G/B of G (Hodge [1 1D.

It is natural to ask whether the above theory could be carried over to the general
case of a semi-simple algebraic group G and P, a parabolic subgroup of G. In
(Seshadri [22]) such a generalisation has been done for the case when P is minuscule
ie. it is a maximal parabolic subgroup whose associated fundamental weight o is
minuscule. Recall Bourbaki [2], Seshadri, [22] that a fundamental weight w is called
minuscule if in the irreducible representation ¥ of the group G’, with highest weight
w, G’ being the semisimple group defined over C with the same root system as G, all
the weights of V are translates of w by the Weyl group W(G") of G. Let us define
{p+}, T € W(G)[W(P), as well as standard monomials in {p-} as above. Then it
has been shown (Seshadri [22]) that exactly the same results as above (stated for
the case G=SL(n)) hold good. This generalisation is, however, not satisfactory
enough, since when G is (almost) simple and not of type A, there are not many
minuscule weights and there are exceptional G with no minuscule weights at all
(Bourbaki [2]; Seshadri [22]).

Let G be a semi-simple algebraic group and P a maximal parabolic subgroup of G.
Let X(r) denote the Schubert variety associated to € W(G)/ W(P). We have

712 73 in W(G)/WA(P) =) X(m)) D X(rp).

Let [X(7)] denote the class determined by X(7) in the Chow ring Ch(G/P) of G/P.
Let H denote the Schubert variety of codimension one in G/P. It can be shown that

(XD [Hl=_ 2 dy[Y]l,dy >0
Yes,

where centre dot denotes multiplication in Ch(G/P)and S, denotes the set of Schubert
varieties of codimension one in X(). We call dy the intersection multiplicity of Y in
[X(®)]-[H]. If Pis minuscule, it can be shown that dy =1. Let us call P to be of
classical type (see section 6) if dy < 2 for any pair of Schubert varieties X(r) and ¥
as above. It can be shown that for any G there is always a maximal parabolic
subgroup P which is of classical type and that if G is a classical group every maximal
parabolic subgroup is of classical type. Let us suppose that P is of classical type.

e v o

o e s
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Let us call a pair of elements (v, p) in W(G)/W(P) to be an admissible pair in
W(G)/W(P) if either r=¢p (in which case it is called a trivial admissible pair)
or 7 5 o (in which case it is called a non-trivial admissible pair) and there exist {7, },
1<igr, 7,€ W(G)/W(P) such that

Dm=n =P, =T ... 2T

(i) X(r,) is of codimension one in X(7;-), 2 < < m.
(iii) the intersection multiplicity of X(r,) in [X(r-)] - [H]is2,2 <i< m.
Let (7, 0y), (73, Po) be two admissible pairs in W(G)/W(P). We define

(715 P1) = (72, Po) &= P1 = T2

&

We call a Young diagram of length m in W(G)|W{(P), a sequence of m admissible pairs
in W(G)/W(P) of the following type:

(7'1} ?’1)’ (7'23 ?2)5 reny (Trm Pm) with ('71a ?1) = (72’ ?2) = = (Tm: ?m)

where (7, @), for 1< i < m, are admissible pairs in W(G)/W(P).

Then Conjectures I state (see section 6 for the precise form) that there is a canonical
identification of the set of Young diagrams of length m in W{(G)/ W(P) with a basis of
H°(G/P, L") (L = the ample generator of Pic G/P); in fact if we denote by Pr,p) the

element in H°(G/P, L), associated to an admissible pair (r, ) in W(G)/W(P), then the
canonical basis in H°(G/P, L™) is given by standard monomials in Pz, 0) of length m,
defined in a similar manner as above. In Conjectures II, we take G to be a classical
group. We then define Young diagrams in W(G) and state a canonical identification
of Young diagrams of a certain type with a basis of H°(G/B, M) where M is any line
bundle on G|B (B = a Borel subgroup in G).

The importancé of this conjectural standard monomial theory (apart. from its
apparent independent interest) stems from the fact that it would provide a systematic
approach towards the proof of the Kodaira type of vanishing theorems for line
bundles (in the dominant chamber) on G/B and its Schubert subvarieties (Hochster
[9]; Musili [18]; Lakshmibai et al [15]; Kempf [13]), the best theorem to date in
this connection being due to Kempf [13]. In collaboration with Musili [16], we
have proved the Conjectures I in the important particular case when the fundamental
weight w associated to P is quasi-minuscule (equivalently a distinguished weight in
the sense of Kempf [13]) and this case suffices to deduce the results of Kempf [13].
(We call a fundamental weight w quasi-minuscule, if in the irreducible representation
V of the group G, with highest weight w (G’ being the semisimple group defined
over C and having the same root system as that of G), all the non-zero weights are
translates of » by the Weyl group W(G") of G').

For classical groups, Conjectufes I have been checked for the case m =1.
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The connection between the above conjectures and the work of De Concini and
Procesi [5] is as follows. Set:

Case()): X =W®D..0W @& W*®...0 W* ,G = GL(W)and dim W =2n

m times m times

Case (ii): X =W@...@® W (m times), dim W = 2n,
G = the orthogonal group O(2n), O(2n) € GL(W).

Case (iii): X=Wa®...® W(m times), dim W =2n,
G = the symplectic group Sp(2r), Sp(2n) C GL(W).

We now take the diagonal action of G on X, Set
X = Spec R, Y = Spec RC,
De Concini and Procesi [5] have given a basis of the invariant subring RS of R by
means of certain types of what they call standard monomials and have shown that
(also Hochster and Eagon [10]) for the linear case and Kutz [14] for the orthogonal

case)

determinantal variety in the space M, of (m X m) matrices in case (i)

9 2 » Sym Mm of (me) symmetric
Y= matrices in case (ii)
» » » Sk M, of (m X m) skew-symmetric

matrices in case (iii).

One knows that a determinantal variety in M,, can be identified as an open subset—in
fact as the opposite big cell—of a Schubert variety in a Grassmannian (cf section 2
below and Hochster [9]; Musili [19]). Then it is easily.checked that the standard
monomials written down by De Concini and Procesi for Case (i) are precisely the
restrictions (to the opposite big cell) of the standard monomials on Grassmannians
in the Hodge-Young sense as we described above. One then observes (¢f. section 4)
that a determinantal variety in Sym M, (resp. Sk M,,) is precisely the opposite big cell
of a Schubert variety in Sp (2n)/Q (resp. SO (2n)] Q), where Q is the maximal parabolic
subgroup associated to a right end root (in the Dynkin diagram, Bourbaki [2]).
In the case of SO(2n), it is known that Q is minuscule and one finds (ch. Th. 5. 1) that
the standard monomials of De Concini and Procesi for Case (iii) are again the restric-
tions to the opposite big cell of standard monomials in the sense of (Seshadri [22]).
In the case of Sp(2n), Q is not minuscule and the question arose whether the
standard monomials of De Concini and Procesi for Case (ii), could be properly
interpreted to suggest a good definition of standard monomials for the nonminuscule
case. Such an interpretation is given in section 5 and has been the principal
motivation behind Conjectures I.

The best way to read this paper is perhaps to go through section 2 first, then the
statement of Theorem 4.1 and thereafter sections 5, 6 and 7. The rest of the paper
(which is fairly long) is to be referred to, whenever found necessary; probably this
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material could be written in a more condensed manner so as to reduce the length of
- the paper.

The second named author is thankful to C. Procesi for the discussions he had
with him on his work with De Concini during his stay in Rome in April 1976.
The project of this paper took shape during these discussions. We are thankful
to N Soundararajan of the Computer group, TIFR for his crucial help in the
verification of the above conjectures in low ranks; in fact he has programmed the
verifications of Conjectures I for G = Sp(2n), m = 2 as well as Conjectures II for
G = Sp(2n), |m| = 2; in particular, for these cases Conjectures I and II have
been verfied for n < 7. We are also thankful to C. Musili for his careful reading
of this paper. :

1. Basic facts on SL(n)

We work with an algebraically closed base field X.

Let ¥V be an m-dimensional vector space over K. We fix a basis e;,..., e, 0f V. We
write the elements of ¥ as column vectors of length m with entries in K, so that

1 0
0
e = ) y ees @ = . , 1 in the ith place, 0 elsewhere.
) 1
0 0

Then multiplication of elements of ¥ by elements of GL(m) on the left, makes V'
a (left) GL(m) module. We refer to this as the canonical GL(m) module structure
on V. We set ' ’

H = SL(m) .
B,, = the Borel subgroup in GL(m) formed by upper triangular matrices
T,, = maximal torus in GL(m) formed by diagonal matrices
 B(H) = the Borel subgroup B,, N SL(m) in H
T(H) = the maximal torus T, N SL(m) in H
L,, =the Lie algebra of GL(m) identified with the set of all (m X m)matrices
Lie H =the Lie algebra of H identified with the set of (m X m) matrices of
trace zero
N(T,,) = normaliser of T,, in GL(m)
N(T(H)) = N(T,) n H (it is the normaliser of T(H) in H)
W(H) = W,, = N(T(H))/T(H) = N(T,,)|T,, (Weyl group of H or GL(m))
S,, = symmetric group on the m letters (1, ..., m) '

If 6 is an element of S, such that 6(i) = a;, as is customary, we write

1...m )
o= (al...am) or simply 8 = (ay,..., ).
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If M € N(T,,), we check that there is a uniquely determined element § =(ay, .. ., @)
€ Sy, such that in the ith column of M, the only non-zero element is in the a,th row.
We then write M = M(6). The mapping M|— 6 gives an isomorphism of W(H) or
W,, onto S,,, which we call the canonical isomorphism of W(H) or W, onto S,,.
If t €T, is of the form

ty 0
¢)) t=
0 tm
we see that
ty, 0 ta, 0
@) M(0)t (M(6)) =" E s (MO)tM(6) = |
0 ‘t,,m 0 | ta,

where the element (b, ..., b,,) is the inverse 6-1 of 8 in S,,.

We set:
Xo(Tp) (resp. Xy(T(H))) =Hom (T, G (resp. Hom (T(H), Gy,))
X(T) (resp. (X T(H))) = Xo(Tm) @ zR (resp. Xo(T(H))® zR).
The elements ¢, € X, (T}), 1 < i < m, defined by
eft) =1, t €T}, as in (1) above

form a Z-basis of X(T,,). We denote the canonical images of ¢; in X(T},) by the
same ¢; so that {ei}, 1<<i<m, is a basis of the R-vector space X(7},). The canonical
action of W, &S, on Xy(T,) (and hence on X(T;,)) is defined as follows: for
0=(ay, ..., @) € Sy, and X € X(T,) (X: T-~G,,), we define 6-X by

(8:X) (1)=XM(6)- tM(6), t €T,, and M(6) € N(T,,)
as above. Then by (2) abové, we see that

B(el)zeai, 1<i<m.
We have a canqnical surjective linear map

o : X(T,) ~ X(T(H)).
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We see that the restriction of ¢ to the linear subspace spanned by ¢,—e¢; is an iso-
morphism and we identify X(T(H)) with this subspace. One knows that the set

RH)={ e;—¢,[i#]}

can be identified with the set of roots of H with respect to T'(H) and that

R{H)={ e,—¢;fi<j} |
is the set of positive roots (with respect to B(H)). If a=¢,—¢; € R(H), we denote by
U, the unipotent subgroup (& G,) of GL(m) or H defined by:

Uy={I+g/I=(mxm) identity matrix, g an (mxm) matrix whose only
non-zero entry is in the (i, j)th place}.

The action of T(H) on U,(~G,) is givenby the element of X,T(H), canonically
associated to the root a=¢;—e¢;, since we have

Hgi)tt=(g,tityY), t as in (1), (giy) € GL (m).

The {U,}, >0, generate the unipotent subgroup B* (H) of B(H). We see also that
the canonical action of W(H) (=W,,=S,,) on R(H) is explicitly given as follows:

Gz(al, veuy am) = Sm, 0(€i“" ej),=eai—- €aj.

