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THE earliest notion which could be described as the starting point of set-
topology is Cantor’s concept of the derived set D(X) of a set X of real
numbers, defined as the set of points of X which are accumulation points
thereof. This was generalised by Frechét into the abstract topological
notion of the derived set D(X) of a set X, defined as the set of all limit-
elements of X. In the present-day treatments of set-topology, a - greater
prominence is generally given to the closure function X =X + D(X),
introduced postulationally by Kuratowski. The connection between the
closure and the derivate of a set X may be described by saying that in the
topology defined by the closure-function, both the closure X and the derived
set D(X) appear as local functions of X ; mnamely X is the set of points at
which X is not locally null, while (assuming that the topology is T,;) D(X)
is the set of points at which X is not locally finite. The idea of localisation
of properties thus suggested has been treated in a general manner by
Kuratowski in his Topologie, with a systematic calculus; a notable achieve-
ment of the calculus is the elegant proof that it gives of the theorem that
the points at which a set of the second category is locally of the second category
constitute a closed domain. (The corresponding theorem for metric spaces
was originally stated and proved by Banach.)

In this paper, I review the localisation theory and study the properties
of what I have called compact and super-compact ideals (or hereditary
additive properties), as well as certain extensions P,, P, Py of an ideal P.

I. Let R be a topological T,-space, B the boolean algebra of all its
subsets. A property P of subsets of R is hereditary if Y < X and X<P
imply YeP; it is additive, if XeP and YeP imply X + YeP. Given any
property P of subsets of R, it is convenient to denote also by P the
family of all subsets possessing the property P. If P is a hereditary additive
property, it is clear that the family P is a u-ideal of Bg; conversely corres-
ponding to any u-ideal P of By we have a hereditary additive property P, viz.,
the property of belonging to the ideal P. In particularif P is the zero ideal,
i.e., the ideal containing the null set only, the corresponding hereditary
additive property is the property of being null; if P is the ideal 1, i.e., the
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whole of By, the corresponding property is the universal property of being a
subset of R; and so on.

We say that a set X has the property P locally at a point x, if there
exists a neighbourhood U, of x, such that U,-XeP. The set of points at
which X does not have the property P locally is denoted by P (X). Thus
xeP (X) means that for every neighbourhood U, of x, U,-X does not have
the property P, or briefly is not a P. If P is a hereditary property it will be
sufficient to restrict ourselves to open neighbourhoods; for if U,-XeP,

(Int. U,)-X < U,-X is also a P, and since Int. U, is also neighbourhood,
(Int. U,)-XeP implies X is locally P at x.

We shall consider only hereditary additive properties P; we shall call
P (X) the local function of the corresponding ideal P.

II. General Properties of the local function P (X).*

@EX<Y,PX) <P

For if p is not in P(Y), it has an open neighbourhood Gy such that
GP'YEP.

Then G4, X < G,Y isalsoa P. Hence p is not in P(X). Thus
P <{PX)} or P(X) <P (V).

(b) TP < Q (i.e., if the ideal P is contained in the ideal Q), P (X) > Q (X)

For if X is locally P at x, it must also be locally Q at x (since every P
is also a2 Q). Hence (P (X)} < {(QX)} or P(X) > Q(X).

(¢) P (X) is a'closed set contained in X.

For X is the local function O (X) of the zero ideal. Since the ideal P
contains the zero ideal, it follows from (b) that P(X) <X. To shew that

P (X) is closed, any point pe {P (X)} has an open neighbourhood G, such
that G, XeP. It is clear that X is locally P at every point of G, Thus

G, <{P XY, or {P(X)} is open. Hence P(X) is closed.
d) PP (X) <P X).
For by (¢) PP (X) < PX) =P (X).
(@ P(X +Y) =P(X) +P ().

From (a) it follows that P(X +Y)> P(X) +P(Y). To prove the
reverse inclusion, let p belong neither to P (X) nor to P(Y). Therefore it
has open neighbourhoods Uj, V,, so that U, XeP, V,-YeP. As P is here-

*All these properties with the exception of (5) and{f) will be found in Kuratowski’s Topologie,
pp- 29, 30,
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ditary and additive U,V,(X +Y) ¢P. Since UyV, is an open neighbour-
hood of p, it follows that p does not belong to P (X + Y). Hence {P (X)} -
P} <{PX+Y)YorPX+Y)<P(X)+P(Y). Hence the result.

