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Abstract. Several ∗-algebras A carry with them unbounded C∗-seminorms
in the sense that they are C∗-seminorms defined on ∗-subalgebras. Un-
bounded operator representations of A are constructed from such unbounded
C∗-seminorms and they are investigated. The notions of spectrality and sta-
bility of unbounded C∗-seminorms are defined and studied.
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1. INTRODUCTION

Unbounded C∗-seminorms on ∗-algebras in the sense that they are C∗-seminorms
defined on ∗-subalgebras have appeared in many mathematical and physical sub-
jects (for example, locally convex ∗-algebras in [5]–[8] and [18], and the quantum
field theory in [1], [14] and [32] etc.). But this systematical study has not yet done
sufficiently. The main purpose of this paper is to do a systematical study of un-
bounded C∗-seminorms and to apply it to a study of unbounded ∗-representations
and that of locally convex ∗-algebras.

The paper is organized as follows: In Section 2 we construct unbounded
∗-representations of a ∗-algebra from unbounded C∗-seminorms and investigate
them. Let A be a ∗-algebra. Let p be a C∗-seminorm defined on A. Every ∗-
representation of the Hausdorff completion of (A, p) gives rise to a ∗-representation
of A into bounded Hilbert space operators. However, there are a number of sit-
uations in which natural C∗-seminorms are defined on ∗-subalgebras of A. Then
they should lead to unbounded operator representations of A. An unbounded m∗-
(respectively C∗-) seminorm is a submultiplicative ∗-(respectively C∗-) seminorm
p defined on a ∗-subalgebra D(p) of A. Then Np := {x ∈ D(p) : p(x) = 0} is a
∗-ideal of D(p) and Np := {x ∈ D(p) : ax ∈ D(p), ∀a ∈ A} is a left ideal of A.
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It is shown that any faithful nondegenerate ∗-representation Πp : Ap → B(H) of
the C∗-algebra Ap obtained by the Hausdorff completion of (D(p), p) leads to an
unbounded ∗-representation πp of A such that ‖πp(x)‖ 6 p(x) for all x ∈ D(p).
But, πp is not necessarily nontrivial (that is, Hπp 6= {0}), and πp is nontrivial
if and only if Np 6⊂ Np. We assume that an unbounded C∗-seminorm satisfies
the condition Np 6⊂ Np. Then πp is always strongly nondegenerate. Here we say
that a ∗-representation π is strongly nondegenerate if there exists a left ideal I
of A contained in Aπ

[ := {x ∈ A : π(x) is bounded}, such that [π(I)Hπ] = Hπ,
where [K] denotes the closed linear span of a subset K of a Hilbert space. We
denote by Rep(A, p) the set of all such ∗-representations πp of A. In order to
investigate representations in Rep(A, p) in details, we introduce the notions of
nondegenerate, finite, uniformly semifinite, semifinite and weakly semifinite un-
bounded C∗-seminorms, and show that if p is weakly semifinite or semifinite, then
there exists a strongly nondegenerate ∗-representation πp in Rep(A, p) such that
‖πp(x)‖ = p(x) for all x ∈ D(p). Such a πp is called well-behaved. In Section
3 we consider the converse direction of Section 2. We construct an unbounded
C∗-seminorm rπ on A from a strongly nondegenerate ∗-representation π of A and
a natural well-behaved representation πN

rπ
of A constructed from rπ which is the

restriction of the closure π̃ of π. Further, it is shown that if p is a weakly semifinite
unbounded C∗-seminorm on A and πp is any well-behaved ∗-representation, then
rπp

is a maximal extension of p. In Section 4 we define and characterize the notion
of regular unbounded C∗-seminorms. An unbounded C∗-seminorm on a ∗-algebra
A is regular if it is a restriction of the unbounded C∗-seminorm sup

α
pα defined by a

family {pα} of C∗-seminorms on A. It is shown that given a semifinite unbounded
C∗-seminorm p on A, p is regular if and only if there exists a well-behaved ∗-
representation πp of A which is a restriction of the direct sum

⊕
α
πα of bounded

∗-representations πα of A.
In Section 5 we construct the unbounded Gelfand-Naimark C∗-seminorm | · |p

on A from an unbounded m∗-seminorm p on A. Yood ([33]) has investigated some
aspects of bounded C∗-seminorms by re-examining the construction of Gelfand-
Naimark pseudo-norm discussed in [9]. Here we extend some of Yood’s results
about C∗-seminorms to unbounded C∗-seminorms. In Section 6 we apply the re-
sults developed earlier to the study of spectral algebras. Following Palmer ([22])
a spectral algebra A is an algebra on which there is defined a submultiplicative
seminorm p (called a spectral seminorm) such that {x ∈ A : p(x) < 1} ⊂ Aqr(=
the set of all quasi-regular elements of A). The morale of [22] and [23] is that even
though a spectral algebra need not be normable, it is rich enough to recapture the
pure algebraic flavour of much of the spectral theory of Banach algebras. We call
an unbounded m∗-seminorm p to be spectral (respectively hereditary spectral) if
{x ∈ D(p) : p(x) < 1} ⊂ D(p)qr (respectively pdB is spectral for each ∗-subalgebra
B of A). An unbounded ∗-representation π of A is a spectral ∗-representation (re-
spectively a hereditary spectral ∗-representation) if SpAπ

[
(x) ⊂ SpC∗(π)(π(x))

⋃
{0}

for all x ∈ A, C∗(π) being the C∗-algebra generated by π(Aπ
[ ) (respectively πdB

is spectral for each ∗-subalgebra B of A). It is shown that there exists a strongly
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nondegenerate ∗-representation π of A such that π[ := πdAπ
[ is (hereditary) spec-

tral if and only if there exists a maximal, weakly semifinite, (hereditary) spec-
tral unbounded C∗-seminorm on A. Further, we define the notion of stability of
unbounded m∗- (or C∗-) seminorms and characterize it by spectral unbounded
C∗-seminorms. An unbounded m∗-seminorm p on A is called stable if for any
∗-subalgebra B of A, any ∗-representation π of B such that B

⋂
D(p) ⊂ Bπ

[ and
[π(B

⋂
D(p))D(π)] = Hπ can be dilated to a ∗-representation % of A such that

D(p) ⊂ A%
[ and [%(D(%))D(%)] = H%. It is shown that a semifinite unbounded

C∗-seminorm on A is hereditary spectral if and only if it is spectral and stable. In
Section 7 we give some examples of (regular, spectral, weakly semifinite, semifi-
nite) unbounded C∗-seminorms on special ∗-algebras (locally m-convex ∗-algebras,
pro-C∗-algebras, M∗-like (or C∗-like) locally convex ∗-algebras, Köthe sequence al-
gebras, O∗-algebras). Throughout this paper we assume that a ∗-algebra A has
always an identity 1l to simplify the arguments. This assumption does not lose the
generality.

2. REPRESENTATIONS INDUCED BY UNBOUNDED C∗-SEMINORMS

In this section we construct a family of ∗-representations of a ∗-algebra A induced
by an unbounded C∗-seminorm on A and investigate the properties. We begin
with the review of (unbounded) ∗-representations of A. Throughout this section
let A be a ∗-algebra with identity 1l. Let D be a dense subspace in a Hilbert space
H and let L†(D) denote the set of all linear operators X in H with the domain
D for which XD ⊂ D, D(X∗) ⊃ D and X∗D ⊂ D. Then L†(D) is a ∗-algebra
under the usual operations and the involution X → X† := X∗dD. A ∗-subalgebra
of the ∗-algebra L†(D) is said to be an O∗-algebra on D in H. A ∗-representation
π of A on a Hilbert space H with a domain D is a ∗-homomorphism of A into
L†(D) and π(1l) = I, and then we write D and H by D(π) and Hπ, respectively.
Let π1 and π2 be ∗-representations of A. If Hπ1 is a closed subspace of Hπ2 and
π1(x) ⊂ π2(x) for each x ∈ A, then π2 is said to be an extension of π1 and denoted
by π1 ⊂ π2. In particular, if π1 ⊂ π2 and Hπ1 = Hπ2 , then π2 is said to be an
extension of π1 in the same Hilbert space. Let π be a ∗-representation of A. If
D(π) is complete with the graph topology tπ defined by the family of seminorms
{‖ · ‖π(x) := ‖ · ‖+ ‖π(x) · ‖ : x ∈ A}, then π is said to be closed. It is well known
that π is closed if and only if D(π) =

⋂
x∈A

D(π(x)). The closure π̃ of π is defined

by

D(π̃) =
⋂

x∈A
D(π(x)) and π̃(x)ξ = π(x)ξ for x ∈ A, ξ ∈ D(π̃).

Then π̃ is the smallest closed extension of π. The weak commutant π(A)′w of π is
defined by

π(A)′w = {C ∈ B(Hπ) : Cπ(x)ξ = π(x∗)∗Cξ, ∀x ∈ A, ∀ξ ∈ D(π)},
where B(Hπ) is the set of all bounded linear operators on Hπ, and it is a weakly
closed ∗-invariant subspace of B(Hπ), but it is not necessarily an algebra. It is
known that π(A)′wD(π) ⊂ D(π) if and only if π(A)′w is a von Neumann algebra
and π(x) is affiliated with the von Neumann algebra (π(A)′w)′ for each x ∈ A. For
more details we refer to [16], [19], [26] and [29].



56 Subhash J. Bhatt, Atsushi Inoue and Hidekazu Ogi

Definition 2.1. A mapping p of a subspace D(p) of A into R+ = [0,∞)
is said to be an unbounded (semi)norm on A if it is a (semi)norm on D(p), and
p is said to be an unbounded m∗- (respectively C∗-) (semi)norm on A if D(p) is
a ∗-subalgebra of A and p is a submultiplicative ∗- (respectively C∗-) (semi)norm
on D(p).

By [31], if a seminorm p on a ∗-algebra A is a C∗-seminorm, that is, it
satisfies the C∗-property p(x∗x) = p(x)2, ∀x ∈ A, then it is a m∗-seminorm on A,
that is, p(x∗) = p(x) and p(xy) 6 p(x)p(y) for ∀x, y ∈ A.

