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Abstract. For a compactly generated LCA group G, it is shown that the set H (G) of all
generalized characters on G equipped with the compact-open topology is a LCA group
and H(G) = G (the dual group of G) if and only if G is compact. Both results fail for
arbitrary LCA groups. Further, if G is second countable, then the Gel’fand space of the
commutative convolution algebra C.(G) equipped with the inductive limit topology is
topologically homeomorphic to H (G).

Keywords. Compactly generated LCA group; character; generalized character;
Gel’fand space; commutative topological algebra.

1. Introduction

Throughout, let G be a LCA group with Haar measure A and let G denote the dual group
of G, i.e., the set of all characters on G. Then it is well-known that G is aLCA group in
compact-open topology. A generalized character on G is a continuous function v: G —
C*, where C* = C\ {0} such that (s + t) = a(s)x(t),s,t € G. Let H(G) denote the
set of all generalized characters on G equipped with the compact-open topology. For
o, B € H(G), define (« + B)(s) = a(s)B(s),s € G. Then (H(G), +) is an abelian
topological group (23.34(b) of [4]). It is straightforward to verify that H(Z) = (C°, x)
and H(T) = (Z, +), where T is the unit circle in C.

Let C.(G) denote the set of all complex-valued continuous functions on G with com-
pact support. Then C.(G) is a commutative algebra with respect to the usual convolution
product. Let T denote the inductive limit topology on C.(G). Then, by Lemma 2.1, p. 114
of [6], (C.(G), T) is a commutative topological algebra.

In this paper our main goal is to show that if G is compactly generated, then H(G)
is a LCA group and that H(G) = G if and only if G is compact. Both results fail for
LCA groups. The results appear to be a mathematical folklore; however we failed to find
a proof in the literature. In fact, the present note arises out of our investigations of uniform
norms in Beurling algebras and weighted measure algebras [1, 2]. As an application we
show that if, further, G is second countable, then the Gel’fand space A(C.(G)) of C.(G)
is homeomorphic to H(G); in particular, A(C.(G)) is a locally compact space.

2. Generalized characters

Lemma 2.1. Let m > 1 be an integer and let 0 < ¢ < 1/m. Then there exists a natural
number N such that, for each complex number z satisfying ¢ < |z — 1| < 1/m, there exists
1 <k < N such that |zk — 1> 1/m.
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Proof. Forr > 0 and for z € C, let I'(z, r) denote the circle with radius » and center z.
For § > 0, let Ls := {re!%: r > 0}, the open ray with angle 8. Choose 0 < § < 7/2 such
that Ls cuts the circle I'(1, ) in two points zo = roe'® and z; = rie/®, where rg < 1 < ry.
Now fix z = re/? such that ¢ < |z — 1| < 1/m. Then |0| < 7/2. Without loss of
generality, we may assume that & > 0. Then we have the following three possibilities:

Case (i). 6 > 6. Choose n; € N such that n18 < 7/2 and L,,s does not intersect the
circle I'(1, 1/m). Then there exists 1 < k < ny such that |z — 1| > 1/m.

Case (ii). r < ro. Choose n> € N such that rgz <1—1/m.Then |72 —1]>1—|z|" =
1—r" > 1—;’(')'2 > 1/m.

Case (iii). r1 < r.Choose n3 € N such that r;” >14+1/m.Then |7 —1| > |z| =1 =
rm—1>r?—=1>1/m.

Finally take N = max{n1, ny, n3}. Then N has the required property. O
Theorem 2.2. Let G be a compactly generated LCA group. Then

(i) H(G) is a LCA group.
(i1) H(G) = G ifand only if G is compact.

Proof.

(i) Fix an integer m > 1. Define V,, := {z € C: |z — 1| < 1/m}. Since G is a compactly
generated LCA group, there exists a neighbourhood U of 0 in G such that its closure U
is compact and it generates G due to Theorem 5.13 of [4]. Take T, := N (ﬁ, Vi) =
{o € HG): a(U) C V,,}. Then T}, is a neighbourhood of the identity 15 in H(G).
First we show that T, is equicontinuous at 0 in G.Lete > 0.If¢ > 1/m,thenV := U
is a neighbourhood of 0 in G such that

seVanda € T, = |a(s) —a(0)| = |a(s) — 1] < 1/m < e.

