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We describe and discuss in detail some recent results by Sinha andiifte. Rev. Lett81, 2156(1998]
demonstrating the capacity of a lattice of threshold coupled chaotic maps to perform computations. Such
systems are shown to emulate logic gates, encode numbers, and perform specific arithmetic operations, such as
addition and multiplication, as well as yield more specialized operations such as the calculation of the least
common multiplier of a sequence of numbers. Furthermore, we extend the scheme to multidimensional con-
tinuous time dynamics, in particular to a system relevant to chaotic |484863-651X99)05306-4

PACS numbds): 05.45—-a, 89.70+c

I. INTRODUCTION Il. THRESHOLD COUPLED CHAOTIC LATTICES

Now we describe the rich spectrum of phenoméaag-

A recurring theme of research into chaotic systems oveing from spatiotemporal fixed points to exact cycles of all
the past decade has been that chaos provides “flexibility” inorder$ arising from a class of dynamical systems incorpo-
the performance of natural systems and provides such sy$ating threshold coupling on a lattice of chaotic elements
tems with a rich variety of behaviors that can be utilized for[9—11. Here time is discrete, labeled byspace is discrete,
“improved” performance. Recent successful implementa-labeled byi, i=1, N, whereN is system size, and the state
tions of this concept have included the exploitation of cha-variablex,(i) (which in physical systems could be quantities
otic behavior for contro[1], synchronizatior2], encoding Such as energy, voltage, velocity, pressure, or concentyation
information[3], and communication!]. It is the purpose of is continuous. Each individual site, indexed by their spatial

this paper to expand this list to include computation, thereb;llocat'on' in the lattice, evolves under a suitable nonlinear

describing a different direction in harnessing chaos. mapf(x). For instance, the local mdigx) can be chosen to

In this article we describe in detail some recent results byb e the logistic map, Wh.'Ch has w@espread relevance as a
Sinha and Dittd 5] demonstrating the capacity of nonlinear prototype of low-dimensional chaos:

lattices to do computations through the emergent collective
properties or the emergent responses of distributed chaos.
He_re we utilize the_‘ F:omple>_< dynam!cs of the |nd|y|dual xe[0,1], with the nonlinearity parametea chosen in the
units, as well as their interactive couplings and adaptive pro-

) . . " “chaotic regime. Specificallg= 4.0 throughout. Another pos-
cessesimplemented in particular as a threshold rT‘ech"’m'smsible choice in the local dynamics is the circle map, which is
to do computations. '

o . . relevant in systems involving nonlinear oscillatory behavior
The possibility of universal computing can be demon-[11] Fyrther, the local dynamics can also be a suitable sec-

f(x)=ax(1—x),

strated in differen{complementaryways. ~ tion or a stroboscopic sampling of a continuous time series
(i) First, in principle, it is shown that a universal Turing arising from coupled ordinary differential equatiof@DES.
machine(UTM) can be simulated by the systd®7]. Now on this nonlinear lattice aelf-regulatory threshold

(i) The second, more concrete, approach is to show thatynamicsis incorporated. The adaptive mechanism s trig-
the system can emulate a device with which a UTM can bgjered when a site in the lattice exceeds the critical vajue
constructed. In particular, since any logic gate can be obie., when a certain site, (i)>Xx, . The supercritical site
tained by adequate connection of NOR gdies, any bool- then relaxes(or “topples”) by transporting its excesa
ean circuit can be built using a NOR gatene can try to  =x,(i)—x, to its neighbors. So this adaptive connecting
show that the responses of the dynamical system emulateraechanism “opens” whenever an element exceedghe
NOR gate[8]. scribed threshold.

(iii) Finally, one can do some prototypical arithmetic op-  For the specific case afnidirectional transport in one-
erations, such as the particular example of the addition opdimensional arrays we have the following scenario: After
eration, to demonstrate the computational ability of the dy-lriggering a response the sigriakcess of thresholds trans-

namical system. ferred to one neighbor to the rigkdr left):
In this article we will use the last two approaches to dem- _
onstrate “computing” via emergent dynamics. First, we de- XA(1) =Xy
scribe below our dynamical systems candidate for the “hard-
ware.” X(i+1)—x(i+1)+A. D
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FIG. 1. Flow chart of a lattice of threshold coupled chaotic 0 T B S
elements over one dynamical update, i.e., over one chaotic update 0 10 20 30
and the subsequent adaptive response. Here the lattice size is equal
to 3. After two relaxation stepSavalanching”) all sites are under- 1 L L B
critical. 08 update 2 E
The relaxation activity continues until allk<x, , after which =06 [ —
the next chaotic update of the on-site maps take place. That ¥ 04 L .
is, the chaotic evolution is slower than the adaptive response, T E ]
allowing the system to relax completely before each chaotic 02 E
update(see Fig. 1 for a schematic diagram of the dynaimics P U B
The dynamics above then induces a unidirectional nonlin- 0 10 20 30
ear transport down the array by initiating a domino effect site i

(reminiscent of the “avalanches” arising in self-organized
sandpile§ 12]). The boundary is open so that the “excess”
may be conducted out of the system. This kind of threshol
me(.:hamsm .Imposed on local chaos makes the _above SCeration of the local maps and the subsequent adaptive response
narlo' espgually relevant fpr synapses of nerve'tmmnee . the random lattice gains a spatially uniform profial x(i)=x, ].
that individual neur_ons _dlsplay complex _cha(_)tlc behawor—rhe excess emitted in the first update is 15.7802 The emitted
and have step-function-like reponses to stimuli excess thereafter settles down to a constant value Bf&30The

Note that each synchronous iteration of the local maps ofajye of threshold here is, =0.4 and the unit of excess emission
the elements in the lattice represents a single click of theg—4x, (1—x,)—x, =0.56.

dynamical clock. Thus our basic unit of time, which will
henceforth be called dynamical (or chaotic) updatecon-  our system to do what we require.
sists of one forward iteration of the chaotic local maps of the As noted before, the most significant parameter in the
system followed by relaxation of all lattice sites to their final system is the criticak, [x, (0,1)] and by tuningx, one
(fully relaxed state. obtains the following phases. The first phase is the fixed
Now the nature of the threshold coupling is such that itpoint region that occurs whex, <0.75. In thisx, region,
actually works as a “control” mechanisfiguite unlike, say, f(X,)=4X,(1—x,)>X, and therefore the element is al-
the usual diffusive coupling The system is naturally always ways adapted back to=x, , with the duration of the “ava-
being “reset,” so to speak, by virtue of the adaptive self-lanches” being equal tdN [10]. In this parameter regime
regulation. The value of the threshold governs the dynamicthen, the adaptive mechanism suppresses the underlying
of the array, showing the presence of many “phases¥,jn chaos in the lattice and yields effective spatiotemporal in-
space[10]. As the thresholdx, is tuned the state of the variance. Further, the elements emit one unit of excess per
lattice (as well as the emitted excess from the open bounddynamical updatésee Fig. 2 for an illustrative example
ary) evolves in cycles of varying orders. When there is no When x, =0.75 we still have a coherent state with all
significant external random noise these cycles are exact. Sqi)=X, , but now the avalanches are of size zero as there
this system, by variation of singleparametefthe threshold are never any active sites in the lattiges 0.75 being a fixed
value, extracts a wide repertoire of dynamics from distrib- point of the mapf (x). So when all the maps are at their fixed
uted chaos. Further, all threshold values yielding cycles of @oints the dynamics is trivial and there is no avalanching or
desired order can be obtainaiborously through exact cascade of excess.
analysis[10]. When 0.75x, <1.0 the temporal evolution of the lattice
We describe below some details of the dynamical phasess attracted to a cycle whose periodicity dependsxp10].
We will use the knowledge of these phases to “program” Further, excess is emitted from the open edge of the lattice at