The K-vector space V has a canonical (left) H-module structure induced from the

r
canonical GL(m) module structure on V. Set I=m—1, m>2. Then A V, 1<r<I
have canonical H-module structures. One knows that these are the fundamental

representations of H. We see that the vector ¢;A ... Ae, € 1{ V is a highest weight
vector with respect to T(H) and B(H) since the 1-dimensional space spanned by e A ...
Ae, is stable under B(H). If we denote by {e,}, 1<<i<(/, the simple roots a,==e,— €44
1 <i<!in R(H) and by {e;}, 1 <i <! the fundamental weights, having the
property, {w;, a;V) = §,, (Kronecker delta) (notations as in Bourbaki [2]) we find
that the weight of e)A... Ae, is w, (we see that the weight of ¢;A ... Ae, under T},

is e+...+ —(r/m) (Z’::l e,) which is precisely w,, see Bourbaki [2]). Thus the
highest weight of the H-module er Vis w,. |

Let P (,/i V) denote the projective space of 1-dimensional subspaces of jr\ V (in
Grothendieck’s sense, this should be denoted by P ((./r\ v, (j’i V)v=dual of (Jr\ ).
Then H operates on P (fx V). We denote by P, the isotropy subgroup of H at the

v . .
point of P (A V) corresponding to e;A...Ae,. Then P, is a maximal parabolic
subgroup in H, P, B(H) and H/P, can be canonically identified with the Grass-
mannian of r dimensional linear subspaces in ¥. We see that P, is of the form

((r>8r)

(m—r) X(m—r))
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In fact P, is the maximal parabolic subgroup in H canonically associated to the simple
root a, (Borel [11; Lakshmibai et al [15]) i.e., if M, is the reductive part of P,, then
M, is generated by T, and all U, such that the root a is spanned by the simple roots
{a,}, i#r(ie. o;5 a,) (or that the unipotent part of the radical of P, is generated by
all U,, such that « > 0 and a=2n,a, with n,5£0). '

Let W,=Wp, be the Weyl group of P,. One knows that W, is the isotropy sub-
group of W(H) at e, A...Ae, (in the sense that § € W(H)=S,, is in W, if and only if
M(0) leaves stable the 1-dimensional subspace through e;A...Ae). Note that if
0=(ay, ..., a,), then

M(O)e, = my .1 €, M(8) = (m,).
This implies that
€)) M(0)eA.. .. Ae)=2Aeg A... Aeg,, A#0.
Let I, (r) denote the following set:
Lo ()={Cys - » W< < Iy < oo < by <}

Then from (3) above, we see that we have a canonical identification of W(H)| W, with
I(7); in fact, if 0=(a;, ..., ay) € S, then the canonical image of 6 in I(r) is obtained
by taking the first r elements a;, ..., @, of 6 and arranging them in the increasing
order. We have a canonical partial order in W(H) (resp. W(H)|W,). Given wy, w, in
W(H) (resp. W(H)|W,), this partial order can be defined by saying that given a
reduced decomposition of w, (with respect to the simple reflections s, in W(H), s, being
the reflection with respect to the simple root a;), it contains some reduced decomposi-
tion of w; as a ‘subword’ or equivalently as follows: Let X(w,, H/B(H)) (resp.
X(w,, H|P,)) denote the Schubert variety in H/B(H) (resp. H|P,) associated to w, ie.
this variety is the Zariski closure of the Schubert cell B(H) w,e B(H)(resp. B(H)w, ePr)
in H/B(H) (resp. H[P,), where we denote by ep(H) (resp. eP,)’ the point in H/B(H)
(resp. H/P,) represented by the class B(H) (resp. P,) (note also that when we write
Wi eprr) (resp. w, eP,)’ we use a representative of w; in N(T'(H)) and that w; e BH)E
H|B(H) (resp. w; ep, € H[P,) is independent of the choice of a representative). Then

Wy < wy i W(H) (resp. W(H)|W,) <=5 X(wy, HIBH)) S (Xwy, HIB(H))
(I.'@Sp. X(wl: I:Zr/Pr)g X(W29 H/Pr)'

We have a canonical partial order in L,(r), namely, if =0, ..., &) and (D=Cj, .. ., J))
are in I,(r), we write

D () = < oo ons b Ui
Then we have the following:

(i) The canonical identification of W(H)/W(P,) with I(r) preserves the canonical

* partial orders in each.
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(i) If we W(H)]W(P,)and w=(iy,...,i,) EL(r) (identifying W(H)|W(P,) with IL(r),
then
. r(r+1)
2

dim X(w, HIP) :Z'I; i

(iii) Let w = (iy, ..., i) € Ly(r). Let (jy» ---» Js) be the complement of (g s &) in
(1,2, ..., m) arranged in the increasing order. Then wy = (igs +++s bps J1» --5 J) is the
minimal representative in W(H) of we W(H )/W(P,), in the sense that among all
the representatives of w in W(H), w, is of minimum length in W(H) (see Bourbaki
[2] for the definition of length).

(iv) For w € W(H), one knows that the dimension of the Schubert variety
X(w, H|B(H)) is equal to the length of w in W(H) denoted I(w, W(H)). For
w € W(H)/W(P,), we call the length of w in W(H)|W(P,), denoted I(w, W(H)|W(P,)
the length in W(H) of the minimal representative of w in W(H). One knows that
the dimension of X(w, H|P,), w € W(H)|W(P,) is equal to I(w, (H ) W(P,)).

Let more generally G be a semi-simple group (defined over K), B a Borel subgroup
in G and P a parabolic subgroup in G, PO B. We denote by W(G) (resp. W(P))
the Weyl group of G (resp. P). Forw € W(G) (resp. W(G)/W(P)), we denote by
X(w, G|B) (tesp. X(w, G/P)), the Schubert variety in G/B (resp. G/P) associated
to w. Let we W(G)/W(P); then we call an element w; € W(G) a minimal (resp.
maximal) representative of w if (i) w, represents w and (ii) if w, is any representative
of w in W(G), then I(wy) > I(w;) (resp. I(wy) < I(wy). A minimal representative
w, of w is characterized by the following property (Bourbaki [2]).

1w, W(G)) = 1(wy, W(G) + 1A, W(G)), A € W(P).
The following can be checked easily (and we require them later):

(@) the minimal and maximal representatives in W(G) of w € W(G)|W(P) are
uniquely determined. Let w;, i=1, 2 be respectively the minimal and maximal
representatives in W(G) of w. Then we have:

(i) X(wy, G/B) is the inverse image of X(w, G/P) under the canonical morphism
G/B->G/P. Further, under this morphism, X(w,, G/B) maps on to X(w, G/P) and
the morphism X(w;, G/B) ~ X(w, G/P) is birational.

(iii) wp = wy - W, (P), where W, (P) is the element of maximal length in W(P).

(iv) Let w' € W(G)[W(P) and w';, W'y be respectively the minimal and maximal
representatives in W(G) of w'. Then

w<w in W(G|WP) = w1 < w'y il; W(G) &=y wo < W in w(G).

(v) if w';, W'y are two representatives in W(G) of w such that

(W', W(G) =1(w'y, W(G)) + 1 (wo (P), W(G)

then W]_ = W'l and. Wz = W’2.
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Let L, denote the (very) ample generator of Pic H /P, ~ Z. Then HY(H|P,, L,)

r
acquires a canonical (left) H-module structure and, in fact, it is the dual of A V.
Let us denote by

PGiy=Pg,, i, N =0 - J) E L, (r)
the canonical dual basis in HO(H |P,, L,), so that we have
Cewys bepy =8¢y, (s (Kronecker delta), ¢; = e A A e .
The p¢;) are known as the Pliicker coordinates. We observe the following:
@ P — +1,..., m) is a highest weight vector in H°(H|P,, L) and its weight is

i(w,), where i denotes the Weyl involution, ie. i = — w,, w, being the element of
largest length in W (H).

(i) Pa,..r is a lowest weight vector in H’°(H/P;, L,) and its weight is — w,.

Now we have two natural ways of indexing in a more intrinsic manner the weight
vectors in H°(H[P,, L,). For this we observe that the subgroup of W(H) which fixes
the 1-dimensional subspace spanned by Pln—rs1, ... m) is W(i(P,)), i(P,) being the

maximal parabolic subgroup, canonically associated to i(w,), in the sense described
above: We write this property as follows (by abuse of notation):

TE W(m’ T'p(m—r-f—l, ees m)zp(m--r—{— 1, .., m) <:> TE W(i(P'))'

Similarly, one finds that

TE W(ma 7'_p(1, s ¥) :p(l, v ) <::> TE W(Pr)'

Hence, we write
{f:} m e WEWGPY, f, =7Ppnrsr, ...
o} re WEWR);  p, =70y,
{e} r€ WEYWE), e, =req. = Ae)

(the elements /., P, e, are well-defined up to scalar multiples). The {p,}, {f.} are
two natural ways of indexing the weight vectors in H°(H|P,, L). We see that

(e, p.» =8_ _ (Kronecker delta).

One has now the following properties, which hold in a more general context (Seshadri
[22] where the indexing similar to { £} is considered):
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(i) For = = identity (i.c. the class W(i(P)), f, is a highest weight vector.

(i) fﬁl X(7owo, HIP,) is mot identically zero b 7, = 7o in W (H)|W(i(P,)
(one observes that the Schubert varieties in HJP, can be written as X(tw,, H|P,),
v € (W(H)|W(i(P,)), but then

7y > T in WEH)WEHP)) &= X(yw, HIP,) & X(rawo, HIP)
(a) For 7 = identity, p, is a lowest weight vector.
(b) 7y < myin WEDWEL) & p, | X (g, H[P) #0.
Now (b) takes the explicit form as follows: Let =€ W(H)/ W(P,) ~ I(r) and

=@ =(p .- i) € I,(r). Then if P, () € I,(r) denotes a Pliicker coordinate
as above, we have

Pyl XCr, HIP) # 0= () <@
We see that the set

{x € HP.\P(y—r+1,...,m) (x) # 0}
is the big cell in H/P,. We call the set

{x€ HP,|pq,..,r (x) # 0}

the opposite big cell in H|P,.

2. Determinantal varieties and Grassmannians (Hochster [9]; Musili [19])

We keep the basic notations of section 1. Let M,, , denote the set of (m X r) matrices
with entries in K, m>r. Let V'be as in section 1 i.e. an m-dimensional vector space
over K with a standard basis ey, .., €y, such that its elements are denoted by column
vectors ete. Let Z=(Zy, .. Z) € Mp,r Zi being the ith column of Z. Then
we can identify Z; with an element of V. Let p, be the mapping

I d
PI:Mm,r")AVaZ""Z]_A.--- AZ,.

Letp(y, (i) = (izs -+ i) € In(1) be as in section 1 the canonical dual basis in the dual

;
of A V (Pliicker coordinates). We see that

=( )(2) = {determinant of the (r-x ) minor of Z formed by
96 = PGy 0 Pu = 9 the rows corresponding to the indices iy, ..., &
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Multlphcatmn by an (m X m) matrix (resp. (rXr) matrix) on the left (resp. on the right)
gives a left (resp. right) action of GL(m) (resp. GL(r)) on M,,, We see that p, is

GL(m) equivariant. Let M , denote the subset of M, . formed by matrices of
rank r. Then g, induces a surJectlve morphism

ot M - H|P, (H/P, as in section 1)

and in fact the Grassmannian H /P, is the orbit space M JGL(r). We see that the
inverse image by s of the opposite big cell in H, [P, is the following set

ze M;z,r‘q(l, ar) &) # 0}’

From this it is immediate that the restriction of @, to the following subset of M
i.e.

14, Id, = rXr identity matrix
Y] \YeMu_y,,

is an isomorphism onto the opposite big cell in H/P.,.

Letm =n+randn>r. Letvbe the closed immersion

v M h>Mn+r,

defined by
Id 0 1
XeEMy, X~ (JX) J= .1 (n X n matrix).
I+ 0
We note that w(M,, ) M; . and that p, o » is an isomorphism of M, » on to the

opposite big cell in H/P,.

Definition 2.1. (i) Let (i) = (iy, ..., i) and (j) = i+ Je) be two sets of inte-
gers. We write (i) < (j)if s > f and h <jok <t ie.

< /i

If we have pairs of sets of integers ((), (j)) and ((z)’ N = ..., 1), @)=
(G z D D =Cpoes 7 G =0, .. ,Jt,), we write ((l) ) <@ )
if (@) <(z) and () < (j).
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(11) I’et (l) = (il’ LR ] ik) E In(k): (]) =(j1a se 0y Jk) E Ir(k) Wlth O < k < r (1f k = 0: (l)
and (j) are supposed to be empty). We denote by Py, () - Mn, ,— K the function
defined by Z - p;) (j) (Z) where

determinant of the (k x k) minor of Z formed by the rows
P n(Z) = { and columns corresponding to the indices in (i) and
@, ()
(j) respectively. If k =0, p;y () = 1.

Definition2.2. Let (3) = Oy . -» ) € W(H)W(P,) = L,(r) where L") ={ (... .1) |
1< <lp<... <ip <m}.

We call the pair (o), (8) (tesp. (), N)s () € LK), (B) € LK), 0 < kb <7 (resp.

Q) eIk), (DELKE), 0K <) defined below, as the canonical pair (resp. the
canonical dual pair) associated to (A):

Firstly the integers k and k' are defined by
Ak < n, Ak’*‘l > n:
Mekt <1y Ap—k/+1 > 1 (recall that m = n+r). Now set

(&)= (A A

(B) = complement of (m-+1—2Xgy), (M+1—Xug), .-, (m+1—2) in (1,...,7)
arranged in the ascending order.

() = m+1—X—p+1), (m+1—2A— K42 «- .5 (m+1—2,) arranged in the ascend-
! ing order.

(j) = complement of (Ay, ..., Ar— &) in(, ..., r) arranged in the ascending order.

y Note: (i) k (resp. k) is = 0 means that (a) and (B) (resp. (i) and (j)) are empty.
(i) when r = n, we have k¥’ = n—k and
(B) = complement of (i, .. -5 fp-p) i (I, .-, n) arranged in the increasing
order.
() = complement of (jy, - - Ju-i) I (, ..., n) arranged in the increasing
order.
Lemma 2.1. (i) Let (A) € L(r). Then if gyy: Myr, r > K is the function defined
by: Ze M, 90 (Z) = determinant of the (rxr) minor of Z formed by rows
w corresponding to the indices A, ..., A,, we have

a°¥ =P, () °

- where ((i), (j)) is the canonical dual pair associated to (}).
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(i) Let (3), (A € L,(r) and ((a), (B)) (resp. (@), (GN), (0> (BY) (zesp. (GY> ()))
the canonical pairs (resp. canonical dual pairs) associated respectively to (A), ().

Th.en we have a b.ijective map @ (resp. ¢") of W(H)/W(P,) on to the set of canonical
pairs (resp. canonical dual pairs) given by

(M) = (o), (B)) (resp. @’ (V) = (D), ().
Further

(@), BN < (9, B = ) <Y

resp. ((©), U < (@Y, (D) = ' < V).

i.e., @ (resp. ¢’) is order preserving (resp. order reversing).

Proof. (i) Let W € My, , be the element defined by

0 1
1
1
1 0

W= (Y) YE My p, Jy —

J, (r X r matrix).

