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Computing with distributed chaos
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We describe and discuss in detail some recent results by Sinha and Ditto@Phys. Rev. Lett.81, 2156~1998!#
demonstrating the capacity of a lattice of threshold coupled chaotic maps to perform computations. Such
systems are shown to emulate logic gates, encode numbers, and perform specific arithmetic operations, such as
addition and multiplication, as well as yield more specialized operations such as the calculation of the least
common multiplier of a sequence of numbers. Furthermore, we extend the scheme to multidimensional con-
tinuous time dynamics, in particular to a system relevant to chaotic lasers.@S1063-651X~99!05306-4#

PACS number~s!: 05.45.2a, 89.70.1c
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I. INTRODUCTION

A recurring theme of research into chaotic systems o
the past decade has been that chaos provides ‘‘flexibility’
the performance of natural systems and provides such
tems with a rich variety of behaviors that can be utilized
‘‘improved’’ performance. Recent successful implemen
tions of this concept have included the exploitation of ch
otic behavior for control@1#, synchronization@2#, encoding
information@3#, and communications@4#. It is the purpose of
this paper to expand this list to include computation, there
describing a different direction in harnessing chaos.

In this article we describe in detail some recent results
Sinha and Ditto@5# demonstrating the capacity of nonline
lattices to do computations through the emergent collec
properties or the emergent responses of distributed ch
Here we utilize the complex dynamics of the individu
units, as well as their interactive couplings and adaptive p
cesses~implemented in particular as a threshold mechanis!
to do computations.

The possibility of universal computing can be demo
strated in different~complementary! ways.

~i! First, in principle, it is shown that a universal Turin
machine~UTM! can be simulated by the system@6,7#.

~ii ! The second, more concrete, approach is to show
the system can emulate a device with which a UTM can
constructed. In particular, since any logic gate can be
tained by adequate connection of NOR gates~i.e., any bool-
ean circuit can be built using a NOR gate!, one can try to
show that the responses of the dynamical system emula
NOR gate@8#.

~iii ! Finally, one can do some prototypical arithmetic o
erations, such as the particular example of the addition
eration, to demonstrate the computational ability of the
namical system.

In this article we will use the last two approaches to de
onstrate ‘‘computing’’ via emergent dynamics. First, we d
scribe below our dynamical systems candidate for the ‘‘ha
ware.’’
PRE 601063-651X/99/60~1!/363~15!/$15.00
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II. THRESHOLD COUPLED CHAOTIC LATTICES

Now we describe the rich spectrum of phenomena~rang-
ing from spatiotemporal fixed points to exact cycles of
orders! arising from a class of dynamical systems incorp
rating threshold coupling on a lattice of chaotic eleme
@9–11#. Here time is discrete, labeled byt, space is discrete
labeled byi, i 51, N, whereN is system size, and the sta
variablext( i ) ~which in physical systems could be quantiti
such as energy, voltage, velocity, pressure, or concentra!
is continuous. Each individual site, indexed by their spa
location i in the lattice, evolves under a suitable nonline
map f (x). For instance, the local mapf (x) can be chosen to
be the logistic map, which has widespread relevance a
prototype of low-dimensional chaos:

f ~x!5ax~12x!,

xP@0,1#, with the nonlinearity parametera chosen in the
chaotic regime. Specificallya54.0 throughout. Another pos
sible choice in the local dynamics is the circle map, which
relevant in systems involving nonlinear oscillatory behav
@11#. Further, the local dynamics can also be a suitable s
tion or a stroboscopic sampling of a continuous time se
arising from coupled ordinary differential equations~ODEs!.

Now on this nonlinear lattice aself-regulatory threshold
dynamicsis incorporated. The adaptive mechanism is tr
gered when a site in the lattice exceeds the critical valuex* ,
i.e., when a certain sitext( i ).x* . The supercritical site
then relaxes~or ‘‘topples’’! by transporting its excessD
5xt( i )2x* to its neighbors. So this adaptive connecti
mechanism ‘‘opens’’ whenever an element exceeds the~pre-
scribed! threshold.

For the specific case ofunidirectional transport in one-
dimensional arrays we have the following scenario: Af
triggering a response the signal~excess of threshold! is trans-
ferred to one neighbor to the right~or left!:

xt~ i !→x* ,

xt~ i 11!→xt~ i 11!1D. ~1!
363 ©1999 The American Physical Society
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364 PRE 60SUDESHNA SINHA AND WILLIAM L. DITTO
The relaxation activity continues until allx<x* , after which
the next chaotic update of the on-site maps take place. T
is, the chaotic evolution is slower than the adaptive respo
allowing the system to relax completely before each cha
update~see Fig. 1 for a schematic diagram of the dynamic!.

The dynamics above then induces a unidirectional non
ear transport down the array by initiating a domino effe
~reminiscent of the ‘‘avalanches’’ arising in self-organiz
sandpiles@12#!. The boundary is open so that the ‘‘exces
may be conducted out of the system. This kind of thresh
mechanism imposed on local chaos makes the above
nario especially relevant for synapses of nerve tissue~note
that individual neurons display complex chaotic behav
and have step-function-like reponses to stimuli!.

Note that each synchronous iteration of the local maps
the elements in the lattice represents a single click of
dynamical clock. Thus our basic unit of time, which w
henceforth be called adynamical (or chaotic) update, con-
sists of one forward iteration of the chaotic local maps of
system followed by relaxation of all lattice sites to their fin
~fully relaxed! state.

Now the nature of the threshold coupling is such tha
actually works as a ‘‘control’’ mechanism~quite unlike, say,
the usual diffusive coupling!. The system is naturally alway
being ‘‘reset,’’ so to speak, by virtue of the adaptive se
regulation. The value of the threshold governs the dynam
of the array, showing the presence of many ‘‘phases’’ inx*
space@10#. As the thresholdx* is tuned the state of the
lattice ~as well as the emitted excess from the open bou
ary! evolves in cycles of varying orders. When there is
significant external random noise these cycles are exact
this system, by variation of asingleparameter~the threshold
value!, extracts a wide repertoire of dynamics from distri
uted chaos. Further, all threshold values yielding cycles o
desired order can be obtainedrigorously through exact
analysis@10#.