Let p be an unbounded C∗-seminorm on A. We put

Np = {x ∈ D(p) : p(x) = 0} and Np = {x ∈ D(p) : ax ∈ D(p), ∀a ∈ A}.
Then Np is a ∗-ideal of D(p) and Np is a left ideal of A, and the quotient ∗-algebra
D(p)/Np is a normed ∗-algebra with the C∗-norm ‖x+Np‖p := p(x) (x ∈ D(p)).
We denote by Ap the C∗-algebra obtained by the completion of D(p)/Np, and
denote by Rep(Ap) the set of all faithful nondegenerate ∗-representations Πp of
the C∗-algebra Ap on Hilbert spaces HΠp

. It is well known that Rep(Ap) 6= ∅.
For each Πp ∈ Rep(Ap) we can define a bounded ∗-representation π0

p of D(p) on
the Hilbert space HΠp

by

π0
p(x) = Πp(x+Np), x ∈ D(p).

The natural question arises: Can we extend the bounded ∗-representation π0
p of

the ∗-algebra D(p) to a (generally unbounded) ∗-representation of the ∗-algebra
A? We show that this question has affirmative answer.

Proposition 2.2. Let p be an unbounded C∗-seminorm on A. For any
Πp ∈ Rep(Ap), there exists a ∗-representation πp of A on a Hilbert space Hπp

such that ‖πp(b)‖ 6 p(b) for each b ∈ D(p) and ‖πp(x)‖ = p(x) for each x ∈ Np.

Proof. Let Πp ∈ Rep(Ap). We put

D(πp) = linear span of {Πp(x+Np)ξ : x ∈ Np, ξ ∈ HΠp},

πp(a)
( ∑

k

Πp(xk +Np)ξk
)

=
∑

k

Πp(axk +Np)ξk (finite sums)

for a ∈ A, {xk} ⊂ Np and {ξk} ⊂ HΠp
. Since

(Πp(ax+Np)ξ|Πp(y +Np)η) = (ξ|Πp((ax+Np)∗(y +Np))η)

= (ξ|Πp(x∗a∗y +Np)η)

= (ξ|Πp(x∗ +Np)Πp(a∗y +Np)η)

= (Πp(x+Np)ξ|Πp(a∗y +Np)η)

for each a ∈ A, x, y ∈ Np and ξ, η ∈ HΠp
, it follows that πp(a) is a well-defined

linear operator on D(πp) for each a ∈ A, so that it is easily shown that πp is

a ∗-representation of A on the Hilbert space Hπp
:= [D(πp)] = D(πp)

‖ · ‖
(the

closure of D(πp) in HΠp) with domain D(πp). Take an arbitrary b ∈ D(p). By the
definition of πp we have πp(b) = π0

p(b)dD(πp), and hence

‖πp(b)‖ 6 ‖Πp(b+Np)‖ 6 ‖b+Np‖p = p(b).
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Suppose x ∈ Np. It is sufficient to show that ‖πp(x)‖ > p(x). If p(x) = 0, then it
is obvious. Suppose p(x) 6= 0. We put y = x/p(x) ∈ Np. For each ξ ∈ HΠp

with
‖ξ‖ 6 1, we have

‖Πp(y +Np)ξ‖ 6 ‖Πp(y +Np)‖ ‖ξ‖ = p(y)‖ξ‖ 6 1,

and so

‖πp(y)‖ = ‖πp(y∗)‖ > sup
{
‖πp(y∗)Πp(y +Np)ξ‖ : ξ ∈ HΠp

such that ‖ξ‖ 6 1
}

= sup
{
‖Πp(y∗y +Np)ξ‖ : ξ ∈ HΠp such that ‖ξ‖ 6 1

}
= ‖Πp(y∗y +Np)‖ = p(y∗y) = p(y)2 = 1.

Hence, we have ‖πp(x)‖ > p(x). This completes the proof.

We simply sketch the method of the construction of the ∗-representation πp:

Remark 2.3. Let p be an unbounded C∗-seminorm on A. As above, we can
construct a set {πp} of ∗-representations of A from any Πp ∈ Rep(Ap), but πp is
not necessarily nontrivial, that is, the case Hπp = {0} may arise (Example 7.1,
(2)). It is clear that Hπp

6= {0} if and only if Np 6⊂ Np. Hereafter we shall assume
that unbounded C∗-seminorms satisfy always this condition: Np 6⊂ Np.

Let p be an unbounded C∗-seminorm on A. We denote by Rep(A, p) the set
of all ∗-representations of A constructed as above by (A, p), that is,

Rep(A, p) = {πp : Πp ∈ Rep(Ap)}.

Definition 2.4. An unbounded m∗-seminorm q on A is said to be nonde-
generate if D(q)2 is total in D(q) with respect to the seminorm q. An unbounded
m∗-seminorm q on A is said to be finite if D(q) = Nq; and q is said to be uniformly
semifinite if there exists a net {uα} in Nq such that u∗α = uα and q(uα) 6 1 for each
α and lim

α
q(xuα − x) = 0 for each x ∈ D(q); and q is said to be semifinite if Nq is

dense in D(q) with respect to the seminorm q. An unbounded C∗-seminorm p on A
is said to be weakly semifinite if RepWB(A, p) := {πp ∈ Rep(A, p) : Hπp

= HΠp
} 6=

∅. An element πp of RepWB(A, p) is said to be a well-behaved ∗-representation of
A in Rep(A, p).
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Definition 2.5. A ∗-representation π of A is said to be strongly non-
degenerate if there exists a left ideal I of A contained in the bounded part
Aπ

[ := {x ∈ A : π(x) ∈ B(Hπ)} of π such that [π(I)Hπ] = Hπ.

Proposition 2.6. Let p be an unbounded C∗-seminorm on A and πp ∈
Rep(A, p). Then the following statements hold:

(1) [πp(Np)Hπp
] = Hπp

, and so πp is strongly nondegenerate.
(2) Suppose πp ∈ RepWB(A, p). Then:
(i) ‖πp(x)‖ = p(x), ∀x ∈ D(p);
(ii) πp(A)′w = πp(D(p))

′
and πp(A)′wD(πp) ⊂ D(πp).

(3) πp satisfies the condition (2) (i) if and only if there exists an element
πWB

p of RepWB(A, p) which is a restriction of πp.
(4) Suppose p is semifinite. Then πp ∈ RepWB(A, p) and N2

p is total in D(p)
with respect to p, and so p is nondegenerate.

(5) Suppose p is uniformly semifinite. Then:

Aπp

[ = Ap
[ := {a ∈ A : ∃ka > 0 such that p(ax) 6 kap(x), ∀x ∈ Np},

‖πp(b)‖ = sup{p(bx) : x ∈ Np and p(x) 6 1}, ∀b ∈ Ap
[

for each πp ∈ Rep(A, p).
(6) p is finite if and only if D(p) is a left ideal of A.

Proof. (1) Since the ‖ · ‖p-closure NpdNp
‖ · ‖p of {x + Np : x ∈ Np} in Ap

is a left ideal of the C∗-algebra Ap, it follows that there exists a left approximate

identity {Eα} in NpdNp
‖ · ‖p , so that lim

α
‖(x +Np)Eα − (x +Np)‖p = 0 for each

x ∈ Np. For any α, it follows since Eα ∈ NpdNp
‖ · ‖p that there exists a sequence

{e(n)
α } in Np such that lim

n→∞
‖(e(n)

α + Np) − Eα‖p = 0. Take an arbitrary η ∈
[Πp(Np +Np)HΠp

]	 [πp(Np)Πp(Np +Np)HΠp
]. Then we have

(Πp(x+Np)ξ|η) = lim
α

(Πp(x+Np)Πp(Eα)ξ|η)

= lim
α

lim
n→∞

(Πp(x+Np)Πp(e(n)
α +Np)ξ|η)

= lim
α

lim
n→∞

(πp(x)Πp(e(n)
α +Np)ξ|η) = 0

for each x ∈ Np and ξ ∈ HΠp , which implies that [πp(Np)Πp(Np + Np)HΠp ] =
[Πp(Np +Np)HΠp

] = Hπp
. Hence πp is strongly nondegenerate.

(2) Suppose πp ∈ RepWB(A, p). Since πp(b) = Πp(b+Np)dD(πp), ∀b ∈ D(p)

and HΠp
= D(πp)

‖ · ‖
, it follows that πp(b) = Πp(b+Np), ∀b ∈ D(p), which implies

the statement (i). The statement (ii) follows since

CΠp(x+Np)ξ = Πp(x+Np)Cξ ∈ D(πp(a)),

πp(a)CΠp(x+Np)ξ = πp(a)Πp(x+Np)Cξ = Πp(ax+Np)Cξ

= Cπp(a)Πp(x+Np)ξ

for each C ∈ πp(D(p))′, a ∈ A, x ∈ Np and ξ ∈ Hπp
.
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(3) Suppose πp satisfies condition (i) above. We put

ΠWB
p (b+Np) = πp(b), b ∈ D(p).

Since ‖ΠWB
p (b+Np)‖ = ‖πp(b)‖ = p(b) = ‖b+Np‖p for each b ∈ D(p), it follows

from (1) that ΠWB
p can be extended to a faithful nondegenerate ∗-representation

of the C∗-algebra Ap on the Hilbert space Hπp
and denote it by the same ΠWB

p .
We also denote by πWB

p the strongly nondegenerate ∗-representation of A induced
by ΠWB

p . Since

D(πWB
p ) = linear span of {ΠWB

p (x+Np)ξ : x ∈ Np, ξ ∈ Hπp
}

= linear span of {πp(x)ξ : x ∈ Np, ξ ∈ Hπp},

it follows from (1) thatHπWB
p

=Hπp
=HΠWB

p
, which means that πWB

p ∈RepWB(A, p).
The converse follows from (2) (i).