(f) If Py is the intersection of the ideals P,, P,, P; (X) = P; (X) + P, (X).

For by () P;(X) > P, (X) +P,(X). To prove the reverse inclusion,
we observe that if X is locally P; as well as locally P, at x, there must exist
open neighbourhoods U,, V, of x, so that U,-XeP,, V.- XeP,. Hence
U,V,X is a P, and also a P,; that is, U,V XeP; or X is locally P, at x.

Hence if X is not locally P; at x, it is either not locally P, or not locally P2
there; ie, P3(X) <P;(X) 4+ P;(X). This proves that Py (X) =P, (X)
+ P, (X).

(&) PX){P(V)} =P XY){P(Y)} <P(XY).
This follows since P (X) = P (XY) + P (XY") and P (XY) < P (Y) by (a).
(h) If G is open G-P (X) = G-P(GX) <P (GX).

For if peG-P (X), and H any open neighbourhood of p, HG is also
a neighbourhood, and therefore HGX is not a P. Hence peP (GX).
Thus G-P (X) <P (GX) <P (X) by (a).

Hence GP (X)) < G-P(GX) < GP (X), which proves (A).
- The additive property of P has been used in proving (e), (g) only.

Hence the remaining properties are all valid if P is hereditary without
being additive.

III. The fundamental series of ideals and their local functions.—It was
already noticed that the closure function X is the local function of the zero
ideal O. This is the lowest of a series of ideals, which we may call numerical
ideals, and denote by I,; where for any ordinal » > 0, we denote by I, the
ideal of all sets whose potency is less than §N,. I, (which we may write
simply I) is thus the ideal of finite sets, I, the ideal of sets which are either
finite or enumerable and so on. O and I (= I;) are the basic ideals we have
to consider; the local function O (X) is X, while the local function I (X)
is the derived set of X, defined as the set of all accumulation points of X.t
From II(c) I(X) is a closed set contained in X, and X =X + I(X).
A set X is said to be: -

t The point x is said to be an accumulation point of the set X, if every neighbourhood of x
contains a point of X other than x. If the space is Ty, the accumulation points of X are identical

with the points at which X is not locally finite.
AA A
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(1) discrete if I(X) =0;

(2) isolated if X-1(X) =03

(3) dense-in-itself if X <1 (X);

(4) scattered, if it contains no dense-in-itself subset;
(5) closed, if X =X, or equivalently I(X) < X.

The discrete sets form an ideal > I, which we call d; it is easy to shew that
1ts local function d (X) is equal to I (X) (for proof, see IV). At this stage
it is necessary to make the additional hypothesis that space is dense-in-itself;
in other words that I(1) = 1. It follows then that every open set as well as

evey dense set is dense in itself. For if G is any open set, its complement
" F is closed, and 1 =1(1) =1I(G) +I(F) =G +F. Since I(F) <F, it
follows that I (G) > G or G is dense in itself. Again, if X is a dense set,
X=1 or X4+I(X) =1, whence I X) +II(X) =1 (1) =1. By II({d)
II(X) <I(X). Hencel(X)=1>X; sothat Xisdenseinitself. Itfollowsfrom
this that scattered sets are non-dense. For if X is scattered, and X contains
an open set G, then G= GX < GX [II (A)], so that GX is dense in G. But
it was shewn that G is dense-in-itself ; hence in the relative topology in which
G is taken as space, GX being dense must be dense-in-itself. This is a
contradiction, as X being scattered cannot have a dense-in-itself subset GX.
Hence X is non-dense. It follows from this that the scattered sets form an
ideal (which we may call s) containing the ideal 4 of discrete sets. For it is
clear in the first place that any subset of a scattered set must be scattered.
To prove that the union X; + X, of two scattered sets X,, X, is scattered,
suppose that D is a dense-in-itself subset of X; + X,. Then DX,;, DX,
are scattered sets, as subsets of X;, X,. Taking D as the dense-in-itself
space, DX, as scattered set, must be non-dense relatively to D; hence its
relative complement, which is a subset of DX,, must be dense in D, and
therefore dense-in-itself. This contradicts the assumption that X, is
scattered. This proves that the union of two scattered sets is scattered.

