Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 4, November 2005, pp. 437–444. © Printed in India

A note on generalized characters

S J BHATT and H V DEDANIA

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India E-mail: subhashbhaib@yahoo.co.in; hvdedania@yahoo.com

MS received 23 November 2004; revised 9 July 2005

Abstract. For a compactly generated LCA group *G*, it is shown that the set H(G) of all generalized characters on *G* equipped with the compact-open topology is a LCA group and $H(G) = \widehat{G}$ (the dual group of *G*) if and only if *G* is compact. Both results fail for arbitrary LCA groups. Further, if *G* is second countable, then the Gel'fand space of the commutative convolution algebra $C_c(G)$ equipped with the inductive limit topology is topologically homeomorphic to H(G).

Keywords. Compactly generated LCA group; character; generalized character; Gel'fand space; commutative topological algebra.

1. Introduction

Throughout, let *G* be a LCA group with Haar measure λ and let \widehat{G} denote the dual group of *G*, i.e., the set of all characters on *G*. Then it is well-known that \widehat{G} is a LCA group in compact-open topology. A *generalized character* on *G* is a continuous function $\alpha: G \longrightarrow \mathbb{C}^{\bullet}$, where $\mathbb{C}^{\bullet} = \mathbb{C} \setminus \{0\}$ such that $\alpha(s + t) = \alpha(s)\alpha(t), s, t \in G$. Let H(G) denote the set of all generalized characters on *G* equipped with the compact-open topology. For $\alpha, \beta \in H(G)$, define $(\alpha + \beta)(s) = \alpha(s)\beta(s), s \in G$. Then (H(G), +) is an abelian topological group (23.34(b) of [4]). It is straightforward to verify that $H(\mathbb{Z}) \cong (\mathbb{C}^{\bullet}, \times)$ and $H(\mathbb{T}) \cong (\mathbb{Z}, +)$, where \mathbb{T} is the unit circle in \mathbb{C} .

Let $C_c(G)$ denote the set of all complex-valued continuous functions on G with compact support. Then $C_c(G)$ is a commutative algebra with respect to the usual convolution product. Let τ denote the inductive limit topology on $C_c(G)$. Then, by Lemma 2.1, p. 114 of [6], $(C_c(G), \tau)$ is a commutative topological algebra.

In this paper our main goal is to show that if G is compactly generated, then H(G) is a LCA group and that $H(G) = \hat{G}$ if and only if G is compact. Both results fail for LCA groups. The results appear to be a mathematical folklore; however we failed to find a proof in the literature. In fact, the present note arises out of our investigations of uniform norms in Beurling algebras and weighted measure algebras [1, 2]. As an application we show that if, further, G is second countable, then the Gel'fand space $\Delta(C_c(G))$ of $C_c(G)$ is homeomorphic to H(G); in particular, $\Delta(C_c(G))$ is a locally compact space.

2. Generalized characters

Lemma 2.1. Let m > 1 be an integer and let $0 < \varepsilon < 1/m$. Then there exists a natural number N such that, for each complex number z satisfying $\varepsilon \le |z - 1| \le 1/m$, there exists $1 \le k \le N$ such that $|z^k - 1| > 1/m$.

Proof. For r > 0 and for $z \in \mathbb{C}$, let $\Gamma(z, r)$ denote the circle with radius r and center z. For $\delta > 0$, let $L_{\delta} := \{re^{i\delta}: r > 0\}$, the open ray with angle δ . Choose $0 < \delta < \pi/2$ such that L_{δ} cuts the circle $\Gamma(1, \varepsilon)$ in two points $z_0 = r_0 e^{i\delta}$ and $z_1 = r_1 e^{i\delta}$, where $r_0 < 1 < r_1$.

Now fix $z = re^{i\theta}$ such that $\varepsilon \le |z - 1| \le 1/m$. Then $|\theta| < \pi/2$. Without loss of generality, we may assume that $\theta \ge 0$. Then we have the following three possibilities:

Case (*i*). $\theta \ge \delta$. Choose $n_1 \in \mathbb{N}$ such that $n_1\delta \le \pi/2$ and $L_{n_1\delta}$ does not intersect the circle $\Gamma(1, 1/m)$. Then there exists $1 \le k \le n_1$ such that $|z^k - 1| > 1/m$.