We describe below some details of the dynamical pha
We will use the knowledge of these phases to ‘‘program

FIG. 1. Flow chart of a lattice of threshold coupled chao
elements over one dynamical update, i.e., over one chaotic up
and the subsequent adaptive response. Here the lattice size is
to 3. After two relaxation steps~‘‘avalanching’’! all sites are under-
critical.
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our system to do what we require.
As noted before, the most significant parameter in

system is the criticalx* @x* P(0,1)# and by tuningx* one
obtains the following phases. The first phase is the fix
point region that occurs whenx* ,0.75. In thisx* region,
f (x* )54x* (12x* ).x* and therefore the element is a
ways adapted back tox5x* , with the duration of the ‘‘ava-
lanches’’ being equal toN @10#. In this parameter regime
then, the adaptive mechanism suppresses the under
chaos in the lattice and yields effective spatiotemporal
variance. Further, the elements emit one unit of excess
dynamical update~see Fig. 2 for an illustrative example!.

When x* 50.75 we still have a coherent state with a
x( i )5x* , but now the avalanches are of size zero as th
are never any active sites in the lattice,x50.75 being a fixed
point of the mapf (x). So when all the maps are at their fixe
points the dynamics is trivial and there is no avalanching
cascade of excess.

When 0.75,x* ,1.0 the temporal evolution of the lattic
is attracted to a cycle whose periodicity depends onx* @10#.
Further, excess is emitted from the open edge of the lattic

ate
ual

FIG. 2. Spatial profile of a lattice of 30 threshold coupled ch
otic elements over three dynamical updates, starting from a ran
initial configuration. At the end of one update~i.e., after one chaotic
iteration of the local maps and the subsequent adaptive respo!
the random lattice gains a spatially uniform profile@all x( i )5x* #.
The excess emitted in the first update is 15.73023d. The emitted
excess thereafter settles down to a constant value of 303d. The
value of threshold here isx* 50.4 and the unit of excess emissio
d54x* (12x* )2x* 50.56.
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PRE 60 365COMPUTING WITH DISTRIBUTED CHAOS
the same periodicity. For example, by tuningx* one obtains
the following dynamical phases: for 0.75,x* <0.905... we
get cycles of order 2, for 0.905...,x* ,0.925 we get order 4
for x* ;0.93 we get order 6, forx* ;0.935 we get order 7
for x* ;0.95 we get order 10, forx* ;0.99 we get order 4
and so forth. From Fig. 3~which indicates the order of th
cycle supported at various values ofx* ) it is clearly evident
that the system yields a rich repertoire of cyclic patter
Now we will use the temporal characteristics of these cyc
states, emerging from chaotic dynamics through adap
coupling, to do computations.

The transience times for settling onto some attractor
very short in this dynamics. For instance, Fig. 2 show
random chain of 30 elements takingone dynamical update
~i.e., one chaotic iteration followed by threshold response! to
reach the attractor. This is indeed very typical. The evolut
to the attractor here is so quick because a sizable part of
space can be ‘‘grabbed’’ instantly. Further, the domino eff
~‘‘snowballing’’ ! ensures that elements down the chain w
almost certainly ‘‘trigger’’ as well. Once triggered the el
ment is immediately trapped into the desired cycle~and
small noise does not nudge the trajectory away from
cycle, for a large range of threshold!.

Figure 4 shows the above dynamics in the fixed point a
the two-cycle region under the influence of noise. Here
consider random fluctuations in the state variablex, as well
as in the threshold settingx* . Clearly the only change dis
cernible in the fixed point and two-cycle region is the slig
broadening of the attractor. Note that while the attractor h
is somewhat blurred, the period of excess emission sti
exactly 1 for thresholdsx* ,0.75 and 2 for thresholds 0.7
,x* <0.905... . So evidently the basic dynamical behav
in this region of threshold parameter space is robust w
respect to noise. In the sections below we will use this tw

FIG. 3. Orderp of the cycle obtained at various values of th
threshold parameterx* , for the case of unidirectional transport o
a lattice of logistic maps, depicted for the ranges~a! x*
P@0.5,1.0# and ~b! x* P@0.995,0.9999# ~p up to 20 is shown in
both figures!.
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cycle region for logic gate construction and the fixed po
region for encoding numbers and doing arithmetic ope
tions.

Note certain properties that underscore the vital sign
cance of chaos in the emergent dynamics here.~a! If the
same threshold dynamics was imposed on a random lat
we would not recover any of the above-mentioned phas
For these phases to occur we crucially require adeterministic
dynamics. ~b! The ergodic properties of chaotic dynamic
guarantees that the system always falls into the desired c
and does not get trapped in any corner of phase space~c!
Generic locally chaotic maps~ranging from circle maps to
tent maps! will yield an infinite number of periodicities un
der variation of the threshold@10#.

Thus the chaotic element~our potential processing unit!
under suitable cut-off on the state variable yields exc
emission at different periodicities. In a way then, one is o
taining an ‘‘output’’ of varying periods from a chaotic ‘‘in-
put’’ and only a chaotic input can yield all possible orde
via one threshold variable. Now we will do computatio
using these varied patterns generated by threshold-cou
chaos@13#.

III. CONSTRUCTION OF GATES

First we will demonstrate that our dynamical system c
easily emulate logic gates. We will define our inputs suita
through input states and the output via easily obtainable,
lective properties. For instance, for inputs, one can interp
the state of an element as~i! x;x* is 1 and~ii ! x,x* is 0.
An interesting dynamical response that can be used to c
acterize the output is theexcess transported out of the ope
boundary of the array as a result of the avalanching proce

FIG. 4. State of the chaotic element under threshold mechan
in the range 0.0,x* <0.9 under the influence of uniform random
noise in the state variablex as well as in the value of thresholdx* .
The strength of the additive noise here was 0.01 for both the s
variable and threshold setting. Its clear that the fixed point and
two-cycle region remain largely unchanged, with the attractor be
broadened only slightly.
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366 PRE 60SUDESHNA SINHA AND WILLIAM L. DITTO
initiated by adaptive relaxation. Thus one can imagine
readout~or lead! at one end of the array specified by th
inputs, registering the ‘‘excess signal’’ that represents
output.

Now we operate in thex* regime where the chaotic ele
ments emit excess as two-cycles under threshold coup
Here a two-element unit can have two possible states~note
that we always consider attractor states, not transients!.

(i) The coherent configuration.This occurs in the range
0.75,x* ,0.905 and emits excess following threshold co
pling, from the open edge, in the cyclic sequence 0202..@in
units of D15 f 2(x* )2x* #.

(ii) The out-of-phase configuration.This occurs in the
range 0.835...,x* ,0.905 and ejects excess in the seque
0101...@in units of D25 f „f (x* )1D1…2x* #.