We proceed now to evaluate the local function s (X) of the ideal s of scattered
sefts.

 Given any family of dense-in-themselves sets X, it is easy to .see that
their union ZX must be dense-in-itself; for ZX > each X; hence I (ZX) >
each I(X)> X. Hence 1(ZX)> ZX, or ZX is dense-in-itself. If now
"X is dn arbitrary set, the union K (X) of all dense-in-themselves subsets of
X must therefore be dense-in-itself; K (X) is thus the maximal dense-in-
itself subset of X, or the dense-in-itself kernel of X. X-{K (X))}’ must
“therefore be a scattered set, since it can have no dense-in-itself subset. We
can now see that the local function s(X) of the ideal s of scattered sets is equal




The Localisation Theory in Set-Topology 55

to the closure K (X) of the dense-in-itself kernel K (X)of X. Forif x be a
point of K (X), and.G any neighbourhood of x, G.K(X)=+0, and is a
relatively open subset of the dense-in-itself set K (X). Hence G-K (X)
18 dense-in-itself and therefore G-X > G-K (X) is not scattered for any
neighbourhood G of x. Hence X is not locally scattered at any point of
K (X). On the other hand if x is any point not in K (X), it has a neighbour-
hood G disjoint with K (X), and G-X is scattered, since it is a subset of the
scattered set X-{K (X)}. Thus X is locally scattered at every point not in
K'(X). This proves that s (X) =K (X). It follows from this, that if
X-s(X) =0, X must be scattered. For,

0=XsX) =X-KX> X-K(X =K(X).
“Hence K (X) =0, and therefore X must be scattered.

The next ideal in the series is the ideal N of non-dense sets (which, as
every scattered set is non-dense, contains the ideal s of scattered sets). A
non-dense set is defined to be one whose closure is a boundary set, (or, alter-
natively, whose exterior is dense). It is obvious from the definition, that
a subset of a non-dense set is non-dense. To shew that the non-dense sets
form an ideal, we have to shew in addition that the union of two non-dense
sets is non-dense. Let N;, N, be two non-dense sets, and let N; 4+ N,
contain if possible a non-null open set G. Then

G =GN; + GN,.

Now GN, is a non-dense set, which is also non-dense relative to G; hence
its relative complement, which is a subset of GNz, would be dense in G, so that
its closure would contain the open set G. This contradicts the non-
density of N,. Thus the existence of the ideal N of non-dense sets is estab-
lished. We may shew that the local function N{X) of this ideal is equal to
Trt. X. To prove this, suppose that X is locally non-dense at x; then there
is a neighbourhood G of x, such that GX, and therefore GX is non-dense.
Hence GX < GX must also be non-dense; hence G must be disjoint with
Int. X, and therefore with Int. X. Thus x does not belong to Int. X. Con-
versely if x does not belong to Int. X, it has a neighbourhood G disjoint
with Int. X, so that GX = G. (Boundary X) is non-dense, and therefore
GX <*GX is non-dense. This establishes the form stated for the local
'functlon N (X).

Lastly, defining a set of the first cateaory as the union of an enumerable
family of non-dense sets, it follows at once that the sets of the first category
constitute an ideal N, which contains N, and is its s-extension. We shall
see presently that N, is an example of the supercompact ideal; hence its
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local function N, (X) has the property N, {N, (X)} =N, (X) (see V below).
We can use this to shew that N_(X) is a closed. domain. For, since
N, > N> 0, it follows (II (b)) that:

N,(X) <NX) =Int. X <X.
Now N, (X) is closed (II (c)); substituting N, (X) for X in this, we have
N, N, (X) <Tnt. N, (X) < N, (X).

Since N,N, (X) =N, (X), it follows that N, (X) =1Int. N, (X) is a closed
domain. We may set down for reference, the six fundamental ideals and
their local functions; viz.,, 0 <I <d <s <N <N,.

0 I d s N No
The zero-ideal The ideal of Theideal of Theideal of The ideal of The ideal of
comprising the finite sets discrete sets scattered sets non-densesets  sets of the 1st
null-set only IX) =derived dX)=1I1X) sX)=KX) NX)=TInt. X category
0X)=X setof X K (X)==dense- Ng (X)= closed
in-itself domain < N (XD
kernel of X

IV. Compact ideals.—If P is any ideal and X eP, it is clear that P (X) =0;
but the converse ¢ P (X) = 0 implies XeP ’ is not generally true. If P (X) =
implies X P, we shall cell P a compact ideal.

