GOODENOUGH

Stresses in Links

Mechanical Engineering
M. E.

1900

LIBRARY
University of Illinois.
$1900 G 6$

An Investigation of the Stresses

 ...1x...
Links with Elliptical and Oval Center-Lines

... BY...

GEORGE ALFRED GOODENOUGH

THESIS

FOR THE DEGREE OF MECHANICAL ENGINEER

IN THE

COLILEGH OH ENGINEFRINE

OF THE

UNIVERSITY OF ILIANOIS

Digitized by the Internet Archive in 2013

UNIVERSITY OF ILLINOIS

$$
\text { Y4y 3I, } 1900
$$

TIIS IS TO CER'LIFY TIIAT THE THESIS PREPARED UNDER MY SUPERVISION BY Georce Alfod coodencum, B.S., wichiman Acrionltural colleco, Extruen An Investigation of the Stresses in Lings with oval and

pllivtical Center-lines

IS APPROVED BV ME AS TULFYIAING THIS PAR'T OF TIIE REOCHEMENTS FOR TIE IDEGEFE of Meohaniog? misincer.

mead of merarmant of Mechanical Parineeming.
e
I. nbjects of the Investikration

Page
II. Previous Investifcations 4
III. General Theory of the stresses in Bars with

Curved Center-Itne
IV. Annlecetion of the Theory to various porms of Links 15
a. Jink wjuth Fllintical Center-Line 15
vh. Isink vith Center-ine with rour nimoinar Arcs 30
c. Ifint of Iremiscate Form 28
d. Link with Stroight sides 32
e. Link with Circuiar centor-Line 35
f. Lint with Situcl 35
\& Festime of Formulass 44
V. Computation of Stresses 46
a. Stresser in iuink of Length Gd 46
d. Stresses in Link of Width :3.5d 63
VI. Discussion of Results 65
a. Infiunnce of the Form of the Link 65
b. The Distribution of the Proserme between the Links 67
VII. Formules for the Loading of Chains 7 ?

REFERENCES.

A History of the strongth end Elarticity or Materials, Todhunter and Pearson, Yol. TI, Part I, Pn. A22-445.

Elasticttät und Festigkeit, C.von Brch,section V. Flesticit:it und Pertickeit, F.crashof, Dp.273-277.

AN INVESTIGATION OF rHH STRESSES

IM

LINKS WI'H ELLIPMICAL ATD OVAL CENTRR-LIUES

I.OBTECTS OF THE INVESTIGATION.

1. The investigations contoined in this Thesis have been made with the following objects in viow:
2. To ascertain the stresses actually induced in links of varions forms, with and mithout restraining studs, when wheh links are subjected to the action of external forces.
b. To compere links of different form as regards strength, and thus to detemine the form of link that will give maximum strength;in particular to compare the relative atrengths of onen links and stud links.
c. To derive from the results thus ottained worling formulas for tries loading of cheins of the ordinary commercial sizes, and to compere these formulas with the formulsis now in vogue.

II. PRKVTOUS INVESTIGATIONS.

2. The investication of the stresses in linirs was eugecested to me by Bach's analysis of the stresses in a. hollow cylind rical roller, "Elasticität und Festigkeit", P. 453. It. wos ovjonnt thet the general method there einlovod conld be used to compute the stresses in links with ellinticel conter-lines, and T attamitant to cratnd then monysis to links with elliptical center-lines and make the circular centerlines a meerifl chse. Some time arter I hat completed this analysis, I found that that Grashof had made an anelysis in his "Elasticität und Festigiceit " Arts:i78-180,111.273-277. Wni le the mothor emml aymo by Grashof seems correct, the assumptions he nakes are clearly untenable, and the results he obtains are far from the truth. Grashof's treatment, however, shegested to me an ides or substitutine an oval center-line of four circular ares for the elliptical center-line.

Before proceeding further, I made a search through onman Technical periodicals, in partjoular tho Zeitschrift des Vereines Deutscher Ingenieur, with the expoctation of finding a discussion of the cubject that would render superfluous further efforts on my part. My search was fruitless,and I proceeded with the anolysin of the cases that follow.

After I had finished the anh tytimel work and had partly completed the computations, I accidentalny dimooveren permson's nlegant discussion of Winkler's memoir "Formandering und Fostigkeit gekrummter

Körper inte-ondere der ringe". This discussion is by prof.Karl Pearson, and may be found in Torhunter and Pearson's, "Hy etory of the Elasticity and streneth of matcuinls; "07 17 , nort 3, h. f33 at anexi. To show Pearson's est tmate of Winkler's work and of the method emploved in the analysis, I quote from the first paragraphs of the discuasion:
x
"This is an important mamolr hoth from the theoretical and practical standpoint;although many of its results requs re correction and modification. some of these corrections hewe heen made in Kapitel XL (Ringformige Körper) of the authors moll knorn treatise: "Die Lehre von der Elasticität wnd Fostickoit", Preg, 1867, hut this treatise does not cover anything like the name area an the memoir. I propose therefore to indicate the correct analysis and compere its results with those of winkler.
"The importance of the subject will be sufficiently grasped when I remind the reader that it is the only existing theory of the strencth of the links of chans. To investigate the strength of such links by the complete theory of alasticity mould invoive even for the case of anchor ring an appalling invertigation in toroidal and allied functions, while for the oval chain links with studs in ordinary use, any ruccessful attempt at a general investigation recirs Inconcoivahio. We thell have the less hesitation, however in applying the Bernoulif-Eulertan theory, if we remomber how close in approximation Saint-venant's researches on flexure have chown it to be in the case of gratich hers. At the same time we cre certainly going to put it to the very limit of 1ts application, namely to curved
bere ill whirh the dimensions of the cross sections are not very sirnall as compared with either the length or the railus of curvature of the central axis".
"Rememberlne thet we need not assume adjacent cross sections of our link to remain undstorted, if we only mpone them to he pmproximately equally distorted, we can easily fnvestieate an nypression for the stretich at ney noint hy a method akin to that which resiults from the Bernoulli-Eu?erian theory". x

The method here reforence to ts that given by beach and creshof in connection with hodtes having curved conter-liner, and is the one that I have used as the bar:is or the foliomine innemire

Prof. Pearson considers only the cese or the rilinticat conterline ard the conter-line cornosed of tro cirnylur aroe fre tyo straleht lines. In both oasos he oronounces Winliler's work incorrect and glves rosrect oquetion. The case of the center-line with four circular arcs secms to neve been dincusged by uinkler in nis treatise instead of in tre memoir.