(4) Suppose p is semifinite. Since p is semifinite, it follows that {Πp(x +
Np) : x ∈ Np} is uniformly dense in the C∗-algebra Πp(Ap), which implies by
the nondegenerateness of Πp that HΠp

= Hπp
. Hence πp ∈ RepWB(A, p). By

(1) we have RepWB(A, p) = Rep(A, p). Since the C∗-algebra Ap has a bounded
approximate identity and Np is dense in D(p) with respect to p, it follows that N2

p

is total in D(p) with respect to p.
(5) It is clear that Aπp

[ ⊂ Ap
[ without the assumption of the uniform semi-

finiteness of p. Suppose p is uniformly semifinite. Then we show the converse

inclusion. Let {uα} be in Definition 2.4. Take an arbitrary a ∈ Ap
[ , {xk} ⊂ Np

and {ξk} ⊂ HΠp . Since

‖πp(a)Πp(uαxk +Np)ξk − πp(a)Πp(xk +Np)ξk‖ = ‖Πp(a(uαxk − xk) +Np)ξk‖
6 kap(uαxk − xk)‖ξk‖ = kap(x∗kuα − x∗k)‖ξk‖−→

α
0,

it follows that∥∥∥πp(a)
∑

k

Πp(xk +Np)ξk
∥∥∥ = lim

α

∥∥∥πp(a)
∑

k

Πp(uαxk +Np)ξk
∥∥∥

= lim
α

∥∥∥πp(auα)
∑

k

Πp(xk +Np)ξk
∥∥∥ 6 lim

α
‖πp(auα)‖

∥∥∥∑
k

Πp(xk +Np)ξk
∥∥∥

= lim
α
p(auα)

∥∥∥∑
k

Πp(xk +Np)ξk
∥∥∥ 6 ka

∥∥∥∑
k

Πp(xk +Np)ξk
∥∥∥,

which implies a ∈ Aπp

[ . Hence we have Ap
[ = Aπp

[ .
(6) This is trivial. This completes the proof.
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3. UNBOUNDED C∗-SEMINORMS DEFINED BY ∗-REPRESENTATIONS

In Section 2 we constructed a family Rep(A, p) (respectively RepWB(A, p)) of
strongly nondegenerate ∗-representations of A from an (respectively weakly semifi-
nite) unbounded C∗-seminorm p on A. Conversely we shall construct an un-
bounded C∗-seminorm rπ on A from a strongly nondegenerate ∗-representation π
of A and the natural representation πN

rπ
of A constructed from rπ, and investigate

the relation between π and πN
rπ

. Let π be a strongly nondegenerate ∗-representation
of A on a Hilbert space Hπ. We put

Aπ
[ = {x ∈ A : π(x) ∈ B(Hπ)} and π[(x) = π(x), x ∈ Aπ

[ .

Then Aπ
[ is a ∗-subalgebra of A with the identity 1l and π[ is a bounded ∗-

representation of Aπ
[ on Hπ. We denote by C∗(π) the C∗-algebra generated by

π[(Aπ
[ ). We now define an unbounded C∗-seminorm rπ on A as follows:

D(rπ) = Aπ
[ and rπ(x) = ‖π[(x)‖, x ∈ D(rπ).

Then rπ satisfies the condition Nrπ
6⊂ Nrπ

. In fact, this follows since I ⊂ Nrπ
,

where I is a left ideal of A contained in Aπ
[ such that [π(I)D(π)] = Hπ. Here we

put
Π(x+Nrπ

) = π[(x), x ∈ Aπ
[ .

Since ‖Π(x + Nrπ
)‖ = rπ(x) = ‖x + Nrπ

‖rπ
for each x ∈ Aπ

[ , it follows that Π
can be extended to a faithful ∗-representation ΠN

rπ
of Arπ

on the Hilbert space
Hπ. The ∗-representation πN

rπ
of A defined by ΠN

rπ
as above is called the natural

representation ofA induced by π. SinceHΠN
rπ

= Hπ, it follows thatHπN
rπ

is a closed
subspace of Hπ. We simply sketch the above method of the construction of πN

rπ
:

We have the following results for the relation between π and πN
rπ

:

Proposition 3.1. Let π be a ∗-representation of A. Suppose that π is
strongly nondegenerate, that is, there exists a left ideal I of A contained in Aπ

b such
that [π(I)D(π)] = Hπ. Then πN

rπ
∈ RepWB(A, rπ) and πN

rπ
⊂ π̃. Furthermore, if

π(I)D(π) is total in D(π) with respect to the graph topology tπ, then π̃N
rπ

= π̃.
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Proof. Since

(3.1)
D(πN

rπ
) = linear span of

{
ΠN

rπ
(x+Nrπ

)ξ : x ∈ Nrπ
, ξ ∈ Hπ

}
= linear span of {π(x)ξ : x ∈ Nrπ

, ξ ∈ Hπ},

it follows that

(π(a)∗η|ΠN
rπ

(x+Nrπ )ξ) = (π(a)∗η|π(x)ξ) = (π(x)∗π(a)∗η|ξ)
= (π(ax)∗η|ξ) = (η|π(ax)ξ) = (η|πN

rπ
(a)ΠN

rπ
(x+Nrπ

)ξ)

for each a ∈ A, η ∈ D(π(a)∗), x ∈ Nrπ
and ξ ∈ Hπ, which implies ΠN

rπ
(x+Nrπ

)ξ ∈
D(π(a)) and π(a)ΠN

rπ
(x +Nrπ )ξ = πN

rπ
(a)ΠN

rπ
(x +Nrπ )ξ. Hence, D(πN

rπ
) ⊂ D(π̃)

and π̃dD(πN
rπ

) = πN
rπ

.
Since π is strongly nondegenerate and Aπ

[ =D(rπ), it follows that [π(Nrπ
)Hπ]

= Hπ, which implies by (3.1) that HπN
rπ

=Hπ =HΠN
rπ

, so that πN
rπ
∈RepWB(A, rπ).

Suppose that π(I)D(π) is total in D(π)[tπ]. Then it follows from (3.1) that π̃N
rπ

=
π̃. This complete the proof.

By Proposition 2.6 and Proposition 3.1 we have the following diagram:

And we have the following

Corollary 3.2. The following statements are equivalent:
(i) There exists an unbounded C∗-seminorm p on A such that Np 6⊂ Np.
(ii) There exists a strongly nondegenerate ∗-representation of A.
(iii) There exists a well-behaved ∗-representation of A.

Next we investigate the relations between unbounded C∗-seminorms p and
rπp

and the ∗-representations πp and πN
rπp

. We first define an order relation among
unbounded seminorms as follows:

Definition 3.3. Let p and q be unbounded seminorms on A. We say that
p is an extension of q (or q is a restriction of p) if D(q) ⊂ D(p) and q(x) = p(x)
for each x ∈ D(q), and then denote by q ⊂ p.

We denote by C∗N(A) the set of all unbounded C∗-seminorms p on A such
that Np 6⊂ Np. Then C∗N(A) is a partially ordered set with the order ⊂. For any
p ∈ C∗N(A) we put

C∗N(p) = {q ∈ C∗N(A) : p ⊂ q}.
Then it follows from Zorn’s lemma that C∗N(p) has a maximal element. We show
that if p is weakly semifinite then rπp

is a maximal element of C∗N(p).
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Proposition 3.4. Suppose p is a weakly semifinite unbounded C∗-seminorm
on A and πp ∈ RepWB(A, p). Then rπp

is a maximal element of C∗N(p) and
rπp = rπ′p for each πp, π

′
p ∈ RepWB(A, p).

Proof. We show that rπp
is a maximal element of C∗N(p). Take an arbitrary

r ∈ C∗N(rπp
). By Proposition 2.6 we have p ⊂ rπp

⊂ r, and so it follows that the
linear map: x+Np ∈ D(p)/Np 7−→ x+Nr ∈ D(p)/Nr is a bijection and isometry,
so that Ap is regarded as a closed ∗-subalgebra of the C∗-algebra Ar. By the
stability of C∗-algebras ([11], Proposition 2.10.2) there exists a ∗-representation
Πr of Ar such that Πp ⊂ Πr. Then we can construct in the same way as the
proof of Proposition 2.6 the ∗-representation πr of A induced by Πr which is an
extention of πp, which implies that πp(a) is bounded and

(3.2) ‖πp(a)‖ 6 ‖πr(a)‖ 6 r(a), ∀a ∈ D(r).

Hence we have

(3.3) D(r) ⊂ D(rπp
).

On the other hand, since rπp
⊂ r, we have r = rπp

. We next show that rπp
= rπ′p

for each πp, π
′
p ∈ RepWB(A, p). Since p ⊂ r := rπ′p , it follows from (3.2) and (3.3)

that D(rπ′p) = D(r) ⊂ D(rπp
) and rπp

(x) = ‖πp(x)‖ 6 r(x) = rπ′p(x) for each
x ∈ D(r) = D(rπ′p) Similarly we have that D(rπp

) ⊂ D(rπ′p) and rπ′p(x) 6 rπp
(x)

for each x ∈ D(rπp
). Hence, rπp

= rπ′p . This completes the proof.

By Proposition 3.1 and Proposition 3.4 we have the following

Corollary 3.5. Suppose π is a strongly nondegenerate ∗-representation of
A. Then rπ is maximal.

For the relation of ∗-representations πp and πN
rπp

we have the following

Proposition 3.6. Suppose p is a weakly semifinite unbounded C∗-seminorm
on A and πp ∈ RepWB(A, p). Then πp ⊂ πN

rπp
and π̃N

rπp
= π̃p.

Proof. It follows from the definition of πN
rπp

that Hπp = HΠN
rπp

and since

Np ⊂ Nrπp
⊂ Aπp

[ and

Πp(x+Np)ξ = πp(x)ξ = ΠN
rπp

(x+Nrπp
)ξ

for each x ∈ Np and ξ ∈ Hπp
, we have D(πp) ⊂ D(πN

rπp
). Furthermore, since

πp(a)Πp(x+Np)ξ = πp(ax)ξ = πN
rπp

(a)ΠN
rπp

(x+Nrπp
)ξ = πN

rπp
(a)Π(x+Np)ξ

for each a ∈ A, x ∈ Np and ξ ∈ Hπp
, it follows that πp = πN

rπp
dD(πp). On the

other hand, we have D(πN
rπp

) ⊂ D(π̃p) by Proposition 3.1. Therefore it follows

that Hπp
= HπN

rπp
, πp ⊂ πN

rπp
and π̃p = π̃N

rπp
. This completes the proof.
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4. REGULAR UNBOUNDED C∗-SEMINORMS

In this section we define and characterize the notion of regular unbounded C∗-
seminorms on ∗-algebras. We first prepare an unbounded C∗-seminorm sup

α
pα

constructed by a family {pα} of unbounded C∗-seminorms on A and the notion
of direct sum of ∗-representations of A. Let {pα} be a family of unbounded C∗-
seminorms on A. We put

D(sup
α
pα) =

{
x ∈

⋂
α
D(pα) : sup

α
pα(x) <∞

}
,

(sup
α
pα)(x) = sup

α
pα(x), x ∈ D(sup

α
pα).