Among the six fundamental ideals listed above, it is easy to see that all
are compact with the exception of 1, the ideal of finite sets. It is also easy
to see that I will be compact if and only if the given topological space is
compact, in which case the ideal d will coincide with I. In fact d could be
described as the minimal compact extension of I. A similar extension can
be carried out for a general non-compact ideal P as follows. Suppose Q
is any compact ideal containing P; then Q (X) =0 should imply XeQ.
But as Q> P, Q(X) <P (X) (II (b)). Hence P (X) =0 implies Q (X) =0.
Hence Q should contain all sets X such that P(X) =0. But the sets X
such that P (X) = O themselves constitute an ideal (by II (@) and (e)), which
we may call P;,. 'We shall shew that P, is compact, so that it is the minimal
compact extension of P. We may prove this by shewing that the local
function P, (X) is equal to P (X). Suppose that X is locally P, at x; then
there is a neighbourhood G of x, such that GXeP, that is, such that
P (GX) = 0. 1t follows that x is not in P (GX), and therefore GX is locally
P at x; hence there is a neighbourhood G’ of x, so that GGXeP. As G'G
is itself a meighbourhood of x, this shews that X is locally P at x. Hence
P XY <{PX)}, or P,(X)> P(X). But P,> P, so that by II (b)
P;(X) <P (X). Hence P;(X) =P (X). Hence P;(X) =0 is equivalent to
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P (X) =0 which implies by definition that XeP,. Thus P, is compact and
is the minimal compact extension of P. -

To explain the significance of this result, we observe that an ideal P
determines not only a local function P (X) which is the analogue of the
derived set, but also a closure function X + P (X); that X + P (X) satisfies
all Kuratowski’s postulates for the closure function follows from II (d) and
(¢). Thus each ideal P determines, through the closure function X + P (X),
a topology on the space which we may call the P-topology; since X + P (X)
< X, the P-topology is weaker than the original topology, so that open
(or closed) sets continue to be open (or closed) in the P-topology. Also
the P-topology is T;, and would be Hausdorff if the original topology is
Hausdorff. The ideal P, is now seen to consist of the family of discrete sets
of the P-topology. Thus the extension of P to P, is fully parallel to the
extension of the ideal of finite sets to the ideal of discrete sets.

V. Supercompact ideals.—We call an ideal P supercompact, if XP (X) =0
implies XeP. This is a stronger implication than ‘P (X) =0 implies
XeP?; for if XP(X) =0 implies XeP, then, since P (X) =0 implies
XP (X) =0, it would follow that P (X) =0 implies XeP. Thus a super-
compact ideal is necessarily compact, but the converse is not true. For
example, the ideal 4 of discrete sets is compact but not obviously supercom-
pact. The zero ideal is compact and supercompact. The ideal s of
scattered sets is supercompact, since it was shewn in III that Xs (X) =0
implies that X is scattered. The ideal N of non-dense sets is supercompact,
since N (X) =Tnt. X =0 implies Int. X =0 or X is non-dense. It will
be shewn presently that N, is supercompact. The ideal 1 consisting of all
sets of space, is compact and supercompact since its local function 1 (X)
is identically zero.

Any one of the following is a necessary and sufficient condition for the
ideal P to be supercompact:

(1) XP(X) =0 implies P (X) =0;
(2) X is locally P at every one of its points implies X eP;
(3) For every set X, X-{P (X)} P,
(4) If X admits a relatively open covering by P-sets, XeP.

(1) and (2) only paraphrase the definition. To prove (3), we observe that
if P is supercompact and Y = X-{P (X)}', then

Y-P(Y) =X-{PX)} -PX-PX)} <X{PX} PX) =0.
Hence Y =X-{P (X)}'eP. Conversely if for all X, X-{P(X)} P, then
Y-P(Y) =0 implies Y =Y {P(Y) + [P(V)]'} =Y {P (Y)Y <P. Hence P is
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" supercompact. Lastly to prove (4), we have only to observe that X admits

a relatively open covering by P-sets, if and only if it is locally P at every one
of its points.