I have not ned access to the oricinel reroix, "hich is published in "Der Clvilingenieur" Bd . IV, S, 232-3AG. From Trof. Trareon's diecursion, however, it annears that in all cases winliler arrumes the external force acting on the link to he comentrated at e noint ot the end of the link. Such an assumption considerally simplifies the analytical work. The results ohtelned from analysis based on this assumption may properiy be used whon the ascumption fre fuetifted hy the facts of the case; certainiy not otherwise. In the case on rheins and chain cenles, the external force is the pressure between
two adjacent links. "nless the links are circular, this messsure camot the concentrated at a range point, but in alc whitra nimen un area; in ract. with inks of ordinary moportions, the action brtwen two links is that of a journal and bearing. As will be shown subsequently, this distrinution roduces in a marked depree the stresses computed on the purely arbitrary asmumption that the pres une is concentrated. For thiz reamon the results obtained by the correct analysis of Prof. Pearson can harlly bo ured ac batis for formien giving the streneth of chains. So far as I know, the discussions mentioned are the only ones concerning this subjoct in existence. Eoth are faulty; Winkler, hy making an arsuruton ot jurtified by fact, uncorcetimeter ire strength of the link. Crashof reoogines the influence of the distribution of the load, but by incorrect reasoning arrives at results that if adointed would load to sorious overestimation of the strength of the link.

TII. GFNFREL THEORY OF THE STRESSES IN BARS WITH CURVED CENTER-LINES.
3. The heot etertoment of the fundamental theory inderlying all the subsequent investigations is contained in Bach's "plnsticität und Festigkeit", section Y. For the sake of omnlotonors I five an outlire of the theory. The method of oresentation is mbotonialiy that of Back. In FiE $1, \mathrm{BCC}_{1} \mathrm{~B}_{1}$ represents a part of a rody of uniform cross
section. On, tr the center-ine passing through the conter of gravity of the sections.BOC and $3, O, C$, are two sections rommal to the centerline. If the conter-line is straight, the planes of the sectione are parcallel, but if it is curved the nlanen mert in 1 ho …in of curvature i , and make with ach other the wimbe $d \varphi$ - monore a vory al force p to be unformiy dirtributed over the cross cotion $1,0, C$,

Were the sections parallel, all fibers lying betwern them would have the same lengtin, and as a conerquence rexy fiber would be extended by the sare aromatinnnee the action of the force polide remut in a change in the distanco hetween the ueufone, the parallelism remaining linriscturinect. When the sections ure inclined, as in Fig 1 , the action is different. The force p being uniformly distributed over the section, finch fibor is subjected to the same stress σ;
now since the relative extencloms of nll fibern are equal, it follows that the ehsolute change in the lonetin on ribor tr monortione? to the length of the riber, or whet is eulivalent, to the dietrnce of the fiber from the axis of curvature, M . Assuming,therefore, thet the cross section remains nlane, its plane after extenrion will pass through the axis M
4. Suppose now thet the section is subjected to the action of 2 normal force p and also to a couple whose moment may be denoted by M_{b}. the force p hrings the section B, O, C, to the position $B_{0} C_{0}$ and the counle of moment M_{6} induces a stress couple which prodices further extensions of the fiber-either positive or hergtive-and hringe the section to a new posttion $B^{\prime} 0^{\prime}, y^{\prime}$, By the action of the couple, the
center of curvature of the conter-ine 00 is changed from M to M^{\prime} and the radius of ciorvature is decreased from r to p.'he inclination between the sections is increased from to $d \phi+\Delta d \phi$.

Jet ε_{0} denote the relative extension of the runter-ine 00 , and ε that of a fiber $F P_{1}$ at, a distance η from the conter-ine; filo let dos denote the length of the finer on, then

$$
\varepsilon_{0}=\frac{\Delta d s}{d s}=\frac{\overline{0, O}_{1}^{\prime}}{\overline{O O_{1}}}
$$

$$
\text { and } \quad C=\frac{P_{1} P_{1}^{\prime}}{P P_{1}}:
$$

Through 0^{\prime}, let a line be dram parallel to R, C, cutting P in H; then

$$
\overrightarrow{P_{1} P_{1}^{\prime}}=\overrightarrow{P_{1} H}+H P_{1}^{\prime}=0, O_{1}^{\prime}+H P_{1}^{\prime} ;
$$

but $\quad \overline{O O}_{1}=\varepsilon_{0} \cdot \overline{O O}=\varepsilon_{0} d s=\varepsilon_{0} r d \phi$,
and from the geometry of the figure,

$$
\sqrt{H P_{1}^{\prime}}=\overline{0_{1}^{\prime} H} \times(d \varphi+\Delta d \varphi-d \phi)=\eta \cdot \Delta d \varphi,
$$

and $\quad P P_{1}=(r+\eta) d \varphi$.
substituting these values in the expression ron ε,

$$
\varepsilon=\frac{\varepsilon_{0} r d \varphi+3 \cdot \Delta d \varphi}{(r+\eta) d \varphi}=\frac{\varepsilon_{0}+\frac{\eta}{r} \frac{\Delta d \varphi}{d \varphi}}{1+\frac{\eta}{2}}
$$

Let the ratio $\frac{\Delta d \varphi}{d \varphi}$ be denoted $b y \omega$; then

$$
\begin{equation*}
\varepsilon=\varepsilon_{0}+\left(\omega-\varepsilon_{0}\right) \frac{\frac{\eta}{r}}{1+\frac{\eta}{r}} \tag{1}
\end{equation*}
$$

The normal stress corresponding tu sxtonsion c is

$$
\begin{equation*}
\sigma=E \varepsilon=E\left[\varepsilon_{0}+\left(\omega-\varepsilon_{0}\right) \frac{\frac{\eta}{r}}{1+\frac{\eta}{r}}\right] \tag{2}
\end{equation*}
$$

in which E denotes the modulus of elasticity.