’ o We claim that we have the following:

P * {Let (N =@ ..., A) € I.(r); then (W) = £ 1), @ (Y), where

(@), (B)) is the canonical pair associated to () (cf. Definition 2.2 above).

The relation (*) states that the determinant of the minor of W formed by the rows

corresponding to the indices of (}) is equal to the determinant (upto sign) of the minor

of Y formed by the rows and columns corresponding to the indices in («) and (8)

respectively. We leave the verification of (*) as an exercise.

0 1
1 .

Letusset Y=J;, Z,J; = (n X n matrix). We see'that
1 0
I 0 L\ [¥Y\ [0 J, O--l'l
= > = 1 (m X m matrix)
VA J, 0 A J, 0 1 0
. (I\. ) Y .
so that the matrix ( Z) is obtained from ( J) by changing the /th row to the
SHHE 2 . . ‘
' ‘ (n+r+1—Dth row, 1 <! < n+r. Thus (¥) and this observation prove (i).

The assertion (ii) is left as an. easy exercise.

Definition 2.3. (i) Let Ry, , denote the polynomial algebra over K formed by nr
indeterminates so that Mp, , is the set of K-valued points of Spec Ry, » and we refer
to Ry,  as the coordinate ring of My, . Let A, denote the ideal (called a determinantal
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ideal) in Rn’ , generated by Py, Gy (cf. Def. 2.1 for the definition of P, (j)) such that
the number of indices in (i) (= that of (j)) is > k or equivalently '

@, ... k), (4, ..., &) & (), G
We denote by D, the zero set (in My, ,) of the ideal A,; Dy is called a determinantal
variety (we shall see that D, is a variety). We see that Dy is defined by the vanishing
of all (d X d) minors, d >k + 1.
(i) We call an element in R, , of the form
Pay, iy Pay, Gy Pay.Gy...
a standard monomial in R, , if
(@, M) <@ M) <O W) -
@B <6 <6"..
ie.
NSO <G -

The number of p(i)’ ) in this expression is called the Jength of this standard mono-
mial.

Theorem 2.1. 'We keep the notations above as well as the basic notations of section 1.

Then we have the following:

(i) We have a canonical identification of W(H)/W(P,) = L,(r) with the set of pairs
of elements of the form ((«), (B)) (xesp. (), ()

(o) € I(k), B) € I(k), Ok
(resp. (i) € Ik, () € L(k"), 0 k' <r) (recall m=n 7).

In fact if 7= =, ..., &) € W(H)/W(P,), then the pair ((«), (B)) (resp. (), ( )
is the canonical pair (tesp. canonical dual pair) associated to = (¢f. Def. 2.2). This
identification preserves (resp. reverses) the partial orders.

(i) For =€ W(H)|W(P,), let D(z) = D(({), (j)) denote the subvariety of M,,,
obtained as the intersection of X(r, H/P,) with the opposite big cell in H/P,, identified
with M, , as above, ((i), (j)) being the canonical dual pair associated to 7. Then the
ideal I(D(7)) of the subvariety D(r) of M,,, is the ideal in R, , generated by

{Pay,ay b @ O £ (@', O

In particular, the ‘determinantal ideal A, =I(D((), (), @) =) =(1,...,k),isa
prime ideal in R, , and D, =D ((1, ..., k), (1, ..., k)) is a variety.
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(iii) Let R(7) = R((), (j)) be the coordinate ring of the subvariety D(r) = D((i), (/))
of M, , (as in (ii) above) so that

R(r) = R,, . [I(D(r)).

Then distinct standard monomials of the form

Pay, Gy Pay, Gy Pay, Gy -
(@, ) <@ (1)) <@ (J)")

form a basis of (the underlying vector space of) R(r). In particular R(7), where the
canonical dual pair associated to = is ((1, ... k), (1, ... k)), has a basis formed of
distinct standard monomials

p(i)', Gy p(i)”’ Gy

such that the number of indices in ()’ (and hence in (jY, ()", ()" ... etc.) is < k.
Proof. The assertion (i) is just a restatement of Lemma 2.1 above and the identifica-
tion of W(H)|W(P,) mentioned at the end of section 1.

One knows (cf- section 1) that the weight vectors of HYH/P,, L.) (L,—the ample
generator of Pic H/P,) can be indexed by p,, 7 € W(H)/W(P,), such that the restric-
tion of p_to X(p, W(H)/W(P,)), P € W(H)|W(P,) is zero if and only if 7 £ p (¢f-
section 1). We call a standard monomial of (length I) in {p,r} an expression of the
following form

PrPppe Prp I ZT = 2T

Let A be the homogeneous coordinate ring of H/P, with respect to its canonical im-
¥
bedding in P (A V). We have

A= Z}io H°(H/P,, LY.

Then the basic theorem of the Hodge-Young theory on Grassmannians (Hodge and
Pedoe [12]; Musili [18]; Seshadri [22]) states that distinct standard monomials form
a basis of 4 (as a vector space). Recall that f= pa, ..., ry is a lowest weight vector,
so that the set

U={x¢€HP,|fx) # 0}

is the opposite big cell in H/P,. Let A denote the ‘ homogeneous localisation *
of A with respect to £, i.e. Ay is the subring of 4, (localisation of 4 with respect to
f) generated by the elements {p_/f}, + € W(H)/W(P,). Let us call a standard
monomial in Ay an element which is either 1 or an expression of the form

b B P

rr f,71>72>...>7'1,pn;&f; Ii<
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We claim that distinct standard monomials in A, form a basis of Ay. It
suffices to prove that they are linearly independent. To prove this we observe that
if 0 is a standard monomial in 4, then 87" is also a standard monomial in 4, since
f=npq, ) and (1, ..., r) identified with an element of W(H)/W(P,) is the least
element in W(H)/W(P,). Hence, if we have a linear combination of distinct standard
monomials in 4y, multiplying it by a suitable power of f, makes it a linear combi-
nation of distinct standard monomials in 4 and from this it is immediate that distinct
standard monomials in 4, are linearly independent.

We have a canonical identification of My, , with the opposite big cell U in H/P,
and U = Spec A;. Hence we have a canonical identification of A(s with the
coordinate ring Ry,  of My, . In this identification, we see that p_ identifies with
+ P@), 4y € Ry, r, where ((0), (/) is the canonical dual pair associated to 7 (cf. Def. 2.2
and Lemma 2.1). Thus this identification, together with the fact that distinct stan-
dard monomials in 4s form a basis, proves the assertion (iii) of the above theorem
for the case D(v) = M, ,. The Hodge-Young theory implies in fact (Hodge [11];
Hodge and Pedoe [12]; Musili [18]) that in the homogeneous coordinate ring of the
Schubert variety X(r, W(H)/W(P,)), = € W(H)[W(P,), distinct standard monomials
of the form

Dy o Prp T =T

1

form a basis and that the homogeneous ideal of X(r, W(H)/ W{(P,)) is generated by
{p, }, a7 From these the remaining claims in (iii) as well as (ii) follow easily.

This proves the theorem.

Remark 2.1. We have deduced the above theorem as a consequence of the Hodge-
Young theory on Grassmannians (Hodge and Pedoe [12]; Musili [18]; Seshadri
[22]). We see in fact that the above theorem is essentially equivalent to the Hodge-
Young theory on Grassmannians i.e. conversely we can deduce the Hodge-Young
theory on Grassmannians from the above theorem. For example, in the proof of
the theorem, we should have noted that we have in fact:

Distinct Standard monomials in 4 form a basis &=

Distinct Standard monomials in A, form a basis.

The assertion (iii) of the above theorem for the case D(r)=M,y, » is proved in Doubilet-
Rota-Stein (Doubilet et al [7]) and the couples

@, 0N <@M) <.

which figure in the definition of a standard monomial in Ry, » (¢f. Definition 2.1)
are called by them °double standard tableaux’ generalizing the usual Young’s
notion of a standard tableau.

P. (A)—2
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3. Some basic facts about the symplectic and special orthogonal groups.

We keep the basic notations of sections 1 and 2. Hereafter we take m = 2n so that
H = SL(2n).

Let E,, E, denote the (2n X 2n) matrices

0 1
E1=(__3 ‘é), Ezz(g, é),J:( Ll )(anmatrix).

1 0
We set
G, = Sp(2n) = {A € SL(2n) (or GL(2n))] *AE.A = E;}
Gy = SO(Q2n) = { A € SL(22n)|*AE,A = E,}, char K # 2.
We see that |

‘AE,A = E, &= A = E;t (4) E, (note ' = — E))
tAE,A = Ey &% A = E, (‘A)"L E, (note B, = Ey™).

Let oy, o, denote the involutory automorphisms in GL(2n) (as well as their restrictions
to SL(2n)) defined by '

o)(4) = E; CAE, oy(4) = E, (CA4)-! E,.

We see that
Gy, = SL(2n)?: = GL(2n)?:
G, = SL(2n)72 = GL(2n)7: N SL(2n)

ie., G, is the fixed point set in SL(2n), under oy, i = 1, 2. Ttis easily checked that
the groups Ty, T(H) and B(H) are stable under o;, i = 1,2. We set

T(H)o: = T(G), BH)?: = B(G,), i =1, 2.

One knows that T'(G,) is a maximal torus in G; and that B(G)) is a Borel subgroup in
G, i=1,2. We see that 7(G,) has the following form:

T =T} =T(G) =T(Gy = t,~!
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Let Lie G, denote the Lie algebra of G,(i=1, 2). We see that

Lie G, = {A€ My, | E, ™! "AE, + 4 = 0}.

Lie G, = {AE My, | E, "AE; + 4 =0}.
The adjoint representation of G; on L(G)) is given by

g€ G, Ac Lie G;, thengo 4 =g Agt
We set, fori =1, 2

(i) N(T(G;) = normaliser of T(G,) in G,
(i) WA(G) = NT(G)T(GY)-
(i) (@) X, (T(Gy)) = Hom (T(G)), Gm).

(b) X(T(G)) = X(T(G)) ®z R.

- We note that the following hold:

L  NIG)cNIH),i=1,2

This is a consequence of the fact that if D € GL(2n) is a diagonal matrix with distinct
diagonal elements, then for 4 € SL(2n)

ADA- is diagonal = 4 € N(T(H)).
. N(T(H)) is stable under o, and
NT(G)) = NITH)’ !, i=1,2
IIL. The canonical map
- NT(GYIT(G)~N(TH)/TH) (¢ =1, 2)

is an inclusion i.e. the Weyl group WAG)) of G, (i =1, 2) can be identified canoni-
cally as a subgroup of the Weyl group of H. '

IV. The involution o, induces an involution on W(H) since o, leaves N(T(H))
stable as well as the subgroup T((H) and this induced involution on W(H) is the same
fori=1,2. Let us denote by o this induced involution on W(H). It is checked
easily that if w = (ay,. . ., @) € W(H), then _—

o(W) = (Cpse - -5 Can)s € = 2”+1—azn+1~i'
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Let us denote by o the permutation i.e. the element of Sy, defined by
(@) =2n+1—i,1 < i < 2n
Then we have
o(w) = o wo (¢ = o-1), so that
weE(WH))Y —w=0owgy
= ar = 2t 1—agyg-

One sees that

(a) WA(G,) = (W(H))? ie. if w = (ay,....050) € W(H), then w € W(Gpi—
ay=2n-+1—asy+1-4"

(b) W(Gy) = {w e (W(H))e = W(G,)/w is an even permutation in W(H)}.

V. The canonical involution on X(Ty,) (resp. Xo(Tan), Xo(H), X(H)) is independent

of i = 1, 2 and we denote this by o. With respect to the canonical basis { e,-}, 1<i<2n,
of X(T,,) (section 1), o takes the form

O € = — €gpt1~1» 1< i < 2}’1.

Recall that we have identified X(Z'(H)) as the subspace of X(T,,), spanned by e;,—¢;
(section 1). We have a canonical surjective linear map

P : X(Tp) > X(T(GY) = X (T(Gy)-
We see that
© () = —P(egpi1-1)s 1 <P < 2n.

We have then the following properties:

(a) o leaves R(H) (resp. R+(H)) stable (identifying R(H) with e;—¢;, i# j)

(b) a, B € R(H), then

p(@=pp) &= a=0()
(c) p is equivariant for the canonical actions of WA(G,) on X(T3,) and X(T(Gy).

(d) the elements of R(H) which are fixed by o are

H(e—egpiy 1)y 1P



Geometry of G[P—II 21

From these considerations, as well as the explicit nature of the adjoint representation
of G, on Lie G,, i = 1, 2, we deduce that

(€) R(Gy) (resp. R*(Gy)) = p(R(H)) (resp. p (R*(H)))
R(Gy) (resp. R*(Gy) = p (R(H) — R(H)?) (resp. p R+(H) — (R* (H))?)

where R(G,) (resp. R+(G,)) denotes the set of roots (resp. positive roots) of G, with
respect to T(G)) and B(G), i = 1, 2. We can state this relation as saying that R(G,)
(resp. R+(G,)) can be identified with the orbit space R(H) (resp. R+(H )) modulo the
action of o and that R(G,) (resp. R+(Gy)) can be identified with the orbit space under
o of R(H) (resp. R+ (H)) minus the fixed point set under . We see now that R+(G)
can be identified through ¢ with the following subsets of X(T},):

€€, 1<1<J<n

.R+(G1)= €i+€j’ 1<i<j<n
251 1<i<n

+ — Gi"‘_ﬁj, 1<i<j <n

R(Ga) {ei—%—ej, 1<i<j<n

The canonical action of W(G;) on R(Gy) can then be written explicitly as follows:

w(e;—€;) = Na;— gy
W={(ay, ..., dan)y 3 W(&;+€) = 1a;,7F g,
W(2€i) - Zﬁai

where

m=e, | <IN 7 = — €gpy-15 n+1<<i<< 2n.