FIG. 2. Spatial profile of a lattice of 30 threshold coupled cha-
é)tic elements over three dynamical updates, starting from a random
initial configuration. At the end of one upddies., after one chaotic
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FIG. 3. Orderp of the cycle obtained at various values of the in the range 0.€:x, <0.9 under the influence of uniform random
threshold parametex, , for the case of unidirectional transport on nhoise in the state variableas well as in the value of threshalq .
a lattice of logistic maps, depicted for the rangé® x, The strength of the additive noise here was 0.01 for both the state
€[0.5,1.9 and (b) x, €[0.995,0.9999 (p up to 20 is shown in variable and threshold setting. Its clear that the fixed point and the
both figures. two-cycle region remain largely unchanged, with the attractor being
broadened only slightly.

the same periodicity. For example, by tunixig one obtains
the following dynamical phases: for 0.7%, <0.905... we  Cycle region for logic gate construction and the fixed point
get cycles of order 2, for 0.905<x, <0.925 we get order 4, Tegion for encoding numbers and doing arithmetic opera-
for x, ~0.93 we get order 6, fox, ~0.935 we get order 7, tons. _ _ _ o
for x, ~0.95 we get order 10, fax, ~0.99 we get order 4, Note certain properties that undersc0(e the vital signifi-
and so forth. From Fig. 3which indicates the order of the cance of chaos in the emergent dynamics heaelf the
cycle supported at various valuesg) it is clearly evident ~Same threshold dynamics was imposed on a random lattice,
that the system yields a rich repertoire of cyclic patternsWe would not recover any of the above-mentioned phases.
Now we will use the temporal characteristics of these cyclicFor these phases to occur we crucially requideerministic
states, emerging from chaotic dynamics through adaptiv8ynamics (b) The ergodic properties of chaotic dynamics
coupling, to do computations. guarantees that the systeml always falls into the desired cycle
The transience times for settling onto some attractor ar@nd does not get trapped in any corner of phase sgare.
very short in this dynamics. For instance, Fig. 2 shows g3eneric locally chaotic mapganging from circle maps to
random chain of 30 elements takimge dynamical update tent me}p}jwnl yield an infinite number of periodicities un-
(i.e., one chaotic iteration followed by threshold respose ~ der variation of the threshold.0]. _ _ _
reach the attractor. This is indeed very typical. The evolution Thus the chaotic elemertour potential processing uit
to the attractor here is so quick because a sizable part of stag@der suitable cut-off on the state variable yields excess
space can be “grabbed” instantly. Further, the domino effec€mission at different periodicities. In a way then, one is ob-
(“snowballing”) ensures that elements down the chain will tining an “output” of varying periods from a chaotic “in-
almost certainly “trigger” as well. Once triggered the ele- PUt” and only a chaotic input can yield all possible orders
ment is immediately trapped into the desired cytmd Via one thresho_ld variable. Now we will do computations
small noise does not nudge the trajectory away from thig/Sing these varied patterns generated by threshold-coupled
cycle, for a large range of threshald chaos[13].
Figure 4 shows the above dynamics in the fixed point and
the two-cycle region under the influence of noise. Here we
consider random fluctuations in the state variablas well
as in the threshold setting, . Clearly the only change dis- First we will demonstrate that our dynamical system can
cernible in the fixed point and two-cycle region is the slighteasily emulate logic gates. We will define our inputs suitably
broadening of the attractor. Note that while the attractor herghrough input states and the output via easily obtainable, col-
is somewhat blurred, the period of excess emission still idective properties. For instance, for inputs, one can interpret
exactly 1 for thresholdg, <0.75 and 2 for thresholds 0.75 the state of an element & x~x, is 1 and(ii) x<x, is O.
<X,=<0.905.... So evidently the basic dynamical behaviorAn interesting dynamical response that can be used to char-
in this region of threshold parameter space is robust withacterize the output is thexcess transported out of the open
respect to noise. In the sections below we will use this twoboundary of the array as a result of the avalanching process

IIl. CONSTRUCTION OF GATES
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TABLE I. NOR gate. The two inputs are; and I, and the Open

. Threshold i
output isO. c:;spljng Edge l Excess Emitted ( OUTPUT )
I{=0 I,=0 ]’ - —
Iy l, o) 1 2 -_— = 1
0 1 0
1 0 0
I{=0 I, = — 0
: : 0 o ns [l e =
. . o -1 1,1 = = o
initiated by adaptive relaxatianThus one can imagine a A .
readout(or lead) at one end of the array specified by the Adap“g;ﬂiznggz:;"“"w‘“g
inputs, registering the “excess signal” that represents the
INPUT ( I 15 ) :determined by state of element
output. ,
Now we operate in the, regime where the chaotic ele- B Seen ] State 0 -
ments emlt excess as tWO'CyC|es Under threSh0|d COUpIing Element with x at threshold Element with x below threshold
Here a two-element unit can have two possible statese OUTPUT: determined by excess emitted
that we a|WayS consider attractor states, not transi-ents (i.e. the response of the 2 coupled elements after chaotic update) £>1 >> L3
(i) The coherent configuratiorThis occurs in the range — A >0 = 1 AN, A~ 0= 0
0.75<x, <0.905 and emits excess following threshold cou- | ™ = .0 =

pling, from the open edge, in the cyclic sequence 0302...
. _ g2 _

un|t§ of Ay =12(x,) =X ] . . . . FIG. 5. Schematic diagram of the inputs augnamical output
(i) The out-of-phase configuratiorilhis occurs in the emulating a NOR logic gatécf. Table ).

range 0.835.<<x, <0.905 and ejects excess in the sequence

OlOl...[i_n_units ofA2=f(f(x*)+Al)_—x*]. .. responses emulate a NOR gate.