We have also the important result that if P be supercompact
PP(X) = P(X). For if P be supercompact, it follows from (3) that
P (X{P (X)}’) =0. By Il (g), P(X)-[PP (X)} <P {X-(P (X))} =0. Hence
P(X) < PP (X). But by II (d) PP (X) << P(X). Hence the result.

Following a theorem of Banach, we will now shew that,

Any numerical extension of the ideal N is supercompact.

The proof is substantially the same for the general numerical extension, as
for the o-extension. Let N, be any numerical extension of N (i.e., the sets
of N, are unions of N; non-dense sets; k being any ordinal > 0). LetS
be any set admitting a covering by relatively open subsets X, belonging to
N,. We suppose the sets (X,) to be well-ordered, so that the suffix « runs
through the range 1 <€ o <<y. Suppose now we have a well-ordered system
G, of non-null disjoint open sets such that (1) SG,eN, for all a, and (2) the
system S, is saturated. We can now write

S =2SGg + (S — ZGyp).

The theorem is proved if we shew that (1) S Gae Ny and (2) S — 2 G,eN.
To prove (1) write
SGy =2 Ng* 1 <B< ; Ng* eN.
B
This is possible since SG,eN; Write now
ZNg* =Ng; 2 8G, =§N5*(1 < B < 2p;

where €2, is the initial ordinal of the class N;. Now any Ngeis relatively
open in Npg, since, the G,’s being mutually disjoint, Ng% = G,-Ng. Thus
each N admits a covering by relatively open non-dense subsets, and is there-
fore non-dense (since the ideal N is supercompact). Therefore 2'SG, =
ZNg is a set of N To prove (2), we have to use the assumed saturation of
the system G,. Denote by F the closed set (2G,)’. If F has an interior H,
then since the system G, is saturated, SH does not belong to N;; in parti-
cular, S-H == 0, so that H intersects an X, say X,-HX, being a subset of X,
belongs to N;. We can find an open set G << H such that SG = HX;;
namely take G as the part of H contained in Ext. SX,/ =SX,”. Since X,
is relatively open in S, Ext.SX, -S =X,. Hence SG = HX,. We have
therefore arrived at the contradiction that there exists a non-null open set
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G, disjoint with all the G,’s, so that S-G belongs to N,. Thus the closed
set F can have no interior, and must therefore be non-dense. Hence,
S — 2G,, as a subset of F must also be non-dense.

VI. The supercompact ideal P,—We have constructed the minimal
compact extension P, (corresponding to the ideal of P-discrete sets) of an
arbitrary ideal P. We will now follow the analogy further, and construct
a supercompact extension P, of P, corresponding to the ideal of P-scattered
sets. It is essential for this extension to assume that space is P-dense-in-
itself, that is, that P (1) = 1.

A set X is P-dense-in-itself if X <P (X). It is clear that the union of
any family of P-dense-in-themselves sets must be P-dense-in-itself. Hence
if X be any set, the union K, (X) of all P-dense-in-themselves subsets of X,

is the maximal P-dense-in-itself subset of X, and may be called the P-kernel
of X.

Any open set of the P-topology (and therefore also, any open set) i
P-dense-in-itself. For if G is open in the P~t0pology, its complement F is
closed, so that P(F) <F. Hence

G+F=1=P(1) =P(G) 4+ P(F).
Since P (F) <F, it follows that P (G) > G, or G is P-dense-in-itself.
Again any dense set of the P-topology is P-dense-in-itself.

For if X is dense in the P-topology, X +P (X) =1; hence P (X) +
PP(X) =P (1)=1. But by II(d), PP (X) <P (X). Hence P(X) =1> X,
so that X is P-dense-in-itself.

A set may be said to be P-scattered if it contains no P-dense-in-itself
subset. It follows in particular, that if we remove from a set X, its P-kernel
K, (X), what remains must be P-scattered. Any P-scattered set is P-non-
dense. For let X be P-scattered, and let its P-closure X + P (X) contain
a P-open set G. Then G = G. Pclosure of X < P-closure of GX.
Hence GX is dense in G (in the P-topology). Consider the relative P-
topology in which G is taken as space; the condition that space is dense-
in-itself is satisfied in this topology, since as a P-open set is P-dense-in-itself.
GX being dense in this space must be P-dense-in-itself. This contradicts
the assumption that X, as scattered set contains no P-dense-in-itself subset.
Hence the theorem.