So we may assume that e < 1/m. Then, by Lemma 2.1, one can find an integer N such
that, for each ¢ < |z — 1] < 1/m, there exists | < k < N such that |zk — 1] > 1/m.
Choose a neighbourhood W of 0 in G such that Z][(V:] Wi € U, where Wy = W.
Suppose, if possible, there existt € W and o € T,, such that |« (¢) — 1| > ¢. Then, by
the definition of N, there exists 1 < k < N such that |a(kt) — 1| = |a(t)*—1| > 1/m.
On the other hand, kt € U and so |« (kt) — 1| < 1/m. This is a contradiction. Hence,
we have

seWanda € T, = |a(s) — 1] < e.

This proves that T,, is equicontinuous at 0 in G. Finally, let t € G be arbitrary. Since
G is generated by U, there exist 1, ...,t, € U suchthatt = t; + - -- + ;. Then, for
eacha € T),,

le()] = la@D]...le(tp)| = 1+ 1/m)P.
By the above argument, one can choose a neighbourhood W of 0 in G such that

g
seWanda € T, = |a(s) —a(0)| < A+ 1/myr’
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Hence
loe(s +1) — a(t)] = |a(s) —a@)||a(@)] < |als) = 1[(1 + 1/m)P <e.

This proves that T}, is equicontinuous. So its closure Cl,(7},) in the pointwise topol-
ogy is equicontinuous (p. 17 of [5]). Let Cl.(7},) denote the closure of T, in the
compact-open topology. Then Cl.(T,;,) € Cl, (7). Hence Cl.(T},) is equicontinu-
ous.

Now taket € G. Thent =t; +--- +1, forsome 11, ...,1, € U. Then |a(?)| =
la ()] la(tp)| < (X + o) = 1) -+ (1 + Jee(tp) — 1) < (1 + 1/m)” for each
o € Ty Similarly, [« (1) = |a ()| -« - |a(tp)| = (I=|a(@)—1]) - - - (I—|a(tp)—1]) >
(1 — 1/m)? for each @ € T,,. Hence the closure of the set T}, (¢) := {«x(¢): « € T, } is
compact in C®. So, by Ascoli’s theorem, Cl.(7},,) is compact. This proves that H(G)
is a LCA group.

(i) Let G be compact and let « € H(G). Since « is a continuous group homomor-
phism, a(G) is a compact subgroup of (C*, x). Hence a(G) is Acontained in the
unit circle. So @ € G. For the converse, assume that H(G) = G and G is com-
pactly generated. Then, by Theorem 9.8 of [4], G is topologically isomorphic to
R™ x Z" x K for some non-negative integers m, n and some compact group K. Then
G = H(G) =2 HR™) @ H(Z") & H(K) due to 23.34(c) of [4]. This implies that
we must have m = n = 0. So G = K is compact. o

Remark 2.3. The following is an alternative proof of Theorem 2.2(i). By the structure
theory, a compactly generated LCA group G is a direct product of R”, Z™, and a compact
group. By 23.34(c) of [4], H (G x G3) is canonically homeomorphic to H(G1) x H(G>3).
So it is enough to show that H(G) is locally compact for G = Z and G = R. It is
easy to see for G = Z. Observe that every continuous homomorphism ¢: R — C
is differentiable and satisfies ¥/(r) = ¥ (0)¥(t),t € R, and so ¥(t) = exp(zt) for
a unique complex number z. Thus the map A: H(R) — (C, +) is a bijective map.
For0 < ¢ < 1,let W, = {z: |6¥* — 1| < ¢,x € [—n,n]}. Then it is easy to see
that

Wie € {a +iB: o] < (1/n)log(1 + &), |B] < (cos™ ' uy )/n},

where u, . = (e~2lelr 1 — ¢2)/(2el*!™). Thus the mapping A is open. Now for 0 < § <
15

{a +iB: o <log(l+48/2)/n,|B] <8/2} S Wye.
So A is continuous. This completes the proof. O

Examples 2.4. The following two examples show that the above theorem is not true for
arbitrary LCA groups.

