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I~ this note an attempt is made to work out two ideas. Poristic conditions
which express the apolarity of a quadric locus and a quadric envelope are
well known in Projective Geometry. The general form of such poristic
conditions for two apolar bhilinear forms in digredient variables is investi-
gated here. Secondly, certain rules of a geometrically convenient character
are obtained for the calculation of the apolar invariant, and are illustrated
from the properties of the Ricei Tensor in Riemannian space.

§ 1. We begin by considering the hilinear form a,-" x' U;, where
according to the tensor convention, summation over the values from 1 to
n of any repeated index is implied. The variables x and U are supposed
to be contragredient, so that we can take (x', 22, - -+, 2”) as the homo-
geneous coordinates of a point x, and (Uy, Up,- -+, U,) as the homogeneous
coordinates of a prime U in a projective space S, of #n-1 dimensions.

Consider now a point y and a prime V in S, and think of them
together as a point-prime whose homogeneous coordinates are the #2 linearly
independent quantities 57 = y*V;, The point-prime yV) may be identified
with the factorisable bilinear form b/ »” U;. From the linear independence
of the coordinates of a point-prime, it follows that any form can be
expressed as the sum of factorisable forms or point-primes of the type
(yV); the apolar invariant 4 of the form is then equal to the sum of the
inner products (*V,) of each point-prime which occurs. Hence:

TreorEM 1. In whatever way the form a/ is expressed as the sum of
portnt-primes, the sum of the inner products of the point-primes is constant and
equal to the apolar invariant af of the form.

We may now deduce the poristic condition for the vanishing of the
apolar invariant. A point-prime (yV) may be called incident, if its apolar
‘invariant vanishes, or if the point y is incident with the prime V. Suppos-
ing the rank of a,-i to be #, it is known from the theory of rank that if
Y, Y@ - Yu) be n assigned lineary independent points, we can choose % -
primes V), so that the form 4/ is the sum of the » point-primes (ynViy).
By considering the collineation determined by the form a,-" it is easy to
shew that we can choose the points y in an infinite number of ways, so that
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(n—1) of the point-primes (yyVin) are incident. If now the apolar
invariant a7 of the form vanishes, it follows from Theorem I that the
remaining point-prime (yV) must also be incident. Hence .

; B . . . ]

TrrorEM II. 4 form af with vawishing apolar wnvariant (or ‘spur )
can be expressed im an mﬁmte number of ways as the sum of n incident
point-primes.

Let
= 21 (%1 Vi) Yo Ve = 0 fort =1,2,---,4,
t =

be one such expression for a?. If zy be the intersection qf the (n-1) primes
V other than Vi, it is 1mmed1ate1y evident that a7 7/, = p V' for
t=1,2, ---,n. Henceif Uisany prime passing through vy, a/ /() U; = 0.
A point zy) and a prime U which satisfy this relation may be conveniently
described as imcident with the form a/'. If now S, represent the simplex
whose vertices are the points y,S,, the dual simplex constituted by the
prime faces of S}, Sy the simplex of the primes V, and S; the dual® simplex
constituted by the vertices of S,, we see that the corresponding elements of

Si1, 33 are incident, while all pairs of non-corresponding elements of S;, S, are
incident with a/. Hence:

TurorEM III. The poristic condition for the vamishing of the apolar
invariant of the form a/ is the existence of a point simplex S, and a prime
simplex So, whose corresponding elements are mutually incident, such that the
non—corvesponding elements of the dual simplexes Sy, Sy are incident with a;.

By considering the collineation x" = a; % associated with the form, we may
express this poristic condition in an alternative way, as the existence of a

simplex whose vertices are carried into points on the opposite face by the
associated collineation.