Fleecing the stresses an equilibrium with this cyternal forces, we $o b+n!n$,

$$
\begin{align*}
& P=\int \sigma d f=\int E\left[\varepsilon_{0}+\left(\sigma-\varepsilon_{0}\right) \frac{\frac{3}{2}}{1+\frac{\eta}{r}}\right] d f \tag{3}\\
& M_{b}=\int \eta \sigma d f=\int E \eta\left[\varepsilon_{0}+\left(\omega-\varepsilon_{0}\right) \frac{\frac{3}{r}}{1+\frac{3}{r}}\right] d f
\end{align*}
$$

Assuming the morinlir E to re a constant, the equations become, respectlively

$$
\begin{aligned}
& P=E\left[\varepsilon_{0} \int d f+\left(\omega-\varepsilon_{0}\right) \int \frac{\eta}{r+\eta} d f\right] \\
& M_{b}=E\left[\varepsilon_{0} \int \eta d f+\left(\omega-\varepsilon_{0}\right) \int \frac{\eta^{2}}{r+\eta} d f\right]
\end{aligned}
$$

The center-linc 0 , Fig l, passes through the center of gravity of each normal section; as a consequence

$$
\int \eta d f=0
$$

Let

$$
\int \frac{3}{r+3} d f=-x f
$$

then

$$
\int \frac{\eta^{2}}{r+\eta} d f=\int\left(\eta-\dot{\eta} \frac{\eta}{r+\eta}\right) d f=-r \int \frac{\eta}{r+\eta} d f=x f r
$$

Introducing these values for the integrals fol the preceding expressions for P anti ${ }_{b}$,

$$
\begin{aligned}
& P=E f\left[\varepsilon_{0}-x\left(\omega-\varepsilon_{0}\right)\right] \\
& M_{b}=E f\left(\omega-\varepsilon_{0}\right) x r
\end{aligned}
$$

Solving for ε_{0} and ω we obtain the following important equations:

$$
\left.\begin{array}{l}
\omega-\varepsilon_{0}=\frac{M_{b}}{E f r x} . \\
\varepsilon_{0}=\frac{P}{E f}+x\left(\omega-\varepsilon_{0}\right)=\frac{1}{E f}\left(P+\frac{M_{0}}{r}\right) \tag{5}\\
\omega=\varepsilon_{0}+\frac{1}{E f} \frac{M_{b}}{x r}=\frac{1}{E f}\left(P+\frac{M_{b}}{r}+\frac{M_{b}}{x r}\right)
\end{array}\right\}
$$

Substituting incs: values of ε_{0} and ω in (2),

$$
\begin{align*}
\sigma & =\frac{1}{f}\left(p+\frac{M_{0}}{2}+\frac{M_{3}}{x r} \frac{\eta}{r+\eta}\right) \\
\text { or } \sigma & =\frac{p}{f}+\frac{M_{b}}{f r}\left(1+\frac{1}{x} \frac{\eta}{r+\eta}\right) . \tag{A}
\end{align*}
$$

This formula gives the magnitude of the normal stress σ in a fiber at a distance η from the conter-ine, in terms of the normal force P, bending moment M, and instants denensing upon the confleuratron. The convention of signs adopted is as follows: Pis considered positive when it bodices tension, hesetive when it produces compression; $\mathrm{m}_{b} \mathrm{j}$ s positive when it tends to increase the curvature, negative when it tends to decrease that curvature. When σ is found to be positive the stress is tensile; when round to be negative, the stress is compression.
5. The value of the function x meet br determined for any given form of cross section. When the section is a simple geometrical figure, as a circle or a square, an expression for x may be found analytically; When the cross section is irregular in outline approximate
1.3.
methods must he med. Since the bodies considered in this investgat ion have nelly circular cross erections, we shall deduce the expresssion for 1 for that form of sectilum 0:17y.

Let us take an elementary strip at a distance η from the centerline, (see Fig ?). The width of this orris is dy and its length is $2 e \cos \theta$, if e denotes the radius of the section; hence the shes. of the strip is

$$
d f=2 \epsilon \cos \theta d \eta
$$

But

$$
\begin{aligned}
3 & =e \sin \theta \\
d \xi & =e \cos \theta d \theta \\
d f & =2 \epsilon^{2} \cos ^{2} \theta d \theta
\end{aligned}
$$

hence

$$
\begin{aligned}
x & =-\frac{1}{f} \int_{-\theta}^{+\epsilon} \frac{\pi}{r+3} d f=-\frac{1}{\pi \epsilon^{2}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{e \sin \theta}{r+e \sin \theta} \cdot 2 \epsilon^{2} \cos ^{2} \theta d \theta \\
& =-\frac{2 \epsilon}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\sin \theta \cos ^{2} \theta d \theta}{r+\epsilon \sin \theta}
\end{aligned}
$$