(i) Let G ={n = (n1,...,n,,0,0,...): k € Nand n; € Z} with the co-ordinatewise
addition and the discrete topology. Then H(G) = C*N with the pointwise topology.
Then H(G) is not a LCA group.

(i) Let G be an infinite abelian group having all elements of finite order and the topology
being the discrete topology. Let « € H(G) and let s € G. Then there exists a natural
number 7 such that ns = 0 and so a(s)" = a(ns) = a(0) = 1,i.e., |a(s)| = 1. Hence
« € G. Thus H(G) = G and G is not compact.
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3. Gel’fand space of C.(G)

For f € C.(G)andt € G, let (t; f)(s) = f(s —1),t € G. We know that, for f € C.(G),
themap Ay: G —> (Cc(G), |- l1); s —> T, f is continuous, where || - ||1 is the L'-norm.
We prove the following:

Lemma 3.1. Let G be second countable, and let [ € C.(G). Then the map Ay: G —
(Ce(G), T); 5§ —> 14 f is continuous.

Proof. Since G is a second countable, LCA group, G is metrizable. Let d be an invariant
metric on G inducing the topology on G. So it is enough to show that whenever s, —> s in
G, wehave A r(s,) —> Af(s) in C.(G). First, assume that s = 0. Let U be a symmetric
neighbourhood of 0in G such thats, € U (n € N) and U is compact. Let K = U +supp f.
Then K is compact, and the supports of 7, f and f are contained in K.

Lete > 0. Since f|g is continuous and since K is a compact metric space, f: K —> C
is uniformly continuous. Let § > 0 such that

s,te Kandd(s,t) <6 = |f(s) — f(@)| <e.
Choose ng € N such that d(s,, 0) < 6 (n > ng). Finally, lett € K and let n > ny.

Case (i). t — s, € K: This implies d(t — s,,t) = d(—s,,0) = d(s,,0) < §; and so
[f(t—s0)— fO] <e.

Case (ii). t—s, ¢ K:Thisimplies? ¢ supp f; becauseifz € supp f, thens—s, € supp f+
U = K whichis not the case. Hence f(t —s,) = f(t) = 0;andso | f(t —s,) — f(¢)| < e.

Hence [Af(s))(t) — Ap(0)@)| = [f(t —sn) — f(O)] < &,t € K,n > ng. Thus
IA () — Ag@llx <& (n > no). Thus A y(sq) —> A f(0).

Now lets, — sinG. Thens, —s —> 0in G. But ||[A s (sy) — A (g = 1A f(sn —
s) — Ar(0)| x. Hence A r(sy) —> Ag(s). O

Let A(C.(G)) denote the Gel’fand space of C.(G). For « € H(G), define ¢4 (f) =
fG f$)a(s)dr(s), f € C.(G). Then ¢, € A(C(G)).

Theorem 3.2. Let G be second countable. Let T: H(G) —> A(C:(G)) be defined as
T () = @u. Then T is a bijective continuous map.

Proof. The mapping T is clearly one-to-one. To show that 7 is onto, let ¢ € A(C.(G)).
Then, for all s € G and for all f € C.(G),

o) =o(f*) = ot f 15 f) = (ts fp(t_s f).

This implies that if ¢(f) # 0, then ¢(7; f) # 0 for all s € G. Let f € C.(G) such that
¢(f) # 0. Define a: G —> C* as

(s f)
o) = o(f)

Note that o does not depend on f; because if g € C.(G) is another function such that
@(g) # 0, then

o(ts o) = ot f *8) = o(f * 158) = o(e(t:8), s€G.
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Now, for s, t € G,

(i f) _ @) _ ¢ @f) ¢ f)
@(f) @(f) e(mf) o)
Since G is second countable, the mapping G —> C.(G); s —> T, f is continuous due

to Lemma 3.1. Hence « is continuous. Thus @« € H(G). Let © € Mjo.(G) be the Radon
measure corresponding to ¢ (p. 838 of [3]). Then, for g € C.(G),

a(s+1) = =a(s)a(t).

va(g) = /Gg(S)oz(S)dk(S)

1
=— s £)dA
w(f)Lg(S)w(f FHda(s)

1
o) /Gg(S)[Gf(l s)dpu(r)da(s)

1

- d
= /G(f*gxr) (o)

1
= mfp(f *g) = p(g).