Case (ii). $r < r_0$. Choose $n_2 \in \mathbb{N}$ such that $r_0^{n_2} < 1 - 1/m$. Then $|z^{n_2} - 1| \ge 1 - |z|^{n_2} = 1 - r^{n_2} > 1 - r_0^{n_2} \ge 1/m$.

Case (iii). $r_1 < r$. Choose $n_3 \in \mathbb{N}$ such that $r_1^{n_3} \ge 1 + 1/m$. Then $|z^{n_3} - 1| \ge |z|^{n_3} - 1 = r^{n_3} - 1 > r_1^{n_3} - 1 \ge 1/m$.

Finally take $N = \max\{n_1, n_2, n_3\}$. Then N has the required property.

Theorem 2.2. Let G be a compactly generated LCA group. Then

- (i) H(G) is a LCA group.
- (ii) $H(G) = \widehat{G}$ if and only if G is compact.

Proof.

(i) Fix an integer m > 1. Define $V_m := \{z \in \mathbb{C} : |z - 1| < 1/m\}$. Since *G* is a compactly generated LCA group, there exists a neighbourhood *U* of 0 in *G* such that its closure \overline{U} is compact and it generates *G* due to Theorem 5.13 of [4]. Take $T_m := N(\overline{U}, V_m) := \{\alpha \in H(G): \alpha(\overline{U}) \subseteq V_m\}$. Then T_m is a neighbourhood of the identity 1_G in H(G). First we show that T_m is equicontinuous at 0 in *G*. Let $\varepsilon > 0$. If $\varepsilon \ge 1/m$, then V := U is a neighbourhood of 0 in *G* such that

$$s \in V$$
 and $\alpha \in T_m \Longrightarrow |\alpha(s) - \alpha(0)| = |\alpha(s) - 1| < 1/m \le \varepsilon$.

So we may assume that $\varepsilon < 1/m$. Then, by Lemma 2.1, one can find an integer *N* such that, for each $\varepsilon \le |z - 1| \le 1/m$, there exists $1 \le k \le N$ such that $|z^k - 1| > 1/m$. Choose a neighbourhood *W* of 0 in *G* such that $\sum_{k=1}^{N} W_k \subseteq U$, where $W_k = W$. Suppose, if possible, there exist $t \in W$ and $\alpha \in T_m$ such that $|\alpha(t) - 1| \ge \varepsilon$. Then, by the definition of *N*, there exists $1 \le k \le N$ such that $|\alpha(kt) - 1| = |\alpha(t)^k - 1| > 1/m$. On the other hand, $kt \in U$ and so $|\alpha(kt) - 1| \le 1/m$. This is a contradiction. Hence, we have

$$s \in W$$
 and $\alpha \in T_m \Longrightarrow |\alpha(s) - 1| < \varepsilon$.

This proves that T_m is equicontinuous at 0 in G. Finally, let $t \in G$ be arbitrary. Since G is generated by U, there exist $t_1, \ldots, t_p \in U$ such that $t = t_1 + \cdots + t_p$. Then, for each $\alpha \in T_m$,

$$|\alpha(t)| = |\alpha(t_1)| \dots |\alpha(t_p)| \le (1+1/m)^p.$$

By the above argument, one can choose a neighbourhood W of 0 in G such that

$$s \in W$$
 and $\alpha \in T_m \Longrightarrow |\alpha(s) - \alpha(0)| < \frac{\varepsilon}{(1+1/m)^p}$.

Hence

$$|\alpha(s+t) - \alpha(t)| = |\alpha(s) - \alpha(0)||\alpha(t)| \le |\alpha(s) - 1|(1+1/m)^p < \varepsilon.$$

This proves that T_m is equicontinuous. So its closure $\operatorname{Cl}_p(T_m)$ in the pointwise topology is equicontinuous (p. 17 of [5]). Let $\operatorname{Cl}_c(T_m)$ denote the closure of T_m in the compact-open topology. Then $\operatorname{Cl}_c(T_m) \subseteq \operatorname{Cl}_p(T_m)$. Hence $\operatorname{Cl}_c(T_m)$ is equicontinuous.