Exploiting the phenomena described above, a partic
realization of a NOR gate is achieved as follows. We work
the parameter window aroundx* ;0.84, where~i! coherent
and out-of-phase configurations are coexisting attra
states and~ii ! the units of emitted excess for the two stat
are very different, withD2!D1 . This clearly distinguishes
the adaptive response of the coherent configurations and
out-of-phase configurations.

Now the two inputsI 1 andI 2 of the logic gate imply two
elements in specified states, whose collective response a
chaotic update~namely, the excess signal from the op
boundary of the two-element chain! should emulate the out
put given in the NOR look-up table~Table I!.

~i! If the inputs areI 150 andI 250, the states of the two
elements comprising the gate are bothx,x* . The response
of this coherent array~00! after a chaotic update leads to a
emission of 2D1 from the open edge~i.e., from element 2!.

~ii ! If the inputs areI 150 and I 251, the gate is com-
prised of the out-of-phase array~01!, whose response after
chaotic update is to eject a total excess of 0 from the o
edge.

~iii ! If the inputs areI 151 and I 250, the gate is com-
prised of the out-of-phase array~10!, whose response after
chaotic update is to eject a total excess of 1D2;0 from the
open edge.

~iv! If the inputs areI 151 and I 251, the gate is com-
prised of the coherent array~11!, whose response after
chaotic update is to eject a total excess of 0 from the o
edge.

Defining the output from the collective response of t
chain as 1 if ejected amount is much greater than 0 and
ejected amount is approximately 0, it is clear that theinput-
to-output association corresponds to that of a NOR gate. See
Fig. 5 for a schematic of this NOR gate construction.

Any Boolean circuit can be constructed by a suitable c
nection~i.e., coupling! of this basic two-element unit, whos

TABLE I. NOR gate. The two inputs areI 1 and I 2 and the
output isO.

I 1 I 2 O

0 0 1
0 1 0
1 0 0
1 1 0
e
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responses emulate a NOR gate.
Since the above response pattern is realized in a rea

ably wide parameter window it is robust to small noise in t
threshold setting, thus yielding astable and easily imple-
mentableNOR gate. Further, the logic gates are robust
noise in state variablex and and one can employ a fuzz
definition for the input and output and still obtain the nece
sary input-output association~see Fig. 4!. Note that one re-
quires sufficiently strong nonlinearities in the local map
order to obtain the emission pattern necessary for the c
struction of gates, for instance, onlyf (x)5ax(12x) with
a.3 can yield the required response.

Now there are some nontrivial issues in Boolean circ
implementation, foremost among which is the issue of wiri
of gates, and the consequent spatial arrangement of proc
ing units. In order to construct logic gates that are amena
to easy concatenation we now present an alternate protot
Here each gate is realized by asinglechaotic element and al
inputs and outputs are equivalently definedsuch that the out-
put of a gate can easily ‘‘flow’’ into the input. So the spati
arrangement of processing units comprising a gate arra
quite simply realized in this prototype. We describe deta
below.

Alternate NOR gate: Using a single chaotic element
under threshold mechanism

A single chaotic element can act as a gate as follows.
the initial state of the gate element be equal to thresholdx* .
Now the inputs are stimulations~kicks! to the state of the
element. Thus inputsI 1 and I 2 make the state of the gat
element

xgate5x* 1I 11I 2 .

Also note that by this definition of input we naturally have
situation symmetric inI 1 and I 2 .

FIG. 5. Schematic diagram of the inputs and~dynamical! output
emulating a NOR logic gate~cf. Table I!.
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PRE 60 367COMPUTING WITH DISTRIBUTED CHAOS
The output, as before, is the excess emitted after a cha
update due to the threshold mechanism:O[ f (xgate)2x* if
f (xgate) is in excess of thresholdx* andO[0 if not ~see Fig.
6 for a schematic!.

Now outputO can easily serve as input for a connect
gate element, as what is emitted can directly add on to
state of the other gate element. Sowiring gates together is
simply the usual threshold coupling of chaotic elements@Eq.
~1!# with the excess emission from the open edge giving
output of the concatenation of gates.

Now for a NOR gate we require the following characte
istics to be true:~i! When I 150 and I 250, O51 unit. ~ii !
WhenI 150 andI 251 unit,O50. ~iii ! WhenI 151 unit and
I 250, O50. ~iv! When I 151 unit and I 251 unit, O50.
This is realized in the rangex* 50.696– 0.75. We discus
details below.

When bothI 1 and I 2 are 0, we have

xgate5x* 1010

and

f ~xgate!.x* .

So the element emits one unit of excess, where one un
equal to 4x* (12x* )2x* . When eitherI 1 or I 2 is 1, we
have

xgate5x* 11105x* 1011

and

f ~xgate!,x* .

So the element emits zero units of excess. When bothI 1 and
I 2 are 1, we have

xgate5x* 1111

and

f ~xgate!,x* .

So the element emits zero units of excess. This clearly
lows the NOR input-to-output association pattern.

We now give a specific example with threshold of ga
elementx* 50.70. Now one unit~i.e., the excess emitted b
a chaotic element under thresholdx* after a chaotic update!
is 4x* (12x* )2x* 50.14.

~i! For I 150 and I 250, xgate5x* 101050.7 and
f (xgate)5 f (0.7)50.84.x* and so outputO51.

FIG. 6. Schematic diagram of the inputs and output of a sin
chaotic element emulating a logic gate.
tic

e

e

is

l-

~ii ! For I 151, I 250 and I 150, I 251, xgate5x* 1110
5x* 101150.84 and f (xgate)5 f (0.84)50.5376,x* and
so outputO50.

~iii ! For I 151 and I 251, xgate5x* 111150.98 and
f (xgate)5 f (0.98)50.0784,x* and so outputO50.

One can thus obtain a clearly defined NOR gate with
single chaotic element under the range of threshold indica
above. Now we have the added advantage that theinput and
output have equivalent definitions~i.e., one unit is the same
quantity for input and output!. Further, the output of one gat
element can now easily couple to another gate elemen
input, so that gates can be ‘‘wired’’ directly. Also this re
sponse pattern is robust as it can be obtained in a reason
wide range of threshold.

IV. ARITHMETIC OPERATIONS

Now we will adopt an alternate approach to the comp
ing question. We will try to do some specific arithmetic o
erations through our emergent dynamics.

Our potentialprocessorsare a very large number of un
coupled elements evolving under their natural chaotic
namics, as in the chaotic lattice described above. When
are not ‘‘computing’’ the elements are uncoupled~i.e., we
can think of the default threshold to bex* 51.0, which leads
to no interelement transfer, asxP@0,1# for the logistic map!.