Thus ¢ = ¢,. Hence T is bijective. Now it is easy to show that T is continuous. O
DEFINITION 3.3
Fora € H(G), e > 0,and {f1, ..., fn} € C.(G), define

B fi,.oo fu) = (B € HG):1fi(B) = fil)| <& (1 =i =m),
where f(ﬂ) =g(f) = fG f(s)B(s)dr(s). Then the collection

B=A{B(a;¢&; fi,.... fu)ae HG),e >0, neN, {fi,..., L} SC.(G)}

forms a basis for some topology on H (G). Let 7, denote the topology on H (G) generated
by this basis. Then 7, C Tco On H (G). Let H(G) denote the H(G) equipped with the
topology t,. We say that H(G) = H(G) if 7., = .

Remark 3.4. Let r > 1. Define w(s) = ¢'¥l, s € R. Then w is a weight on R such that
ALY R, w)) = I, :={x+iy € C: —r < x < r}duetoTheorem4.7.33, p. 533 of [3].

Theorem 3.5. If G is (i) discrete, (ii) compact or (iii) G = R, then ﬁ(G) = H(G).

Proof. In the first two cases, it is enough to prove that the point evaluation map e: G x
H(G) — C is continuous due to Corollary 13.1.1, p. 281 of [7].

(1) Fix (go,ap) in G X I-NI(G). Let V be a neighbourhood of e(gg, ap) = ap(go) in C.
Then there exists ¢ > 0 such that S(a(go), &) € V. Choose U = {go} and f = &g,.
Define B = B(wp; €; f). Then U x B is a neighbourhood of (gg, «g) in G x H(G).
Then, for (g,a) € U x B,

lar(g) — a0(g0)| = |ae(go) — @0(g0)| = | (@) — flao)| < e.

Hence e(g, @) = a(g) € V. Thus the map e is continuous.
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(ii)

(iii)
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Since G is compact, H(G) = G. Suppose {t,} C G and {ay}g ﬁ(G) are nets that
converge to ¢t and «, respectively. Let f € C.(G) such that f(«) # 0. Choose yy
such that

|Fl@) — Flay)| < 'f(“)' Y=

Hence |f(a)| — |f(ay)| < \f(_a)l ;and so f(ay) # 0,y > y. Itis elementary that,
for s € G and for B € H(G) ,B(S)f(ﬂ) [zs ()1 (B). Hence

a(s):w, seG

fle)
and

[Ts(f)]A(ay)
=, € G, > .
ay (s) 7y s Y=Y
Since f(ay) — f(a), it is enough to prove that [z, (f)1" (@) — [ (/)] (@).
But

[z, (™ () = [ (O @] < Iz, (H17 (@) = [m (O ()]
+ 1w (O (@) = [2 ()] (@)
< Iz, (HO1" = [ (O
+m (O ey) = [m(H1 @)

The right-hand side tends to 0 as y —> c0. Hence the map e is continuous.

Note that H(R) = C and 7., is exactly the usual topology ¢/ on C. So we need to
prove that 7, = U. Let S(z, &) be an open sphere in C and let w € S(z, ). Letr > 1
such that S(z, &) C I1_,,. By Remark 3.4, there exists a weight @ on R such that
A(L'(R, w)) = T_,,. Since C.(R) is dense in L'(R, w), A(Cc(R), || - [lo)) =
IT_,,.Sochoose g1, ..., gn in L' (R, ®) and § > 0 such that B(w;8;81,...,8n) C
S(z,¢€). Choose fi,..., fn in C.(G) such that || f; — gille < % (1 <i <n). Now
letu € B(w; 35 fi, ..., fu). Then, for 1 <i <n,