Exploiting the phenomena described above, a particular  gjnce the ahove response pattern is realized in a reason-
rﬁallzatmn of a NOR gate is achieved as fhollovys. Whe work ingp1y wide parameter window it is robust to small noise in the
the parameter window around, ~0.84, where(i) coherent , eqhold setting, thus yielding stable and easily imple-
and out-of-phase configurations are coexisting attractop,enanleNOR gate. Further, the logic gates are robust to
states andii) the units of emitted excess for the two statesqise in state variable and and one can employ a fuzzy
are very different, withA,<A,. This clearly distinguishes efinition for the input and output and still obtain the neces-

the adaptive response of the coherent configurations and ﬂ%%ry input-output associatigisee Fig. 4 Note that one re-

out-of-phase configurations. quires sufficiently strong nonlinearities in the local map in

Now the two inputd; andl; of the logic gate imply tWo  grder 1o obtain the emission pattern necessary for the con-
elements in specified states, whose collective response afte%?ruction of gates, for instance, onffx)=ax(1—x) with
chaotic update(namely, the excess signal from the openg~ 3 .an yield thé required resbonse.

boundary of the two-element chaishould emulate the out- — \\y there are some nontrivial issues in Boolean circuit

put given in the NOR look-up tabl@rable ). implementation, foremost among which is the issue of wiring

(i) If the inputs ard; =0 andl,; =0, the states of the two ¢ gates and the consequent spatial arrangement of process-
elements comprising the gate are bathx, . The response o nits. In order to construct logic gates that are amenable
of this coherent array00) after a chaotic update leads 10 an 14 easy concatenation we now present an alternate prototype.
emission of 2, from the open edgé.e., from elementP  ere each gate is realized bysimglechaotic element and all

(ii) If the inputs arel,;=0 andl,=1, the gate is com- jy5ts and outputs are equivalently defirgeth that the out-
prised of the out-of-phase arré91), whose response after a ¢ of a gate can easily “flow” into the input. So the spatial
chaotic update is to eject a total excess of 0 from the OPeBrrangement of processing units comprising a gate array is

edge. , _ quite simply realized in this prototype. We describe details
(iii) If the inputs arel;=1 andl,=0, the gate is com- pg|ow.

prised of the out-of-phase arr&$0), whose response after a
chaotic update is to eject a total excess df,3-0 from the
open edge.

(iv) If the inputs arel;=1 andl,=1, the gate is com-
prised of the coherent arrajll), whose response after a A single chaotic element can act as a gate as follows. Let
chaotic update is to eject a total excess of 0 from the opethe initial state of the gate element be equal to threskgld
edge. Now theinputs are stimulationgkicks) to the state of the

Defining the output from the collective response of theelement. Thus inputs; and |, make the state of the gate
chain as 1 if ejected amount is much greater than 0 and O iélement
ejected amount is approximately O, it is clear that it@ut-
to-output association corresponds to that of a NOR g&te Xgate™ Xx T 111 15.

Fig. 5 for a schematic of this NOR gate construction.

Any Boolean circuit can be constructed by a suitable conAlso note that by this definition of input we naturally have a

nection(i.e., coupling of this basic two-element unit, whose situation symmetric irl; andl,.

Alternate NOR gate: Using a single chaotic element
under threshold mechanism



PRE 60 COMPUTING WITH DISTRIBUTED CHAOS 367

Il (||) For |1:1, |2:0 and|1=0, |2:1, Xgate:X* +1+0
\ — Excess =X, +0+1=0.84 andf(xgae = f(0.84)=0.5376<x, and
chaotic map Emitted so outputO=0.
With X == O Y after chaotic (i) For I;=1 and l,=1, Xgue&=X, +1+1=0.98 and
/ threshold update f (Xgatd = F(0.98)=0.0784<x, and so outpuD=0.
1 One can thus obtain a clearly defined NOR gate with a
2 single chaotic element under the range of threshold indicated
FIG. 6. Schematic diagram of the inputs and output of a singled0ve. Now we have the added advantage thairiet and
chaotic element emulating a logic gate. output have equivalent definitiorise., one unit is the same

quantity for input and outputFurther, the output of one gate
The output, as before, is the excess emitted after a chaotfiément can now easily couple to another gate element as
update due to the threshold mechanism=f (Xgad — X, if input, so that gates can be “wired” directly. Also this re-
f(Xgad i in excess of threshold, andO=0 if not (see Fig. sponse pattern is robust as it can be obtained in a reasonably

6 for a schematic wide range of threshold.
Now outputO can easily serve as input for a connected
gate element, as what is emitted can directly add on to the IV. ARITHMETIC OPERATIONS

state of the other gate element. ®oing gates together is
simply the usual threshold coupling of chaotic elemé¢Bts
(2)] with the excess emission from the open edge giving th
output of the concatenation of gates

Now for a NOR gate we require the following character-
istics to be truefi) Whenl;=0 andl,=0, O=1 unit. (ii)
Whenl ;=0 andl,=1 unit,0=0. (iii) Whenl ;=1 unit and
[,=0, O=0. (iv) Whenl;=1 unit andl,=1 unit, O=0.
This is realized in the range, =0.696—0.75. We discuss
details below.

When bothl; andl, are 0, we have

Now we will adopt an alternate approach to the comput-
ing question. We will try to do some specific arithmetic op-
®@rations through our emergent dynamics.

Our potentialprocessorsare a very large number of un-
coupled elements evolving under their natural chaotic dy-
namics, as in the chaotic lattice described above. When they
are not “computing” the elements are uncoupléa., we
can think of the default threshold to g = 1.0, which leads
to no interelement transfer, as=[0,1] for the logistic maj.

Specification of the input/operation consists of providing
threshold parameters for some elements for threshold cou-
pling (x, <1), which leads to an avalanche of emitted ex-
cess providing communication of information among these
elements. Tapping the emergent collective excess from a
specified open edg@eadout yields the answer. After each
F(Xeud > X ope.ratic.)n the processors is ready for the next instruction

gat * (which is another threshold parameter for the eleméity
computing (recall von Neumannis simply a sequence of
Such instructions.

So ourhardwareconsists of lattices of logistic maps ca-

Xgate: Xy +0+0

and

So the element emits one unit of excess, where one unit i
equal to &, (1—x,)—X, . When eitherl; or I, is 1, we

have pable of interacting through threshold coupling. Carmo-
_ _ grammingconsists of fixing the threshold of the response of
Xgae= Xy T 1+0=X, +0+1 the lattice elements such that it performs a desired operation
and to yield the answer.