$$
\frac{1}{r+c \sin \theta}=\frac{1}{r}\left(1-\frac{\varepsilon}{2} \sin \theta+\left(\frac{\epsilon}{r}\right)^{2} \sin ^{2} \theta-\left(\frac{\epsilon}{r}\right)^{3} \sin ^{3} \theta+\ldots\right)
$$

a convening epics. Therefore

$$
\begin{aligned}
x= & -\frac{2}{11} \frac{e}{r}\left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{\frac{\pi}{2}} \theta \cos ^{2} \theta d \theta+\frac{\epsilon^{2}}{r^{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{2} \theta d \theta+\frac{\epsilon^{4}}{r^{4}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin ^{5} \theta \cos ^{2} \theta d \theta+\ldots\right] \\
& +\frac{2}{11}\left[\frac{\epsilon^{2}}{r^{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta+\frac{\epsilon^{4}}{r^{4}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin ^{4} \theta \cos ^{2} \theta d \theta+\frac{\epsilon^{6}}{r^{6}} \int_{-\frac{\pi}{2}}^{\left.\sin ^{6} \theta \cos ^{2} \theta d \theta+\ldots\right]} .\right.
\end{aligned}
$$

The integrals in the inst paminticsis ane veniones powers of and with the assigned limits, exch revises io zeno.

The values of the integrals in the soaonri parenthesis are obtained as follows:

$$
\begin{aligned}
& \int \sin ^{2} \theta \cos ^{2} \theta d \theta=\int \sin ^{2} \theta d \theta-\int \sin ^{4} \theta d \theta: \\
& \int \sin ^{4} \theta \cos ^{2} \theta d \theta=\int \sin ^{4} \theta d \theta-\int \sin ^{6} \theta d \theta ; \\
& \int \sin ^{6} \theta \cos ^{2} \theta d \theta=\int \sin ^{6} \theta d \theta-\int \sin ^{8} \theta d \theta \text {, and so an. } \\
& \left.\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta=-\frac{1}{2} \cos \theta \sin \theta+\frac{1}{2} \theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{1}{2} \pi \quad, \\
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{4} \theta d \theta=-\frac{1}{4} \cos \theta \sin ^{3} \theta+\frac{3}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta=\frac{1}{2} \cdot \frac{3}{4} \pi \\
& \int_{-\pi}^{\frac{\pi}{2}} \sin ^{6} \theta d \theta=\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{6} \pi \\
& \int_{-1}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta=\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \cdots \cdot \frac{n-1}{3} \cdot \pi \\
& \text { c }-\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta=\pi\left(\frac{1}{2}-\frac{1}{2} \cdot \frac{3}{4}\right) ; \\
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{4} \cos ^{2} \theta d \theta=\pi\left(\frac{1}{2} \cdot \frac{3}{4}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}\right) ; \\
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{6} \cos ^{2} \theta d \theta=\pi\left(\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8}\right) \text { etc. } \\
& x=\frac{2}{\pi}\left[\frac{\pi}{11} \frac{\epsilon^{2}}{r^{2}}\left(\frac{1}{2}-\frac{1}{2} \cdot \frac{3}{4}\right)+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{\epsilon^{2}}{r^{4}}\left(\frac{1}{2} \cdot \frac{3}{4}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{5}{6}\right)+\right] \\
& =\frac{1}{4}\left(\frac{6}{r}\right)^{2}+\frac{3}{4} \cdot \frac{1}{6}\left(\frac{6}{2}\right)^{4}+\frac{3}{4} \cdot \frac{5}{6} \cdot \frac{1}{8}\left(\frac{e}{2}\right)^{6}+\cdots \\
& x+\frac{3}{4} \cdot \frac{5}{6} \cdot \cdots \cdots
\end{aligned}
$$

Finally

$$
\left.\begin{array}{rl}
x & =\frac{1}{4}\left(\frac{e}{r}\right)^{2}+\frac{1}{8}\left(\frac{\epsilon}{r}\right)^{4}+\frac{5}{64}\left(\frac{e}{r}\right)^{6}+\frac{7}{128}\left(\frac{e}{r}\right)^{8}+\cdots \cdot \\
& =\frac{1}{16}\left(\frac{d}{r}\right)^{2}+\frac{1}{128}\left(\frac{d}{r}\right)^{4}+\frac{5}{4096}\left(\frac{d}{2}\right)^{6}+\cdots \tag{6}
\end{array}\right\}
$$

where $d=$ diaineter of circular section.

IV. APPLICATION OF THE THEORY TO VARIOUS FORM OF LINK.

 a. Link with FJliptical Center-Line.6. Let the center-line of the link be an ellipse with cemi-axes a and $b ; a n c i$ let the center of the ellipse be taken as the origin and the axes as coordinate axes. Then the equation of the conter-Ine is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Conslder one fourth of the link, as showen in Fig:3. If $2 Q$ is the load in the direction of the long axes, the section A wil be rubjected to a lond Q normei to it. Sumpose the link at rection A to be subjected to a bending moment M, at present unimown, but to be determined from the cinditions of the problem. This moment being found, the hending roment, at any section may be detcrmincd, and this, with the nommal force P at the section, will give the data required in finding the etress at any fiber of the secition.

Assume a norlal section cutting the center-linc at C, and consider the part of the link between this section and section a free body. At C let two opposite forces each eclual to a be added to the system. One of there, together with Q at section A forrs: a counle whose moment is $Q(b-y)$: the other orce may be resolved into two components, one $Q \sin \phi$ normal to the section and pronucing tenrile stress th the fibers and the other $Q \cos \phi$ alone the rection and producing a shearing strers. The latter component will be neglected in the following investigat ton.