Specification of the input/operation consists of providi
threshold parameters for some elements for threshold c
pling (x* ,1), which leads to an avalanche of emitted e
cess providing communication of information among the
elements. Tapping the emergent collective excess from
specified open edge~readout! yields the answer. After each
operation the processors is ready for the next instruc
~which is another threshold parameter for the element!. Any
computing ~recall von Neumann! is simply a sequence o
such instructions.

So ourhardwareconsists of lattices of logistic maps ca
pable of interacting through threshold coupling. Ourpro-
grammingconsists of fixing the threshold of the response
the lattice elements such that it performs a desired opera
to yield the answer.

A. Encoding scheme 1

First, we describe how numbers areencoded through their
excess emission. Excess emission is a direct function of th
threshold values. In the threshold range 0,x* ,0.75, a cha-
otic element under adaptive threshold response emits ex
after each chaotic update in order to relax back tox* . The
amount of excess emitted per dynamical update is an uni
dal nonlinear function of the threshold, over the range
,x* ,0.75, going from 0 atx* 50 to a maximum value
Emax59/16 atx* 5 3

8 and then back to 0 again atx* 5 3
4 . In

our encoding scheme the amount of excess emission~in
specified units! directly gives the value of the integer. W
define the unit of excess emission to bed5Emax/N, whereN
is the largest integer we wish to encode. Then an integerm is
encoded by an excess emission ofmd. In order to encode
from integer 0 toN, the necessary capacity of resolution
emitted excess must beEmax/N5d. Clearly, greater precision
in measuring the excess and threshold setting allows la
numbers to be encoded.

e
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368 PRE 60SUDESHNA SINHA AND WILLIAM L. DITTO
Since the map is deterministic, one candetermine exactly
the threshold that yields a given excess~where the excess
varies from 0 toN units!. So we can obtain a look-up tabl
associating the value of the threshold with the value of
integer for an arbitrarily large set of integers~see Fig. 7!. The
same encoding can handle real numbers as well~with preci-
sion determined by the excess and threshold setting res
tion!. So thesameelement can encode an arbitrarily large s
of numbers, under varying threshold~with the threshold lev-
els being sent to it as part of the ‘‘software’’!.

Typically stronger nonlinearities yield a larger range
excess emission. For instance, the parabolic form of the
gistic mapf (x)5ax(12x), ata54, has the highest maxim
and thus yields the largest difference between the map
the effective truncated map after the adaptive respo
~shown in Fig. 7!. So the range of excess emission@0,Emax#
is determined by the above-mentioned difference, withEmax
being exactly equal to (a21)2/4a for the logistic map. Thus
the range~@0, 9

6# for a54, @0, 1
3# for a53, and@0, 1

8# for a
52, down to 0 fora,1) clearly decreases with decreasi
strength of nonlinearitya.

FIG. 7. ~a! Dynamics of a single chaotic element updating und
the logistic mapf (x)54x(12x) followed by adaptive threshold
response. Here three threshold valuesx* are displayed. The differ-
ence between the solid and dotted lines gives the amount of ex
emitted in the dynamical update.~b! Look-up graph of encoded
number vs threshold valuex* . The encoded number is given by th
emitted excessD ~which is a function ofx* ) through the following
relation: the encoded number is equal toD/d, where D5 f (x* )
2x* and d5Emax/N, with N being the largest number encode
~N5100 here!.
n

lu-
t

f
o-

nd
se

B. Addition

For the addition operation, we have tothreshold couple
the elements encoding the terms in the addition. That is, the
excess emitted from one element drives the next~specifi-
cally, the excess ejected from an element is fed to the n
element!. The collective excess emitted from the open ed
of the array@i.e., from the last term~element! of the sum#
goes to a lead, which registers the answer.~See Fig. 8 for a
schematic diagram.! Since a linear chain of threshol
coupled elements, after chaotic update, gives rise to an
lanche that sweeps across the lattice gathering excess
all the elements, the excess emitted from the open edg
the lattice is then the sum total of all the individual exce
amounts and can directly be associated with the result of
addition operation.

Now the ‘‘computation time’’ can be considered~natu-
rally! to be the time the dynamical system takes to adaptiv
relax and emit excess from the open edge, which is the ‘‘
swer.’’ Then one readily seems that the computing time
simply equal to the number of terms in the addition. Furth
this operation iscommutativeas the ordering of the term
~elements! does not influence the answer.

Note that the range of parameters under which t
encoding/addition works is very broad. Also in this ran
noise does not significantly degrade the performance of c
putation.

C. Parallelized operations

Importantly, one can do the addition operation inparallel
~i.e., synchronously/concurrently! by having abranchingto-
pology of the lattice. ‘‘Parallelization’’ in this prototype re
lies on the fact that the relaxation takes placesynchronously
for all processing units and is a local phenomenon. Thus

r

ss

FIG. 8. Threshold coupled chaotic elements emulating an a
ing machine: Here we are adding four integersi,j,k,l, each encoded
by an element with threshold fixed such that it emitsi,j,k,l units of
excess, respectively~where the unit of excess emission isd!. These
elements encoding the terms are then threshold coupled for
addition operation. The ejected excess from elementi (5 i 3d)
drives elementj and so on, up to elementl, from whose open
boundary the collective excess is emitted to the output lead. T
emitted excess is exactly the sumi 1 j 1k1 l ~in units of d!. For
serial addition we have a linear chain configuration and the co
puting time is equal to the number of terms in the sum~which is 4
here!.
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PRE 60 369COMPUTING WITH DISTRIBUTED CHAOS
add several numbers, one can employ a branched la
where each branch is an element encoding a term in the s
The duration of the ‘‘avalanche’’ of excess to the open end
equal to the length of the longest branch in the netwo
since the computing time is the time taken by the units
relax and emit excess to the readout, this time can be dr
cally shortened by appropriate networking. In serial wiri
of units the length of the longest~only! branch is equal to the
number of terms added and so the computing time is pro
tional to the number of terms in the addition, as we s
earlier. On the other hand, parallel circuits can yield rel
ation in much shorter times, utilizing the simultaneous a
lanching in the different branches.~See the schematic dia
gram, Fig. 9, and an example in Fig. 10, where the addit
operation on 15 terms is parallelized to yield a comput
time of 4, instead of 15 as in serial addition.!