The explicit description of the canonical action of W(G,) on R(G,) follows from above,
since W(G,) € W(G,) and R(G,) C R(Gy).

VI. Recall (section 1) that we have denoted by {s,}, 1< i < 2n—1, the simple reflec-
tions in H, ie. {s,} are the reflections with respect to the simple roots e;— e,
1< i< 2n—1, so that s; is the transposition (i, i+1). One sees easily that the simple
roots in R(G,) and R(G,) (with the identification as subsets of X(T5,) as above) are
given as follows:

€— €2, €g— €35 v o5 €4y —€pny 2€, iN R(Gy)
€1~ €y, €37 €gy o1y Ey—1 —€py Gn_1+€" in R(Gz).

Let us denote by {8, }1<7<n the simple refiections in W(Gy) as well as W(Gy); to be
more precise, set:

0, = reflection with respect to e,—e;1q, 1<Ii<nH—
e 1Y) I 2€n9 i=n

1 in w@
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9, = reflection with respect to €;—€i+1 1.< i< n——l% in W(G,).
€yt €y 1==T0

- 2 »”

-

It is an easy exercise to deduce the following (Bourbaki [2], P- 53).

@) 6, “'S”’(Siﬂg 1<i<n—1 in WGy and W(Gy)

= 8 Sopi

(b) 8,=s, 0 W(Gy) (s»=° (sw)
= product of the transpositions: (7—1, n-+1) (n, n+2) or in W(Gy)
equal tO S,_1 Su Sn-1 Sn Sni1 Sn o

Definition 3.1. (i) Let w € W(G,) (resp. W(G2)- Then we denote by I(w, W(G,))
(resp. I (w, W(G,)), the length of w in W(G,) (resp. W(Gy))ie. the length of a reduced
decomposition of w with respect to the simple reflections {6,} in W(GY (resp.
W(Gy)). Since W(G;)c W(H), 1= 1, 2, we denote by I(w,W(H)) the length of

w in W(H).
(if) Forw = (g «++s B2n) € W(H), we set
mw) = = {I|i<n w(i) = a; > n}

Lemma 3.1. Anelementw € W(G,) is in W (G,) if and only if m(w) is even i.e.

W(Gy) = {w|wE W(H), w is o -invariant and m(w) is even}.

Proof. We leave this as an exercise.
Proposition 3.1. We have the following
() I(w, W(H)) =2l (w, W(Gy) — m(w), w € W(Gy)
(i) 10w, W(H)) =21 (w, W(Gp))+m(w), W € W(Gy). :
Proof. This is an easy consequence of the fact given in V(e) above, namely that

R(G,) (resp. R(Gy)) can be ‘dentified with the orbit space of R(H) (resp. R(H)—
R(H)”) under the action of o etc. For wasin the proposition, we set

Stw, G) = {BE RHG) [ w(B) < 0} i = Lo 2.
S, H) = {B € R¥(H) |w () < 0.
We have |
S g, WHY) = £ SOw, H), Iw, W(G)) = £ Sw, G, =12
Consider the canonical map,_ | -

o X > XIG) = XA(G) (. V above). -
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Then ¢ induces surjective maps

© : R(H)— R(Gy) (resp. ¢ : R(H)—R(H)? - R(Gy)).
The mapping ¢ has the property:

« € R(H), then o > 0 &= ¢ (o) > 0.
From this we see that ¢ induces a surjective map

o : S(w, H) > S(w, Gy)

(resp. o : S(w, H)—S(w, H)? — S(w, Gy)).
We see easily that o leaves S(w, H) stable. Besides,

(Stw, H))? = {afa = —e€gpy0 L <i<<nand w(a) < 0in R(H)}.
Now if @ = €, — €gn,q_1» then w(a) = eg; — €aypy, - HEDCE

w(a) < 0in R(H) &= donyys <Gis L S

But ay,4y_; = 2n-+1—a, since w € W(G,) (¢f- IV above).

Thus
W) <0 2n+1<2a,1<i<n
ien<a, 1<K<ig<n
so that
+# (S(w, H))® = m(w) (¢f. (i), Definition 3.1.
We see that

£ S(w, H) =2( S(w; G) — # (Sw, H))”.
(resp. 2 (F S, Go)) + F (SO, H)°)-

The proposition is now an immediate consequence.

For w € W(H), we denote by C(w, H/B(H)) the Schubert cell in H|B(H) defined by
W i.e., the subset B(H)w epy) in H/B(H). If w € W(G,) (resp. W(Gy)), we denote by
C(w, G/ B(G))) (resp. C(w, Gy/ B(Gy))) the Schubert cell in Gy/B(G,) (resp. Gy/B(Ga)),
Lemma 3.2. For we W(G) (i =1, 2), the Schubert cell C(w, H/B(H)) is stable

under o, and we have

C(w, H/B(H))?* = C(w, G/B@G). ~
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Proof. The fact that C(w, H/B(H)) is stable under o; (I = 1, 2) is immediate. Let
B(H)* denote the unipotent part of B(H). Let B; denote the isotropy subgroup of

B(H)" at we C(w, H/B(H)). Then since o,(w) = w, we see that o; leaves B, stable.
We have

*) BHy= 1 Uy, Uy = G,
a € R (H)

U, being the 1-dimensional subgroup of B(H)* canonically associated to a € R+(H)-
We see that

B1 = 11 U,
a & RT(H),
w(a) >0

Let

B,

Il

n U,
o e RY(H),
wl@<0

By the ‘uniqueness’ of the decomposition (*¥) (Chevalley [4]), we see that o;

leaves B, stable. Now if x€ C(w, H/B(H)), ithasa representation x=>bw, b € By, b
unique. Hence oy(%)=% is equivalent to o;(b)="b and the lemma follows.

4. The varieties G/Q, G of type C, or D, and O the maximal parabolic subgroup
associated to a right end root

_ As in section 1, let P, denote the maximal parabolic subgroup in H, H= SL(2n)
associated to the simple root a,=e€,— €u43- Then P, is of the form

(5 o)

We see that the involutions oy, op leave P, stable (the other maximal parabolic
subgroups of H are not left stable by o, in fact o;(P,) (resp. o2 (P)) =i(Py), i as in

section 1), so that o; induces canonical involutions (denoted by the same ;) on
H|P,, i=1,2.

Let Z be the subgroup of H of the form

7 { Id, 0 ) Id, = (nxn) identity matrix
Y Id,]/ Y€ M, (spaceof nXn matrices)

The canonical morphism H - H[P, induces a canonical morphism
1 Z— HIP,.

It is now easy to check the following:
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(i) ¢ is an open immersion and ¢ (Z) identifies with the opposite big cell in. H|P,.
We see also that if we identify Z canonically with the following subset of M. o,

2wl verd

then ZC M ;n " (notation of section 2) and the morphism Z - H|P, induced by the

canonical morphism gy @ M, ;n 0 H/P, coincides with the morphism i above.

) 4, 0\ _(I4, O
. o\y 14,) " \J'VW I4,

d, 0\ _ (4, 0
°\y 1) \—J'Y I4,

In particular, the involution oi =1, 2) leaves stable Z and the opposite big cell y(Z)
in H/P,. Further

b § (T 0\|YEM,
z2=\y m)l7yr=x§’
o ([T O\|YEM,
2= \y m@)l-7'7=y§

If we set Y = JX, then we have
(@) JTYJ = YES ' X=X
b)) =T Y=Y X =—X.

Thus if we identify Z or M, with the opposite big cell in H/P, by the mapping M,~H|P,
defined by

0

XEM,,,X—-M/:(%} Py

) c H/P,

we see that the set of fixed points of the opposite big cell in H/P, under o (resp. o)
can be identified with the set of symmetric (resp. skew-symmetric) matrices in M,.

We see immediately that
gt t 0 J\(Id) _
Y =J'YJ &= (14, Y)(_J 0)(1’ =0

e 0 \[Id) _
Y = — J VYT &= (Idy Y)(J 0)(1')“0'
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Thus the condition that ¥ =J *YJ (resp. Y =— J * YJ) means that the #-dimensional
linear subspace of the 2n-dimensional linear space ¥, represented by the following
point of H/P,, namely

the n-dimensional linear subspace spanned by the

i (I;" 1?] ) = < columns of (Ig") € M,,, , the columns representing points

of V endowed with its standard basis e, ... ., €5, (section 2)

is a maximal fotally isotropic subspace for the skew-symmetric (resp. symmetric) form
on V represented by E, (resp. E;). One knows that the set of points in H/P,, re-
presented by maximal totally isotropic subspaces with respect to E;, is a closed
subvariety isomorphic to G;/Q, where @ is the maximal parabolic subgroup
corresponding to the ‘ right end root * in the Dynkm diagram of G, (i.e. the root 2¢,).
Further we note that

dim Gy/@ =

n(n;— 1)( == dimension of the set of (n X n) symmetric matrices)

This dimension can be calculated, for example, by noting that

dim Gy/Q = # R+(Gy) — 3£ R+(Q,) R+(Q,) denotes the set of positive
roots of the sem1-s1mp1e part Q, of Q; note that @y is of
type A, ;).

Similarly, one knows that the set of points in H/P,, represented by maximal totally
isotropic subspaces with respect to E,, is a union of two closed subvarieties, each
of which is isomorphic to G,/ Q, O being a maximal parabolic subgroup in Q corres-
ponding to one of the right end roots in the Dynkin diagram of G, (i.e. the roots
€1—¢, and ¢, ;+¢,). Further

. n(n—1 dimension of the set of (nxn) skew-symmetric
dim Gy/Q = ( ) - matrices. ( ) Y

From these facts, we conclude easily the following:

Let Sym M, (resp. Sk M,;) denote the set of symmetric (resp. skew-symmetric) in
the set M, of (nxXn) matrices. Let Ao and A denote the morphisms

Ao : M, —~ HIP,
A : Sym M, > H/P, (vesp. Sk M, - H/P,)
defined by

H, 0
XeM, X[—-—)v,[:(J ~ Id)’

X € Sym M, (resp. San’Xl"”)(J Id)' -
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Then the image of A is an open subvariety of the closed subvariety G,/Q (resp.
G,/ Q) of H|P,, O being the maximal parabolic in G, corresponding to the right end
root (resp. to a right end root of Gy).

Recall that for (A) = (Ay, - - -5 A) € I, (n), we had denoted by Poy the © Plicker

coordinate > associated to (X) and it is an element of H°(H/P,, L,), L, being the ample
generator of Pic H/P,. If we take the canonical order preserving isomorphism I,, (n)
~ W(H)/W(P,), we have seen (section 1) that if 7 = (X) € W(H)/W(P,), then

Py =Py ="7-Pq,..,nr

Let ((i), (j)) be the canonical dual pair associated to (X) (¢f. Def. 2.2). Then we have
seen (¢f. Lemma 2.1 and proof of Th. 2.1) that the restriction of Poy to M, (identified

as the opposite big cell of H/P, through A,) or to be more precise
Pwy [f(f = pa,..., n)), can be identified with the function P@), Gy O% M, (¢f. Def. 2.1).

Then we set the following:
(i) L', = restriction of the line bundle L, on H/P, to G4/Q (resp. Go/Q)

(i) 'y for (\) € Ly,(n), is the restriction of Py to G,/ Q (resp. Gy/ @), so that p’()\)
is a section of the line bundle L',

(i) p'(,, ;) 18 the restriction of p,, (;, t0 Sym M, (resp. Sk M,).

(iv) f =a lowest weight vector in H °(H|P,, L,) and f = the restriction of f " to
Gy/Q (tesp. G,/ Q)

Then we have the following:

(i) The section _p’(,\) € H(G1/Q, L), (N € L(n) is non-zero. This happens
because the restriction of p'm to Sym M, (identified as an open subset of G,/C
through A)is p’;) (5 ((0), (j)) being the canonical dual pair associated to (X) and
Py # 0. Since f is a lowest weight vector in H°(H/P,, L,), the one dimensional
space spanned by fis B(H) stable, where B(H)™ is the Borel subgroup of H opposite to
B(H) (consisting of the lower triangular matrices in H). One sees that B(H) is
stable under o and that (B(H Y)°* = B(H)™ N G, is a Borel subgroup in Gy and one
concludes easily that B(H)" N G, is in fact the Borel subgroup B(G,)", opposite to
B(G,). We see then that f’ is a lowest weight vector in H°(G,/Q,L,"). The weight
of fis —(g+...+¢,). Hence the weight of f* is also —(e+...+¢,) (identifying
X(T(Gy)) canonically as a subspace of X(T,,)). We see that
T et = (Wo)g, (@)

where w, is the fundamental weight associated to the right end root ie. {wyy 26,8
=1 and (wo)G1 is the element of W(G;) of largest length ‘[Bourbak'i [2]; note that

(W)g, = —1 on X(T(Gy)]. Thus we concliide that the “highest weight vector in
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H°(G1/Q, L',) has weight w,. We see then that ', is the ample generator of Pic G,/Q
so that H°(Gy/Q, L',) is the fundamental representation with highest weight w,=i(w,).
Since Sym M, is precisely the set of points where /' does not vanish, we see that
Sym M, can be identified (through A) with the opposite big cell in G,/Q,

(i) Let p’(}\) € H(Gy/L,) and p',, ., the restriction of p'()\) to Sk M,. Suppose i
that (i) =(j). Then we have qzmzp'm,m’ where

g Sk M,~K

is the function obtained by taking the Pfaffian of the minor with rows and columns
corresponding to the indices in (7). If (i) € L,(r), then g, =0 if ris oddand g, # 0
ifriseven. We see again, as for the case of G; above, that f” is a lowest weight vector
in H°(Gy/Q, L',) and that its weight is

—“(€1+ coote) = —2(1)",

where , is the fundamental weight associated to the right end root €,-;+e¢, Hence
the highest weight of H°(G,/Q, L',) is 2i(w,). From these considerations, we con-
clude easily the following:

(i) Let F be the ample generator of Pic G,/Q. Then F?2 =1/,.