18i) — & (W)l < |8 W) — fiw)| + | ;@) — fi(w)| + | fi(w) — & (w)]
< fi — gillo + 1 i @) = Fi)| + Ifi — gillw
) )

2242 s
<3713

Hence u € B(w; §; g1, ..., &n). Thus B(w; % fis..-y fu) € S(z,¢€). Since w is
arbitrary, S(z, ¢) € 7,. Hence the two topologies are identical. O

Theorem 3.6. If H(G;) = H(G;),i = 1,2, then H(G1 ® G») = H(G| ® G»).

Proof. Let G = G @ Ga. It is enough to prove that the point evaluation map e: G
H(G) —> C is continuous. Let s = s; @ sp € G and o € H(G) Since H(G)

R X
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H(G1) ® H(G»), there exist 1 € H(G)) and ap € H(G3) such that « = o] &
as. Let V be a neighbourhood of e(s, al = a1(s1)az(sp). Choose ¢ > 0 such that
S(a1(s1), ) - S(aa(s2),e) € V. Since H(G;) = H(G;),i = 1,2, there exist basic
neighbourhoods W| = U; x B(wy; 815 f1,.-., fm) of (s1,a1) in G; x H(G1) and
Wy = Uy x B(ap; 625 hy, ..., hy) of (s2, @) in Gy x H(G») such that

(t,B) € Wi = B(1) € S(a1(s51), €);
and
(t,B) € Wr = B(1) € S(a2(s2), €).

Take W = U x B, where U = (U & Up) and B = B(a1;01; fis---s fm) @
B(ao; 62; hy, ..., hy). Let (s, ) € W. Then s = 51 @ s, for some s; € U;,i = 1,2 and
B = B1 @ B for some B1 € B(ay; 815 f1,..., fw) and B2 € B(az; 825 b1, ..., hy). So
B(s) = B1(s1)B2(s2). Now, forall 1 <i <m,

IR @)IIfi (B1) — filan)| = |(fi x ) (B1 ® @2) — (fi x h1)" (@)
<8 < 81lh1(a2)].

Hence 81 € B(ay1; 615 f1,---, fm); and so B1(s1) € S(x1(g1), €). Similarly, we can show
that Br(s2) € S(a2(g2),¢). Hence e(s, B) = B(s) = Bi(s1)Ba(s2) € S(a1(g1),¢) -
S(a2(g2), €) € V. Thus the map e is continuous. O

COROLLARY 3.7
If G is compactly generated, then H (G) = H(G).

Proof. Since G is compactly generated, G = R™ x Z" x K, where m and n are non-
negative integers and K is a compact group due to Theorem 9.8 of [4]. Now the result
follows from Theorems 3.5 and 3.6. O
COROLLARY 3.8

If G is second countable and compactly generated, then H(G) = A(C:(G)), and hence
A(C:(G)) is locally compact.

Proof. The topology 1, on H(G) is nothing but the Gel’fand topology on C.(G). So the
result follows from Theorem 3.2 and Corollary 3.7. O
Theorem 3.9. If G is discrete, then H(G) = A(C.(G)).

Proof. Define T: H(G) —> A(C.(G)) as in Theorem 3.2. Since G is discrete, T is a
bijective continuous map as in the proof of Theorem 3.2. Let {¢, } be a net in A(C.(G))
suchthatg, — ¢in A(C.(G)).Leta,,,a € H(G)suchthatT (o) = ¢, and T (@) = .
Then, for each s € G,

ay (s) = @y (85) —> @(8s) = als).

Since G is discrete, a, —> « in H(G). Hence the result is proved. 0
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Remark 3.10

(i) Let G be as in Example 2.4(i). Then A(C.(G)) = H(G) is not locally compact.

(ii) If the condition “second countable” in Lemma 3.1 can be dropped, then the same
can be dropped from Corollary 3.8; in this case, A(C.(G)) is locally compact for all
compactly generated LCA groups.
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