Now take $t \in G$. Then $t = t_1 + \cdots + t_p$ for some $t_1, \ldots, t_p \in U$. Then $|\alpha(t)| = |\alpha(t_1)| \cdots |\alpha(t_p)| \le (1 + |\alpha(t_1) - 1|) \cdots (1 + |\alpha(t_p) - 1|) \le (1 + 1/m)^p$ for each $\alpha \in T_m$. Similarly, $|\alpha(t)| = |\alpha(t_1)| \cdots |\alpha(t_p)| \ge (1 - |\alpha(t_1) - 1|) \cdots (1 - |\alpha(t_p) - 1|) \ge (1 - 1/m)^p$ for each $\alpha \in T_m$. Hence the closure of the set $T_m(t) := \{\alpha(t): \alpha \in T_m\}$ is compact in \mathbb{C}^{\bullet} . So, by Ascoli's theorem, $\operatorname{Cl}_c(T_m)$ is compact. This proves that H(G) is a LCA group.

(ii) Let G be compact and let α ∈ H(G). Since α is a continuous group homomorphism, α(G) is a compact subgroup of (C[•], ×). Hence α(G) is contained in the unit circle. So α ∈ Ĝ. For the converse, assume that H(G) = Ĝ and G is compactly generated. Then, by Theorem 9.8 of [4], G is topologically isomorphic to R^m × Zⁿ × K for some non-negative integers m, n and some compact group K. Then Ĝ = H(G) ≅ H(R^m) ⊕ H(Zⁿ) ⊕ H(K) due to 23.34(c) of [4]. This implies that we must have m = n = 0. So G = K is compact.

Remark 2.3. The following is an alternative proof of Theorem 2.2(i). By the structure theory, a compactly generated LCA group *G* is a direct product of \mathbb{R}^n , \mathbb{Z}^m , and a compact group. By 23.34(c) of [4], $H(G_1 \times G_2)$ is canonically homeomorphic to $H(G_1) \times H(G_2)$. So it is enough to show that H(G) is locally compact for $G = \mathbb{Z}$ and $G = \mathbb{R}$. It is easy to see for $G = \mathbb{Z}$. Observe that every continuous homomorphism $\psi \colon \mathbb{R} \longrightarrow \mathbb{C}$ is differentiable and satisfies $\psi'(t) = \psi(0)\psi(t), t \in \mathbb{R}$, and so $\psi(t) = \exp(zt)$ for a unique complex number *z*. Thus the map $\Lambda \colon H(\mathbb{R}) \longrightarrow (\mathbb{C}, +)$ is a bijective map. For $0 < \varepsilon < 1$, let $W_{n,\varepsilon} = \{z \colon |e^{zx} - 1| < \varepsilon, x \in [-n, n]\}$. Then it is easy to see that

$$W_{n,\varepsilon} \subseteq \{ \alpha + i\beta \colon |\alpha| < (1/n) \log(1+\varepsilon), |\beta| < (\cos^{-1} u_{n,\varepsilon})/n \},\$$

where $u_{n,\varepsilon} = (e^{-2|\alpha|n} + 1 - \varepsilon^2)/(2e^{|\alpha|n})$. Thus the mapping Λ is open. Now for $0 < \delta < 1$,

$$\{\alpha + i\beta : |\alpha| < \log(1 + \delta/2)/n, |\beta| < \delta/2\} \subseteq W_{n,\varepsilon}.$$

So Λ is continuous. This completes the proof.

Examples 2.4. The following two examples show that the above theorem is not true for arbitrary LCA groups.

- (i) Let $G = \{\overline{n} = (n_1, \dots, n_k, 0, 0, \dots): k \in \mathbb{N} \text{ and } n_i \in \mathbb{Z}\}$ with the co-ordinatewise addition and the discrete topology. Then $H(G) \cong \mathbb{C}^{\bullet \mathbb{N}}$ with the pointwise topology. Then H(G) is not a LCA group.
- (ii) Let G be an infinite abelian group having all elements of finite order and the topology being the discrete topology. Let α ∈ H(G) and let s ∈ G. Then there exists a natural number n such that ns = 0 and so α(s)ⁿ = α(ns) = α(0) = 1, i.e., |α(s)| = 1. Hence α ∈ G. Thus H(G) = G and G is not compact.