Thus branching networks of dynamical elements c
serve as a massively parallel machine, with several ‘‘in
leads’’ flowing concurrently into a processing unit, fro
whose open edge the resulting net answer is collected.
parallelization potential is derived from the synchronicity
all the dynamical processes and the locality of the thresh
and relaxation rule.

D. Multiplication

Multiplication can be performed~as an extension of addi
tion!, invoking the same parallel computational approa
through branching lattices. For instance, to dom3n we have
a lattice withn branches, each branch being a copy of
element encodingm. The total ejected excess will be th
answerm3n.

Alternately, in order to dom3n, we can take the elemen
representingm and collect the ejected excess over n tim
steps, i.e., the quantity accumulated overn units of the local
chaos clock. This quantity will be equal tom3n. In this
scheme then, one waits forn time steps and then retrieves th
result, which is the collective excess. That is, in order
multiply, we are now exploiting the temporal evolution
the adaptive response.

FIG. 9. Schematic diagram of the parallelized operation emp
ing a branching lattice, where each branch is an element encod
term in the addition. The excess emitted from the open edge yi
the resulting sum. The adaptive relaxation process~equivalent to the
computing time! occurs in only two avalanching steps.
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The latter method of implementing multiplication wi
cost more time than the former method~specifically,n times
more!, while requiring less ‘‘space,’’ in the sense of needi
far fewer elements or ‘‘processors’’~specifically, n times
less!. So depending on the resources available, i.e., whe
one has many elements or very quick dynamics, one
choose either way of doing the operation@14#.

E. Encoding scheme 2

We denote the threshold yielding excess emission at
riodicity k as x

*
k . Now in order to encode anN-bit binary

number whose representation isaNaN21¯a2a1 , we useN
chaotic elements, each encoding a bit. If the value of thekth

bit is 1 ~i.e., ak51), its threshold is set atx
*
2N2k

, such that it
emits excess periodically with period 2N2k. For instance, if
the bit farthest from the decimal pointaN51 it will be en-
coded by an element whose period is 1, while ifa151 it will
be encoded by an element with periodicity 2N21. If the value
of a bit is 0, the element representing the bit has threshold
at 0, thus emitting no excess.

To obtain the value of the numberaN¯a1 , we have to
threshold couple theN elements representing the bits, wi
aN having the open edge to the readout. We evolve this ch
over one period of the longest period 2N21, i.e., over 2N21

dynamical updates. The collective excess emitted will
equal to the value of the number, namely,(k51,Nak2

k21.
This encoding scheme exploits chaos as it employs m
different periods and only a locally chaotic element can yi
all of them under varying threshold. The scheme can
modified easily to encode any other base expansions, suc
decimals, as well.~See Fig. 11 for an example of this enco
ing scheme.!

-
g a
ds

FIG. 10. Schematic diagram of the parallelized addition ope
tion on 15 numbersi,j,k,l,m,n,o,p,q,r,s,t,u,v,w,employing a treelike
branching lattice. The excess emitted from the open edge yields
resulting sum. The adaptive relaxation process~equivalent to the
computing time! occurs in only four avalanching steps~i.e., equal to
the longest branch in the network!.
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FIG. 11. Encoding an intege
by a chain of threshold coupled
elements.
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Table II shows the temporal pattern of excess emiss
necessary for encoding a four-2 bit binary number 1111.
four bits, each encoding 1, we have four elements w
threshold set such that excess emission occurs periodi
every first, second, fourth, and eighth chaotic updates,
spectively. The total excess emitted is equal to 8141211
515, which gives the value of the number.

As another example, in order to encode, say, the integ
~101 in binary! we employ a chain of three elements, ea
encoding a bit. The first bit has thresholdx

*
4 , followed by

one with x* 50, and the last element~with the open edge!
hasx

*
1 . So over one period of the longest period 232154,

i.e., over four dynamical updates, the element encodinga3
~value 1! emits one unitd of excess 4 times, while the ele
ment encodinga2 ~value 0! emits 0 excess and the eleme
encodinga1 ~value 1! emits oned once. Thus the total emit
ted excess is equal to 43110113155 and directly gives
the value of the encoded binary number.

Note that one has to take care in chosing the same un
excess emission for all cycles, i.e., the amount an elem
with thresholdx

*
k emits afterk steps should be the same f

all k. The threshold values for which a requisite set of cyc
emit the same excess can be determined exactly. The nu
of bits that can be encoded is limited by the resolution
excess emission and threshold setting.

For addition now we can again threshold couple
chains of elements representing the terms in the sum. A
evolution over 2N21 chaotic updates, the coupled elemen

TABLE II. Chaotic updatest at which excess emission occu
for the elements encoding four binary bits 1 1 1 1,displayed over
one period of the longest period equal to 242158.
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will yield from the open boundary an amount equal to the

result of the addition. This operation commutes and a
number of terms can be threshold coupled together~i.e.,
‘‘added’’! in series~linear chain configuration! or parallel
~branching chain configuration!. The relaxation time~which
determines computing speed! for serial addition ofm N-bit
numbers is less than or equal toN3m, while for parallel
addition it is less than or equal toN11. A specific example
of the serial and parallelized addition operation is dem
strated in Figs. 12 and 13.

F. Least common multiple

We have shown how the collective response of distribu
chaos can emulate logic/arithmetic operations. There is
scope for devising ‘‘dynamical algorithms’’ that exploit th

FIG. 12. Serial addition operation of four integers 7, 5, 2, and
where the terms of the addition are encoded by a chain of th
elements each. These are threshold coupled in a linear config
tion. Now after four dynamical updates~since the longest period is
equal to 232154) the entire lattice emits a total excess of 15 uni
which is the result of the operation 7151211515.
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FIG. 13. Parallelized addition
operation of three integers 7, 5
and 1, where the terms of the ad
dition are encoded by a chain o
three elements each. These a
threshold coupled in a branchin
configuration. Now after four dy-
namical updates~since the longest
period is equal to 232154) the
entire branching lattice emits a to
tal excess of 13 units, which is th
result of the operation 71511
513. Here the complete relax
ation process in each dynamica
update requires a maximum o
four avalanching steps~i.e., equal
to the longest branch in the ne
work!.
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richness of chaos to compute other numerical quantities.
instance, a dynamical algorithm for finding the least comm
multiple ~LCM! can be realized as follows.

In order to find the LCM ofn integersk1 ,k2 ,...,kn we use
n chaotic elements as ‘‘input.’’ Thesen input elements have
their threshold fixed at values such that they emit exc
cyclically with periodsk1 ,k2 ,...kn . The periodicity of ex-
cess emission thus represents the value of the terms o
LCM.