f(Xgate)<X* _ A. Encoding scheme 1

First, we describe how numbers amecoded through their
So the element emits zero units of excess. When boind  excess emissiofExcess emission is a direct function of the
I, are 1, we have threshold values. In the threshold range X, <0.75, a cha-
otic element under adaptive threshold response emits excess
Xgate=Xs T 141 after each chaotic update in order to relax back o The
amount of excess emitted per dynamical update is an unimo-
and dal nonlinear function of the threshold, over the range 0
<X, <0.75, going from 0 atx, =0 to a maximum value
f(Xgatd <X« - Emax=9/16 atx, =3 and then back to 0 again &5 =2. In
our encoding scheme the amount of excess emiséion
So the element emits zero units of excess. This clearly folspecified units directly gives the value of the integer. We
lows the NOR input-to-output association pattern. define the unit of excess emission to &e E,,,/N, whereN
We now give a specific example with threshold of gateis the largest integer we wish to encode. Then an intager
elementx, =0.70. Now one uniti.e., the excess emitted by encoded by an excess emissionne$. In order to encode
a chaotic element under thresholgl after a chaotic update from integer 0 toN, the necessary capacity of resolution of
is 4x, (1—x,)—x,=0.14. emitted excess must li&,,,/N= 6. Clearly, greater precision
(i) For 1;,=0 and 1,=0, Xgue=X,+0+0=0.7 and in measuring the excess and threshold setting allows larger
f(Xgad = f(0.7)=0.84>x, and so outpuD=1. numbers to be encoded.
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1 Lo — LI VP A R SN L B L Elements encoding numbers i, j, k, 1
L ] threshold coupled in a linear chain for serial addition
08 x,=3/4 — ¥ ¥Vr—v¥r—v¥
L ] i j k 1 OPEN EDGE
o 1 registers OUTPUT
06 [ 7
s r 1 Chaotic update
><= : x.=3 /8 _: followed by
0.4 :_ / e=1/4 \ . Adaptive Response
L ] id i% k& 138
02 \ i A A o A |
T i j Kk 1 OUTPUT OF THE OPERATION
0 ] Excess Emitted from the Open Edge
(a) 0 02 0.4 X, 06 08 1 Avalanching of emitted excess in 1 dynamical update
FIG. 8. Threshold coupled chaotic elements emulating an add-
:' L L ing machine: Here we are adding four integgk&,l, each encoded
L A by an element with threshold fixed such that it enji&,| units of
w 03 [ 7] excess, respectivelyhere the unit of excess emissionds These
) - 1 elements encoding the terms are then threshold coupled for the
3 L i addition operation. The ejected excess from eleme(@ti X d)
; 02 [~ 7 drives elemenf and so on, up to element from whose open
E L i boundary the collective excess is emitted to the output lead. This
a i ] emitted excess is exactly the sunmtj+k+1 (in units of ). For
,E o1 — serial addition we have a linear chain configuration and the com-
i ] puting time is equal to the number of terms in the swvhich is 4
r 1 here.
0 Co b b b
0 20 40 60 80 100 B. Addition
(0) encoded number

For the addition operation, we have tiareshold couple

FIG. 7. (a) Dynamics of a single chaotic element updating underthe elements encoding the terms in the additibmat is, the
the logistic mapf(x)=4x(1—x) followed by adaptive threshold excess emitted from one element drives the n@piecifi-
response. Here three threshold valugsare displayed. The differ- cally, the excess ejected from an element is fed to the next
ence between the solid and dotted lines gives the amount of excestement. The collective excess emitted from the open edge
emitted in the dynamical updatéb) Look-up graph of encoded of the array[i.e., from the last termelement of the sunj
number vs threshold valug, . The encoded number is given by the goes to a lead, which registers the answi8ee Fig. 8 for a
emitted excesa (which is a function of, ) through the following  schematic diagram. Since a linear chain of threshold
relation: the encoded number is equal 465, where A=f(x,)  coupled elements, after chaotic update, gives rise to an ava-
—X, and 6=Enq/N, with N being the largest number encoded |anche that sweeps across the lattice gathering excess from
(N=100 herg. all the elements, the excess emitted from the open edge of
the lattice is then the sum total of all the individual excess
amounts and can directly be associated with the result of the
addition operation.

Now the “computation time” can be considerddatu-

. o . i "ally) to be the time the dynamical system takes to adaptivel
integer for an arbitrarily large set of integéeee Fig. 7. The relgi and emit excess frgm the ope)r/1 edge, which is thz “an¥

same encoding can handle real numbers as @uith preci- swer.” Then one readily seems that the computing time is

;ion determined by the excess and thresho!d sgtting resoIléimply equal to the number of terms in the addition. Further
tion). So thesameelement can encode an arbitrarily large set '

) ; hi ion i i h i f th
of numbers, under varying threshadMdith the threshold lev- Eellzrggﬁ:;ggzslssgnmmt:g;’ﬁi et :ng\rvdeernng of the terms
els be|'ng sentfo It as part' of th? softwar)a Note that the range of parameters under which this
Typically stronger nonlinearities yield a larger range of

excess emission. For instance, the parabolic form of the Ioc_ancodlng/addmon works is very broad. Also in this range

gistic mapf (x)=ax(1—x), ata—4, has the highest maxima nog;(;j:es not significantly degrade the performance of com
and thus yields the largest difference between the map arp '
the effective truncated map after the adaptive response
(shown in Fig. 7. So the range of excess emissidnE 4

is determined by the above-mentioned difference, \Eith, Importantly, one can do the addition operatiorparallel
being exactly equal toa(— 1)?/4a for the logistic map. Thus (i.e., synchronously/concurrentlpy having abranchingto-

the range([0, {] for a=4, [0, ] for a=3, and[0, 3] for a  pology of the lattice. “Parallelization” in this prototype re-
=2, down to 0 fora<1) clearly decreases with decreasing lies on the fact that the relaxation takes plagachronously
strength of nonlinearity. for all processing units and is a local phenomenon. Thus, to

Since the map is deterministic, one ad&termine exactly
the threshold that yields a given excdsgghere the excess
varies from 0 toN units). So we can obtain a look-up table
associating the value of the threshold with the value of a

C. Parallelized operations
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Threshold Coupling —

i j k 1 m n ° P

k N\ Z X Z X Z N Z

J K5 1 a ' ° ¢
js\- 15 N V3 RN yZ

i
i s\y u v
oPenl edge \ /

w
Output: \V
Excess Emitted from Open Edge
open edge
=i+j+k+1 &
Output:
FIG. 9. Schematic diagram of the parallelized operation employ- Excess Emitted from Open Edge

ing a branching lattice, where each branch is an element encoding {
term in the addition. The excess emitted from the open edge yields = i+j+k+l+m+ntorp+qir+s+trutsvew 8
the resulting sum. The adaptive relaxation procesgsivalent to the

computing time occurs in only two avalanching steps.

add several numbers, one can employ a branched lattice FIG. 10. Schemgtic diagram of the parallelized_ addition opera-
where each branch is an element encoding a term in the sufi2" ©" 15 numbersj k., m,n,o0,p,q.r.s,t,u,v,vemploying a treelike
The duration of the “avalanche” of excess to the open end i ranching lattice. The excess emitted from the open edge yields the

. resulting sum. The adaptive relaxation procésguivalent to the
egual to the Iength OT the. Iongegt branch in the net\.Nork’computing timeg occurs in only four avalanching stefi., equal to
since the computing time is the time taken by the units e longest branch in the network

relax and emit excess to the readout, this time can be drasti-

cally shortened by appropriate networking. In serial wiring The latter method of implementing multiplication will

of units the length of the longe&bnly) branch is equal to the . o )
numl?er of hterms agdedfand so the (k:]omputing time is proporf—noosrt em\c/)vrr?i|gnr]eeqtuhiﬁzéﬁsggrgsgggf?ﬁeecggﬁg,gftlnrz(:;fjing
tional to the number of terms in the addition, as we saw, ' . ’ " .
earlier. On the other hand, parallel circuits can yield reIax-{Z; S)feévsr d:::erzginrfs grr] tt?eror((:eif)suorzzse(ip:\g?lg?)lllg’ ?etlmvsr?ether
ation in much shorter times, utilizing the simultaneous ava'one.has man elgments or very quick d narr;ic.s”one can
lanching in the different branche&See the schematic dia- h ith y f doina th y quick gy ’

gram, Fig. 9, and an example in Fig. 10, where the additiors005¢€ either way of doing the operatid]

operation on 15 terms is parallelized to yield a computing
time of 4, instead of 15 as in serial additipn.