3. Gel'fand space of $C_c(G)$

For $f \in C_c(G)$ and $t \in G$, let $(\tau_t f)(s) = f(s-t), t \in G$. We know that, for $f \in C_c(G)$, the map $\Lambda_f: G \longrightarrow (C_c(G), \|\cdot\|_1); s \longmapsto \tau_s f$ is continuous, where $\|\cdot\|_1$ is the L^1 -norm. We prove the following:

Lemma 3.1. Let G be second countable, and let $f \in C_c(G)$. Then the map $\Lambda_f \colon G \longrightarrow (C_c(G), \tau); s \longmapsto \tau_s f$ is continuous.

Proof. Since *G* is a second countable, LCA group, *G* is metrizable. Let *d* be an invariant metric on *G* inducing the topology on *G*. So it is enough to show that whenever $s_n \rightarrow s$ in *G*, we have $\Lambda_f(s_n) \rightarrow \Lambda_f(s)$ in $C_c(G)$. First, assume that s = 0. Let *U* be a symmetric neighbourhood of 0 in *G* such that $s_n \in U$ ($n \in \mathbb{N}$) and \overline{U} is compact. Let $K = \overline{U} + \text{supp } f$. Then *K* is compact, and the supports of $\tau_{s_n} f$ and *f* are contained in *K*.

Let $\varepsilon > 0$. Since $f|_K$ is continuous and since K is a compact metric space, $f: K \longrightarrow \mathbb{C}$ is uniformly continuous. Let $\delta > 0$ such that

 $s, t \in K$ and $d(s, t) < \delta \implies |f(s) - f(t)| < \varepsilon$.

Choose $n_0 \in \mathbb{N}$ such that $d(s_n, 0) < \delta$ $(n \ge n_0)$. Finally, let $t \in K$ and let $n \ge n_0$.

Case (i). $t - s_n \in K$: This implies $d(t - s_n, t) = d(-s_n, 0) = d(s_n, 0) < \delta$; and so $|f(t - s_n) - f(t)| < \varepsilon$.

Case (ii). $t-s_n \notin K$: This implies $t \notin \operatorname{supp} f$; because if $t \in \operatorname{supp} f$, then $t-s_n \in \operatorname{supp} f + \overline{U} = K$ which is not the case. Hence $f(t-s_n) = f(t) = 0$; and so $|f(t-s_n) - f(t)| < \varepsilon$.

Hence $|\Lambda_f(s_n)(t) - \Lambda_f(0)(t)| = |f(t - s_n) - f(t)| < \varepsilon, t \in K, n \ge n_0$. Thus $\|\Lambda_f(s_n) - \Lambda_f(0)\|_K < \varepsilon \ (n \ge n_0)$. Thus $\Lambda_f(s_n) \longrightarrow \Lambda_f(0)$.

Now let $s_n \longrightarrow s$ in G. Then $s_n - s \longrightarrow 0$ in G. But $\|\Lambda_f(s_n) - \Lambda_f(s)\|_K = \|\Lambda_f(s_n - s) - \Lambda_f(0)\|_K$. Hence $\Lambda_f(s_n) \longrightarrow \Lambda_f(s)$.

Let $\Delta(C_c(G))$ denote the Gel'fand space of $C_c(G)$. For $\alpha \in H(G)$, define $\varphi_{\alpha}(f) = \int_G f(s)\alpha(s)d\lambda(s), f \in C_c(G)$. Then $\varphi_{\alpha} \in \Delta(C_c(G))$.

Theorem 3.2. Let G be second countable. Let $T: H(G) \longrightarrow \Delta(C_c(G))$ be defined as $T(\alpha) = \varphi_{\alpha}$. Then T is a bijective continuous map.