(i) Let p'oy € H (Gy/Q, L',) such that if ((i), (j)) is the canonmical dual pair
associated to (A), then (i) = (j). If (i) € L(r), then q,,, = 0if r is odd, and if 7 is even,
we have a well-determined element 8 € H°(G,/Q, F) such that gz(A) =p 0y

(i) the highest weight of H°(G,/@, F) is i(w,) so that Q is the maximal parabolic
subgroup associated to the right end root (e,-;+ €,). V : 5

(iv) Sk M, is the opposite big cell in G,/ Q.

Note that i(w,) = v, if nis even and i(w,) = w,-; if nis odd, ,-, being the funda-
mental weight associated to the right end root (e,-;—e¢,).

Let us denote by W(Q) the Weyl group of the maximal parabolic subgroup @ of
G, (resp. G,), O being as above. We claim that

W(Q) = W(G) N W(P,) (resp. W(Gy) N W(P,)).
In fact W(Q) is the subgroup of W(Gy) (resp. W(Gy) which fixes the point e(Q) :

in G/ Q (resp. G,/ Q), e(Q) being the point associated to the class Q. Now under the |
canonical immersion |

Gl/Q (resp' G2/Q) > H/Piu
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e(Q) goes to the point e(P,) and W(P,) is the subgroup of W(H) which fixes

e(P,) (e(P,) is the canonical image of elAl.l.. Ae, in P(A V). Thus W(Q)
= W(H) N W(G)) (resp. W(H) N W(Gy)) and we get a canonical inclusion map

W(G)|W(Q) > W(H)[W(P,) (tesp. W(Gy)[W(Q) ‘— W(H)|W(P,)).
We have thén

Lemma 4.1. (i) Let w€ W(H)/W(P,) and w,, w, be respectively the minimal and
maximal representatives in W(H) of w (section 1). Suppose that w € W(Gy)/W(Q)
(resp. WA(Gy)/W(Q)). Then wy, wy are in W(Gy) (resp. W(G,)) and are in fact,
respectively the minimal and maximal representatives in W(G,) (resp. W(Gyp)) of w.

(i) Let us identify W(H)/W(P,) canonically with I,,(n) (order preserving isomor-
phism, section 1). Let () € Ly(n) and ((2), (8)) (resp. (i), (7)) be the canonical pair
(resp. the canonical dual pair) associated to (). Then we have

@) (o) € I(r), (B) € L(r) (resp. () € I(s), (J) € I(s)), r+s=n (the number of
indices in («) and (B) are the same and similarly for (i) and (j)).

(®) (N) € W(G))| W (@)= (a) = (B), (resp. (i) = (j)), so that we have a canonical
bijection: W(G)/W(Q~ U L.
‘ O<r<n

© () € W(G)/W(Q)4—=(a) = (B), and (n—r) is

even, r being the integer such that (o) € ,(r) (resp. (i) = (/) and s is even where s is
the integer such that (i) € I,(s)).

(d) (N € W(G))/W(Q) = (j) is the complement of (¢) in (1, 2, ..., n).
(¢) the mapping () |—— ((«), («)), ((B), (B)) defines an injection
p: W(H)[W(P,) — W(G)|W(Q) x W(G)[W(Q)

and the image of ¢ can be identified with the set of elements (w;, wp) such that m(w,)
= m(w,) (cf. Def. 3.1).

(iii) Let w € W(Gy)/W(Q) (resp. W(Gy)/W(Q)) and w == (iy, ..., 1,) € I,(r) (canonical
representation as in (ii) above) Then we have

r 41
o GO = Y it D=

(tesp. 1 (w, W(Gy)/W(Q)) = Z.—.l by n(r—r)—p(n-+ ).
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(1v)  Let wy, wy € W(G)/W(Q) (resp. W(Gy)/Q) and

Wi =) =G .-, &) € L(r) and wy = (j) =(jy, ..., i) € L(s)
(representations as in (ii) .above). Then

Wy Swp in W(GY)/WA(Q) (resp. WI(G,) W(Q)E=5(1) < (J) (of. Def. 2.1)
=Wy << wy in W(H)[WAP,).

(V) Let w € W(Gy)|W(Q) (tesp. W(G,)/W(Q)). Then

X(w, Gi/Q) = X(w, H[P,) N G,/Q

(resp. X(w, Gy/ Q) = X(w, H|P,) N G,/ Q).
Proof: (i) Since w, is the maximal representative in W(H) of w, X(w,, H/B(H)) is
the inverse image of X(w, H/P,) under the canonical morphism H/B(H)~ H/P,. We
have seen that the involution o; (i =1, 2) on H|B(H) goes down to an involution (de-
noted by the same o,) on H/P,. Hence the morphism H/B(H)- H/P, is equivariant
for ¢;. Since w € W(G,)/W(Q) (resp. WA(Gy)/W(Q)), X (w,H|P,) is stable under the
involution under o; and it follows that X (we, H/B(H)) is stable under ;. This implies
that w, € W(Gy) (resp. WA(G,). We see also that Wy is a representative in W{(G,)
(resp. W(Gy)) of we W(G,)/W(Q) (resp. WA(G,)/W(Q)). Since wy is a minimal re-
presentative in W(H) of w, as we mentioned in section 1, we have

Wy = wl' WD(P n)s
where w(P,) is the element of largest length in W(P,). We claim now that wolPy)
€ W(Gy) (resp. W(Gy)) and is in fact equal to wo(@), which is the element of largest
- lengthin W(Q). To prove the claim, it suffices to show that wo( @), which is afortiori

in W(P,), is of maximal length in W(P,). This is now an easy consequence of Prop.

3.1. We observe first that m(w,(Q)) =0 (notation as in Prop. 3.1). Then Prop.
3.1. shows that ’

Iwo(Q), W(H)) = 2(wy(@), W(Gy)), i =1, 2.
One knows that
Iw(@), W(G)) =dim Q,/B(Q) (i =1, 2),
(B(@) =a Borel subgroup in Q).
It is easy to check that
dim P,/B(P,) =2 dim Q,/B(Q) (i =1, 2)

(B(P,) = a Borel subgroup in P,).

A
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It follows then that

lwy(Q), W(H)) = dim P,/B(P,).

This implies that wy(Q) is the element of maximal length in W(P,) and the above
claim that wy(P,) = wy(Q) follows. Thus we have

Wy = wy. wy(Q).

This relation implies in particular that w, € W(G,) (resp. W(G,)) and 1s a
representative of w. Since w,, w, are respectively the minimal and maximal
representatives in W(H) of w, as mentioned in section 1, we have

I(wy, H|B(H)) = I(wy, H/B(H))~+1(wy(Q), H/B(H)).

It is easy to check that m(w,) = m(wy) (m(we(Q)) = 0 as mentioned above), so that
by Prop. 3.1. this formula implies that

l(w23 Gi/-B(Gi)) = l(w]) GL/B(Gi)) ~+’I(WOA(Q)aGl/'B(th))’ i la 2.

As we saw in section 1, this relation implies that w,, w, are respectively the minimal
and maximal representatives in W(G,) (resp. W(G,)) of w.

() Let () = (A, ..., A,) € W(H)/W(P,) = L,(n). A minimal representative w; of
(d) in W(H) is given by

wl:(Al ses g An; ’1:1, ceag I'Lll)

(W1, . .5 ) being the complement of (), ..., A,) in (1, 2, ..., 2n), arranged in the
increasing order. Thus to write down the condition for (A) to be in W(G,)/W(Q)
(resp. W{(Gy)/W(Q)), on account of (i) above, we have only to express the condition
that w, is o-invariant (resp. o-invariant and m(w) is even, ¢f. Lemma 3.1). The fact
that wy is o-invariant is equivalent to saying that

M =2n+1_}\n+1—b 1 < i S n.

Let now r, 0 <r <m, be such that A\, < »n and Aryg >n. Then we see that
(k1 ++ -5 pny) i the complement of (), .. SA)in(l, ..., n) and that

(Arigs +oos A) =Q@2n4+-1—p, ., ..., 2n-41—pu,).

Now the assertions (ii) follow easily and we leave them as exercise. N
(i) Let we W(G)/W(Q) (resp. W(G,)/W(Q)) and be represented canonically by

w=(, ..., 4,) € I(r). Let w, be a minimal representative of w in W(H). Then
we have

W=ty ooy By 201~y oo, 20H1—f), L)

-~
first n elements
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where (ji, ... ju,) is the complement of (iy, ..., %) in (1, ..., n), arranged in the
increasing order (¢f. (ii) above). Then by (i)

I(wy, W(GHW(Q)) = I(wy, W(GY). (i =1, 2).
Further, we have

I(wy, WH)|W(P,)) = l(wy, W(H))

:Z;=1 b +2:;'1 @n+1—j) — nn+l) (section 1).

2

and m(w,) = (n—r).

Then applying Prop. 3.1, we get

@) 160, WG| W(Q)) = I(w, WG W(Q)) — m(w), and
100, WG WAQ)) =} 10wy, WD) + § m(wy).
This gives
®) 100, W(GDIW(Q) = {(n—r)(zn+1)+z;___l - (”(”j D_ Z=1 z',,)
—" N e = (D)D) -1D,

Now (a) and (b) together prove (iii).

(iv) We have seen that f= Pq, ..., n is a lowest weight vector in H°(H|P,,L,).
Then as we saw in section 1 (towards the end), the family

{p.}s =€ W(H)/W(P,), p, being defined as p_ = r.f; has the property:
*) P | X(ro, HIP,) # 0 &=p 7 < 7y in W(H)[WA(P,).

We have seen that the restriction of fto Gy/Q is a lowest weight vector in H°(H/P’,,L',)
L'y =L, restricted to G;/Q. Further, we have an element gc H°(G,/Q, F),
F*=L", L', = L, restricted to G,/Q, such that g = f restricted to G,/Q and g is a
lowest weight vector in H°(Gy/Q,F). Let us denote by g, the restriction of f to G;/Q
(resp. g = g, the element g € HYG,/Q,F) as above). Then the family

{g.}, 8, = 7.8, 7€ WG)W(Q) (resp. W(GIW(Q)
has the property (¢f. section 1)
71 S g in W(GY/W(Q) (resp. W(Gp)/W(Q)) &= g, | X(r,G1/Q) # 0
(resp. | &, X(ry, G5/ Q) # Q)-

e ——
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Then from (*), we conclude that
7 <7y in W(GY)/W(Q) (resp. W(Go)/ W(Q)) ¢ 7 <mp in WIH)/W(P,)
since, because of X(7,, G;/Q) (resp. X(rq, Gy/ @) C X(75, H/P,), one has

8, | X(r2, Gy/Q) %0
(tesp. g,, | X(rp, Go/Q#0)

{ =1, X, HIP) 20
Thus to conclude the proof of (iv), we have only to prove the following implication:
Wi, Wy € WA(GL)/W(Q) (resp. W(Gy)/W(Q) and w, # wy, then
Wy in W(E) TP, == wy<wy in W(GY/T(Q) (resp. W(GITH(Q)).
We shall now show that we can find w'; € W(G,)/W(Q) (tesp. W(G)y/ W(Q)) such that
@ wy < wy' < wy in WCH)WP,.
(b) wy's FRG)IW(Q)) (resp. wy's TG WD)
— Iy, W(GI(Q) — 1 (resp. [, WG W(Q) — 1)

(¢) wy' =wyr,, where r_ is the reflection with respect to a root a € R+(Gy) (resp.

R+(Gy) (in this identity, we take for w;," and w, their respective minimal representatives
in W(H)). These assertions would imply that

wi' < wyin W(Gy) (resp. W(Gy))

and thus to complete the proof of (iv), it suffices to prove the above assertions.
We set

Wy, = (il’ e Bp) € In(r)’ Wo == (jl’ ey Js) € I(s).

We have r > s since wy < w, in W(H)/W(P,) is equivalent to (i) <(j) in the sense
of Definition 2.1.

Case I. Suppose that

i =J1, g =Jp» s fmy =Js—1 and i #j,, k <.
Then we set |

Wy = (J1s «+os Ji-15 J—1, .k+1’. A

We observe that

(1) & (s <0 JO)-
P. (A)—3
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Case II. We have
i =i B2 =Jas -+ Is=Js
Then we have r>s since otherwise w; = wy. Then we set
Case Gy: W' =0 s Jo )
Case Gy Wy = (j1 --» J»» n—1, 1) (note that in this case r—s > 2).

The required property (a) above is immediate. The property (b) above also follows
immediately from (iii) of Lemma 4.1, proved above. It remains to prove (c) to con-
clude the proof of (iv).

Case I (as above): Let
wy = (b1, ..., byy)—minimal representative of wp. Let p be the integer such that
bons1p = Ui—D-
Since (jy—1) & (i, ---»Js)> We see that (s+1) <p <n. Letr, denote the reflection
(in W(G,), resp. W(Gy)) with respect to the positive root a=e¢,+ €, which is in

RH(Gy) as well as R*(G,), identified as subsets of X(T},) (¢f. section 3). We see that
r, as an element of W(H) is the product of transpositions

r, = (k, 2n+1—p) (p, 2n+1—k) (note k < s, s+1 < p).
It is now a simple exercise to deduce that
Wy =W T, .
Case II (as above): We set
Case Gy: r, =reflection with respect to a =2eu; € R¥(Gy) (note s+1 <n).
Case Gy: r, =reflection with respect to o = eyt €549 € RH(Gy) (note s+2 < n).
As an element of W(H), we observe that
Case Gy: r, = transposition (s+1, 2n—s).