Then sup
α
pα is an unbounded C∗-seminorm on A, and it is an unbounded C∗-norm

if and only if pα(x) = 0, ∀α implies x = 0.

Definition 4.1. An unbounded C∗-(semi)norm p on A is said to be regular
if p ⊂ sup

α
pα, where {pα} is a family of C∗-seminorms on A.

Let {πα} be a family of ∗-representations of A. We put

D
( ⊕

α

πα

)
=

{
ξ = (ξα) ∈

⊕
α

Hπα : ξα ∈ D(πα), ∀α

and
∑
α

‖πα(a)ξα‖2 <∞, ∀a ∈ A
}
,( ⊕

α

πα

)
(a)(ξα) = (πα(a)ξα), a ∈ A, (ξα) ∈ D

( ⊕
α

πα

)
.

Then
⊕
α
πα is a ∗-representation of A on

⊕
α
Hπα

such that

x ∈ A
⊕
α

πα

[ iff πα(x) is bounded ∀α, and sup
α
‖πα(x)‖ <∞.

Definition 4.2. A ∗-representation π of A is said to be weakly bounded
if π ⊂

⊕
α
πα as the same Hilbert space, where {πα} is a family of bounded ∗-

representations of A.

Lemma 4.3. Let p be an unbounded C∗-seminorm on A. Suppose p ⊂ sup
α
pα

for a net {pα} of weakly semifinite unbounded C∗-seminorms on A, and further
Np is dense in D(pα) with respect to {pα}. Then p is weakly semifinite, and for
any πpα of RepWB(A, pα) ∀α, there exists an element πp of RepWB(A, p) such
that πp ⊂

⊕
α
πpα

.

Proof. We put

Πp(x+Np)(ξα) = (Πpα(x+Npα)ξα), x ∈ D(p), (ξα) ∈
⊕

α

Hπpα
.

Since
‖Πp(x+Np)‖ = sup

α
‖Πpα

(x+Npα
)‖ = sup

α
pα(x) = p(x)
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for each x ∈ D(p), it follows that Πp can be extended to a faithful ∗-representation
of Ap on

⊕
α
Hπpα

. We denote πp the ∗-representation of A induced by Πp. Then

we have
D(πp) = linear span of {Πp(x+Np)ξ : x ∈ Np, ξ ∈ Hπp

}
= linear span of

{
(πpα

(x)ξα) : x ∈ Np, ξ = (ξα) ∈
⊕
α
Hπpα

}
,

πp(a)(πpα(x)ξα) = (πpα(ax)ξα).

We show that p is weakly semifinite, that is, D(πp) is dense in
⊕
α
Hπpα

. Take an

arbitrary ξ = (ξα) ∈
⊕
α
Hπpα

	 D(πp). Take an arbitrary α. For any ηα ∈ Hπpα

we have

(4.1) (πpα
(x)ηα|ξα) = (δαβπpβ

(x)ηβ |ξ) = 0

for each x ∈ Np. Since Np is dense in D(pα) with respect to pα, it follows that
πpα

(Np)Hπpα
is total in πpα

(D(pα))Hπpα
, and further it follows from the weak

semifiniteness of pα that πpα(D(pα))Hπpα
is total in Hπpα

. Hence, πpα(Np)Hπpα

is total in Hπpα
, and so by (4.1) ξα = 0. Hence, ξ = 0. Thus, D(πp) is dense in⊕

α
Hπpα

. By the definition of πp we have πp ⊂
⊕
α
πpα

. This completes the proof.

By Lemma 4.3 we have the following

Proposition 4.4. Let p be an unbounded C∗-seminorm on A. Suppose p
is regular, that is, p ⊂ sup

α
pα for some net {pα} of C∗-seminorms on A, and

further Np is dense in A with respect to {pα}. Then there exists an element πp

of RepWB(A, p) which is weakly bounded. Conversely suppose πp ∈ RepWB(A, p)
and it is weakly bounded. Then p is regular.

In Section 7 we shall give several examples of regular unbounded C∗-(semi)
norms.

5. UNBOUNDED GELFAND-NAIMARK C∗-SEMINORMS

In this section we construct and characterize an unbounded Gelfand-Naimark C∗-
seminorm | · |p from an unbounded m∗-seminorm p on a ∗-algebra A. An un-
bounded m∗-seminorm p on A is said to be representable if there exists a non-zero
nondegenerate bounded ∗-representation π of D(p) such that ‖π(x)‖ 6 p(x) for
each x ∈ D(p). Every unbounded C∗-seminorm on A is representable, but an un-
bounded m∗-seminorm is not necessarily representable (see Section 37, Example
16 in [9]). Let p be a representable unbounded m∗-seminorm on A and Rep(p)
the set of all nondegenerate bounded ∗-representations π of D(p) on Hπ such that
‖π(x)‖ 6 kπp(x), ∀x ∈ D(p) for some constant kπ. Let π ∈ Rep(p). It is easily
shown that ‖π(x)‖ 6 p(x) for each x ∈ D(p), and so we can define an unbounded
C∗-seminorm | · |p on A by

D(| · |p) = D(p) and |x|p = sup
π∈Rep(p)

‖π(x)‖, x ∈ D(p)
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and call it the unbounded Gelfand-Naimark C∗-seminorm of the unbounded m∗-
seminorm p. To investigate the unbounded Gelfand-Naimark C∗-seminorm | · |p,
we prepare another order 6 on C∗N(p) as follows: r1 6 r2 iff D(r2) ⊂ D(r1) and
r1(x) 6 r2(x), ∀x ∈ D(r2).

Proposition 5.1. Let p be a representable unbounded m∗-seminorm on a
∗-algebra A. Then the following statements hold:

(i) | · |p is the largest element of (C∗N(p),6).
(ii) If p is semifinite, then | · |p is semifinite.
(iii) Suppose Np is dense in D(p) with respect to the set {rπ : π ∈ Rep(p)} of

seminorms rπ. Then | · |p is weakly semifinite and there exists a ∗-representation
πp of A such that ‖πp(x)‖ = |x|p for each x ∈ D(p).

(iv) Suppose p is an unbounded C∗-seminorm on A. Then | · |p = p.

Proof. (i) Let r be any unbounded C∗-seminorm on A such that r 6 p. For
any Πr ∈ Rep(Ar) we define a bounded ∗-representation π0

r of D(r) by

π0
r(x) = Πr(x+Nr), x ∈ D(r).

Then since D(p) ⊂ D(r), it follows that π0
rdD(p) is a bounded ∗-repesentation of

D(p) and ‖π0
r(x)‖ = r(x) 6 p(x) for each x ∈ D(p), which implies π0

rdD(p) ∈
Rep(p). Hence it follows that r(x) 6 |x|p for each x ∈ D(p).

(ii) This follows since D(| · |p) = D(p), N| · |p = Np and |x|p 6 p(x), ∀x ∈
D(p).

(iii) We put

Πp(x+N| · |p) =
( ⊕

π∈Rep(p)

π
)
(x), x ∈ D(p).

Then Πp can be extended to a faithful nondegenerate ∗-representation of the C∗-
algebra A| · |p on

⊕
π∈Rep(p)

Hπ and denote it by the same Πp. Here we denote by πp

the ∗-representation of A defined by Πp, that is,

D(πp) = linear span of {Πp(x+N| · |p)(ξπ) : x ∈ Np, ξπ ∈ Hπ}
= linear span of {(π(x)ξπ) : x ∈ Np, ξπ ∈ Hπ},

πp(a)(π(x)ξπ) = (π(ax)ξπ), a ∈ A, x ∈ Np, ξπ ∈ Hπ.

Since Np is dense in D(p) with respect to rπ (π ∈ Rep(p)) and any π is nondegen-
erate, it follows that D(πp) is dense in

⊕
π
Hπ, which implies that | · |p is weakly

semifinite. Hence, it follows from Proposition 2.6 that |x|p = ‖πp(x)‖ for each
x ∈ D(p).

(iv) Suppose p is an unbounded C∗-seminorm on A. Take an arbitrary
Πp ∈ Rep(Ap). We put

π0
p(x) = Πp(x+Np), x ∈ D(p).

Then it follows that π0
p ∈ Rep(p) and ‖π0

p(x)‖ = p(x) for each x ∈ D(p), which
implies | · |p = p. This completes the proof.
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We next characterize the unbounded Gelfand-Naimark C∗-seminorm | · |p
of a representable unbounded m∗-seminorm p extending some main results in [33]
about C∗-seminorms on ∗-algebras with identity to unbounded C∗-seminorms on
∗-algebras without identity. A positive linear functional f on A is said to be
representable if there exists a constant γ > 0 such that |f(x)|2 6 γf(x∗x) for all
x ∈ A.

Let Fp be the set of all p-continuous representable positive linear functionals
f on D(p) such that |f(x)|2 6 f(x∗x) for each x ∈ D(p). Then we have the
following

Proposition 5.2. Let p be a representable unbounded m∗-seminorms on A.
Then

D(p) = {x ∈ D(p) : sup
f∈Fp

f(x∗x) <∞},

|x|p = sup
f∈Fp

f(x∗x)1/2, x ∈ D(p).

Proof. Take an arbitrary f ∈ Fp . Since f is p-continuous, there exists a
constant Mf > 0 such that |f(x)| 6 Mfp(x), ∀x ∈ D(p), which implies

|f(x)|2 6 f(x∗x) 6 Mfp(x∗x) 6 Mfp(x)2

for each x ∈ D(p). Repeating this, we have

|f(x)| 6 M
1/n
f p(x), ∀x ∈ D(p), ∀n ∈ N.

Hence we have

(5.1) |f(x)| 6 p(x), ∀x ∈ D(p).

For any y ∈ D(p) with f(y∗y) = 1 we define a positive linear functional on D(p)
by

fy(x) = f(y∗xy), x ∈ D(p).

Then we have

|fy(x)|2 = |f(y∗xy)|2 6 f(y∗y)f(y∗x∗xy) = fy(x∗x)

and by (5.1)
|fy(x)| 6 p(y)2p(x)

for each x ∈ D(p). Hence we have

(5.2) fy ∈ Fp for each y ∈ D(p) with f(y∗y) = 1.