Proof. The mapping T is clearly one-to-one. To show that T is onto, let $\varphi \in \Delta(C_c(G))$. Then, for all $s \in G$ and for all $f \in C_c(G)$,

$$\varphi(f)^2 = \varphi(f^2) = \varphi(\tau_s f * \tau_{-s} f) = \varphi(\tau_s f)\varphi(\tau_{-s} f).$$

This implies that if $\varphi(f) \neq 0$, then $\varphi(\tau_s f) \neq 0$ for all $s \in G$. Let $f \in C_c(G)$ such that $\varphi(f) \neq 0$. Define $\alpha: G \longrightarrow \mathbb{C}^{\bullet}$ as

$$\alpha(s) = \frac{\varphi(\tau_s f)}{\varphi(f)}.$$

Note that α does not depend on f; because if $g \in C_c(G)$ is another function such that $\varphi(g) \neq 0$, then

$$\varphi(\tau_s f)\varphi(g) = \varphi(\tau_s f * g) = \varphi(f * \tau_s g) = \varphi(f)\varphi(\tau_s g), \quad s \in G.$$

Now, for $s, t \in G$,

$$\alpha(s+t) = \frac{\varphi(\tau_{s+t}f)}{\varphi(f)} = \frac{\varphi(\tau_s(\tau_t f))}{\varphi(f)} = \frac{\varphi(\tau_s(\tau_t f))}{\varphi(\tau_t f)} \frac{\varphi(\tau_t f)}{\varphi(f)} = \alpha(s)\alpha(t).$$

Since *G* is second countable, the mapping $G \longrightarrow C_c(G)$; $s \longmapsto \tau_s f$ is continuous due to Lemma 3.1. Hence α is continuous. Thus $\alpha \in H(G)$. Let $\mu \in M_{\text{loc}}(G)$ be the Radon measure corresponding to φ (p. 838 of [3]). Then, for $g \in C_c(G)$,

$$\begin{split} \varphi_{\alpha}(g) &= \int_{G} g(s)\alpha(s)d\lambda(s) \\ &= \frac{1}{\varphi(f)} \int_{G} g(s)\varphi(\tau_{s}f)d\lambda(s) \\ &= \frac{1}{\varphi(f)} \int_{G} g(s) \int_{G} f(t-s)d\mu(t)d\lambda(s) \\ &= \frac{1}{\varphi(f)} \int_{G} (f*g)(t)d\mu(t) \\ &= \frac{1}{\varphi(f)}\varphi(f*g) = \varphi(g). \end{split}$$

Thus $\varphi = \varphi_{\alpha}$. Hence *T* is bijective. Now it is easy to show that *T* is continuous. DEFINITION 3.3

For $\alpha \in H(G)$, $\varepsilon > 0$, and $\{f_1, \dots, f_n\} \subseteq C_c(G)$, define $B(\alpha; \varepsilon; f_1, \dots, f_n) = \{\beta \in H(G): |\widehat{f_i}(\beta) - \widehat{f_i}(\alpha)| < \varepsilon \ (1 \le i \le n)\},$ where $\widehat{f}(\beta) = \varphi_{\beta}(f) = \int_G f(s)\beta(s)d\lambda(s)$. Then the collection

$$\mathcal{B} = \{B(\alpha; \varepsilon; f_1, \ldots, f_n) : \alpha \in H(G), \varepsilon > 0, n \in \mathbb{N}, \{f_1, \ldots, f_n\} \subseteq C_c(G)\}$$

forms a basis for some topology on H(G). Let τ_g denote the topology on H(G) generated by this basis. Then $\tau_g \subseteq \tau_{co}$ on H(G). Let $\widetilde{H}(G)$ denote the H(G) equipped with the topology τ_g . We say that $\widetilde{H}(G) = H(G)$ if $\tau_{co} = \tau_g$.

Remark 3.4. Let r > 1. Define $\omega(s) = e^{r|s|}$, $s \in \mathbb{R}$. Then ω is a weight on \mathbb{R} such that $\Delta(L^1(\mathbb{R}, \omega)) \cong \prod_{-r,r} := \{x + iy \in \mathbb{C}: -r \le x \le r\}$ due to Theorem 4.7.33, p. 533 of [3].

Theorem 3.5. If G is (i) discrete, (ii) compact or (iii) $G = \mathbb{R}$, then $\widetilde{H}(G) = H(G)$.

Proof. In the first two cases, it is enough to prove that the point evaluation map $e: G \times \widetilde{H}(G) \longrightarrow \mathbb{C}$ is continuous due to Corollary 13.1.1, p. 281 of [7].