Case Gy: r, = product of transpositions (s-+1, 2n—s—1) (s+2, 2n—s). Itisnowa
simple exercise to deduce that wy' =w, 7, .

This concludes the proof of (iv) of Lemma 4.1.
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(v) This is an immediate conscquence of Lemma 3.2 and (iv) of Lemma 4.1. In
fact for w € W(GY/W(Q) (resp. W(Gy)/W(Q)), set

Y == X(w, H[P,) 0 Gy/Q (resp. X(w, H[P,) 0 G,/ Q).

We sce that Y is a union of Schubert varietics in G,/Q (resp. G,/Q) and by Lemma
3.2, it follows X(w,G,/ Q) (resp. X(w,Go/ @) is an irreducible component of Y. Sup-
pose that there is another irreducible component of Y, then it is a Schubert variety
in G,/ (resp. G,/@) and it is of the form X(w', G,/Q) (resp. X(w', Go/@)), W' €
W(Gy)/W(Q) (resp. W(Gy)[W(Q)) with w' < w. We have, a fortiori,

w' < win WH)WAP,)
so that by (iv) of Lemma 4.1, it follows that
w < w in W(G)/W(Q) (resp. W(G)/W(Q)).

This leads to a contradiction. This proves (v) and the proof of Lemma 4.1 is com-
plete.
The basic results in section 4 can now be summarized in the following:

Theorem 4.1.  Let Q denote the maximal parabolic subgroup in G, == Sp(2n) (resp.
G, SO(2n)) associated to the right end root a, in the Dynkin diagram (notations as
in Bourbaki [2]). Then we have the following:

(i) We have a canonical imbedding of G,/Q (resp. Go/@) in HIP, (Grassmannian
of n planes in a 2n dimensional vector space) such that the opposite big cell in H[P,
restricts to the opposite big cell in G/ (resp. G,/ Q); further if we take the canonical
identification of the opposite big cell in H/P, with M, - Space of (nxn) matrices
(¢f. Th. 2.1. and section 2), the opposite big cell in G/ @ (resp. G4/ Q) can be identi-
fied with Sym M,  Space of (nxn) symmetric matrices (resp. Sk M, == (nXn) skew
symmetric matrices)

(ii) Let W(H), W(G)),.. etc. denote the Weyl groups of H, Gy, ..., etc. Then we
have canonical inclusions

(a) W(G,) (resp. W(Gy)) > W(H)
(b) W(G)/W(Q) (resp. W(GR)W(Q)) — WEH)W(E,)-

The inclusion (b) preserves the partial orders in each. For (A) € L,(n) ~ W(H)/W(P,),
let ((a), (B)) (resp. (1), (j))) denote the canonical (resp. canonical dual) pair associated
to (A) (¢f. Def. 2.2). Then (A) € W(G,)/ W(Q) (resp. WG, W(Q)) if and only if («) =
(B) (resp. (a) - (B) and the number of elements in (i) or (j) is even).

(iii) Let L, denote the ample generator of Pic H/P, and L', the restriction of L, to
G,/Q (resp. Gy/@). Then L', is the ample generator of Pic Gy/Q (resp. L, = F?,
where F js the ample generator of Pic Gy/Q). Let f=pq,..n be a lowest weight
vector in HO(H/P,, L,). Then the restriction f of fto Gy/Q (resp. Go/Q) is 2 lowest
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weight vector in H°(G,/Q, L) (resp. f' = g?, where g is a lowest weight vector in
HO(Gy/Q,F)). If {p.}, v € W(H)/W(P,), is as usual the family defined by p_=1r.f,
then the restriction of p_ (or to be more precise p./f) to Sym M,, identified as the
opposite big cell in Gy/Q, is the function p’ ) ,,: Sym M, K, defined as follows:
Py, (Z) =determinant of the minor of Z with rows and columns associated to
the indices of (i), (j) respectively, Z € Sym M,.

(@), (j)) = canonical dual pair associated to 7.

Further the restriction of p,_ to Sk M,, identified as the opposite big cell in G,/Q, is
the function ¢, : Sk M, ~ K, defined as follows:

g,, (Z) = Pfaffian of the square minor of Z with rows associated to the
indices of (i), Z € Sk M,,

(@), (j)) = the canonical dual pair associated to .

Remark 4.1. (1) We see that the big cell in H/P, restricts to the big cell in Gy/ Q.
This is also the case for G,/Q, if n is even; however if » is odd, the restriction of the
big cell in H/P, to Gy/ @ is empty.

(2) We have seen (¢f. Th. 4.1) that the partial order in W(G,)/W(Q) (resp.
W(Gy)/W(Q)) is induced from W(H)/W(P,). It is also true that the partial order in
W(G,) is induced from -W{(H); however this is not the case for W(G,).

5. 1nterpretation of the standard monomial theory of De Concini and Procesi [5] on
the space of symmetric and skew symmetric matrices

We keep the basic notations of the previous sections.
Definition 5.1. (i) Let D, denote the determinantal variety in M, as in Def, 2.3. Set

Dy(G,) (resp. Di(Gp))=D; N Sym M, (resp. D, N Sk M, and k is even).

We call these determinantal varieties in Sym M, (resp. Sk M,). We observe that if
w € W(G)/W(Q) (resp. W(G,)/W(Q)) is such that the canonical dual pair associated
towis (1, ..., &) (1, ..., k), then Dy(Gy) resp. (D (Gy)) is the opposite big cell in

X(w, G,/Q) (resp. X(w, Gy/Q)), in particular we see that D (Gy) (resp. D(Gy)) is
irreducible.

(i) Let 4, denote the coordinate ring of Sym M,. For a pair @, (M), D e1,m,
(NELM, 0<r<nletp’ i Sym M,~>K denote the function defined in section 4 -

(¢f. iii, Th. 4.1), so that P, 0, € A4,. We call a standard monomial in 4, an
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expression of the following type:
Pova P oo P ue, mr Py gy oen
O <O <E <Y <O"<<G) < - (cf Def. 2.1)

and the number of p, D, in this expression is called the length of this standard mono-
mial.

(111) Let B, denote the coordinate ring of Sk M, .For (i) € I(r), 0 < r <n, let dp:
Sk M,~K denote the function defined in section 4 (cf. (iii), Th. 4.1.), so that 9 € Bn
We call a standard monomial in B,, an expression of the following type:

iy’ Dy Dy ==
@)Y <@ < @) < ... (cf. Def. 2.1).

Theorem 5.1. (i) Let w € W(Gy)/W(Q). Then the Schubert variety X(w, G,/Q) in

G,/ Q is normal (in fact, it is also Cohen-Macaulay). In parucular, the determinantal
varieties Dy(G,) are normal.

(i) Let g be a lowest weight vector in H%(G,/Q, F), F = the ample generator of
Pic Gy/Q. Set

9, = 7.8 7 € W(Gy)/W(Q).

We call a standard monomial of length m on G,/ Q, an element in H*(G,/Q, F™) of the
form:

Qrlry o D L= T2 s T
Then distinct standard monomials of length m of the form
Delr, ey L ZT2 2 . ST W2
form a basis of the vector space H°(X(w, G,/ @), F™).
| (ii) Distinct standard monomials in B, of the form
Dy deny” ey - -

1,..., k) <@ <@ < ...(e. the number of elements in (i)', ({)" is < k) form
a basis of the coordinate ring of D,(G,) (as a vector space).

Proof. We note that the fundamental weight w, is minuscule, in the sense that if M
is the irreducible representation with highest weight w,, when the base field is of
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characteristic zero, then all the weights in M are of the form (w,), 7€ W(G,)
(Bourbaki [2]; Seshadri [22]). Then the assertions (i) and (ii) are just special cases
of Seshadri [22] (note that in Seshadri [22] the weight vectors in H °(G,/@Q, F) are
indexed as 7g', g a highest weight vector), where the Hodge-Young theory of
standard monomials is generalized to G/P, G a semi-simple group and P is a
maximal parabolic subgroup associated to a minuscule weight. Then the assertion
(iii) follows from (i), in the same way as we had done in the proof of Th. 2.1. for the
case H/P,.

Definition 5.2. Let f’ be a lowest weight vector in H°(Gy/Q, L',), where L', is the
ample generator of Pic G;/Q. Set

{4,}, e W(G/W(D), g, =7.1"

Recall that in section 4, for =& W(H)/W(P,), we had defined p',. = restriction of
p, € H(H[P, L) (p, = - f, f = Plicker coordinate ra,.. ., n)). Hence g, =p',,
when = € W(G,)/W(Q). For € W(H)/W(P,), let (, 75) be the pair of elements
in W(Gy)/W(Q), which is the image of = in the canonical injection.

W(H) | W(P,) — W(G) [ W(Q) x W(G)|W(Q) (¢f. (e) (i) of Lemma 4.1).

Let us call = admissible, if = > 7,. By Lemma 4.1, we see easily that given a pair

of elements (1, 75) € W(G)/W(Q), (74, m5) comes from an admissible element = if
and only if

@) { (1) Ty 2= Ty in W(GJ.)/ w(Q),
(i) mi(ry) = m(z) (cf. Def. 3.1).

Thus the set of admissible elements can be canonically identified with the set of pairs
(71, T9) in W(GY)| W (Q), satisfying (i) and (ii) of (*) and we call such a pair (1, 7,) an
admissible pair in W(G,)/W(Q) and the element + € W(H)/W(P,), the admissible
element in W(H)|W(P,) associated to 7y, 7. Let (ry, 7;) be an admissible pair in
W(G)/W(Q) and 7 the associated admissible element in W(H)/W(P,). We set

I
q'rla Ta =P T

Let (ay ay), (By, Bs) be two pairs of admissible elements in W(G))/W(Q) and a, 8
respectively the associated admissible elements in W(H)/W(P,). Then we define
(g, ag) > (By, Bo) by

(01,“2) 2(51,52)42“2?51({::)“?/5)-

We can identify W(Gy)/W(Q) with pairs of (admissible) elements of the form (r, 7),
7€ W(Gp/W(Q) and the order in W(G,)/W(Q) is consistent with the order introduced
above. If (ry, ) is an admissible pair in W(Gy)/W(Q), we call it a non-trivial pair
(tesp. trivial pair) if =, # 7, (resp. 7, =15). We now observe

q'r, T = q-r‘
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We call a standard monomial of length m on G,/ Q, an element in H°(Gy/Q, (L')™) of
the form

q“n ay q.Bl! Ba th VYgro 2

(o, ag) = (By, Bg) = .. .5 (g, 09), (Bys Ba)s - - - being admissible paits in
W(GD[W(Q).

For r € W(H)[W(P,), let p’ W) be the function

P’m,m :Sym M, > K

which is the restriction of p’_ to Sym M,. Then we see that
() < (j) & 7 is admissible.
Then we have

| Sym M, =p'(n, 0,

q“'u T2
(7 %2) being essentially the canonical pair associated to = and ((i), (j)) the canonical

dual pair associated to . We see that the restriction to Sym M, of a standard mono-

mial of length m on G,/Q is standard in the sense of (ii), Def. 5.1 and conversely if
the restriction of

Py ---Pg b1 € WH)|W(P,)
to Sym M, is standard, then it is standard on G,/Q.

Theorem 5.2. Let w, € W(G,)[W(Q) be the element such that the canonical dual pair
associated to wy is ((1, ..., k), (1, ... k)) (0 < k < n). Then we have:

() Distinct standard monomials of length m of the form (cf. Def. 5.2)
s Wy =7y

qm PR 'qu, Ty ?

form a basis of H°(X, (w,,G1/Q), (L'»)™) (to be precise, we take the restrictions to
X(w,, G1/Q) of these elements in H°(Gy/Q, (L',)™.

(i) Distinct standard monomials in 4, (¢f. Def. 5.1) of the form
p'u),‘ W p’(z)’, W’ p'(t)”, W
(1, ...k) < (i) ie. the number of elements in (), (§), GY, (j) etc. is < k.

form a basis of the coordinate ring (considered a vector space) of the determinantal
variety D,(Gy) in Sym M,
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Proof. 'The assertion (ii) is proved in De Concini-Procesi [S]. Since Dy(G,) is the
opposite big cell in X(w,, G,/Q), the assertion (i) follows from (ii), in fact as in the

proof of Th. 2.1 and Remark 2.1, we see that the assertions (1) and (ii) are
equivalent.

Remark 5.1. (i) The assertion (i) of Th. 5.2 does not follow from (Seshadri [22])
as the fundamental weight w,, is not minuscule (we are in type C,).

(ii) It can be shown that the varieties Dy(G,) are normal and Cohen-Macaulay.
This is proved in Kutz [14] and from this one can deduce that Xi (wy, G4/Q) is normal
and Cohen-Macaulay. . ‘

We shall now give an intrinsic description of admissible pairs in W(G)|W(Q),
which will suggest how the theory of standard monomials developed in (Seshadri
- [22]) for G/P when P is minuscule, could be generalized to the nonminuscule case.

Suppose now that G is a semi-simple algebraic group for which we fix a maximal
torus T and a Borel subgroup B, TC B. Let P be a maximal parabolic subgroup in
G, PDB. Let Ci(G/P) (resp. Ch(G/B)) denote the Chow ring of G/P (resp. G/B).
If X'is a Schubert variety in G/P (resp. G/B), we denote by [X], the class in CA(G/P)
(resp. Ch(G[B)) represented by X. One knows that Ch(G/P) (resp. Ch(G/B)) is a free
Z-module and that the classes represented by distinct Schubert varieties form a
Z-basis of Ch(G/P) (resp. Ch(G/B)). Hence if X, ¥ are Schubert varieties in G/P
(resp. G/B), the intersection product [X] - [¥] can be expressed as

[X]-[Y]=Z, d, 2]

where Z runs through the set of all Schubert varieties in G/P (resp. G/B). We call
d, the intersection multiplicity of Z in [X]- [¥] (or simply X- ). .