Here we put 
D(rFp

) = {x ∈ D(p) : sup
f∈Fp

f(x∗x) <∞}

rFp
(x) = sup

f∈Fp

f(x∗x)1/2, x ∈ D(rFp
).

By (5.1) we have

(5.3) D(rFp) = D(p) and rFp(x) 6 p(x), ∀x ∈ D(p).
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Let (πf , λf ,Hf ) be the GNS-construction for f . We show
D(p) = {x ∈ D(p) : sup

f∈Fp

‖πf (x)‖ <∞}

rFp(x) = sup
f∈Fp

‖πf (x)‖, x ∈ D(p).

In fact, take an arbitrary x ∈ D(p). By (5.2) we have, for any y ∈ D(p) with

f(y∗y) = 1,

‖πf (x)λf (y)‖2 = fy(x∗x) 6 rF (x)2

for each x ∈ D(p), which implies that πf (x) is bounded and ‖πf (x)‖ 6 rF (x) for
each x ∈ D(p). Hence we have

sup
f∈Fp

‖πf (x)‖ 6 rFp
(x), ∀x ∈ D(p).

Since |f(x)| 6 f(x∗x)1/2 = ‖λf (x)‖, x ∈ D(p), it follows from the Riesz theorem
that there exists an element ξf of Hf such that ‖ξf‖ 6 1 and f(x) = (λf (x)|ξf )
for all x ∈ D(p), which implies by the boundedness of πf (x) that λf (x) = πf (x)ξf
and

|f(x∗x)|1/2 = ‖πf (x)ξf‖ 6 ‖πf (x)‖, ∀x ∈ D(p).

Hence

rFp(x) 6 sup
f∈Fp

‖πf (x)‖, ∀x ∈ D(p).

Thus we have

rFp
(x) = sup

f∈Fp

‖πf (x)‖, x ∈ D(p),

which implies that rFp
is an unbounded C∗-seminorm on A such that D(rFp

) =
D(p) and rFp(x) 6 |x|p for each x ∈ D(p). On the other hands, take arbitrary
π ∈ Rep(p) and ξ ∈ Hπ such that ‖ξ‖ = 1. Then the positive linear functional fξ

on D(p) defined by fξ(x) = (π(x)ξ|ξ), x ∈ D(p) belongs to Fp, and so

‖π(x)‖ = sup
‖ξ‖=1

fξ(x∗x)1/2 6 rFp
(x), x ∈ D(p).

Hence, we have

|x|p 6 rFp(x), ∀x ∈ D(p).

Thus we have | · |p = rFp . This completes the proof.
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6. SPECTRAL ∗-REPRESENTATIONS AND SPECTRAL

UNBOUNDED C∗-SEMINORMS

In this section we define the notion of (hereditary) spectrality of unbounded C∗-
seminorms and further define the notion of stable unbounded C∗-seminorms and
investigate the relation of spectrality and stability of unbounded C∗-seminorms.

Let B be a ∗-subalgebra of a ∗-algebra A with identity 1l and the ∗-algebra
B1l obtained by adjoining the identity 1l to B when B does not have the identity.
We denote by Bqr the set of all quasi-regular elements x of B, that is, 1l − x is
invertible in B1l. We have the spectrum SpB(x) and the spectral radius rB(x) of
x ∈ B as follows:

SpB(x) = {λ ∈ C : 6 ∃(λ1l− x)−1 in B1l} and rB(x) = sup{|λ| : λ ∈ SpB(x)}.
By Theorem 3.1 of [21] we have the following

Lemma 6.1. Let p be an unbounded m∗-seminorm on A. Then the following
statements are equivalent:

(i) {x ∈ D(p) : p(x) < 1} ⊂ D(p)qr.
(ii) rD(p)(x) 6 p(x) for each x ∈ D(p).
(iii) rD(p)(x) = lim

n→∞
p(xn)1/n for each x ∈ D(p).

In particular, if p is an unbounded C∗-seminorm on A, then the conditions (i) ∼
(iii) are equivalent to

(iv) rD(p)(x) = p(x) for each x ∈ D(p) with x∗x = xx∗.

We remark that the equivalence of (i) and (ii) in Lemma 6.1 holds for a
general unbounded seminorm p.

Definition 6.2. An unbounded m∗- (or C∗-) seminorm p on a ∗-algebra
A is said to be spectral if it satisfies one of equivalent conditions (i) ∼ (iii) in
Lemma 6.1.

Here we need a new notion of hereditary spectral unbounded m∗- (or C∗-)
seminorms which plays an important rule in this section.

Definition 6.3. An unbounded m∗- (or C∗-) seminorm p on A is said to
be hereditary spectral if for any ∗-subalgebra B of A the restriction pdB of p to B
is spectral.

The hereditary spectrality of unbounded m∗- (or C∗-) seminorms implies
the spectrality, but the converse does not hold in general. For example, if A is a
C∗-algebra, there is a spectral m∗-seminorm on A which is not hereditary spectral
([23]). According to Palmer ([22] and [23]), a spectral algebra A is an algebra on
which there is defined a spectral seminorm with D(p) = A. A spectral algebra
need not be normable, however it is rich enough to admit a satisfactory spectral
theory like Banach algebras. A C∗-spectral (hereditary C∗-spectral) algebra which
is a ∗-algebra with a spectral (hereditary spectral) C∗-seminorm has been studied
in [8]. C∗-spectral (hereditary C∗-spectral) algebras appear to be potential enough
to recapture much of the algebraic theory of C∗-algebras. They also help to clarify
the notion of local algebras that arises in non-commutative geometry, in particular,
smooth structure in C∗-algebras ([10] and [11]). Here we define and characterize
unbounded C∗-spectral algebras and unbounded hereditary C∗-spectral algebras.
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Definition 6.4. An unbounded C∗-spectral algebra is a ∗-algebra admit-
ting a spectral unbounded C∗-seminorm. An unbounded hereditary C∗-spectral
algebra is a ∗-algebra A admitting a hereditary spectral unbounded C∗-seminorm
on A.

We define the notion of (hereditary) spectral ∗-representations and character-
ize unbounded (hereditary) C∗-spectral algebras by the existence of (hereditary)
spectral strongly nondegenerate ∗-representations.

Definition 6.5. Let π be a ∗-representation of A and x ∈ A. We define a
spectrum of the closed operator π(x) in C∗(π) as follows:

SpC∗(π)(π(x)) = {λ ∈ C : (λI − π(x))−1 does not exist in C∗(π)}.

If SpAπ
[
(x) := {λ ∈ C : (λ1l − x)−1 does not exist in Aπ

[ } ⊂ SpC∗(π)(π(x)) ∪
{0}, ∀x ∈ A, then π is said to be spectral. If for any ∗-subalgebra B of A the
restriction πdB of π to B is a spectral ∗-representation of B, then π is said to be
hereditary spectral.

Let π be a ∗-representation of A. It is easily shown that

(6.1) SpC∗(π)(π(x)) ∪ {0} ⊂ Sp
π(Aπ

[
)
(π(x)) ⊂ SpAπ

[
(x), ∀x ∈ A.

We first characterize the spectrality of bounded ∗-repesentation π[ of the ∗-al-
gebra Aπ

[ .

Lemma 6.6. Let π be a ∗-representation of A. Consider the following state-
ments:

(i) π is spectral;
(ii) π[ is spectral, that is, SpAπ

[
(x) ⊂ SpC∗(π)(π(x)) ∪ {0}, ∀x ∈ Aπ

[ ;
(iii) rπ is spectral;
(iv) SpAπ

[
(x) = Sp

π(Aπ
[
)
(π(x)), ∀x ∈ Aπ

[ and the normed ∗-algebra π(Aπ
[ )

with norm rπ is a Q-algebra, that is, π(Aπ
[ )

qr
is open;

(v) SpAπ
[
(x) = Sp

π(Aπ
[
)
(π(x)), ∀x ∈ A.

Then the implications (i) ⇒ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v) hold.

Proof. (i) ⇒ (ii) This is trivial. (ii) ⇒ (iii) Suppose π[ is spectral. Take
an arbitrary x ∈ Aπ

[ with rπ(x) < 1. Since ‖π(x)‖ < 1, π(x) is quasi-regular in
the C∗-algebra C∗(π), and so 1 6∈ Sp

C∗(π)
(π(x)). Since π[ is spectral, we have

1 6∈ Sp
Aπ

[

(x), and so x ∈ (Aπ
[ )qr. Therefore it follows from Lemma 6.1 that rπ is

spectral.
(iii) ⇒ (ii) Suppose rπ is spectral. Take arbitrary x ∈ Aπ

[ and λ 6= 0 ∈ C such

that (λI − π(x))−1 ∈ C∗(π). Since C∗(π) = π(Aπ
[ )
‖ · ‖

, there exists an element
y ∈ Aπ

[ such that rπ
(

x
λ + y − xy

λ

)
=

∥∥I − (
I − π

(
1
λx

))
(I − π(y))

∥∥ < 1 and
rπ

(
x
λ + y − yx

λ

)
=

∥∥I − (I − π(y))
(
I − π

(
1
λx

))∥∥ < 1.
Since rπ is spectral, it follows from Lemma 6.1 that x

λ + y − xy
λ = 1l−

(
1l−

1
λx

)
(1l − y), x

λ + y − yx
λ = 1l − (1l − y)

(
1l − 1

λx
)

are contained in (Aπ
[ )qr, and so
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1l− 1

λx
)
(1l−y) and (1l−y)

(
1l− 1

λx
)

are invertible in Aπ
[ . Hence, 1l− 1

λx is invertible
in Aπ

[ , and so λ 6∈ Sp
Aπ

[

(x).

(ii) ⇒ (iv) It follows from (6.1) and the assumption (ii) that

SpC∗(π)(π(x)) ∪ {0} = Sp
π(Aπ

[
)
(π(x)) = SpAπ

[
(x), ∀x ∈ Aπ

[ .

Further, it follows from Proposition 2 of [4] that

(6.2)
SpC∗(π)(π(x)) ∪ {0} = Sp

π(Aπ
[
)
(π(x)), ∀x ∈ Aπ

[

if and only if π(Aπ
[ ) is a Q-algebra.