At the section in question, therefore,

$$
\begin{aligned}
& \text { Normal force }=P=Q \sin \phi ; \\
& \text { Bending moment }=M_{b}=M+Q(b-y)
\end{aligned}
$$

The following considerations determine the unknown moment
$M:$ Let ϕ denote the angle which the plane of any section maker with the $X-a v i s$, and $a s$ in Fig.l, let do demote the angle between two adjacent sections the distortion of the Jink by the load varies the relative positions of

the normal sections, and in general the angle $d \phi$ is changed to $d \phi+\Delta d \phi$, the change $\Delta d \phi$ being either positive, negative, or zero. However, owing to the symmetry of the link, the sections A and B, remaineminy at right angles, however the center-line is distorted; hence the summatron of those changes of angle, $\Delta d \phi$, between these sections must be zero; that is,

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \Delta d \varphi=0, \quad \text { or since } \quad \omega=\frac{\Delta d \varphi}{d \phi}, \\
& \int_{0}^{\frac{\pi}{2}} \omega d \varphi=0
\end{aligned}
$$

From the third of equations (5),

$$
\omega=\frac{1}{E f}\left[P+\frac{M_{6}}{r}\left(1+\frac{1}{2 e}\right)\right] ;
$$

hence

$$
E=f \int_{0}^{\frac{\pi}{2}}\left[P+\frac{M_{b}}{r}\left(1+\frac{1}{2 c}\right)\right] d \varphi=0
$$

or

$$
\int_{0}^{\frac{\pi}{2}}\left[a \sin \varphi+\frac{M+Q(b-y)}{r}\left(1+\frac{1}{x c}\right)\right] d \varphi=0
$$

To intecrete this expression, the variable ordinate y, radius of curvature r, and the variable x must be expressed as functions of the variable anele \varnothing.

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
-\frac{d x}{d y}=\frac{a^{2} y}{b^{2} x}=\tan \varphi \\
\frac{x^{2}}{a^{2}}=1-\frac{y^{2}}{b^{2}}=\frac{a^{2} y^{2}}{b^{4} \tan ^{2} \varphi} \\
y^{2}=\frac{b^{4} \operatorname{lan}^{2} \varphi}{a^{2}+b^{2} \tan ^{2} \varphi}=\frac{b^{4}}{b^{2}+a^{2} \cos ^{2} \varphi} \\
y=\frac{b^{2}}{\left(b^{2}+a^{2} \cos -2 \varphi\right)^{\frac{1}{2}}}
\end{gathered}
$$

(a)

For the ellipse the radius of curvature is

$$
r=\frac{\left(a^{4} y^{2}+b^{4} x^{2}\right)^{\frac{3}{2}}}{a^{4} b^{4}}
$$

$$
\begin{align*}
& \text { Since } \begin{aligned}
& b^{4} x^{2}=a^{4} y^{2} \cot ^{2} \varphi \\
& \qquad=\frac{\left[a^{4} y^{2}\left(1+\cot ^{2} \varphi\right)\right]^{\frac{3}{2}}}{a^{4} b^{4}}=\frac{a^{6} y^{3} \csc ^{3} \varphi}{a^{4} b^{4}}=\frac{a^{2} y^{3}}{b^{4} \sin ^{3} \varphi} \\
&=\frac{a^{2} b^{6}}{b^{4} \sin ^{3} \varphi\left(b^{2}+a^{2} \cot ^{2} \varphi\right)^{\frac{3}{2}}}=\frac{a^{2} b^{2}}{\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{\frac{3}{2}}}
\end{aligned}
\end{align*}
$$

For the circular cross section of radius e,

$$
x=\frac{1}{4}\left(\frac{\epsilon}{r}\right)^{2}+\frac{1}{8}\left(\frac{\epsilon}{r}\right)^{4}+\frac{5}{64}\left(\frac{\epsilon}{r}\right)^{6}+\cdots \cdot,
$$

and $\quad \frac{1}{x}=4\left(\frac{r}{e}\right)^{2}-2-\frac{1}{4}\left(\frac{\epsilon}{r}\right)^{2}-\cdots .$. (c)

Since $\frac{e}{r}$ is small, a close approximation is

$$
\frac{1}{x}=4\left(\frac{r}{\epsilon}\right)^{2}-2
$$

Then

$$
1+\frac{1}{x}=4\left(\frac{r}{\epsilon}\right)^{2}-1
$$

and $\frac{1}{r}\left(1+\frac{1}{x}\right)=4 \frac{r}{\epsilon^{2}}-\frac{1}{r}$.
Substituting info in the expression for $\int \omega d \varphi$, the integral becomes:

$$
\frac{1}{E f} \int_{0}^{\frac{\pi}{2}} \omega d \varphi=\int_{0}^{\frac{\pi}{2}}\left\{Q \sin \varphi+(m+a b) \frac{4 r}{E^{2}}-(m+Q b) \frac{1}{r}-4 Q \frac{r y}{e^{2}}+\frac{Q y}{r}\right\} d \varphi
$$

Substituting the values of y and r given in equations (a) and (b),

$$
\begin{aligned}
\frac{1}{E f} \int_{0}^{\frac{\pi}{2}} \omega d \varphi= & \mathbb{Q} \int_{0}^{\frac{\pi}{2}} \sin \varphi d \varphi+\frac{4 a^{2} b^{2}}{\epsilon^{2}}(M+Q b) \int_{0}^{\frac{\pi}{2}} \frac{d \varphi}{\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{\frac{3}{2}}} \\
& -\frac{M+Q b}{a^{2}+b^{2}} \int_{0}^{\frac{\pi}{2}}\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{\frac{3}{2}} d \varphi-4 Q \frac{a^{2} b^{4}}{e^{2}} \int \frac{\sin \varphi d \varphi}{\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{2}} \\
& +\frac{Q}{a^{2}} \int_{0}^{\frac{\pi}{2}}\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right) \sin \varphi d \varphi
\end{aligned}
$$