We denote by [H] the element in Ch(G/P), represented by the unique Schubert
variety H of codimension one in G/P. This is the class determined by a hyperplane
intersection of G/P in its canonical projective imbedding. We denote by the same
[H] the element in Ch(G/B), determined by the Schubert variety of codimension one
in G/B, which is the inverse image of H by the canonical morphism G/B - G/P.

Let wy, wp € W(G) (Weyl group of G) such that we have
(@) X(w;, G/B) c X(w,, G/B) i.e. wy <w, in W(G)

- (i) X(wy, G/B) is of codimension one in X(w,, G/B). Then one knows that
wy = wyr, (see for example Demazure [6])

where r, is the reflection with respect to a positive root o (with reference to T, B).
Then Chevalley’s formula (Chevalley [4]; Demazure [6]) states that the intersection
multiplicity of X(wy, G/B) in [X(w,, G/B)] - [H] is {w, ¥, where w is the funda-

.mental weight to which P is associated. Suppose now that u, » € W(G)/W(P) are
such that

() X, G/P) C X(v, GIP) ie. u <v in W(G)|W(P).
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(i) X(u, G/P) is of codimension one in X(v, G/P).

Let w;, w, be respectively minimal representatives in W(G) of 4, v. Then again we
have w;=w, r, Where r, is the reflection with respect to a positive root a. From

the preceding Chevalley’s formula, it follows immediately (using the projection
formula) that the intersection multiplicity of X(u,G/P) in [X(@, G/P)]-[H] is
{w, a">.

Now the crucial result is
Lemma 5.1: Let v, u be a pair of elements in W(Gy)/W(Q) such that u <2 and X(u,G,/Q)

is of codimension one in X(v, G1/Q)- Then (v, %) is an admissible pair if and only if
the intersection multiplicity of X(u, G1/Q) in[X(v, Go/Q)] - [H] is 2.

Proof. Let wy, w, be the minimal representatives in W(Gy) of u and v respectively.
Then w,=wyr, Where r_ is the reflection with respect to a positive root a.

Suppose now that (v, ) is an admissible pair. Then since X(u, G,/Q) is of codi-
mension one in X(z, G;/Q), we see by (iii) of Lemma 4.1. that u and v are of the follow-
ing form.

u:(jlajZ! L4 jk—za jk"la jk+1' LR} js): u E In(s): vE I,.(S), s én-
v = (jl: jz:~ . "jk-l’ jk’ jk+1=' . -,j,), (jk""l) ¢ (jl» ’Js)

(u and v differ only in the kth index and the kth index of u is one less than
that of v).

Let wy = (by, ..., ban) € W(GY) and p be the integer such that
b2n+1._p = (jk_ 1)

Then as in the proof of (iv), Lemma 4.1, we see that s+1 <p <nand that a is the
positive root

o= ¢,+¢, € R*Gy).

Then by Chevalley’s formula (mentioned above), it follows that the intersection
multiplicity of X(u, G4/Q) in [X(v, Gy/ 0)]- [H] is given by {w, (¢+¢)"). We have

2w, €-t+€p)
y V oot ’ k P — y — 2
(o, (gt €)' > (e et <) (o, e+ €p)

(0 = e+...F€)

Suppose on the other hand that the intersection multiplicity of X(u, (Gl/ Q) in
[(X(s, G/Q)]- [H] is 2. Then to prove that (s, 1) is an admissible pair, we ha
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only to show that
m(u) = m(v) i.e. m(wy) = m(w,) (¢f. Def. 5.2).
Let

0=y ... I) EL(s), s <n.

Suppose that m(u)sm(s). Then the hypothesis that u <v and X(u, G,/0) is of
codimension one in X(v, G,/Q) implies easily (by (iii) of Lemma 4.1) that

u=C(=y, ...i5 n)
ie. m(u)=m()+1=s-+1, the first s elements of u and » are the same and the last
element of u is n. Then again as we saw in the proof of (iv), Lemma 4.1, a is the

positive root 2¢.4y. Then by Chevalley’s formula, the intersection multiplicity of
X(u, G,/Q) in [X(s, G,/Q)] - [H] is given by (w, 2ess))*>. We have

<w9 ¢ €s+1)V> = 2o, 265+1) = (0, €41 = 1.
(2€s+1, 2€S+1
(w=1¢+....6,).

This leads to a contradiction and hence m(u)=m(). This completes the proof of
Lemma 5.1.

Corollary: Let (r, p) be a pair of elements in W(G)/W(G,). Then it is a non-trivial
admissible pair if and only if we can find a chain of elements {n}1<i<mn
€ W(G,)/W(Q) having the following properties:

(i) TI=7T, Ty =¢ and T =Ty 2= ... =T

(u) A.’('.ri, Gi/Q) is of codimension one in X(7;-;, G4/Q) and the intersection
multiplicity of X(;, G;/Q) in [X (-1 G1/Q) - [H] is 2 (2 <i < ).

Proof. 1If the conditions (i) and (ii) are satisfied, it is clear by the above lemma that
(7, p) is an admissible pair, since it follows that

m(ry) = m(ry) =. ..=m(r,).

Suppose then that on the other hand (7, ) is an admissible pair in W(G)/W(O).
Then we have . V

T o= (]1, N AN € 1,(s)
P =iy sy i), p € L(5)§ O SF 7

Suppose that we have

llzjl’ iz =j2, ey ik-—l xjk—l and ik<jk’ k <S-
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Then we set
@ =y - s Jimvr Je— Lo Jora - - 5 J-
Then we have
@r=zp 2¢
(b) (r, ") and (', p) are admissible pairs.
(¢) X(p', G1/Q) is of codimension one in X(r, G4/ Q).

Then by Lemma 5.1 we construct by an easy inductive argument, a chain which
satisfies the properties (i) and (if) above. This completes the proof of the corollary.

Remark 5.1. It can be checked that the elements in H*(Gy/@, L',)

{q% q]ﬁ (1, 75) admissible pair in W(G)/W(Q) have the following
properties:

(i) The restriction of ¢, . to X(w, G,/Q), w € W(G,)/W(Q) is not identically zero
if and only if

W = Ty, 16, (W, W) = (1y, 7).

(ii) the weight of ¢, . is

H(ry(@) o)) = —H(ry(wn) +7a(wn)).

' being the lowest weight of the Gy-module H°(Gy/Q, L) (note that o’ =w(i(w,))==

—w,).

6. The basic conjectures

The results of section 5 as well as computations in low rank suggest the following
conjectures:

Let G be a semi-simple, simply-connected, algebraic group defined over an algebraic-
ally closed field X. Fix a maximal torus T and a Borel subgroup B, T B. We refer
to roots, Bruhat decomposition etc. with respect to this choice of T, B. Let Pbe a
maximal parabolic subgroup, P D B, associated to a fundamental weight . We say
that P or w is of classical type if ‘

{w, a¥>=0, 41 or 42, ¥ root a of G.

The hypothesis that P is of classical type implies (on account of Chevalley’s
formula, section 5, also Chevalley [4]; Demazure [6] that if X, Y are Schubert
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varieties in G/P such that Y is of codimension one in X and H is the codimension
one Schubert variety in G/P, then the intersection multiplicity of Y in (X)(H) is ut-
most 2 (¢f section 5 for the notations X, . . ., etc.). Infact it can be seen. that this
property is an equivalent description of P to be of classical type.

Let W(G) (resp. W(P)) denote the Weyl group of G (resp. P). We denote by

X(w, G/B) (resp. X(w, G/P)) the Schubert variety in G/B (resp. G/P) associated to
w € W(G) (resp. W(G)/W(P)).

Definition 6.1. (i) Let (r, p) be a pair of elements in W(G)/W(P). We call it an
admissible pair if

(2) Either = p, in which case we call it a trivial admissible pair, or

(b) wecantind v, ..., r, € W(G)/W(P) such that

(@) X)) =X() 2 X()D ... D X(r,) = X(p)
e =r2n>...>7n,=0p,

(@ X(=;) is of codimension one in Xi (74-1) and the intefsection multiplicity of

X)) in [X(r, )] - [H]is 22 <i < m).

In case (b), we say that (r, ®) is a non-trivial admissible pair.

(i) Let (74, ¢,), (75, 0s) be two admissible pairs in W(G)/W(P). Then we define
(71 @D = (75, py) if P1 =y in W(G)/W(P).

(Note that this relation = is not a partial order in the set of admissible pairs in
W(G/W(P). It satisfies the axiom of transitivity but not of reflexivity).

Conjectures I.  Let G be as above and suppose that P is a maximal parabolic sub-
group (P2 B) of classical type. Let w be the fundamental weight associated to P.
Let L be the ample generator of Pic G/P. Then given an admissible pair (r, @) in
W(G)/W(P), we can find a P., o € H%G/P, L) having the following properties:

@ P., o does not vanish on the Schubert variety X(w, G/P), w € W(G)/W(P), if
and only if -

w=rie (W, w) > (r, p)

(i) the ome dimensional space spanned by P, . is stable under 7' and the
weight of p o is

— 3 (7 (o) + p (v))
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(iii) let us call an element of HY(G/P, L™) of the form

p"'h P1 p"zs P2 “'p"'m, Pms

(71’ Pl) > (72’ ?72) -2 2 ('rma ?m)

a standard monomial of length m. Then distinct standard monomials of length m
form a basis of H°(G/P, L"), m > 1. 1n fact distinct standard monomials of length
m as above such that w > =, form a basis of H°(X(w, G/P), L"), m > 1.

Let us call a Young tableau (or diagram) of length m in W(G)/ W (P), a sequence of
m admissible pairs in W(G)/W(P) of the following type

(7'1’ ?1)s (725 ¢2)= ) (Tm’ ?m):
(7'1’ 991) 2 (7'2: ?72) > > (Tma pm)

The above conjectures imply in particular that
dim H°(G/P, L") = $ {Young tableaux of length m}.

Conjectures II. Let us suppose that G is a classical group i.e. it is of type A, B, C or D.
Note that this is equivalent to supposing that every maximal parabolic subgroup of G
is of classical type in the sense defined above. Let [ be the rank of G and let us index
the maximal parabolic subgroups (containing B) by P,, 1 <i </, so that P, is
associated to the fundamental weight w, in the notation of Borel [1]. Suppose that

uc W(G)/W(P,), v € W(G)|W(Py), iy < iy
Then we define u > v, if

(i) either i, = iy; in which case # > v is just in the sense of the partial order in
W(G)|W(Py,), or

(i) i) # ip; then if v, is the minimal representative in W(G) of v and 7, is the
canonical image of »; in W(G)/W (P), we have

u > v, in W(G)/W(P,).

Let us denote by (=(i), ¢(i)) an admissible pair in W(G)/W(P,) and P(T(l-)’ v ()

the element in H°(G/P;, L;) associated to ((i), (7)) in conjectures I (L; being the
ample generator of Pic G/P;). We denote by the same L;, the line bundle on G/B,
which is the pull back of L; by the canonical morphism G/B -+ G/P;). We define
(=), (@) = (), p()) if i <jand p(i) > 7(}), as defined above.

Let (@) =(a, .., a) 1< << ...<a <, m=@m, ..m), m >1and
m= Z‘:q m;. We call a standard monomial of type ((a), m) (and total degree |m|) an
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expression of the following type:

(*) (P"' (@), p1(ay) P To(@), pafay) P Tml(al)’ ?ml(al) ) (pfl(ar)a 210 R

P 'rmr(ar)s <Ipmr(‘;’r))

such that

(%) (ry(ay), pi(ay) > (m2(a), pala) = ... > (rm,{ay), Om (@) = (my(ay), ?1(ay)...
The element in (*) can be identified with an element of

H°(G/B, L’Z‘@ . ®LZ’)

Then the conjecture is that distinct standard monomials as in (*) form a basis of
H°(G/B, L;"‘@ e ®LZ”), when G is of type A, B or C. Let us call an expression
1 T

as in (**) a Young diagram in W(G) of type ((@), m) and total degree |m|: The
above conjecture implies that

dim H' °(G/B, LT:@ .o ®LZ”) = 4 {Youﬁg diagrams in WAG) of type
(@.m)}

We note that an expression as in (**) is precisely a Young diagram in the usual sense
when G=SL(/+-1) and we identify W(G)/ W(P;))~I,:1(j). We observe also that the
Conjectures IT hold good for type A: this is a classical fact when the general field is of
characteristic zero (Weyl [23]) further, because of the vanishing theorem it is valid in
arbitrary characteristics also.

The Conjectures II can also be stated for G of type D. The above definition of
standard monomials has to be suitably modified in this casef,

As in I above, a stronger version of these conjectures can be formulated for any
Schubert variety in G/B but this has to be done with greater care.

7. Classical invariant theory

We shall now indicate how the results of De Concini and Procesi [5] concerning
classical invariant theory can be obtained from the results of section 2 and 3.
We shall now work out this method in detail for the case of invariants under
the symplectic group. The other cases are treated in a similar way. We shall suppose
in the sequel, for simplicity of treatment that char K #2 (K = ground field).