(i) Fix (g_0, α_0) in $G \times \widetilde{H}(G)$. Let V be a neighbourhood of $e(g_0, \alpha_0) = \alpha_0(g_0)$ in \mathbb{C} . Then there exists $\varepsilon > 0$ such that $S(\alpha_0(g_0), \varepsilon) \subseteq V$. Choose $U = \{g_0\}$ and $f = \delta_{g_0}$. Define $B = B(\alpha_0; \varepsilon; f)$. Then $U \times B$ is a neighbourhood of (g_0, α_0) in $G \times \widetilde{H}(G)$. Then, for $(g, \alpha) \in U \times B$,

$$|\alpha(g) - \alpha_0(g_0)| = |\alpha(g_0) - \alpha_0(g_0)| = |f(\alpha) - f(\alpha_0)| < \varepsilon.$$

Hence $e(g, \alpha) = \alpha(g) \in V$. Thus the map *e* is continuous.

(ii) Since G is compact, H(G) = G. Suppose {t_γ} ⊂ G and {α_γ} ⊂ H(G) are nets that converge to t and α, respectively. Let f ∈ C_c(G) such that f(α) ≠ 0. Choose γ₀ such that

$$|\widehat{f}(\alpha) - \widehat{f}(\alpha_{\gamma})| < \frac{|\widehat{f}(\alpha)|}{2}, \quad \gamma \ge \gamma_0.$$

Hence $|\widehat{f}(\alpha)| - |\widehat{f}(\alpha_{\gamma})| < \frac{|\widehat{f}(\alpha)|}{2}$; and so $\widehat{f}(\alpha_{\gamma}) \neq 0, \gamma \geq \gamma_0$. It is elementary that, for $s \in G$ and for $\beta \in \widetilde{H}(G), \beta(s)\widehat{f}(\beta) = [\tau_s(f)]^{\wedge}(\beta)$. Hence

$$\alpha(s) = \frac{[\tau_s(f)]^{\wedge}(\alpha)}{\widehat{f}(\alpha)}, \quad s \in G$$

and

$$\alpha_{\gamma}(s) = \frac{[\tau_s(f)]^{\wedge}(\alpha_{\gamma})}{\widehat{f}(\alpha_{\gamma})}, \quad s \in G; \ \gamma \ge \gamma_0.$$

Since $\widehat{f}(\alpha_{\gamma}) \longrightarrow \widehat{f}(\alpha)$, it is enough to prove that $[\tau_{t_{\gamma}}(f)]^{\wedge}(\alpha_{\gamma}) \longrightarrow [\tau_{t}(f)]^{\wedge}(\alpha)$. But

$$\begin{split} |[\tau_{t_{\gamma}}(f)]^{\wedge}(\alpha_{\gamma}) - [\tau_{t}(f)]^{\wedge}(\alpha)| &\leq |[\tau_{t_{\gamma}}(f)]^{\wedge}(\alpha_{\gamma}) - [\tau_{t}(f)]^{\wedge}(\alpha_{\gamma})| \\ &+ |[\tau_{t}(f)]^{\wedge}(\alpha_{\gamma}) - [\tau_{t}(f)]^{\wedge}(\alpha)| \\ &\leq \|[\tau_{t_{\gamma}}(f)]^{\wedge} - [\tau_{t}(f)]^{\wedge}\|_{1} \\ &+ |[\tau_{t}(f)]^{\wedge}(\alpha_{\gamma}) - [\tau_{t}(f)]^{\wedge}(\alpha)|. \end{split}$$

The right-hand side tends to 0 as $\gamma \rightarrow \infty$. Hence the map *e* is continuous.