Thus branching networks of dynamical elements can We denote the threshold yielding excess emission at pe-
serve as a massively parallel machine, with several “inputiodicity k asxX . Now in order to encode aN-bit binary
leads” flowing concurrently into a processing unit, from number whose representationdgay_;---a,a;, we useN
whose open edge the resulting net answer is collected. Thighaotic elements, each encoding a bit. If the value okthe
parallelization potential is derived from the synchronicity Ofgit is 1(i.e..a,= 1), its threshold is set aaiN—k, such that it

e

all the dynamical processes and the locality of the threshol mits excess periodically with period'2%. For instance, if

and relaxation rule. the bit farthest from the decimal poiat=1 it will be en-
coded by an element whose period is 1, while;i& 1 it will
be encoded by an element with periodicity 2. If the value
Multiplication can be performe¢as an extension of addi- of a bit is 0, the element representing the bit has threshold set
tion), invoking the same parallel computational approachat 0, thus emitting no excess.
through branching lattices. For instance, tond® n we have To obtain the value of the numbey;--a;, we have to
a lattice withn branches, each branch being a copy of thethreshold couple th&l elements representing the bits, with
element encodingn. The total ejected excess will be the ay having the open edge to the readout. We evolve this chain
answermxn. over one period of the longest period 2, i.e., over 271
Alternately, in order to donX n, we can take the element dynamical updates. The collective excess emitted will be
representingm and collect the ejected excess over n timeequal to the value of the number, nameBj_; na, 2 .
stepsi.e., the quantity accumulated ovewnnits of the local This encoding scheme exploits chaos as it employs many
chaos clock. This quantity will be equal Xxn. In this different periods and only a locally chaotic element can yield
scheme then, one waits fortime steps and then retrieves the all of them under varying threshold. The scheme can be
result, which is the collective excess. That is, in order tomodified easily to encode any other base expansions, such as
multiply, we are now exploiting the temporal evolution of decimals, as well(See Fig. 11 for an example of this encod-
the adaptive response. ing scheme.

E. Encoding scheme 2

D. Multiplication
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ENCODING INTEGER 15 4 -bit binary representation a4a3a2al: 1111

Value of number
encoded

= total excess emitted
over one period of the
longest period

=15 A

ad

a3

a2 FIG. 11. Encoding an integer
by a chain of threshold coupled

al elements.

4 ELEMENTS ENCODING THE 4 BITS

CHAOTIC UPDATES —_—

Total number of updates : one period of the longest period =8 (a4 emits excess 8 times, while al emits excess once)

Less than or equal to threshold . Above threshold

1
}
1
— Threshold Coupling A 1 unit of excess emitted due to adaptive response :
1
I
]

@®— Output Lead to register excess signal

Table Il shows the temporal pattern of excess emissionwill yield from the open boundary an amount equal to the
necessary for encoding a four-2 bit binary number 1111. For
four bits, each encoding 1, we have four elements withresult of the addition. This operation commutes and any
threshold set such that excess emission occurs periodicalljumber of terms can be threshold coupled togetfer,
every first, second, fourth, and eighth chaotic updates, re-added”) in series(linear chain configurationor parallel
spectively. The total excess emitted is equal toes+2+1  (branching chain configurationThe relaxation timewhich
— 15, which gives the value of the number. determme.s computing speefbr serial addmon ofm N-bit

As another example, in order to encode, say, the integer BUMbers is less than or equal koxm, while for parallel
(101 in binary we employ a chain of three elements, each?ddition it is less than or equal t+1. A specific example
encoding a bit. The first bit has threshotfl, followed by of the serial and parallelized addition operation is demon-

one withx, =0, and the last elemeritvith the open edge strated in Figs. 12 and 13.
hasxi. So over one period of the longest perioti 2=4, F. Least common multiple

.e., over four dynamical updates, the element encoding We have shown how the collective response of distributed

(value 3 emits one units of excess 4 times, while the ele- chaos can emulate logic/arithmetic operations. There is also

ment gncodlngaz (value.O emits 0 excess and the elem'ent scope for devisin% “dynamical algorithms” that exploit the
encodinga, (value ) emits ones once. Thus the total emit- SERIALLY ADDING 7+5+2+1

ted excess iS equal todl+0+1X1=5 and direct'y gives In 3 bit Binary representation (a3a2al) : 111 + 101 + 0010 + 001
the value of the encoded binary number.

Note that one has to take care in chosing the same unit ¢
excess emission for all cycles, i.e., the amount an eleme
with thresholdx® emits afterk steps should be the same for
all k. The threshold values for which a requisite set of cycles s (1) Thus over 1 period of the longest period = 4
emit the same excess can be determined exactly. The numb (i-e. over 4 chaotic updates)

. . . . £ Total Excess Emitted from Open Edge =15 §
of bits that can be encoded is limited by the resolution of ( RESULT of the ADDITION OPERATION )
excess emission and threshold setting.

7 (111) Chaotic Update 1 : emits 25 ( avalanche duration=2)
Chaotic Update 2 : emits 48 ( avalanche duration=4)
Chaotic Update 3 : emits 28 ( avalanche duration=2)

Chaotic Update 4 : emits 78 ( avalanche duration=5)

OUTPUT

al a2 a3

For addition now we can again threshold couple the —=  Threshold coupling —@  Output Lead
chains of elements representing the terms in the sum. Afte 2 (9 E al, a2 or a3 = 0
evolution over 2~ chaotic updates, the coupled elements emits no excess
al =1
TABLE Il. Chaotic updates- at which excess emission occurs = # . emits 13 every fourth update
for the elements encoding four binarysit 1 1 1,displayed over 1 (001) . a2=1
one period of the longest period equal th2=38. emits 15 every second update

a3 =1
emits 13 every update

a2 a3

\ 1 2 3 4 5 6 7 8 al
n

FIG. 12. Serial addition operation of four integers 7, 5, 2, and 1,

1 X where the terms of the addition are encoded by a chain of three
2 X X elements each. These are threshold coupled in a linear configura-
3 X X X X tion. Now after four dynamical updatésince the longest period is

4 X X X X X X X X equal to 2-1=4) the entire lattice emits a total excess of 15 units,

which is the result of the operation+’5+2+1=15.
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ENCODING KEY