Hence, the statement (iv) holds.
(iv) ⇒ (ii) This follows from (6.2) and the assumption (iv).
(ii) ⇒ (v) Take arbitrary x ∈ A and λ 6= 0 ∈ C such that (λI − π(x))−1 ∈

π(Aπ
[ ). Then there exists an element y of Aπ

[ such that
(
I − π(y))

(
I − π(x

λ

))
=(

I − π
(

x
λ

))
(I − π(y)) = I, and so π

(
x
λ + y − yx

λ

)
= π

(
x
λ + y − xy

λ

)
= 0. Hence,

1 6∈ Sp
π(Aπ

[
)

(
π
(

x
λ + y − yx

λ

))
∪ Sp

π(Aπ
[
)

(
π
(

x
λ + y − xy

λ

))
. Since Sp

π(Aπ
[
)
(π(a)) ⊂

SpC∗(π)(π(a)) for each a ∈ Aπ
[ , it follows from (ii) that 1 6∈ SpAπ

[

(
x
λ + y − yx

λ

)
and 1 6∈ SpAπ

[

(
x
λ + y − xy

λ

)
, and so there exist elements z1 and z2 of Aπ

[ such
that (1l − z1)(1l − y)

(
1l − x

λ

)
= 1l and

(
1l − x

λ

)
(1l − y)(1l − z2) = 1l. Hence we have

x
λ ∈ (Aπ

[ )qr and so λ 6∈ SpAπ
[
(x). This completes the proof.

Lemma 6.7. Let A be a ∗-representation of A. Then the following state-
ments are equivalent:

(i) π[ is hereditary spectral;
(ii) rπ is a hereditary spectral unbounded C∗-seminorm on A.

Proof. This is proved similarly to the proof of (ii) ⇔ (iii) in Lemma 6.6.

Theorem 6.8. The following statements are equivalent:
(i) There exists a strongly nondegenerate ∗-representation π of A such that

π[ is (hereditary) spectral.
(ii) There exists a maximal, weakly semifinite, (hereditary) spectral unbounded

C∗-seminorm on A.

Proof. (i) ⇒ (ii) Let π be a strongly nondegenerate ∗-representation of A
such that π[ is (hereditary) spectral. By Proposition 3.1 and Corollary 3.5, rπ is
a maximal, weakly semifinite unbounded C∗-seminorm on A. Further, it follows
from Lemmas 6.6 and 6.7 that rπ is (hereditary) spectral.

(ii) ⇒ (i) Let p be a maximal, weakly semifinite, (hereditary) spectral un-
bounded C∗-seminorm on A. Then there exists an element π of RepWB(A, p) such
that p = rπ. By Proposition 2.6 (1), π is strongly nondegenerate. Further, it
follows from Lemmas 6.6 and 6.7 that π is (hereditary) spectral. This completes
the proof.
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We next generalize the following property (stability) of C∗-algebras ([12],
Proposition 2.10.2) to general ∗-algebras, and characterize it by the hereditary
spectrality of unbounded C∗-seminorms.

Let A be a C∗-algebra and B any closed ∗-subalgebra of A. For any ∗-
representation π of B on a Hilbert space Hπ there exists a ∗-representation π̂ of A
on a Hilbert space Hπ̂ such that Hπ̂ ⊃ Hπ as a closed subspace and π(x) = π̂(x)dHπ

for each x ∈ B.
Definition 6.9. An unbounded m∗-(or C∗-)seminorms p is said to be stable

if for any ∗-subalgebra B of A and any ∗-representation π of B such that B∩D(p) ⊂
Bπ

[ and [π(B ∩ D(p))D(π)] = Hπ there exists a ∗-representation % of A such
that D(p) ⊂ A%

[ , [%(D(p))D(%)] = H%, H% contains Hπ as a closed subspace and
π(x) = %(x)dHπ for each x ∈ B ∩ D(p).

The following is one of main results of the paper.

Theorem 6.10. Let A be a ∗-algebra and p a semifinite unbounded C∗-
seminorm on A. Then the following statements are equivalent:

(i) p is hereditary spectral;
(ii) p is spectral and stable.

Proof. (i) ⇒ (ii) Let B be a ∗-subalgebra of A and let π be a ∗-representation
of B such that B ∩ D(p) ⊂ Bπ

[ and [π(B ∩ D(p))Hπ] = Hπ. Since p is hereditary
spectral, it follows that

lim
n→∞

‖π(x)
n
‖ 1

n = rC∗(π)(π(x)) 6 r
π(B∩D(p))

(π(x)) = rB∩D(p)(x) 6 p(x)

for each x ∈ B∩D(p), which implies that ‖π(h)‖ 6 p(h) for each h∗ = h ∈ B∩D(p).
Then, for any x ∈ B ∩ D(p) we have

‖π(x)‖2 = ‖π(x∗x)‖ 6 p(x∗x) = p(x)2,

and so

(6.3) ‖π(x)‖ 6 p(x) for each x ∈ B ∩ D(p).

By the semifiniteness of p we have RepWB(A, p) 6= φ. Let πp ∈ RepWB(A, p) and
put

%̃0(πp(x)) = π(x), x ∈ B ∩ D(p).

It follows from Proposition 2.6 and (6.3) that

(6.4) ‖%̃0(πp(x))‖ 6 p(x) = ‖πp(x)‖

for each x ∈ B ∩ D(p), and hence %̃0 can be extended to a ∗-representation of

the C∗-algebra πp(B ∩ D(p))
‖ · ‖

on Hπ and it is denoted by the same %̃0. By the
stability of C∗-algebras there exists a Hilbert space H%̃ containing Hπ as a closed

subspace and a ∗-representation %̃ of the C∗-algebra πp(D(p))
‖ · ‖

on H%̃ such that

%̃(A)dHπ = %̃0(A) for each A ∈ πp(B ∩ D(p))
‖ · ‖

. We here put{
D(%) = linear span of {%̃(πp(x))ξ : x ∈ Np, ξ ∈ H%̃},
%(a)%̃(πp(x))ξ = %̃(πp(ax))ξ for a ∈ A, x ∈ Np, ξ ∈ H%̃.
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Then it is easily shown that % is a ∗-representation of A on D(%) in H% := D(%).
Since p is semifinite, it follows that H% = [%̃(πp(D(p)))H%̃], so that

Hπ = [π(B ∩ D(p))Hπ] = [%̃0(πp(B ∩ D(p)))Hπ] = [%̃(πp(B ∩ D(p)))Hπ] ⊂ H%.

By the definition of % we have D(p) ⊂ A%
[ and %(x)dHπ = %̃(πp(x))dHπ =

%̃0(πp(x)) = π(x) for each x ∈ B ∩ D(p). Further, since p is semifinite, it fol-
lows from Proposition 2.6 (4) that [%(D(p))H%] = H%. Thus we have that p is
stable.

(ii) ⇒ (i) Let πp ∈ RepWB(A, p) and B be any ∗-subalgebra of A. We first
show that

(6.5) Sp
B∩D(p)

(b) ∩ R ⊂ Sp
πp(B∩D(p))

‖ · ‖
(πp(b)) ∪ {0}

for each b∗ = b ∈ B∩D(p). Let b∗ = b ∈ B∩D(p) and 0 6= λ ∈ Sp
B∩D(p)

(b)∩R. Let C
be the ∗-subalgebra of B∩D(p) generated by b. Then C

(
1
λb−1l

)
is a proper modular

∗-ideal of C with modular identity u := 1
λb. Hence there exists a maximal modular

∗-ideal M of C containing C
(

1
λb−1l

)
. Then the quotient algebra C/M is isomorphic

to C. In fact, since uk−u ∈ M for all k ∈ N, it follows that x+M =
∑
k

αkλ
ku+M

for any x =
∑
k

αkb
k ∈ C. Thus C/M = {αu + M : α ∈ C}, and τ : αu + M → α

gives a ∗-isomorphism of C/M onto C. Let ı : C → C/M, ı(x) = x + M. Let
π = τ ◦ ı; thus, π

(∑
k

αkb
k
)

=
∑
k

αkλ
k. Then π is a 1-dimensional ∗-representation

of C such that π(b) = λ. By the stability of p there exists a ∗-representation % of
A such that

(6.6) A%
[ ⊃ D(p), [%(D(p))H%] = H% and %(b)dC = π(b) = λ.

Since p is spectral and (6.6), we have

‖%(h)‖ = rC∗(%)(%(h)) 6 rD(p)(h) 6 p(h)

for each h∗ = h ∈ D(p), which implies

‖%(x)‖2 = ‖%(x∗x)‖ 6 p(x∗x) 6 p(x)2

for each x ∈ D(p). Hence it follows from Proposition 2.6 that

(6.7) ‖%(x)‖ 6 p(x) = ‖πp(x)‖

for each x ∈ D(p). Hence, πp(x) 7→ %(x) can be extended to a ∗-representation of

the C∗-algebra πp(B ∩ D(p))
‖ · ‖

, which implies by (6.6) that

λ = π(b) ∈ Sp
πp(B∩D(p))

‖ · ‖
(πp(b)).

We next show

(6.8) Sp
B∩D(p)

(x) ⊂ {λ ∈ C : |λ| < p(x)}, ∀x ∈ B ∩ D(p).
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Let x ∈ B ∩ D(p) and |λ| > p(x) = ‖πp(x)‖. Then (λI − πp(x))∗(λI − πp(x)) is

invertible in
(
πp(B ∩ D(p))

‖ · ‖)
I
, and so

|λ|2 6∈ Sp
πp(B∩D(p))

‖ · ‖
(πp(λx∗ + λx− x∗x)).

Hence it follows from (6.5) that |λ|2 6∈ Sp
B∩D(p)

(λx∗ + λx − x∗x), which implies
(λ1l − x)∗(λ1l − x) is invertible in (B ∩ D(p))1l. Similarly, (λ1l − x)(λ1l − x)∗ is
invertible in (B ∩ D(p))1l. Thus, we have λ 6∈ Sp

B∩D(p)
(x). It follows from (6.8)

that rB∩D(p)(x) 6 p(x) for each x ∈ B ∩ D(p), which means that p is hereditary
spectral. This completes the proof.

Remark 6.11. As seen in the proof of Theorem 6.10, the implication (ii)
⇒ (i) in Theorem 6.10 holds under the assumption of weak semifiniteness of the
unbounded C∗-seminorm p instead of that of the semifiniteness.

We consider the case of unbounded m∗-seminorms.