The integrals have the following values:

$$
\begin{aligned}
& Q \int_{0}^{\frac{\pi}{2}} \sin \varphi d \varphi=Q ; \int_{0}^{\frac{\pi}{2}}\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right) \sin \varphi d \varphi=\frac{1}{3}\left(a^{2}+2 b^{2}\right) ; \\
& \begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{d \varphi}{\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{\frac{3}{2}}} & =\frac{\pi}{2 a^{3}} \frac{1}{1-k^{2}}\left(1-\frac{1}{4} k^{2}-\frac{3}{64} k^{4}-\frac{5}{256} k^{6}-\cdots\right) \\
& =\frac{\pi}{2 a b^{2}} \alpha, \text { where } k^{2}=1-\frac{b^{2}}{a^{2}}, \text { and } \alpha=\text { theserics; } \\
\int_{0}^{\frac{\pi}{2}}\left(b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{\frac{3}{2}} d \phi & =a^{3} \frac{\pi}{2}\left(1-\frac{3}{4} k^{2}+\frac{9}{64} k^{4}+\frac{5}{256} k^{6}+\cdots\right) \\
& =\frac{\pi}{2} a^{3} \beta, \text { where } \beta \text { denotes the series; } \\
\int_{0}^{\frac{\pi}{2}}\left(\frac{\sin ^{2} \phi d \phi}{\left.b^{2} \sin ^{2} \varphi+a^{2} \cos ^{2} \varphi\right)^{2}}\right. & =\frac{1}{2 b^{4}}\left(\frac{b^{2}}{a^{2}}+\frac{b}{\sqrt{a^{2}-b^{2}}} \tan ^{-1} \frac{\sqrt{a^{2}-b^{2}}}{b}\right)=\frac{1}{2 b^{4}} \gamma
\end{aligned}
\end{aligned}
$$

Suhstitut inc now in the preceding equation,

$$
\begin{gathered}
\frac{1}{E f} \int_{0}^{\frac{g}{2}} \omega d \varphi=0=Q+(M+Q b) \frac{\pi}{2} \cdot \frac{4 a}{\epsilon^{2}} \alpha-(M+Q b) \frac{\pi}{2} \frac{a}{b^{2}} \beta-2 \frac{a^{2}}{e^{2}} \gamma+\frac{1}{3} Q+\frac{2}{3} \frac{b^{2}}{a^{2}} Q . \\
M+Q b=Q a\left[\frac{2 \frac{a^{2}}{e^{2}} \gamma-\frac{2}{3} \frac{b^{2}}{a^{2}}-\frac{4}{3}}{\frac{\pi}{2}\left(\frac{4 a^{2}}{e^{2}} \alpha-\frac{a^{2}}{b^{2}} \beta\right)}\right] . \\
M=Q d\left[\frac{a}{d} \frac{8 \frac{a^{2}}{d^{2}} \gamma-\frac{2}{3} \frac{b^{2}}{a^{2}}-\frac{4}{3}}{\frac{\pi}{2}\left(\frac{16 a^{2}}{d^{2}} \alpha-\frac{a^{2}}{b^{2}} \beta\right)}-\frac{b}{d}\right] .
\end{gathered}
$$

When the center-line of the link is a circle--the limit of the ellipse-- the factor x becomes a constant, and the radius of curvature r becomes equal to the axes a and b, that irs,

$$
r=a=b
$$

In this case,

$$
\frac{1}{E f} \int_{0}^{\frac{\pi}{2}} \omega d \varphi=Q \int_{0}^{\frac{\pi}{2}} \sin \phi d \varphi+\frac{1}{2}(M+Q b)\left(1+\frac{1}{2 c}\right) \int_{0}^{\frac{\pi}{2}} d \varphi-Q\left(1+\frac{1}{2}\right) \int_{0}^{\frac{\pi}{2}} \sin \varphi d \varphi=0
$$

Integrating,

$$
\begin{gather*}
Q+\frac{\pi}{2} \cdot \frac{1}{r}\left(M+Q_{r}\right)\left(1+\frac{1}{x}\right)-Q\left(1+\frac{1}{x}\right)=0 \\
M=Q_{r}\left(\frac{2}{\pi(1+x)}-1\right) \tag{C}
\end{gather*}
$$

b. link with Center-İne of four circular Ares.

7. The assumption that the eenter-line of the link is an ellipse makes the computation of the stresses tedious because of the continuous variation of the radius of curvature and the consequent varration of the value of the function x. For this reason, and for another that will he given presently, it. is considered advisable to substitute for the elliptical center-line one made un of four arcs of circles as shown in Fig 4. The arcs $E E^{\prime}$ and $F F^{\prime}$ have the points H and H^{\prime} respectively as centers, and the arcs $E F$ and $E^{\prime} F^{\prime}$ have C and C^{\prime} as H and H^{\prime} are the centers centere.of the sections of the adjacent Jinks that fit into the link in question.

This center-line coincides very nearly

Fig. 4.
with the elliptical center-line, and its
adoption greatly simplifies the analysis.
Let α denote the angle between the radius $C E$ and the long axis of the link, and let r denote the radius $C E=C A$; also let the semj-axis $O A$ be denoted by b and the semi-axis OB by a . Then from the geometry of the figure the following relations are readidy obtained.: $\quad \tan \alpha=\frac{r-b}{a-d} ; \sin \alpha=\frac{r-b}{r-d} ; \cos \alpha=\frac{a-d}{r-d}$.

$$
\begin{equation*}
r=\frac{a^{2}+b^{2}-2 a d}{2(b-d)} \tag{7}
\end{equation*}
$$

Let it be assumed first that the pressure between two I.Lnks is concentrated at a point. Denoting this pressure by 20 , the normal force at the section A is Q. As before, let. M denote the unknown bending moment at the section A.