§ 2. Consider next the two bilinear forms ajj ¥ yf, i U; V;, where
we suppose that (¥, U) belong to a space S,,, while (¥,V) belong to a second
space S’,. To obtain a geometrical interpretation of their apolar invariant

a; b7, take # linearly independent primes Uy (¢ = 1,2,--,7) in S, and let

the coordinates &, of the point of intersection &y of the n—1 primes other
than Uy be so normalised that :

poi € =1;t=12 .. n .. B .. (D)
Further take # points 5y in S',, given by:
Tey = 7 Uy
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Let the primes V) of the simplex constituted by the points % be so
normalised that :

L= Voun'y = V0wV .. . - (2)
Now the form a;; can be expressed as a linear combination of the #2 prime-
pairs Uy Vi,); but for p== g this prime-pair is incident with 47 and
therefore contributes nothing to the apolar invariant. Hence if

a;; = 240 (Ugyi Vigy),
P, q

a;; b7 = Iy, b7 Uy, Vigy = Zdsp by (2)
» .
But ;‘-7 @i En iy = Zhy = ay; b7,

Thus the apoiar invariant is the sum of the values of the form a,; #° 7 for the
# pairs of points £, », the coordinates of ¢ being normalised by (1).

§3. To obtain a poristic condition for the apolarity of a;;, 57, we observe
that if they are apolar, a;; can be expressed in an infinite number of ways as
the sum of # products of prime-pairs UpViy incident with 37, It follows
that cz,~,—§i(t) = pVy;, if £y are the vertices of the simplex constituted by the
U’s.  Hence it 5, are the vertices of the simplex constituted by the Vs,

aij @iy = 0 for p== g.
Hence :

TurorEM IV.  The poristic condition for the apolarity of the Jorms a;;,
b 1s the existence of two simplexes in the respective spaces, whose correspond-
ing prime-pairs are incident with b'/, and whose non-corvesponding vertex-pairs
are incident with a;.

§ 4. We now examine the various special cases of Theorem IV which
arise :—

~Suppose first that §7, is the dual space of S,,, so that the points of §,, are
the primes of S,. Then Theorem IV gives a poristic condition for the
apolarity of two forms a/, b/in S,. If we suppose further that b/ is the
identical Kronecker bilinear form 8,~i ¥U; = U, + 22Uy + ...+ x"U,,, the
poristic condition reduces to the result of Theorem III.

Suppose next that S, is identical with S,, and consider the case when
the forms a;;, b7 are symmetric or skew-symmetric. Since a symmetric form
is identically apolar to a skew-symmetric one, we need only consider the
cases in which both forms are symmetric or both skew-symmetric. For
the symmetric case, a;; and 5" represent respectively a quadric locus and
quadric envelope; when the forms are apolar, an instance of the poristic
simplexes of Theorem IV is furnished by the self-polar simplexes of 57 which
are inscribed in a4;;. These are not, however, the general type of poristic
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simplex-pairs.. The general pair of poristic simplexes of Theorem IV will

now consist of a pair of mutually polar simplexes of a; whose corresponding
primes are conjugate in regard to 47

For the skew-symmetric case @; will represent a linear line-complex,
and b7 a linear Sy.-complex. For n odd these complexes are necessarily
singular. We may accordingly suppose # to be even, and the complexes
nou-singular. If the complexes are apolar, it is known that we can
choose in an infinite number of ways a set of g— lines I,y - - - - l,, which

2
belong to the complex a;; and form a conjugate set w.r.t. the complex &7,
If a, b, are two points on /, (v = 1, 2,---), the two simplexes (a,b,asb5-- -),
(Dyaybsaz- - -) are instances of the poristic simplex-pairs of Theorem IV.
These are specialised. The general pair of poristic simplexes of Theorem IV
consists of a pair of simplexes 3;, S» (which must necessarily be each inscribed
and circumscribed to the other), the joins of whose non-corresponding

vertlces belong to the complex g, and the intersections of whose correspond-
ing faces belong to the complex 47,

§ 5. We may examine the interpretation of the apolar invariant in § 2
for the special case in which ', is identical with S, and the forms are
symmetric or skew-symmetric. For either case it is clear that the apolar
invariant can be exhibited as X a;; #* (,_‘) /sy where x’s and y’s are vertices of
two mutually polar simplexes of &7 whose coordinates are normalised as
in §2. Suppose both the forms are symmetric, and identify the two
simplexes into a self-polar simplex () of b7. Tt is clear that the normali-
sation of §2 implies that by 'y ¥y =1;¢=1, 2,---, n, where b;; is the
minor of 47 in | 57 | divided by the determinant. Hence:

THEOREM V. The value of the apolar invariant of two symmetric bilinear
forms a;;, b is equal to the sum of the values of a;; for the vertices of any self-polar

simplex of b, provided the coordinates of the.vertices are normalised w.r.t. the
reciprocal tensor of b

By similar reasoning we obtain the corresponding property for the skew-
symmetric case, namely :

TrareorEM VI. If 1 s even, the value of the apolar invariant of the non-
nj2

singulay skeav -symmetric forms a;;, b7 i is the sum % a; 17, where 1y are a set
=1

of mutually conjugate lines of the complex b, with coordinates normalised w.r.3.
the reciprocal tensor of b7,

§ 6. We shall now apply Theorem V to the interpretation of the Ricci
Tensor in a Riemannjan space of # dimensions, with the. coordinates
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%1, %3, -+, %, and the metrical ground-form g, d#’ d#¥. The Riemann-
Christoffel Tensor Rz is symmetric w.r.t. the two pairs (i), (&), and
skew-symmetric w.r.t. each of the pairs (¢7) and (kl) ; the Gaussian curvature
at x1,%, -+, %, of the planar direction defined by two vectors dx, 8¢ has
the value: _
Rij g d 82 d® 82/
(28 — gurge)dx’ v dx* 3y’

Here the denominator represents the square of the area of the planar
element (dx, 8x). The geometrical interpretation of the more general form
Rz 4% 847 d's* 8'%’ has been given by Peré.* _

The Ricci Tensor Ry is defined by Rj =g Riu. We can regard
Rz dx/ 8x* for any particular dx, Sx as the apolar invariant of Ry 2’5 dxl
8x* 8'x' and g% and therefore interpret its value by Theorem V. ‘Thus
Riz ¥ X is equal to the sum of the products of (area)? and Gaussian
curvature of the # planar vectors obtained by joining A to a set of » mutually
orthogonal unit vectors Ay;). Hence:

TueEorEM VIL. If the unit vector X at (x1,- - -, X,,) makes angles ¢, with
the unit orthogonal wvectors Xyy (h=17, 2..., 1), and if K, is the Gaussian
curvature of the divection (A\y)

n
Ry X & =:h2 K sin? ¢,.
=1

It follows that the right side has the same value for all sets of orthogonal
vectors Ay). If we identify one of the vectors A with A, we get Ricci's
original interpretation,t namely : :
Rit Aoy A = Ko + Ks + «--- + K,
For the interpretation of the more general form Ry ¥ p¥, we would have to
use Peré’s formula (foc. cit.).
§ 7. The scalar curvature R at (%, %3, - - -, %,,) is defined by :
| R = Rj gﬂ, ;
That is, R is the apolar invariant of Ricci tensor and the metrical tensor.
Hence by a second application of Theorem V, we have :

TreOREM VIII. If Ay, py (h=1,2, -, n) be two mutually orthogonal
sets of wvectors, dp = angle Ay way, Kipp = Gaussian curvature of the planar
element defined by Au) and pg), Z Ky sin? ¢y is independent of the choice of

h,k

the vectors and equal to the scalar curvature R.

* Levi-Civita, .4bsolute Differential Calculus, p. 193.
t Bisenhart, Riemannicm Geometry, p. 113.
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In particular if we identify the two sets of orthogonal vectors, we see that

(n—1)

the sum of the Gaussian curvatures of the - planar directions defined

by an orthogonal ennuple of vectors is constant and equal to the scalar
curvature R.

If the scalar curvature R vanishes, then the forms g7, R;; are apolar ;
since we suppose the metrical form to be definite, it follows that Ry is
indefinite, and therefore there exist real directions A for which R;; XN =0,
From the usual interpretation of apolarity, there follows the existence of sets
of n mutually orthogonal vectors, the Gaussian curvatures K, corresponding
to which satisfy the » relations: |

XKy =0 (h==Fk).
h
Or by Theorem IV there exist two sets of # mutually orthogonal vectors

A e such that Ay we are orthogonal for s =t &, while Ay, p) are
conjugate directions w.r.t. the Ricci tensor (b =1,2,---, n).