Let X=Spec R be an affine variety on which a reductive algebraic group G operates.
Let Y=Spec R® and ¢ the canonical morphism @ : X>Y. One knows, thanks to

Haboush’s proof of Mumford’s conjecture, that we have the following: (Haboush
[8]; Seshadri [21]) ‘

() Yis an affine variety (ie. RS is a K-algebra of finite type).

1This modification has been done in collaboration with Musili.
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(i) pis a good quotient, in particular, g is surjective and p(x;) = @(x5), x; € Xifand

only if 0(x;) and O(x,) intersect, where O(x,) denotes the closure of the G-oibit
0(x,) in X.

(iii) o is a categorical quotient (Mumford [17]; Seshadri [20] and [21].

Let now ¥ denote as in section 2 above, a 21 dimensional vector space with basis
€15 «-+s Cns ntyy --o5 €y As in sections 3-5, let Gy denote the symplectic group Sp(2n)
i.e. the group which leaves the following form invariant:

0 1

0 J . .
(_.J 0),.7-—: o (n X n matrix)

We denote by (,> the skew-symmetric form on ¥V given by the above matrix. Let
X denote the affine space

X=V®...®-+V (mtimes)

and take the diagonal action of G; on X. Let SkM,, denote the space of skew-
symmetric matrices of rank m (as in sections 4 and 5) and let

¢ : X—>SkM,

denote the G, ‘invariant’ morphism (i.e. for the trivial action of G, on SkM,, ¢
is a Gy morphism) defined as follows:

x=(x1, ooy xm) € X; .xl & V-
p(x) is the skew symmetric matrix whose (i, /)th entry is D

Then we have the following (parts of which are the known classical theorems of

invariants under the symplectic group, when the ground field is of characteristic zero
(Weyl [23]).

Theorem 7.1. The image of ¢ is the determinantal variety Dz,,h (Gy) in SkM,, (cf.
Def. 5.1); further, the canonical map

@ : X = D,,(G,) (denoted by the same p)

can be identified with the canonical morphism X-»¥, ¥Y=Spec R¢, X=Spec R des-
cribed above. In particular, RS is generated by the G-invariant functions CED
and by Theorem 5.1, we get a basis of RS as follows: Let Gy @) = (g vy by ¥
even, r < 2n, be the Pfaffian of the minor of the skew-symmetric matrix p(x) with
rows associated to (). Then R® has a basis consisting of the standard monomials
in gy (cf- (iii), Def. 5.1): ‘

A 9y - @) <@ <(@)” (note length of (i), (i), ..., < 2n).




48 V Lakshmibai and C S Seshadri

Proof. For this we make use of the following: o
Lemma'l.l. Let Z=Spec R be an affine space on which there is given a linear action
of a reductive algebraic group G (Seshadri [20] and [21] for the definition of linear

actions) and
h: Z - AN(AN=N dimensional affine space)

a graded G-invariant morphism (graded means (tz)=t")(z), t € K). Let S=Spec RS
and D a closed subvariety of AN such that ¢ (Z) ¢ D. Then in order that the
canonical morphism ¢ : Z — D be identified with the canonical morphism = : Z -+ S,
it suffices that the following conditions hold:

(i) for z € Z= (set of semi-stable points in Z, (Seshadri [20] and [21]) (z) #(0).

(i) 3 a non-empty G-stable open subset U of Z such that G operates freely on
U, U=Umod G is a G-principal fibre space and ¢ induces an immersion of U mod G
into D (or AM).

(iii) D is normal
(iv) dim U/G=dim D.
Proof of lemma.‘ Let AN = Spec P. We write
Z;=ProjR, §;=ProjRY, P¥-1=ProjP.

Since ¢ is G-invariant, we get a canonical morphism p : .S-> AN such that the follow-
ing diagram is commutative

D
Z
m i \{

§

since 7 : Z->S is a categorical quotient. Let Z;S denote the open subset of semi-stable

points in Z;. Then we have a canonical morphism 7, : Z is - S}, which is a categorical
quotient (Seshadri [z0] and [21]. Since ¢ is graded, ¢ defines a rational morphsim
1 : Z; >PN-1 and the hypothesis (1) above implies that , is regular in Z%°. Since
m 227 > Syis a categorical quotient and ¢, is G-invariant, we deduce again a
morphism py : S;->P¥-1and a commutative diagram
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@ ss

We claim now that p, is a finite morphism. In fact we can find a homogeneous element
s in P such that its canonical image 4*(s) is a non-zero element of RS. Now i, *(s)
can be identified with a section of an ample line bundle A on S (a power of the

tautological line bundle on Zi's descends to M). From these considerations it follows

easily that the inverse image by p; of the tautological line bundle on PV-1 is ample
on S;. By a familiar argument, this implies that p, is a finite morphism. The fact
that p, is finite, implies that the morphism p itself is finite and this is a consequence of
 Lemma 7.2. Let 8 :Spec B - Spec K[ Xj, ..., X;] be a morphism induced by a graded
homomorphism (B a graded K-algebra of finite type). Suppose that the rational
morphism §&; : ProjB - ProjK[X;, ..., X] is a finite morphism. Then & is itself a
finite morphism. ’

Proof of Lemma 7.2. By classical arguments one finds that @ B;isa K[Xj,..., X]
=
module of finite type for suitable j,. Since @ B; is finite doimensional, it follows
j<io
that B is a K[Xy,..., X;] module of finite type, which means that & is finite. This
proves Lemma 7.2.

Let us return to the proof of Lemma 7.1. From Lemma 7.2 it follows then that
pis finite. 'The hypotheses (ii) and (iv) of Lemma 7.1 imply that p induces a birational
morphism p : S— D. Now S is normal and D is normal by (iii). Hence it follows
that p : S—D is an isomorphism. This concludes the proof of Lemma 7.1.

We now go back to the proof of Theorem 7.1. We will now check that p(Z) C
D,, (G,) and that the conditions of Lemma 7.1 hold (taking D = D,,(Gs), Z = X,
= petc.). This is done in the following steps:

1. Letx%=(x;% ..., x,”) € X. Then we claim the following: .
X0 ¢ X s(i.e. xO is not semi-stable)

& if W is the subspace of ¥ spanned by x,°, then Wis totally isotropic i.e.
<xlo’ x10> '_‘OV’,J, 1 < la] <m

First of all we observe that the above claim implies that the hypothesis (i) of Lemma
7.1 is satisfied for p. ‘

P. (A)—4
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To prove the above claim, we first note that if W is not totally isotropic, then
{x0 %% # 0 for some k, Iwith 1 <k <m, 1 <I<m. Let Fy: XK be the
function )

Fu(x) = (o X105 X = (Xg, o0y Xp)-

Then F,, is G-invariant and F,;(x% s 0 from which it follows easily that x0€Xs,
Hence to prove the above claim, it remains to show that

W totally isotropic ——) x0 & X',

Now the set of maximal isotropic subspaces is a homogeneous space under
G, = Sp(2n), so that we can find g € G, such that W c W, where W, is the maximal
isotropic subspace of ¥ spanned by the first » coordinates ey, ..., e,. This means
that if gx% = (¥y, ..., ym), the subspace of ¥ spanned by y, is contained in W. Since

NeXsi—pgxde X

it follows, we can suppose, without loss of generality, that {x,°}, 1 <i < m, are in

Wy Let now A = A(t) be the 1-PS (one parameter subgroup) of the maximal torus
T of Gy of the form

t 0
i 1
t‘l
0 1
We have
X% =iy ee0s Yinr 0, ..., 0), yy €K
and
t o \
't N
(J’us srey yim "-05:0) t—l "‘:t(ylls ""ytm 0:"" 0)'
0 P

= x%,

(we take the action of G, on X to be on the right).

We deduce that lim x0A = (0) which implies that x° ¢ X, This proves claim I.
t—>0
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IL. Inorder to prove the theorem, we observe first that we can take m to be sufficiently
large. In fact, set

Spec R, = V@ ... @ V(m times)
Then if m, > m,, we have canonical Gy-morphisms
i Xmy > Xy, 12 Xy > X,

where j is the projection on to the first m, factors and i is the inclusion by putting the
last m;—m, factors to be zero. Ifi*,j* denote the canonical induced homomorphisms

i* : le -> Rma,j* . Rn»l2 cd le,
we get i* o j* = identity. Using these maps, it is seen easily that
Theorem 7.1 true for m, =) Theorem 7.1 true for m,.

Hence to prove theorem, we shall hereafter suppose that m > 2n = dim V.
Let U be the open subset of X defined by

U={x€ X [if x=(%, ..., Xw) X; €V, then the X;, 1 <i < 2n, are
linearly independent in V3.

Obviously U is G,-stable and by 1, U c X**. We claim now that G; operates freely on
U, U~U mod G, is a principal fibre space and that ¢ induces an immersion of U
mod G, into Sk M,

To prove this claim, note that we have a Gy-isomorphism

URGL(V)XVX...XV.
\.__.Y_—J
m —2n times

From this identification, it follows easily that G, operates freely on U. Further one
sees that U mod G, can be identified with the fibre space, with base (GL(V) mod Gy)
and fibre (VX ... X V) (m—2n times), associated to the principal fibre space GL(V)~>
GL(Y) mod G. Thus to prove the above claim, it suffices to show that p induces'an
immersion of U mod G, into Sk M,,.

Let us first show that @ induces an injective map of U mod G, into SkM,,. Let
x,y € U. Because of the identification U & GL(V) X (V' X ... X V), we can write

X = (YDZI)’ y = (st Zz), Yi € GL'(V)

Suppose that p(x) = (). If x =0, 0 Xm)s ¥ =015 -+ VYm)s X1, ¥; € V this
implies, in particular that :

Cxp x> =Ly Yy 1 <1, j <20
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This can be written in matrix notation as follows:

VY Y=Y, Y, J'=(0 T
—J 0/

ie. ‘(Y Y, LH)J(Y, Y, )=J
ie. Y,Y,-'€ Gy which = 3 g € G such that ¥; = g7¥,.

Hence to prove that ¢ induces an injection of U mod G into SkM,,, we can suppose
that

x=(Y,Z),y=(Y, Zy), Y=_(x, . .., Xan)-
Let Z; = (vy, --.), Zy = (23, ...), »; € V; Then p(x) = p(y) implies, in particular, that
<xi Ul> == <xi, Z]2>, izl, vaey 2}'1.

Since the form {,  is non-degenerate, it follows that s;=v,. This implies then that
Z,=Z2Z, and it follows that ¢ induces an injection of U mod Gy into SkM,,.

We see now easily that the above argument, in fact, proves the stronger fact that if
A is any K-algebra, p, induces an injective map of A-valued points

(U mod Gy) (4) - Sk,, (4).

This implies that ¢ induces an immersion of U mod G, into SkM, and the above
claim in II is proved.

IOI. It remains to show, since Dy, (G,) is normal (¢f. Theroem 5.1) that
(2) dim U/G=dim D,,(G,)

(®) p(X) C Dp(Gy).

By Theorem 5.1 the ideal of D,,(G,) in SkM,, is generated by 9 ) =y s By),
2r>2n. Hence to prove (b), it suffices to show that all the (2rx 2r) minors of ‘p(x) €
SkM,,, x € X, vanish for 2r>2n. We leave this as an exercise. The proof of (a) is
also easy, as the left side of (4) is (dim X—dim G) and the right side of (a) is also
easily calculated by taking the Schubert variety X(r, G,/Q) in SO(2r)/Q of which

Dii(Gy) is the opposite big cell and calculating I(rw,) in W(Gy)/W(Q). We leave
this also as an exercise.

This completes the proof of the theorem.

Remark 1.1. A generalisation similar to Theorem 7.1 for the classical theorems
on invariants for GL(n) and O(2n) can be obtained (DeConcini and Procesi [5]

Hocheter and Eagon [10]; Kutz [14]) by the same arguments as above and their
statements are as follows:
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(i) Case GL(n): Let V be the n-dimensional vector space and G=GL(V). Set

X=V®..0VOV*®..®V*, V* = dual of V.

N,

'g n'e

m times m times

For x€ X, x=(%y, ..., Xps €, --rs &) let 0(X) =[<x;, &> || € M, (X m matrices),
{, ) being the canonical bilinear form on VX V*. Let

» _ %determinant of the minor of ¢ (x), corresponding to
w, 0 L0 () D=0 o5 1)y (D=5 -+ 5 ] r<im.

Then the morphism ¢: X—M,, is G-invariant, ¢ maps X on to the determinantal variety
D, in M,, (opposite big cell of a Schubert variety in G,,, o, section 1). Further ¢
identifies the categorical quotient X mod G with D,. Applying Theorem 2.1, we get
also a basis of R¢, X==Spec R, by standard monomials in p;y  ; with r<n, ({)=(j,
..., Iy) as in that theorem.

(ii) Case O(2n): (De Concini and Procesi [5]. Let ¥V be a 2n-dimensional
vector space and O(2#n) the orthogonal group leaving (2 g) invariant. We write
G=0(2n). Set

X=V®...®V (mtimes), X = Spec R

For x € X, x = (xy, .. ., Xp), let p(x) =||<{x;, x;>|| € Sym M,, = space of symmetric
(mx m), matrices { , > being the scalar product on V. Let

» __ { determinant of the minor of p(x) corresponding
(s () to (@), (), O)=(ys -+ > 5)s (D=Cjgs - . - ), ¥ <.

Then the morphism p: X—Sym M, is G-invariant, ¢ maps X on to the determinantal
variety Dy, (Gy) in Sym M, (opposite big cell of a Schubert variety in Sp(2n)/Q, O
maximal parabolic subgroup defined by the right end root, ¢f. Remark 2.1) and ¢
identifies the categorical quotient X mod G with D, (G;). Applying Th. 5.2, we get
a basis of R¢ by standard monomials in P (cf. Def. (i), 5.1).
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