For sections between B and E,that is, for values of ϕ lying between 0 and α

$$
\begin{aligned}
P & =Q \sin \phi \\
M_{6} & =M+Q(b-d \sin \varphi)
\end{aligned}
$$

and for sections between E and $A, P=Q \sin \phi$,

$$
M_{S}=M+Q r(1-\sin \phi) .
$$

The enereral expression for ω is

$$
\omega=\frac{1}{E f}\left(P+\frac{M_{b}}{r}+\frac{M_{b}}{x r}\right)
$$

For the sections between $\phi=0$ and $\phi=\alpha, r=d$ hence

$$
\omega_{1}=\frac{1}{E f}\left(Q \sin \varphi+\frac{M_{b}}{d}+\frac{M_{b}}{x_{1} d}\right)
$$

the subscript 1 being used to distinguish the ω and x of this leet of the link from those of the other part. For the section lying between $\varphi=\alpha$ and $\varphi=\frac{\pi}{2}$,

$$
\omega_{2}=\frac{1}{E f}\left(Q \sin \phi+\frac{M_{b}}{r}+\frac{M_{b}}{u_{2} r}\right)
$$

Inserting the proper values of M_{b}

$$
\begin{aligned}
& E f \omega_{1}=\frac{M+Q b}{\alpha}\left(1+\frac{1}{x_{1}}\right)-\frac{Q}{x_{1}} \sin \phi \\
& E f \omega_{2}=\left(\frac{M}{r}+Q\right)\left(1+\frac{1}{x_{2}}\right)-\frac{Q}{\mu_{2}} \sin \phi
\end{aligned}
$$

The total change of inclination between the section at B and A is

$$
\int_{0}^{\alpha} \omega, d \varphi+\int_{\alpha}^{\frac{\pi}{2}} \omega_{2} d \varphi
$$

but since these section remain at right angles, this change must he zero;herce
or

$$
E f\left[\int_{0}^{\alpha} \omega, d \varphi+\int_{\alpha}^{\frac{\pi}{2}} \omega_{2} d \varphi\right]=0
$$

$$
0=\frac{M+Q d}{d}\left(1+\frac{1}{x_{1}}\right) \int_{0}^{\alpha} d \phi-\frac{Q}{x_{1}} \int_{0}^{\alpha} \sin \phi d \phi+\left(\frac{M}{r}+Q\right)\left(1+\frac{1}{x_{2}}\right) \int_{\alpha}^{\frac{\pi}{2}} d \phi-\frac{Q}{x_{2}} \int_{\alpha}^{\frac{\pi}{2}} \sin \phi d \phi
$$

Integrating,

$$
0=\frac{M+Q b}{d}\left(1+\frac{1}{x_{1}}\right) \alpha-\frac{Q}{x_{1}}(1-\cos \alpha)+\left(\frac{M}{2}+Q\right)\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)-\frac{Q}{x_{2}} \cos \alpha
$$

Solving form,

$$
\begin{equation*}
M=Q_{d}\left[\frac{\frac{1}{x_{1}}(1-\cos \alpha)+\frac{1}{x_{2}} \cos \alpha-\frac{b}{d} \alpha\left(1+\frac{1}{x_{1}}\right)-\left(\frac{\pi}{2}-\alpha\right)\left(1+\frac{1}{x_{2}}\right)}{\alpha\left(1+\frac{1}{x_{1}}\right)+\frac{d}{2}\left(\frac{\pi}{2}-\alpha\right)\left(1+\frac{1}{x_{2}}\right)}\right] \tag{D}
\end{equation*}
$$

The value of M being found, the bending moment at any section may readily be obtained; and with the bending moment and normal force ac data, the stress in any finer of the section in found from formula (A).
8. The assumption that the load on the link is concentrated at one point, while rendering the analytical work easier, cen not be justified by the facts of the case. In reality the adjacent links have a considerable surface in contact, especially after some use, and the pressure between them must be distributed in some way or other over this surface. In the absence of absolute knowledge, the law of distribution must be assumed, care being exercised the the assumption made is justified by experience and common sense.

The law of "Equal wear" gives a clue to a reasonable assumptron in this case. Thole strictly the ports of the ? inks in contact are curved, the action of one link on the other may be compared to that of a journal and its bearing. As shown in Fig 5, let the arc of contact between the link and lis bearing be denoted by 2α. As the links wear, the surface of contact will become that shown by the dotted line er er, which is approximately a circular arc with a rantus equal to the radius of a section of the link. Evidently the wear is groatest at b and least at e and e^{\prime}. Let. t denote the depth of wear at a section making the angle ϕ with the axis $H X$, and h the depth at section B. since the centers- $-\cdots-\overline{E^{\prime}}$ of the arc e b ed is at a distance h to
 the right of the center 0 , we have the relation Fig. 5

$$
\begin{aligned}
& r^{2}=h^{2}+(r+t)^{2}-2 h(r+t) \cos \phi \\
& 2 r t+t^{2}=h[2(r+t) \cos \phi-h] \\
& \frac{t}{h}=\frac{2(r+t) \cos \phi}{2 r+t}-\frac{h}{2 r+t} \\
& \operatorname{Limit}_{\operatorname{im}}\left(\frac{t}{h}\right)=\cos \phi
\end{aligned}
$$

That is, the wear at any point of the circumference in contact is proportional the the cosine of the angle ϕ which the section at

This point makes with the long axis of the link. Now the wear is proportional to the work of friction, which is in turn proportional to the norma pressure; hence we conclude that the pressure between the inks is distributed in such manner that if p denotes the intensity of pressure at the avis $\mathrm{HB}, \mathrm{p} \cos \phi$ will be the intensity at a point whose radius makes an angle ϕ with HB.
9. With the mossure th us distwibutod instead of comentrated, tho sections of that portion of the link in contact with its neighbor will be subjected to a bending moment and a normal force different from those deduced for the concentrated lond.