It is clear that any subset of a P-scattered set is P-scattered. Also the
union X, + X, of two P-scattered sets must be P-scattered. For if it contains
a P-dense-in-itself subset D, then DX, must be non-dense in the relative
P-topology of D, hence its relative complement, which is a subset of DX,,
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must .be dense in D, and therefore P-dense-in-itself, contradicting the assump-

tion that X, is P-scattered. Thus the P-scattered sets form an ideal P, which
contains P,.

We can now shew that the local function P(X) of the ideal P,, is equal to
K, (X), where K, (X) is the P-kernel of X. For if x is a point belonging to
the kernel K(X), and G is any open neighbourhood of x, GX > G- K4(X) == 0.
Now G is open and therefore open in the P-topology also. Considering
K, (X) as the dense-in-itself of its relative P-topology, G-K4(X) as relatively
open subset of K4(X) is P-dense-in-itself. Thus GX is not P-scattered; or
X is not locally P-scattered at x. On the other hand if x is not in K(X),
it has an open neighbourhood G disjoint with K,(X); then GX is a subset

of the P-scattered set X-{K,X)¥, and therefore P-scattered. Thus X is
locally P-scattered at x. This proves that P(X) = K,(X).

We can see finally that P, is supercompact, so that it is a super-compact
extension of P or P,. For if XP,(X) =0, then

K, (X) = XK;X) <X KyX) =X-P,(X) =0;
hence X is P-scattered and belongs to P,, since its P-kernel is null.

VII. The supercompact ideal Py.—The non-dense sets of the P-topology,
form an ideal P, which contains the ideal P, of the P-scattered sets. This
does not require a special proof; for, so long as we are handling only a single
topology, e.g., the P-topology, general theorems like ‘ Non-dense sets con-
stitute an ideal’ will continue to be true. It is only in the matter of the
local functions that we have to exercise care, since there is a mix-up

of two topologies (the original topology of the space enters through the
neighbourhoods used in the definition of the local function).:

We next proceed to shew that the local function P(X) of Py is equal to

closure. Int,-closure, (X) =Tnt, (X + P (X)):

(where ‘Int,” means that the Interior function is to be interpreted in the
sense of the P-topology). To prove this, let X be locally P-non-dense at x;
then there is an open neighbourhood G of x, so that GX is P-non-dense,
and therefore also closure, (GX) is P-non-dense. Now G is an open set of

the original topology, and therefore an open set of the P-topology, hence
we can use the formula GX < GX; hence

G -closure, (X) < closure, (GX),

and is therefore P-non-dense. Hence G must be disjoint with Int, closure, (X);
since G is an open set of the original topology, it follows that x does not

belong to closure Int, closurey(X) = Int,(X + P (X)). Conversely, if x
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does not belong to Int., (X + P (X)), it follows that it has an open neighbour-
hood G disjoint with Int, (X +P(X)). Hence GX <G (X +P (X))
= (. Boundary, (X + P (X)). Since the boundary of a closed set is non-
dense, it follows that the last term, and hence GX is P-non-dense. Hence
X 1s locally P-non-dense at x. This establishes the form stated for the
local function Py (X).

Finally, we can shew that the ideal Py is supercompact, and therefore a
supercompact extension of the supercompact ideal P,. For, if X-Py(X) =0,
X-Int.,-{closure, X) <X - Py(X) is also null. Since X < closure, (X), and
since X is disjoint with Int.,-{closure, (X)}, it follows that X < Boundary,
{closure, X}. Since the boundary of a closed set is non-dense, it follows
that X is P-non-dense, and therefore belongs to Py. Thus Py is super-
compact.

VIII. The ideal Py,.—The sets of the first category in the P-topology
form the o-extension of the ideal Py. We would not however be able to
say that this extension is supercompact; for an examination of the proof
of the supercompactness of numerical extensions of N will shew that the
non-dense character enters essentially in the proof. For a similar reason,
we cannot assert the supercompactness of a numerical extension of any
supercompact ideal.