Now the deterministic chaos allows us to obtain ex
generating equations for threshold values supporting a
tain periodicity @10#. Thus one can obtain a look-up tab
relating periodicityk of the excess emission of an element
thresholdx* in order to represent any positive integer.

Now, these input elements are coupled in parallel to o
‘‘master’’ element whose threshold is fixed atx* ,0.75 and
that has the open edge leading to the answer. So the ex
ejected from the input elementssynchronously stimulatethe
master element, which in turn emits excess from its op
or
n

s

he

t
r-

e

ess

n

boundary with periodicity equal to theLCM of all the input
stimulus periods. Thus one obtains the required answer, i.
the LCM of the terms, by simply measuring the period of t
master element’s response. Note that one can handle m
terms inparallel here by stimulating the master element sy
chronously with different periodic impulses. Figure 1
shows a schematic of this calculation.

Alternately, one can have a simpler method for comput
the LCM of two numbers by exploiting the diverse respons
obtained under varying frequencies of output measurem
that is, with respect to varying intervals of excess emiss
sampling. In order to compute the LCM of two integersk1

andk2 , we encode one of them, sayk1 , by a chaotic elemen
via the look-up graph described above~i.e., set the threshold
such that it emits excess at period equal tok1). Then one
measures the response~i.e., the output! everyk2

th step, that is,
measures the excess emission periodically with period e
to the second number~i.e., equal tok2). The resulting excess
f
FIG. 14. Schematic diagram o
the calculation of the LCM of
three integers.
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372 PRE 60SUDESHNA SINHA AND WILLIAM L. DITTO
will then be registered everykth step, wherek is the LCM of
k1 andk2 .

By this alternate method we can calculate the LCM
only two numbers in one operation. The LCM ofn integers
can be found byn21 operations involving two number
each. If done in parallel~in a binary tree structure! the cal-
culation of the LCM ofn integers will take of the order o
log2 n times the computation time for the calculation of t
LCM of two numbers.

These simple but intriguing examples demonstrate
dynamic algorithms hold the potential for computing a ran
of specialized mathematical operations. Thus we begin to
the first glimpse that dynamics can perform computation
just by emulating logic gates or simple arithmetic operatio
but by performing more sophisticated operations throu
self-organization rather than composites of simpler ope
tions.

V. APPLICATION TO LASER SYSTEMS

Now we present evidence of continuous time multidime
sional systems yielding dynamical characteristics that can
exploited for computations in a manner similar to that o
lined above. Consider a collection of threshold coupled c
otic Lorenz systems, where each unit is given by a se
three coupled ODEs

ẋ5s~y2x!,

ẏ5rx2y2xz,

ż5xy2bz. ~2!

We can implement the threshold action on any of the th
variables.

It is known that there exists a correspondence between
laser and Lorenz system as follows: Thez variable corre-
sponds to the normalized inversion and thex andy variables
correspond to normalized amplitudes of the electric field a
atomic polarizations, respectively. The three parameters
the corresponding coherently pumped far-infrared ammo
laser system ares52, r 515, andb50.25. These paramete
values have been obtained by detailed comparison with
periments@15#. Specifically, we choose the parameters of
Lorenz system to be the ones relevant to the IR NH3 laser
and henceforth we will refer to it as a laser system.

We can impose the threshold mechanism on any on
the three variables of the laser system, i.e., one demands
any variablex, y, or z must not exceed a prescribed thresho
value x* . Figures 15–18 show some representative res
of this threshold action for a range of threshold values. I
clear that the threshold mechanism yields fixed points~Fig.
15! and limit cycles of varying sizes~Figs. 16 and 17!.

Now low threshold values lead to fixed points in pha
space, while larger thresholds generate cycles. Specific
all thresholdsx* <r 21 imposed on thez variable andx*
<Ab(r 21) imposed on thex and y variables yield fixed
points. Larger thresholds yield limit cycles whose sizes
crease with increasing threshold~see Figs. 16 and 17 fo
examples!. When the threshold is very large~close to the
bounds of the attractor! the system under threshold mech
nism yields broad cycles, like ribbons in phase space.
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Note that the above holds for threshold implementation
reasonably short intervals. If the threshold condition
checked infrequently, one obtains fuzzy cycles~like ribbons
in phase space! instead of exact cycles. The ‘‘width’’ of
these broad limit cycles is inversely proportional to the
terval at which the threshold mechanism is implemented

Arithmetic operations with the laser system
using encoding scheme 1

We find that threshold coupled laser systems can succ
fully encode and emulate addition/multiplication, using t

FIG. 15. Chaotic laser@with the parameterss52, r 515, and
b50.25 in Eq. ~2!# with variable x under threshold mechanism
with threshold valuex* 51. The coupled ODE’s evolved via fourth
order Runge-Kutta method with step size equal to 0.01. The thr
old mechanism is implemented at intervals of 0.01. The three s
variables are seen to rapidly evolve to the fixed point.

FIG. 16. Chaotic laser~with s52, r 515, andb50.25), with
variablex under threshold mechanism, with threshold value equa
~a! 2.0, ~b! 2.5, and~c! 2.75. The chaotic orbit yields limit cycles o
increasing size for these thresholds. The dotted lines indicate
three different values of the threshold.
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PRE 60 373COMPUTING WITH DISTRIBUTED CHAOS
threshold condition on any of the three variablesx, y, andz
~see Figs. 18 and 19!. For instance, using the thresho
mechanism on thez variable of the laser system, one obtai
a large range of excess emission. The dependence of ex
emission on threshold is linear~see Fig. 18!. This makes
encoding via scheme 1 particularly easy.

The other interesting thing is that the threshold inter
giving encoding/addition is proportional tor, wherer is the
nonlinearity parameter corresponding to pump rate.

FIG. 17. Chaotic laser~with s52, r 515, andb50.25), with
variablez under threshold mechanism, with threshold equal to~a!
15, ~b! 16, ~c! 17, ~d! 17.5, and~e! 17.7. The chaotic orbit yields
limit cycles whose size is determined by the value of the thresh
The dotted lines indicate the threshold cutoffs.