(iii) Note that $H(\mathbb{R}) \cong \mathbb{C}$ and τ_{co} is exactly the usual topology \mathcal{U} on \mathbb{C} . So we need to prove that $\tau_g = \mathcal{U}$. Let $S(z, \varepsilon)$ be an open sphere in \mathbb{C} and let $w \in S(z, \varepsilon)$. Let r > 1such that $S(z, \varepsilon) \subset \Pi_{-r,r}$. By Remark 3.4, there exists a weight ω on \mathbb{R} such that $\Delta(L^1(\mathbb{R}, \omega)) \cong \Pi_{-r,r}$. Since $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R}, \omega)$, $\Delta((C_c(\mathbb{R}), \|\cdot\|_{\omega})) \cong$ $\Pi_{-r,r}$. So choose g_1, \ldots, g_n in $L^1(\mathbb{R}, \omega)$ and $\delta > 0$ such that $B(w; \delta; g_1, \ldots, g_n) \subseteq$ $S(z, \varepsilon)$. Choose f_1, \ldots, f_n in $C_c(G)$ such that $\|f_i - g_i\|_{\omega} < \frac{\delta}{3}$ $(1 \le i \le n)$. Now let $u \in B(w; \frac{\delta}{3}; f_1, \ldots, f_n)$. Then, for $1 \le i \le n$,

$$\begin{aligned} |\widehat{g_i}(u) - \widehat{g_i}(w)| &\leq |\widehat{g_i}(u) - \widehat{f_i}(u)| + |\widehat{f_i}(u) - \widehat{f_i}(w)| + |\widehat{f_i}(w) - \widehat{g_i}(w)| \\ &\leq \|f_i - g_i\|_{\omega} + |\widehat{f_i}(u) - \widehat{f_i}(w)| + \|f_i - g_i\|_{\omega} \\ &< 2\frac{\delta}{3} + \frac{\delta}{3} = \delta. \end{aligned}$$

Hence $u \in B(w; \delta; g_1, ..., g_n)$. Thus $B(w; \frac{\delta}{3}; f_1, ..., f_n) \subseteq S(z, \varepsilon)$. Since w is arbitrary, $S(z, \varepsilon) \in \tau_g$. Hence the two topologies are identical.

Theorem 3.6. If $\widetilde{H}(G_i) = H(G_i)$, i = 1, 2, then $\widetilde{H}(G_1 \oplus G_2) = H(G_1 \oplus G_2)$.

Proof. Let $G = G_1 \oplus G_2$. It is enough to prove that the point evaluation map $e: G \times \widetilde{H}(G) \longrightarrow \mathbb{C}$ is continuous. Let $s = s_1 \oplus s_2 \in G$ and $\alpha \in \widetilde{H}(G)$. Since $H(G) \cong$

442

 $H(G_1) \oplus H(G_2)$, there exist $\alpha_1 \in H(G_1)$ and $\alpha_2 \in H(G_2)$ such that $\alpha = \alpha_1 \oplus \alpha_2$. Let V be a neighbourhood of $e(s, \alpha) = \alpha_1(s_1)\alpha_2(s_2)$. Choose $\varepsilon > 0$ such that $S(\alpha_1(s_1), \varepsilon) \cdot S(\alpha_2(s_2), \varepsilon) \subseteq V$. Since $\widetilde{H}(G_i) = H(G_i), i = 1, 2$, there exist basic neighbourhoods $W_1 = U_1 \times B(\alpha_1; \delta_1; f_1, \ldots, f_m)$ of (s_1, α_1) in $G_1 \times H(G_1)$ and $W_2 = U_2 \times B(\alpha_2; \delta_2; h_1, \ldots, h_n)$ of (s_2, α_2) in $G_2 \times H(G_2)$ such that

$$(t, \beta) \in W_1 \Longrightarrow \beta(t) \in S(\alpha_1(s_1), \varepsilon);$$

and

$$(t, \beta) \in W_2 \Longrightarrow \beta(t) \in S(\alpha_2(s_2), \varepsilon).$$

Take $W = U \times B$, where $U = (U_1 \oplus U_2)$ and $B = B(\alpha_1; \delta_1; f_1, \ldots, f_m) \oplus B(\alpha_2; \delta_2; h_1, \ldots, h_n)$. Let $(s, \beta) \in W$. Then $s = s_1 \oplus s_2$ for some $s_i \in U_i, i = 1, 2$ and $\beta = \beta_1 \oplus \beta_2$ for some $\beta_1 \in B(\alpha_1; \delta_1; f_1, \ldots, f_m)$ and $\beta_2 \in B(\alpha_2; \delta_2; h_1, \ldots, h_n)$. So $\beta(s) = \beta_1(s_1)\beta_2(s_2)$. Now, for all $1 \le i \le m$,

$$\begin{aligned} |\hat{f}_1(\alpha_2)||\hat{f}_i(\beta_1) - \hat{f}_i(\alpha_1)| &= |(f_i \times h_1)^{\wedge}(\beta_1 \oplus \alpha_2) - (f_i \times h_1)^{\wedge}(\alpha)| \\ &< \delta \le \delta_1 |\hat{h}_1(\alpha_2)|. \end{aligned}$$