For 3 bit Binary representafion FIG. 13. Parallelized addition
longest period employed =4 . N
operation of three integers 7, 5,
EI o *‘h‘r:f °: *‘3:3‘ © clement and 1, where the terms of the ad-
reshold set sucl at elemen .. .
ADDING 7+5+1 emits zero excess dition are encoded by a chain of
In 3 bit Binary representation (a3 a2al) : 111 + 101 + 001 . three elements each. These are
1= . .
7 ( 111) - thresholdasetsuchthatelement threSh0|d -COUpled Ina branChIng
emits 13 every fourth update configuration. Now after four dy-
al 2ol namical updatessince the longest
5 (101) 1 (001) threshold set such that element period is equal to 2 1=4) the
emits 1 3 every sccond update entire branching lattice emits a to-
I 0 0 0 - a3 =1 tal excess of 13 units, which is the
threshold set such that element : +
al a2 a3 a2  al ity 1.5 every update result of the operation ¥5+1
=13. Here the complete relax-

ation process in each dynamical
update requires a maximum of

RESULT OF TH%T;SITTION OPERATION ) four avalanching steps.e., equal
¢ to the longest branch in the net-
Total Excess Emitted from Open Edge WOI’k)

Over 4 Chaotic Updates

richness of chaos to compute other numerical quantities. Fdoundary with periodicity equal to theCM of all the input
instance, a dynamical algorithm for finding the least commorstimulus periodsThus one obtains the required answer, i.e.,
multiple (LCM) can be realized as follows. the LCM of the terms, by simply measuring the period of the
In order to find the LCM of integersk, ks, ... k, we use  master element’s response. Note that one can handle many
n chaotic elements as “input.” Theseinput elements have terms inparallel here by stimulating the master element syn-
their threshold fixed at values such that they emit excesshronously with different periodic impulses. Figure 14
cyclically with periodsk,,k,,...k,. The periodicity of ex- shows a schematic of this calculation.
cess emission thus represents the value of the terms of the Alternately, one can have a simpler method for computing
LCM. the LCM of two numbers by exploiting the diverse responses
Now the deterministic chaos allows us to obtain exacioptained under varying frequencies of output measurement,
generating equations for threshold values supporting a cefnat js, with respect to varying intervals of excess emission
tain .penodl.cw [_10]. Thus one can qbtr_:un a look-up table sampling. In order to compute the LCM of two integérs
relating periodicityk of the excess emission of an element toandkz, we encode one of them, shy, by a chaotic element

thresholax, in _order to represent any positi_ve integer. via the look-up graph described aboie., set the threshold
Now, these input elements are c_oupled in parallel to ON%uch that it emits excess at period equakt®. Then one
“master” element whose threshold is fixed»t<0.75 and Jogasures the responée., the outpt)teveryktzh step, that is

that has the open edge leading to the answer. So the exc o - . .
ejected from the input elemengynchronously stimulatéhe measures the excess emission periodically with period equal

master element, which in turn emits excess from its operi© the second numbgr.e., equal tck,). The resulting excess

element 1 : CALCULATING THE LEAST COMMON MULTIPLE
period of excess of a sequence of 4 intgers: k1, k2, k3 and k4
emission
= kl.
element 2 :
E period of excess
Z emission i
E = k2 Excess emitted o
2 o FIG. 14. Schematic diagram of
= 1 S Threshold E sequentially with period the calculation of the LCM of
t 3: i
S clemen < 0.75 8 = Least Common Multiple three integers.
& | period of excess
Z emission of ki1, k2, k3, k4
= k3
element 4 :

period of excess
emission Thresholds of input elements set such that they

= k4 emit excess at periodicities equal to
k1, k2, k3, k4 respectively
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will then be registered evelkth step, wherék is the LCM of LL=20 L B L L L B L I
k, andk,.

By this alternate method we can calculate the LCM of
only two numbers in one operation. The LCM mfntegers
can be found byn—1 operations involving two numbers
each. If done in parallglin a binary tree structujehe cal-
culation of the LCM ofn integers will take of the order of
log, n times the computation time for the calculation of the
LCM of two numbers.

These simple but intriguing examples demonstrate that
dynamic algorithms hold the potential for computing a range L
of specialized mathematical operations. Thus we begin to see =
the first glimpse that dynamics can perform computation not -
just by emulating logic gates or simple arithmetic operations S
but by performing more sophisticated operations through 0 -

self-organization rather than composites of simpler opera- e b b s b Lo
tions. 0 5 10 15 20 25

time
V. APPLICATION TO LASER SYSTEMS FIG. 15. Chaotic lasefwith the parametersr=2, r=15, and

Now we present evidence of continuous time multidimen-P=0-25 in Eq.(2)] with variable x under threshold mechanism,
sional systems yielding dynamical characteristics that can pd!th threshold value, = 1. The coupled ODE's evolved via fourth-
exploited for computations in a manner similar to that out-°r9er Runge-Kutta method with step size equal to 0.01. The thresh-
lined above. Consider a collection of threshold coupled Chagld_mechamsm IS |mp|em_ented atintervals 9f 0'01'.The three state

. R ariables are seen to rapidly evolve to the fixed point.
otic Lorenz systems, where each unit is given by a set of
three coupled ODEs Note that the above holds for threshold implementation at
. reasonably short intervals. If the threshold condition is
X=o(y=x), checked infrequently, one obtains fuzzy cyclie ribbons
. in phase spageinstead of exact cycles. The “width” of
y=rX=y=Xxz, these broad limit cycles is inversely proportional to the in-
terval at which the threshold mechanism is implemented.

S z variable g

—_

o
I
|

state variables

[92]
l
]

y variable

X variable

z=xy—bz 2

Arithmetic operations with the laser system

We can implement the threshold action on any of the three ; .
using encoding scheme 1

variables.

It is known that there exists a correspondence between the We find that threshold coupled laser systems can success-
laser and Lorenz system as follows: Thevariable corre- fully encode and emulate addition/multiplication, using the
sponds to the normalized inversion and ihandy variables
correspond to normalized amplitudes of the electric field and
atomic polarizations, respectively. The three parameters for
the corresponding coherently pumped far-infrared ammonia
laser system are=2, r=15, andb=0.25. These parameter
values have been obtained by detailed comparison with ex- 15
perimentq 15]. Specifically, we choose the parameters of the
Lorenz system to be the ones relevant to the IRN&ser
and henceforth we will refer to it as a laser system. 14

We can impose the threshold mechanism on any one of w
the three variables of the laser system, i.e., one demands that
any variablex, y, or zmust not exceed a prescribed threshold
value x, . Figures 15—-18 show some representative results
of this threshold action for a range of threshold values. It is
clear that the threshold mechanism yields fixed pofRig.

15) and limit cycles of varying size€-igs. 16 and 1)

Now low threshold values lead to fixed points in phase
space, while larger thresholds generate cycles. Specifically, i
all thresholdsx, <r—1 imposed on the variable andx, 1 1.5 2 25
<b(r—1) imposed on the andy variables yield fixed X
points. Larger thresholds yield limit cycles whose sizes in-  F|G. 16. Chaotic lasetwith o=2, r =15, andb=0.25), with
crease with increasing thresholdee Figs. 16 and 17 for variablex under threshold mechanism, with threshold value equal to
examples When the threshold is very largelose to the () 2.0,(b) 2.5, and(c) 2.75. The chaotic orbit yields limit cycles of
bounds of the attractpithe system under threshold mecha- increasing size for these thresholds. The dotted lines indicate the
nism yields broad cycles, like ribbons in phase space. three different values of the threshold.