Proposition 6.12. Let p be a semifinite representable unbounded m∗-semi-
norm on a ∗-algebra A and | · |p the unbounded Gelfand-Naimark C∗-seminorm
of p. Then the following statements are equivalent:

(i) | · |p is hereditary spectral;
(ii) | · |p is spectral and stable;
(iii) p is spectral and stable.

If this is true, then p is hereditary spectral.

Proof. Since D(p) = D(| · |p) and | · |p 6 p on D(p), it follows that | · |p
is semifinite, and p is stable if and only if | · |p is stable, which implies by Theo-
rem 6.10 that the statements (i) and (ii) are equivalent, and the implication (ii)
⇒ (iii) holds. We show the implication (iii) ⇒ (ii). Since | · |p is a semifinite
unbounded C∗-seminorm on A, there exists a ∗-representation πp of A such that
‖πp(x)‖ = |x|p for each x ∈ D(| · |p) = D(p). It is shown similarly to the proof of
(ii) ⇒ (i) in Theorem 6.10 that | · |p is spectral. Here we note simply the proof.
Take arbitrary h∗ = h ∈ D(p) and λ 6= 0 ∈ SpD(p)(h) ∩ R. By the stablity of p
there exists a ∗-representation % of A such that A%

[ ⊃ D(p), [%(D(p))H%] = H%

and %(h)dC = λ. Further, it follows from the spectrality of p that ‖%(x)‖ 6 p(x)
for each x ∈ D(p), which implies that %dD(p) ∈ Rep(p). Hence we have

‖%(x)‖ 6 |x|p = ‖πp(x)‖, ∀x ∈ D(p),

which implies λ ∈ Sp
πp(D(p))

‖ · ‖(πp(h)). Hence we have

SpD(p)(h) ∩ R ⊂ Sp
πp(D(p))

‖ · ‖(πp(h)) ∪ {0},

which implies

SpD(p)(x) ⊂ {λ ∈ C : |λ| < |x|p}, ∀x ∈ D(p).

Hence it follows that rD(p)(x) 6 |x|p for each x ∈ D(p). Thus, | · |p is spectral.
This completes the proof.
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The implication (iii) ⇒ (i) in Proposition 6.13 holds under a weaker assump-
tion than that of semifiniteness of p as follows:

Corollary 6.13. Suppose p is a spectral, stable, representable unbounded
m∗-seminorm on A such that Np is dense in D(p) with respect to any rπ (π ∈
Rep(p)). Then | · |p is hereditary spectral and A is an unbounded hereditary C∗-
spectral algebra.

Proof. By Proposition 5.1, | · |p is weakly semifinite and there exists a ∗-
representation πp of A such that ‖πp(x)‖ = |x|p for each x ∈ D(p). Hence it is
shown in the same way as the proof (iii) ⇒ (ii) in Proposition 6.12 that | · |p is
spectral, which implies by Proposition 6.12 that | · |p is hereditary spectral.

7. EXAMPLES

We give some examples of unbounded C∗-seminorms on ∗-algebras.

Example 7.1. A locally convex ∗-algebra is a ∗-algebra which is also a
Hausdorff locally convex space such that the multiplication is separately contin-
uous and the involution is continuous. Let A be a locally convex ∗-algebra with
identity 1l. We denote by B the collection of closed, bounded absolutely convex
subsets B of A satisfying 1l ∈ B and B2 ⊂ B. For every B ∈ B, the linear span
A[B] of B forms a normed algebra equipped with the Minkowski functional ‖ · ‖B
of B. If A[B] is complete for every B ∈ B, then A is said to be pseudo-complete.
If A is sequentially complete, then it is pseudo-complete. An element x of A is
bounded if {(λx)n : n ∈ N} is bounded for some λ ∈ C, and denote by A0 the set
of all bounded elements of A. G.R. Allan ([2]) and P.G. Dixon ([13]) defined the
notion of GB∗-algebra which is a generalization of C∗-algebra. A pseudo-complete
locally convex ∗-algebra A is said to be a GB∗-algebra over B0 if B0 is the greatest
member in B∗ := {B ∈ B∗ : B∗ = B} and (1l + x∗x)−1 ∈ A[B0] for every x ∈ A.
Then A[B0] is a C∗-algebra with the C∗-norm ‖ · ‖B0 . We put

D(pGB∗) = A[B0] and pGB∗(x) = ‖x‖B0 , x ∈ A[B0].

Then pGB∗ is a spectral unbounded C∗-norm on A. Hence every GB∗-algebra is
an unbounded C∗-spectral algebra. We consider the following questions:

(1.) When does pGB∗ satisfy the condition NpGB∗ 6⊂ NpGB∗ (equivalently
NpGB∗ 6= {0})?

(2.) When is pGB∗ semifinite or weakly semifinite?
(3.) When does there exist a family {pλ}λ∈Λ of seminorms determining the

topology such that pGB∗ = sup
λ∈Λ

pλ?

Let M be a left ideal of a GB∗-algebra A contained in A[B0]. Suppose M
is dense in the C∗-algebra A[B0]. By standard C∗-algebra theory, M contains a
bounded approximate identity {uα} for the C∗-algebraA[B0], u∗α = uα, ‖uα‖B0 6 1
for all α. By the proof of Theorem 3.6 in [5] (see also [24], Proposition 3.11 for a
particular case), {uα} is a bounded approximate identity for A. Since M ⊂ NpGB∗ ,
it follows that pGB∗ is uniformly semifinite. Let π be any ∗-representation of A
having Aπ

[ = A[B0]. Let rπ(x) = ‖π(x)‖ for x ∈ D(rπ) = Aπ
[ . Since M ⊂ Nrπ

,
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it follows from Proposition 3.1 that π̃N
rπ

= π̃. Here we consider the cases of pro-
C∗-algebras and C∗-like locally convex ∗-algebras which are important in GB∗-
algebras.

(1) A complete locally convex ∗-algebra A[τ ] is said to be a pro-C∗-algebra
([24]) if the topology τ is determined by a direct family {pλ}λ∈Λ of C∗-seminorms.
Then A is a GB∗-algebra over B0 = U(sup

λ∈Λ
pλ) := {x ∈ A : sup

λ∈Λ
pλ(x) 6 1} with

pGB∗ = sup
λ∈Λ

pλ

(a) Let X be a locally compact non-compact Hausdorff-space and A = C(X)
is a locally convex ∗-algebra of all complex-valued continuous functions on X with
the compact open topology. The compact open topology is defined by a family
{pM : M is a compact subset of X} : pM (f) = sup

x∈M
|f(x)|, f ∈ C(X). Then A is

a pro-C∗-algebra and A[B0] equals the C∗-algebra (C[(X), ‖ · ‖∞) of all bounded
continuous functions on X. Since Cc(X) := {f ∈ C[(X) : suppf is compact} ⊂
NpGB∗ , it follows that NpGB∗ is dense in D(pGB∗) with respect to the compact open
topology, but pGB∗ is not semifinite in general. For example, when X = R, pGB∗

is maximal and weakly semifinite, but not semifinite.
(b) Let X be a σ-finite measure space and A = L∞loc(X) is a locally convex

∗-algebra of all measurable functions which are essentially bounded on every set of
finite measure equipped with the topology defined by the family of C∗-seminorms
{‖ · ‖A : ‖f‖A = ess sup

x∈A
|f(x)|, where A ⊂ X is any set of finite measure}. Then

A is a pro-C∗-algebra and a GB∗-algebra having A[B0] = L∞(X) and pGB∗(f) =
‖f‖∞ := sup

A
‖f‖A, f ∈ L∞(X). Since

L∞c (X) := {f ∈ L∞loc(X) : supp f is contained in some set

of finite measure} ⊂ NpGB∗ ,

it follows that NpGB∗ is dense in D(pGB∗) with respect to the locally convex topol-
ogy and pGB∗ is maximal and weakly semifinite.

(c) Let B be a C∗-algebra without identity. Let KB be the Pedersen ideal of
B, M(B) be the C∗-algebra of all multipliers of B, and A = Γ(KB) be the ∗-algebra
of all multipliers of KB ([15] and [25]). Let p be any C∗-seminorm on B. Then p
can be regarded as an unbounded C∗-seminorm on A with D(p) = B. Since KB
is a ∗-ideal of A and it is dense in B, it follows that KB ⊂ Np and p is uniformly
semifinite. In fact, A is a pro-C∗-algebra with appropriate topology.

(2) A complete locally convex ∗-algebra A[τ ] is said to be C∗-like if there
exists a C∗-like family {pλ}λ∈Λ of seminorms determining the topology τ such that
D

(
sup
λ∈Λ

pλ

)
:=

{
x ∈ A : sup

λ∈Λ
pλ(x) <∞

}
is τ -dense in A. Here we say that {pλ}λ∈Λ

is C∗-like if for any λ ∈ Λ there exists λ′ ∈ Λ such that pλ(xy) 6 pλ′(x)pλ′(y),
pλ(x∗) = pλ(x) and pλ(x)2 6 pλ′(x∗x) for each x, y ∈ A. It follows from ([18],
Theorem 2.1) that A is a GB∗-algebra over B0 = U(sup

λ∈Λ
pλ) with pGB∗ = sup

λ∈Λ
pλ.

Let A = Lω[0, 1] :=
⋂

16p<∞
Lp[0, 1] be the Arens GB∗-algebra equipped with the

topology defined by the family of Lp-norms ([3]). Then A is a C∗-like locally
convex ∗-algebra with the C∗-like family {‖ · ‖p : 1 6 p <∞} of seminorms, and
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A[B0] = L∞[0, 1] and pGB∗ = sup
16p<∞

‖ · ‖p. But, Lω[0, 1] is not a pro-C∗-algebra

and NpGB∗ = {0}. Here is a non-commutative analogue of this ([17]). Let M0 be
a von Neumann algebra with a faithful normal tracial state ϕ. Let Lp(M0, ϕ)(1 6
p 6 ∞) be the Segal Lp-space ([30]). Then Lp(M0, ϕ) is a Banach space of closed
operators in H affiliated with M0 with Lp-norm ‖X‖p := ϕ(|X|p)1/p. For 1 6 r 6
p, L∞(M0, ϕ) = M0 ⊂ Lp(M0, ϕ) ⊂ Lr(M0, ϕ) ⊂ L1(M0, ϕ). By using non-
commutative Hölder’s inequality it follows that Lω(M0, ϕ) :=

⋂
16p<∞

Lp(M0, ϕ) is

a ∗-algebra with identity and with strong operators : X + Y , λX,XY and operator
adjoint as the involution. Let τω be the topology on Lω(M0, ϕ) defined by the
C∗-like family Γ = {‖ · ‖p : 1 6 p < ∞}. Then Lω(M0, ϕ) is a C∗-like locally
convex ∗-algebra with pGB∗(X) = sup

n∈N
‖X‖n = ‖X‖∞ (operator-norm).