FIG. 18. Look-up graph of encoded number vs threshold val
for the chaotic laser system with threshold mechanism impleme
on thez variable~here the largest number encoded is 100!.
ess

l

o

higher pump rates give bigger ranges of operation.
To perform addition onm numbers we set the threshold o

m connected chaotic laser units such that each encod
term in the sum. The excess emitted from a unit drives
neighboring one, with the unit encoding the last term of t
sum having the open edge with the lead registering the
put. After a chaotic update an avalanche sweeps across
threshold coupled units~as demonstrated in Fig. 20!, giving
rise to an excess emission from the open edge, which
directly be associated with the result. The addition operat
is then achieved simply as follows: Input the threshold v
ues from the look-up table to encode the numbers to
added and then register the emitted excess from the o

d.

s
ed

FIG. 19. Look-up graph of encoded number vs threshold val
for the chaotic laser system with threshold mechanism impleme
on the ~a! y variable and~b! x variable ~again the largest numbe
encoded is 100!.

FIG. 20. Threshold coupled chaotic laser units emulating
adding machine: Here we are adding four integers 11, 25, 73,
each encoded by a chaotic laser unit with threshold fixed from
lookup graph of Fig. 17, such that they emit 11, 25, 73, 49 units
excess, respectively~here the unit of excess emission isd
50.2796). These elements encoding the terms are then thres
coupled for the addition operation. The ejected excess from
element encoding 11 (5113d) drives the element encoding 25 an
so on, up to the element encoding 49, from whose open boun
the collective excess is emitted to the output lead. This emi
excess~544.18! is exactly the sum 111251731495158 ~in units
of d!. For serial addition we have a linear chain configuration a
computing time is equal to the number of terms in the sum~which
is 4 here!.
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374 PRE 60SUDESHNA SINHA AND WILLIAM L. DITTO
edge at the end of one dynamical update. The dynamic
the lattice is such that this emitted excess is the requ
answer. We can have a linear or branching chain of cha
laser units for serial and parallel addition. The operation
againcommutative, as the ordering of the terms~elements!
does not influence the answer.

The result of the operation is reasonably insensitive
noise. For instance, Fig. 21 shows the same addition don
the presence of additive random noise. Clearly the ‘‘resu
of the operation fluctuates only very slightly about the c
rect answer.

Multiplication can be performed~as an extension of addi
tion!, invoking the same parallel computational approa
through branching lattices. For instance, to dom3n we can
have a lattice withn branches, each branch being a copy
the unit encodingm. The total ejected excess will be th
answerm3n. Alternately again, we can dom3n by taking
the element representingm and collecting the ejected exce
overn time steps, i.e., the quantity accumulated overn units
of the local chaos clock. This evidence of computatio
ability from continuous time multidimensional systems ind
cates that our scheme seems to have definite possibilitie
expansion and opens up concrete experimental possibi
with ultrafast optics.

VI. DISCUSSION

We have presented here a purposefully simple dynam
system and shown how we can program it to perform b
general and specific computations. While, in some sense
ery physical system can be thought of as an ‘‘analog’’ co

FIG. 21. Here we have noisy chaotic laser units thresh
coupled to emulate an adding machine. The strength of unif
random noise in the state variables of the various units is 0.01.
are adding the same set of four integers 11, 25, 73, 49, as in Fig
Each term is again encoded by a chaotic laser unit, with the co
tive excess ejected at the readout providing the result of the op
tion. The figure shows this quantity over several dynamical upda
Clearly the emitted excess fluctuates very minimally around
sum 111251731495158 ~in units of d!. Thus the result of the
addition operation is robust to small noise in the system.
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puter, the trick is to make specific analog computers, suc
dynamical systems, perform the computations we desire
our knowledge, it is surprising that chaotic systems can
programmed to perform such a wide variety of computatio

We tried to include a diverse enough group of compu
tions ~logical operations, arithmetic operations, and spec
ized dynamical algorithms! to demonstrate that dynamica
systems can be simply and flexibly programmed to comp
Further, we have provided a specific application to a la
system. In light of these results, it can be envisaged th
high-speed chaos computer might be constructed that
ploits fast chaotic lasers for computation. The advantage
using chaos computing in this case would be that progra
ming could be accomplished by slight changes to the
namical system to perform high-speed addition, multiplic
tion, etc.

Our general strategy here was to investigate the oppo
nities provided by nonlinear dynamics to constitute an eff
tive computing medium, exploiting the determinism of d
namics on the one hand and its richness on the other
contrast to efforts to bring computational models and phys
closer together starting from the computer model end~such
as taking the digital dynamics and adding physical proper
and constraints to it@16# or efforts to use the theory of com
putation to describe/quantify the complexity of physical sy
tems @17#!, we start from the physics end and explore t
possibilities chaos has to offer to computation. While cert
‘‘physicslike’’ models, for instance, cellular automata, ha
been investigated extensively as candidates for comput
chaotic dynamics was still to be explored as a comput
medium. Here we have demonstrated the possibility of co
puting with chaos, whicha priori may seem surprising.

Note that nonlinearity in the processing units is clea
necessary for various Boolean/arithmetic implementatio
though these units need not necessarily be chaotic. Howe
only chaotic dynamics will ensure the capacity to getall the
different applications from thesameprocessing units. Tha
is, we can ‘‘control’’ the chaotic map to the dynamics r
quired for the application at hand and only the fully chao
case can be ‘‘pruned’’ to all possible behaviors, as appli
tions demand.

It is evident that dynamical computing has potential a
flexibility, arising from thewide range of behaviors eac
module is capable of, through the variation of a sing
(‘‘programmable’’) parameter. That is, the chaotic element
present a range of possibilities with thesamecollection of
elements~i.e., using the same hardware! by simply changing
the threshold~which is fed in as input and is part of th
software!. Specific applications of this versatility are the e
coding schemes and the dynamical algorithm for finding
LCM. ~See Tables III and IV for a summary.! Further, the
knowledge of the dynamics of the nonlinear system con
tuting the hardware allows us to exactly specify the thre
olds that yield the required inputs or operations~like a ‘‘ma-
chine language’’! and this makes programming of ou
system simple and direct.

Interestingly, note that from another viewpoint, our sy
tem has the capability of ‘‘changing’’ its hardware, throug
its software, as the chaotic elements constituting the pro
sors can change their behavior depending on the thres
value they receive~which is part of the ‘‘program’’!. There-
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TABLE III. Analogs of computing devices and operations in the chaotic network.

Computing devices/operations Analogs in the chaotic lattice

Basic hardware: processors Chaotic elements in a lattice/chain/array/network
Communication of data/information Transport induced by threshold mechanism

couples the elements through the cascade
of emitted excess~‘‘avalanching’’!

Programming Setting threshold value
Input ~‘‘source’’! Feeding in a stream of threshold parameters
Output ~an external ‘‘visible’’ state Collective response of the system

of the computing system! ~can simply, clearly, and consistently be
associated with the result of the operation!