FT— T T T T T T T T T [ T T T T ] T

L
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T T I T T
18 thresholds

(a)

()

threshold value

0 20 40 60 80 100
encoded number

FIG. 17. Chaotic lasefwith =2, r=15, andb=0.25), with FIG. 19. Look-up graph of encoded number vs threshold values
variablez under threshold mechanism, with threshold equala@lo  for the chaotic laser system with threshold mechanism implemented

15, (b) 16, () 17, (d) 17.5, and(e) 17.7. The chaotic orbit yields on the(a) y variable and(b) x variable (again the largest number
limit cycles whose size is determined by the value of the thresholdencoded is 100

The dotted lines indicate the threshold cutoffs.

. i higher pump rates give bigger ranges of operation.
threshold condition on any of the three variables, andz To perform addition om numbers we set the threshold of

(see Figs. 18 and )9For instance, using the threshold , -onnected chaotic laser units such that each encodes a
mechanism on the variable of the laser system, one Obtamsterm in the sum. The excess emitted from a unit drives its

a large range of excess emission. The dependence of exces§ighhoring one, with the unit encoding the last term of the
emission on threshold is linedsee Fig. 18 This makes g,m having the open edge with the lead registering the out-
encoding via scheme 1 particularly easy. _ put. After a chaotic update an avalanche sweeps across the
The other interesting thing is that the threshold intervaky eshold coupled unité@s demonstrated in Fig. 2Qgiving
giving encoding/addition is proportional o wherer is the  ise 1 an excess emission from the open edge, which can
nonlinearity parameter corresponding to pump rate. SQjirectly be associated with the result. The addition operation
is then achieved simply as follows: Input the threshold val-
T v sy s S sy B ues from the look-up table to encode the numbers to be
added and then register the emitted excess from the open

L - | [ | [} | Vo } OUTPUT l
10~ ] i || 28 || 73 || a8 |}
I i D Tiae| | Tiose || TEve hresho EXCESS EMITTED
:

1 AFTER
E THRESHOLD MECHANISM
..................................................... ' = 44.18 = 158 units

FIG. 20. Threshold coupled chaotic laser units emulating an
5= T adding machine: Here we are adding four integers 11, 25, 73, 49,
- . each encoded by a chaotic laser unit with threshold fixed from the
L A lookup graph of Fig. 17, such that they emit 11, 25, 73, 49 units of
excess, respectivelyhere the unit of excess emission i8
=0.2796). These elements encoding the terms are then threshold
coupled for the addition operation. The ejected excess from the
0~ = element encoding 11511X §) drives the element encoding 25 and
o 20 40 50 80 100 S0 on, up t_o the eleme_nt engoding 49, from whose open boun_dary
encoded number the collective excess is emitted to the output lead. ThIS t_amltted
excesq=44.18 is exactly the sum 1% 25+ 73+ 49= 158 (in units
FIG. 18. Look-up graph of encoded number vs threshold valuesf §). For serial addition we have a linear chain configuration and
for the chaotic laser system with threshold mechanism implementedomputing time is equal to the number of terms in the gwhich
on thez variable(here the largest number encoded is )100 is 4 herg.

threshold value for z variable
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160

puter, the trick is to make specific analog computers, such as
dynamical systems, perform the computations we desire. To
our knowledge, it is surprising that chaotic systems can be
programmed to perform such a wide variety of computations.
We tried to include a diverse enough group of computa-
tions (logical operations, arithmetic operations, and special-
ized dynamical algorithmsto demonstrate that dynamical
systems can be simply and flexibly programmed to compute.
Further, we have provided a specific application to a laser
system. In light of these results, it can be envisaged that a
high-speed chaos computer might be constructed that ex-
ploits fast chaotic lasers for computation. The advantage of
using chaos computing in this case would be that program-
ming could be accomplished by slight changes to the dy-
namical system to perform high-speed addition, multiplica-
tion, etc.
L _ _Our ger)eral strategy here was to investigatg the opportu-
155 =/ 200 200 800 800 1000 nities prowd_ed by nc_)nllnear dy_ngmlcs to constitute an effec-
updates tive computing medium, exploiting the determinism of dy-
namics on the one hand and its richness on the other. In
FIG. 21. Here we have noisy chaotic laser units thresholdcontrast to efforts to bring computational models and physics
coupled to emulate an adding machine. The strength of uniforng|oser together starting from the computer model é&uth
random noise in the state variables of the various units is 0.01. Wgg taking the digital dynamics and adding physical properties
are adding the same set of four integers 11, 25, 73, 49, as in Fig. 18nd constraints to [tL6] or efforts to use the theory of com-
Each term is again encoded by a chaotic laser unit, with the Couecputation to describe/quantify the complexity of physical sys-
tive excess ejected at the readout providing the result of the opergams [17]), we start from the physics end and explore the
tion. The figure shows this quantity over several dynamical updates, «qipjjities chaos has to offer to computation. While certain
Clearly the emitted excesg fluc_tuates very minimally around th ‘physicslike” models, for instance, cellular automata, have
sum 1125+ 73+49=158 (in units of §). Thus the result of the oo iy ectigated extensively as candidates for computing,
addition operation is robust to small noise in the system. chaotic dynamics was still to be explored as a computing

edge at the end of one dynamical update. The dynamics gpedium. Here we have demonstrated the possibility of com-
the lattice is such that this emitted excess is the require@Uting with chaos, whicta priori may seem surprising.
answer. We can have a linear or branching chain of chaotic Note that nonlinearity in the processing units is clearly
laser units for serial and parallel addition. The operation ig€cessary for various Boolean/arithmetic implementations,
againcommutativeas the ordering of the termiglements though the_se units need not necessarily be c_haotlc. However,
does not influence the answer. only chaotic dynamics will ensure the capacity to gktthe

The result of the operation is reasonably insensitive tglifferent applications from theameprocessing units. That
noise. For instance, Fig. 21 shows the same addition done #§: We can “control” the chaotic map to the dynamics re-
the presence of additive random noise. Clearly the “result"quired for the application at hand and only the fully chaotic
of the operation fluctuates only very slightly about the cor-cas€ can be “pruned” to all possible behaviors, as applica-
rect answer. tions demand.

Multiplication can be performeths an extension of addi- It is evident that dynamical computing has potential and
tion), invoking the same parallel computational approachfiexibility, arising from thewide range of behaviors each
through branching lattices. For instance, tordecn we can ~ module is capable of, through the variation of a single
have a lattice witm branches, each branch being a copy of("Programmable”) parameter That is, the chaotic elements
the unit encodingm. The total ejected excess will be the Present a range of possibilities with tlsamecollectlon _of
answermx n. Alternately again, we can dmxn by taking ~ €/émenti.e., using the same hardwaitey simply changing
the element representimg and collecting the ejected excess the threshold(which is fed in as input and is part of the
overn time steps, i.e., the quantity accumulated avemits software. Specific applications of this versatility are the en-
of the local chaos clock. This evidence of computationacoding schemes and the dynamical algorithm for finding the
ability from continuous time multidimensional systems indi- LCM- (See Tables Il and IV for a summayyurther, the
cates that our scheme seems to have definite possibilities §fowledge of the dynamics of the nonlinear system consti-

expansion and opens up concrete experimental possibilitidd/ting the hardware allows us to exactly specify the thresh-
with ultrafast optics. olds that yield the required inputs or operatidlike a “ma-

chine language)’ and this makes programming of our
V1. DISCUSSION system simple and direct. _ _
Interestingly, note that from another viewpoint, our sys-
We have presented here a purposefully simple dynamicdem has the capability of “changing” its hardware, through
system and shown how we can program it to perform bothts software, as the chaotic elements constituting the proces-
general and specific computations. While, in some sense, egors can change their behavior depending on the threshold
ery physical system can be thought of as an “analog” com-value they receivéwhich is part of the “program?. There-

—
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TABLE lll. Analogs of computing devices and operations in the chaotic network.