Example 7.2. We consider Köthe sequence spaces and convolution algebras.
(1) Let ω denote the set of all sequences of complex numbers. Let P be a set

of positive sequences a = {an} in ω satisfying
(i) ∀{an}, {bn} ∈ P, ∃{cn} ∈ P; an 6 cn, bn 6 cn, n ∈ N;
(ii) an > 0, ∀n ∈ N for ∀{an} ∈ P;
(iii) an+1 6 an, ∀n ∈ N for ∀{an} ∈ P;
(iv) ∀{an} ∈ P, ∃{dn} ∈ P; an 6 d2

n, ∀n ∈ N.
Let 1 6 q <∞. The Köthe sequence space `q(P) is defined as

`q(P) =
{
x = {xn} ∈ ω : pq

a(x) :=
(∑

n

|xn|qaq
n

)1/q

= ‖xa‖q <∞, ∀a ∈ P
}
.

`q(P) is a complete locally convex ∗-algebra (pointwise operations, complex con-
jugation) with respect to the topology τ q

P defined by seminorms {pq
a : a ∈ P} ([6]).

It is clear that P ⊂ `∞ and `q(P) contains `q as a dense ∗-subalgebra. Further, it
follows from (iv) that for any a ∈ P, pq

a(xy) 6 pq
d(x)p

q
d(y) and pq

a(x∗) = pq
a(x) for

each x, y ∈ `q(P), which implies that sup
a∈P

pq
a is a spectral unbounded m∗-norm on

`q(P). Let q = ∞. Then

`∞(P) :=
{
x = {xn} ∈ ω : p∞a (x) = ‖xa‖∞ <∞, ∀a ∈ P

}
is a C∗-like locally convex ∗-algebra with the C∗-like direct family {p∞a : a ∈ P}
of seminorms. Hence sup

a∈P
p∞a is a spectral unbounded C∗-norm on `∞(P).

Further, suppose
(v) ‖a‖∞ 6 1 for ∀a ∈ P.
Then since D(sup

a∈P
pq

a) ⊃ `q and

N sup
a∈P

pq
a
⊃ F := {x = {xn} ∈ ω : xn = 0 except for finite many n},

it follows that sup
a∈P

pq
a is semifinite. Similarly, sup

a∈P
p∞a is semifinite. Here is an

important special case. Let

s = {x =
{
xn} ∈ ω : {nkxn} ∈ `∞, ∀k ∈ N

}
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be the ∗-algebra consisting of all rapidly decreasing sequences. Then

P :=
{
{|xn|} : {xn} ∈ s, sup

n
|xn| 6 1 and |xn+1| 6 |xn|, ∀n ∈ N

}
satisfies the condition (i)-(v). Then we have

`1(P) = {x = {xn} ∈ ω : {xnyn} ∈ `1, ∀y = {yn} ∈ P}
= s′ (the set of all tempered sequences)

= {x ∈ ω : sup
n
|xn|n−m <∞ for some m ∈ N},

D(sup
y∈P

p1
y) = {x ∈ s′ : sup

y∈P
‖xy‖1 <∞},

(sup
y∈P

p1
y)(x) = sup

y∈P
‖xy‖1, x ∈ D(sup

y∈P
p1

y)

and sup
y∈P

p1
y is a semifinite spectral unbounded m∗-norm on s′.

We can define the following unbounded m∗-norms pq and pq
∞ on `q(P) by

D(pq) = `q(P) ∩ `q = `q and pq(x) = ‖x‖q, x ∈ D(pq);
D(pq

∞) = `q(P) ∩ `∞ and pq
∞(x) = ‖x‖∞, x ∈ D(pq

∞).

Since (`q, ‖ · ‖q) is a Banach ∗-algebra and Npq contains a dense subspace F in `q,
it follows that pq is a semifinite spectral unbounded m∗-norm on `q(P), and pq

∞
is the unbounded Gelfand-Naimark C∗-norm defined by the unbounded m∗-norm
pq, and it is semifinite.

(2) The above (1) can be used to model certain convolution algebra as illus-
trated below. Let 4 = {z ∈ C : |z| < 1},H(4) be the nuclear Fréchet space of all
functions holomorphic on4. H(4) is a ∗-algebra with involution f∗(z) = f(z) and
Hadamard product (f ∗ g)(x) = 1

2πi

∫
f(z)g(xz−1)z−1 dz, |x| < r < 1. The func-

tion e(z) = (1− z)−1 is the identity of H(4). The algebra H(4) is ∗-isomorphic
to `1(P) with P = {{rn}∞n=0 : 0 < r < 1} via the isomorphism ψ : H(4) → `1(P),

ψ(f) =
{

f(n)(0)
n!

}∞
n=0

. It follows that aq(f) = sup
0<r<1

[∑
n

∣∣∣ f(n)(0)
n! rn

∣∣∣q] 1
q

(1 6 q 6 ∞)

defines a semifinite unbounded norm on H(4). Let T = {z ∈ C : |z| = 1}
be the unit circle. The Fréchet space C∞(T ) of C∞-functions on T with the

topology τ defined by the seminorms pn(f) =
n∑

k=0

1
k! sup

t∈T
|f (k)(t)| is a convolu-

tion ∗-algebra with involuiton f∗(z) = f(z). C∞(T ) is isomorphic to the se-
quence algebra s(Z) :=

{
x = {xn}∞−∞ : {|n|kxn}∞−∞ ∈ `∞, ∀k ∈ N

}
. The

dual of C∞(T ) is the commutative convolution algebra D(T ) of all distributions
on T , the identity being the Dirac delta δ and the involution being u → u∗,
< u∗, f >= 〈u, f∗〉 (f ∈ C∞(T )). Let u → û, û(n) = 〈u, exp(−int)〉 (n ∈ Z)
be the Fourier-Schwarz transform that map D(T )-∗-isomorphically onto the ∗-
algebra s′(Z) =

{
a = {an}∞−∞ : an = O(|n|m) for some m depending on a

}
having

pointwise operations and complex conjugation as the involution. Under this map,
the ∗-subalgebra PM(T ) (pseudo measures on T ) of D(T ) is mapped onto `∞(Z).
By (1) we can define a semifinite spectral unbounded m∗-norm on D(T ) and a
semifinite spectral unbounded C∗-norm on PM(T ). In fact, D(T ) is a sequentially
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complete GB∗-algebra with sequentially jointly continuous multiplication and hav-
ing bounded part A[B0] = PM(T ). For the unbounded C∗-norm pGB∗ , we have
D(pGB∗) = PM(T ) and pGB∗(x) = sup

n∈Z
|x̂(n)| = ‖x̂‖∞. Further, by (12.6.2, p.74)

in [15] C∞(T ) is an ideal of D(T ) and so C∞(T ) ⊂ NpGB∗ .

Example 7.3. We consider unbounded C∗-norms on O∗-algebras. We put

D(pb) = Mb := {X ∈M : X is bounded }

and pb(X) = ‖X‖, X ∈ D(pb). Then pb is an unbounded C∗-norm on M.
(1) Let {Mλ}λ∈Λ be a family of bounded ∗-algebras Mλ on Hilbert spaces

Hλ with identity operator and
∏

λ∈Λ

Mλ be the product of {Mλ}λ∈Λ. We put

D
( ∏

λ∈Λ

Mλ

)
=

{
(ξλ) ∈

⊕
λ∈Λ

Hλ :
∑
λ∈Λ

‖Xλξλ‖2 <∞, ∀(Xλ) ∈
∏
λ∈Λ

Mλ

}
,

(Xλ)(ξλ) = (Xλξλ), (Xλ) ∈
∏
λ∈Λ

Mλ, (ξλ) ∈ D
( ∏

λ∈Λ

Mλ

)
.

Then
∏

λ∈Λ

Mλ is an O∗-algebra on D(
∏

λ∈Λ

Mλ) in
⊕
λ∈Λ

Hλ. A ∗-subalgebra of such

an O∗-algebra is said to be weakly bounded. Let M be a weakly bounded O∗-
algebra, that is, a ∗-subalgebra of the O∗-algebra

∏
λ∈Λ

Mλ. Then

D(p[) =
{
(Xλ) ∈M : sup

λ
‖Xλ‖ <∞

}
,

p[((Xλ)) = sup
λ
‖Xλ‖, (Xλ) ∈ D(p[).

Suppose that M contains the family {Eλ}λ∈Λ of the projection Eλ of
⊕
λ∈Λ

Hλ onto

Hλ, in particular, M =
∏

λ∈Λ

Mλ. Then p[ is a maximal, regular and semifinite

unbounded C∗-norm on M. Schmüdgen ([28]) has given necessary and sufficient
conditions under which a closed O∗-algebra is weakly bounded.

(2) Let M be an O∗-algebra on D in H. Suppose M ⊃ {ξn ⊗ ξn : n ∈ N},
where {ξn} is an orthonormal basis in H contained in D. Then p[ is a maximal
and weakly semifinite unbounded C∗-norm on M.

(3) Let M0 be the O∗-algebra on the Schwartz space S(R) generated by
the momentum operator P and the position operator Q. Then D(p[) = CI and
Np[

= {0}. Let M be an O∗-algebra on S(R) generated by M0 and {fn⊗fn : n =
0, 1, . . .}, where {fn} is an orthonormal basis in L2(R) consisting of the normalized
Hermite functions. Then it follows that Np[

equals the ∗-algebra generated by
{A(fn⊗fn) : A ∈M0, n = 0, 1, . . .}, so that p[ is a maximal and weakly semifinite
unbounded C∗-norm on M.

We intend to study unbounded m∗-(or C∗-)seminorms on locally convex ∗-
algebras. In particular, it seems important to define and study the notions of
topologically (hereditary) C∗-spectral algebras, topologically (hereditary) spectral
∗-representations and topological stability in case of locally convex ∗-algebras.
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