The ‘‘value’’ sent by the system to the Excess emitted from the open boundary of the arra
output lead~‘‘sink’’ !

Analog features Continuous state variables and threshold parameter
system dynamics ‘‘emulates’’ the operation

Digital features Discrete elements
binary representations employed in arithmetic operatio

Parallel operation Highly branching arrays evolving synchronously
th
r-
a

v
re

o
on
o

l

o
-
o
il-
on
m

ose

l
oit
om
c-
l-
ntal

en
TM
ces
ht-

t to

ys-
we

em-
tic/
fore, they can serve as ‘‘programmable hardware’’@18#.
It is not appropriate at this incipient stage to debate

optimality of computing with chaos. The interesting infe
ence one can draw at this point is the feasibility of chaos
a candidate for direct and controlled computing and its e
dent potential. This is quite like the situation in the mo
‘‘mature’’ fields of DNA @19,20# and quantum computing
@21,22#, which also aim at discovering alternative ways
exploiting physical phenomena, well understood in the c
text of physics, to do computations. There too it is still n
clear that these computing systems, first presented asalter-
nate computing paradigms, can perform better than digita
computers~although they hold great promise! @23#. Indeed,
we choose our coupled logistic map lattice not from speed
optimization concerns but from a ‘‘proof-of-concept’’ con
cern, much like Aldeman demonstrated the feasibility
DNA computing in 1994, by solving a seven-node Ham
tonian path problem, a special case trivial to solve by c
ventional computer. In contrast to the DNA and quantu
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paradigms, which are geared to handlespecific problems
suited specially to itself, we are aiming at a general purp
machine. Further, chaos computing has an advantage~unlike,
say, DNA computing, which is limited by slow biologica
processes! in that here one is quite free to design and expl
~almost! any fast dynamical system. So we can choose fr
a wide variety of chaotic systems, ranging from fast ele
tronic circuits to fast lasers, and this will have direct re
evance for the operational speeds attainable in experime
realizations@24#.

In our work we have tread the middle ground betwe
very abstract mappings of dynamical systems onto the U
and very concrete realizations of specific computing devi
with complicated systems. For instance, it can be straig
forwardly shown that coupled map lattices are equivalen
synchronous concurrent algorithms~SCAs! @7,25#. Along
similar lines it can easily be shown that our dynamical s
tem is also equivalent to a SCA. While this is assuring, as
now know that our system will work ‘‘in principle,’’ it was
not our aim here to merely state this. Instead, we have d
onstrated explicitly how chaos can yield specific arithme
TABLE IV. Potential advantages of computing with distributed chaos.

Extensive range of possibilities with the same collection of elements
cycles ofall orders can be emulated by simply changing the threshold
Versatile and flexible: each element is capable of a very wide range of behaviors

through variation of a single~programmable! parameter
exploiting the richness of chaotic dynamics

Inherently highly parallelizable
Controlled, potentially general purpose, applications possible:

as the chaotic elements can be made to yieldexactcycles ofany desired order
Simple and direct:

~only oneadjustable parameter, the threshold, yieldsall arithmetic/logic operations!
Implementation simple:

do not have to monitor each element individually,
simply tap the response from one specified open edge
this response is associated with the answer in a clear and consistent way
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376 PRE 60SUDESHNA SINHA AND WILLIAM L. DITTO
logic operations. Alternately, there are certain concrete
proaches to the computing question. For instance, cer
chemical systems can be very delicately tuned to yield so
logic gates@8#. There are many crucial parameters in su
models~involving both the construction of the apparatus
well as the geometric configuration and timing of the inp
output waves!. Fine adjustments of these lead to the desi
phenomena. In contrast to such attempts, here we have a
simple and general scenario, with onlyoneadjustable param
eter defining both arithmetic and logic operations and giv
robust responses that can emulate the answer/output.

Finally, we would like to discuss this ‘‘computing-with
chaos’’ principle in relation to the two existing computin
cultures: namely, the conventional algorithmic way~on
which the structure of working general purpose computer
based! and the neural net, ‘‘experience-acquisition’’ sty
@26#. We have tried to emulate, through the spatiotempo
responses of distributed chaos, what an algorithmic com
ing machine is capable of doing. Our computing paradi
then enjoys the advantage of beingdirect andcontrolled. In
fact, it is quite amazing how adaptive coupling allows one
use chaos in such a controlled manner. Chaos computin
then implementable very consistently. The system wh
evolving chaotically, processes information reliably~and
‘‘predictably’’ !.

Clearly our ‘‘dynamic computing’’ is very different from
neural computing in style and content. Neural nets do
have any natural intrinsic dynamics. We, on the other ha
are computing with chaos. Loosely speaking, this is like s
ing that the analog of the constituent ‘‘neurons’’ in neu
nets is functionally simple, while in our model it has natu
chaotic response, and thus is behaviorally far richer.
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Neural nets are closely tailored to specific tasks, where
here we have a bunch of potentially general purpose proc
sors, which can handle different arithmetic/logic operatio
~communicated through a stream of parameters!. So our
computing paradigm is more versatile.

Further, there is nothing in our computing that is ana
gous to a sequence of ‘‘weight adjustments’’ to match tar
truth tables@26#. Our system does not, in the style of neur
nets, try to adjust its internal coupling to deliver the desir
response. Instead, our knowledge of the hardware, nam
the determinism of the chaotic evolution, allows us toexactly
specify the coupling that will yield the required operatio
Thus we have tried to exploit our knowledge of the phys
of the constituent hardware to enable us to ‘‘program’’ t
chaotic elements at the ‘‘machine level’’~for instance, we
exploit exact solutions for ‘‘look-up tables’’ to implemen
encoding!. Our computing then needsno ‘‘learning time’’
for tasksand is consequently faster. While there will be co
siderable effort~and anticipated limitations of techniques! in
determining the specific physics of the problem at the des
level, having ‘‘constructed’’ or ‘‘synthesized’’ the comput
ing device, one will not need any additional overheads
performing basic encoding/logic/arithmetic operations~as
these will be ‘‘hard wired’’ so to speak!.

Finally, note that our computing principle shares o
~very advantageous! feature of neural computing. It is als
inherently highly parallelizable, in the sense that the distr
uted elements can evolve synchronously, i.e., the system
execute several operations concurrently@26#. In summary,
we have demonstrated that extended chaotic systems ar
pable of performing computations through a rich variety
emergent spatiotemporal properties.
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