Computing devices/operations Analogs in the chaotic lattice
Basic hardware: processors Chaotic elements in a lattice/chain/array/network
Communication of data/information Transport induced by threshold mechanism

couples the elements through the cascade
of emitted exces§'avalanching”)

Programming Setting threshold value
Input (“source”) Feeding in a stream of threshold parameters
Output(an external “visible” state Collective response of the system
of the computing system (can simply, clearly, and consistently be
associated with the result of the operajion
The “value” sent by the system to the Excess emitted from the open boundary of the array
output lead(*sink” )
Analog features Continuous state variables and threshold parameters
system dynamics “emulates” the operation
Digital features Discrete elements
binary representations employed in arithmetic operations
Parallel operation Highly branching arrays evolving synchronously

w paradigms, which are geared to handjeecific problems
fore, 'they can serve as progra'\mmgble hardwae8]. suited specially to itself, we are aiming at a general purpose

It is not appropriate at this incipient stage to debate the,achine, Further, chaos computing has an advaritagike,
optimality of computing with chaos. The interesting infer- say, DNA computing, which is limited by slow biological
ence one can draw at this point is the feasibility of chaos aprocessasin that here one is quite free to design and exploit
a candidate for direct and controlled computing and its evi{almos} any fast dynamical system. So we can choose from
dent potential. This is quite like the situation in the morea wide variety of chaotic systems, ranging from fast elec-
“mature” fields of DNA [19,20 and quantum computing tronic circuits to fast lasers, and this will have direct rel-
[21,27, which also aim at discovering alternative ways of evance_for the operational speeds attainable in experimental
exploiting physical phenomena, well understood in the con{€alizationsg24].

text of physics, to do computations. There too it is still not " our work we have tread the middle ground between
clear that these computing systems, first presentealtes very abstract mappings of dynamical systems onto the UTM

nate computing paradigmsan perform better than digital and very concrete realizations of specific computing devices
with complicated systems. For instance, it can be straight-
computers(although they hold great promisf23]. Indeed,  ¢qryardly shown that coupled map lattices are equivalent to
we _chpos_e our coupled logistic map lattice not from speed Okynchronous concurrent algorithm{SCAS [7,25]. Along
optimization concerns but from a “proof-of-concept” con- similar lines it can easily be shown that our dynamical sys-
cern, much like Aldeman demonstrated the feasibility oftem is also equivalent to a SCA. While this is assuring, as we
DNA computing in 1994, by solving a seven-node Hamil- now know that our system will work “in principle,” it was
tonian path problem, a special case trivial to solve by connot our aim here to merely state this. Instead, we have dem-
ventional computer. In contrast to the DNA and quantumonstrated explicitly how chaos can yield specific arithmetic/

TABLE IV. Potential advantages of computing with distributed chaos.

Extensive range of possibilities with the same collection of elements
cycles ofall orders can be emulated by simply changing the threshold
Versatile and flexible: each element is capable of a very wide range of behaviors
through variation of a singléprogrammable parameter
exploiting the richness of chaotic dynamics
Inherently highly parallelizable
Controlled, potentially general purpose, applications possible:
as the chaotic elements can be made to yéddctcycles ofany desired order
Simple and direct:
(only oneadjustable parameter, the threshold, yiedtlsarithmetic/logic operations
Implementation simple:
do not have to monitor each element individually,
simply tap the response from one specified open edge
this response is associated with the answer in a clear and consistent way
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logic operations. Alternately, there are certain concrete ap- Neural nets are closely tailored to specific tasks, whereas
proaches to the computing question. For instance, certaihere we have a bunch of potentially general purpose proces-
chemical systems can be very delicately tuned to yield someors which can handle different arithmetic/logic operations
logic gates[8]. There are many crucial parameters in such(communicated through a stream of parameteBo our
models(involving both the construction of the apparatus ascomputing paradigm is more versatile.
well as the geometric configuration and timing of the input/  Further, there is nothing in our computing that is analo-
output waves Fine adjustments of these lead to the desiredjous to a sequence of “weight adjustments” to match target
phenomena. In contrast to such attempts, here we have a veyth tableg26]. Our system does not, in the style of neural
simple and general scenario, with omlgeadjustable param- nets, try to adjust its internal coupling to deliver the desired
eter defining both arithmetic and logic operations and givingesponse. Instead, our knowledge of the hardware, namely,
robust responses that can emulate the answer/output. the determinism of the chaotic evolution, allows ugkactly
Finally, we would like to discuss this “computing-with- specify the coupling that will yield the required operation.
chaos” principle in relation to the two existing computing Thus we have tried to exploit our knowledge of the physics
cultures: namely, the conventional algorithmic wa&gn  of the constituent hardware to enable us to “program” the
which the structure of working general purpose computers ighaotic elements at the “machine levelfor instance, we
based and the neural net, “experience-acquisition” style exploit exact solutions for “look-up tables” to implement
[26]. We have tried to emulate, through the spatiotemporakncoding. Our computing then needso “learning time”
responses of distributed chaos, what an algorithmic compufer tasksand is consequently faster. While there will be con-
ing machine is capable of doing. Our computing paradignsiderable effor{and anticipated limitations of techniqyes
then enjoys the advantage of beidigect andcontrolled In  determining the specific physics of the problem at the design
fact, it is quite amazing how adaptive coupling allows one tolevel, having “constructed” or “synthesized” the comput-
use chaos in such a controlled manner. Chaos computing ieg device, one will not need any additional overheads for
then implementable very consistently. The system whileperforming basic encoding/logic/arithmetic operatiofes
evolving chaotically, processes information reliablgnd these will be “hard wired” so to speak
“predictably™). Finally, note that our computing principle shares one
Clearly our “dynamic computing” is very different from (very advantageoydeature of neural computing. It is also
neural computing in style and content. Neural nets do noinherently highly parallelizable, in the sense that the distrib-
have any natural intrinsic dynamics. We, on the other handyted elements can evolve synchronously, i.e., the system can
are computing with chaos. Loosely speaking, this is like sayexecute several operations concurreff@]. In summary,
ing that the analog of the constituent “neurons” in neuralwe have demonstrated that extended chaotic systems are ca-
nets is functionally simple, while in our model it has natural pable of performing computations through a rich variety of
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