Hence $\beta_1 \in B(\alpha_1; \delta_1; f_1, \ldots, f_m)$; and so $\beta_1(s_1) \in S(\alpha_1(g_1), \varepsilon)$. Similarly, we can show that $\beta_2(s_2) \in S(\alpha_2(g_2), \varepsilon)$. Hence $e(s, \beta) = \beta(s) = \beta_1(s_1)\beta_2(s_2) \in S(\alpha_1(g_1), \varepsilon) \cdot S(\alpha_2(g_2), \varepsilon) \subseteq V$. Thus the map *e* is continuous. \Box

COROLLARY 3.7

~

If G is compactly generated, then $\widetilde{H}(G) = H(G)$.

Proof. Since *G* is compactly generated, $G \cong \mathbb{R}^m \times \mathbb{Z}^n \times K$, where *m* and *n* are non-negative integers and *K* is a compact group due to Theorem 9.8 of [4]. Now the result follows from Theorems 3.5 and 3.6.

COROLLARY 3.8

If G is second countable and compactly generated, then $H(G) \cong \Delta(C_c(G))$, and hence $\Delta(C_c(G))$ is locally compact.

Proof. The topology τ_g on H(G) is nothing but the Gel'fand topology on $C_c(G)$. So the result follows from Theorem 3.2 and Corollary 3.7.

Theorem 3.9. If G is discrete, then $H(G) \cong \Delta(C_c(G))$.

Proof. Define $T: H(G) \longrightarrow \Delta(C_c(G))$ as in Theorem 3.2. Since G is discrete, T is a bijective continuous map as in the proof of Theorem 3.2. Let $\{\varphi_{\gamma}\}$ be a net in $\Delta(C_c(G))$ such that $\varphi_{\gamma} \longrightarrow \varphi$ in $\Delta(C_c(G))$. Let $\alpha_{\gamma}, \alpha \in H(G)$ such that $T(\alpha_{\gamma}) = \varphi_{\gamma}$ and $T(\alpha) = \varphi$. Then, for each $s \in G$,

$$\alpha_{\gamma}(s) = \varphi_{\gamma}(\delta_s) \longrightarrow \varphi(\delta_s) = \alpha(s).$$

Since G is discrete, $\alpha_{\gamma} \longrightarrow \alpha$ in H(G). Hence the result is proved.

Remark 3.10

- (i) Let G be as in Example 2.4(i). Then $\Delta(C_c(G)) \cong H(G)$ is not locally compact.
- (ii) If the condition "second countable" in Lemma 3.1 can be dropped, then the same can be dropped from Corollary 3.8; in this case, $\Delta(C_c(G))$ is locally compact for all compactly generated LCA groups.

Acknowledgements

The authors gratefully acknowledge the financial support from the University Grants Commission as a major research project, letter No. F.8-9/2004(SR). The authors are thankful to the referee for suggesting an alternative proof of Theorem 2.2(i) and for constructive suggestions leading to the present version of the paper.

References

- Bhatt S J and Dedania H V, Banach algebras with unique uniform norm II, *Studia Math.* 147(3) (2001) 211–235
- Bhatt S J and Dedania H V, Beurling algebras and uniform norms, *Studia Math.* 160(2) (2004) 179–183
- [3] Dales H G, Banach algebras and automatic continuity, *London Math. Soc. Monographs* (Oxford: Clarendon Press) (2000) vol. 24
- [4] Hewitt E and Ross K A, Abstract harmonic analysis, Second Edition (New York, Berlin: Springer-Verlag) (1979) vol. I
- [5] Hussain T, Introduction to topological groups (Philadelphia and London: W.B. Saunders Company) (1966)
- [6] Mallios A, Topological algebras: Selected topics (Elsevier Science Publishers B.V.) (1986)
- [7] Wilanky A, Topology for Analysis (Toronto: Xerox College Publishing) (1970)