Let p denote the intensity of messure at the section at the small end of the link, that is, the one containing the axis $\mathrm{HB}, \mathrm{Fig} 5$. Then $p \cos \phi$ will be the intensity at a section making an angle ϕ with this axis. The length of an elementary arc of the circlimference in contact is $\frac{d}{2} d \varphi$; hence the pressure on the elementary arc is

$$
p \cos \phi \frac{d}{2} d \phi .
$$

The horizontal component of this force is

$$
\frac{10 d}{2} \cos ^{2} \varphi \phi \phi .
$$

The sum of the horizontal component of these elementary forces must balance the external force $2 Q$; hence

$$
\frac{p d}{2} \int_{-\alpha}^{+\alpha} \cos ^{2} \varphi d \varphi=2 Q
$$

But

$$
\left.\int_{-\alpha}^{+\cos ^{2} \varphi} \phi \varphi=\frac{1}{2}(\varphi+\sin \varphi \cos \varphi)\right]_{-\alpha}^{+\alpha}=\alpha-\sin \alpha \cos \alpha=k
$$

hence $\frac{p d k}{2}=2 Q$, or $p=\frac{4 Q}{k \alpha}$, where $k=\alpha+\sin \alpha \cos \alpha$.

We have now to find the bending moment at a section T making an angle ϕ with $0 x$, due to the distributed pressure between the sections S and T. Take any section, as S, making the variable angle θ with $O X$, the anele ϕ being considered for the preacrit a constant. Intensity of the pressure in the direction $O^{H} \mathrm{~S}$ is

$$
p \cos \theta
$$

and the pressure on an infinitesimal are of the circumference is

$$
p \frac{d}{2} \cos \theta d \theta
$$

The component of this force perpendicular to θ is

$$
10 \frac{d}{2} \cos \theta \sin (\theta-\phi) d \theta
$$

The moment of this component, whose line of notion of course passes through 0 , about the point T is

$$
d x \frac{p d}{2} \cos \theta \sin (\theta-\varphi) d \theta=\frac{p d^{2}}{2} \cos \theta \sin (\theta-\phi) d \theta
$$

Hence normal force st $R=\frac{p \alpha}{2} \int_{\varphi}^{\alpha} \cos \theta \sin (\varphi-\theta) d \theta$;

$$
\text { moment at } R=\frac{p d^{2}}{2} \int_{\varphi}^{\alpha} \cos \theta \sin (\varphi-\theta) d \theta
$$

These are rerely the force and moment due to the distributed pressure between the sections S and T.

$$
\int_{\varphi}^{\alpha} \cos \theta \sin (\theta-\varphi) d \theta=\cos \varphi \int_{\varphi}^{\alpha} \sin \theta \cos \theta d \theta-\sin \varphi \int_{\varphi}^{\alpha} \cos ^{2} \theta d \theta
$$

$$
\begin{aligned}
& =\frac{\cos \phi}{2}\left(\sin ^{2} \alpha-\sin ^{2} \varphi\right)-\frac{\sin \varphi}{2}(\alpha+\sin \alpha \cos \alpha-\varphi-\sin \varphi \cos \varphi) \\
& =\frac{1}{2}\left(\cos \varphi \sin ^{2} \alpha-k \sin \varphi+\varphi \sin \varphi\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Normal force } & =\frac{p d}{4}\left(\sin ^{2} \alpha \cos \varphi-k \sin \varphi+\varphi \sin \varphi\right) \\
& =\frac{d}{k}\left(\sin ^{2} \alpha \cos \varphi-k \sin \varphi+\varphi \sin \varphi\right) \\
\text { Moinent } & =\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi-k \sin \varphi+\varphi \sin \varphi\right)
\end{aligned}
$$

As has bee: shown the normal force at section T aus to the force Q at section $A, F \pm E 4, i s Q \sin \phi$; adding to this the normal force due to the distributed pressure, the total normal force is

$$
\begin{aligned}
P & =Q \sin \varphi+\frac{Q}{k}\left(\sin ^{2} \alpha \cos \varphi-k \sin \varphi+\varphi \sin \varphi\right) \\
& =\frac{Q}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)
\end{aligned}
$$

The bending moment at the section ? due to ? was found to be

$$
M+Q(Q-d \sin \varphi)
$$

From this must be subtracted the moment due to the distributed pressure, the two having opposite sensed. The net moment is therefore

$$
\begin{aligned}
M_{b} & =M+Q b-Q d \sin \varphi-\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi-k \sin \varphi+\varphi \sin \varphi\right) \\
& =M+Q b-\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)
\end{aligned}
$$

Substituting these values of \boldsymbol{P} and M_{b} in the expression for ω,

$$
\omega_{1}=\frac{1}{E f}\left[\frac{Q}{k}\left(\sin ^{2} \alpha \cos \phi+\phi \sin \phi\right)+\frac{1}{d}\left(1+\frac{1}{x_{1}}\right)\left\{M+Q b-\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)\right\}\right]
$$

Reducing

$$
\begin{aligned}
& E f \omega_{1}=\frac{1}{d}(M+Q b)\left(1+\frac{1}{x_{1}}\right)-\frac{Q}{k x_{1}}\left(\sin ^{2} \alpha \cos \phi+\phi \sin \varphi\right) . \\
& E f \int_{0}^{\alpha} \omega_{1} d \phi=\frac{1}{d}(M+Q b)\left(1+\frac{1}{x_{1}}\right) \int_{0}^{\alpha} d \phi-\frac{Q}{k x_{1}} \sin ^{2} \alpha \int_{0}^{\alpha} \cos \phi d \phi-\frac{Q}{k x_{1}} \int_{0}^{\alpha} \phi \sin \phi d \phi . \\
& =\frac{\alpha}{d}(M+Q b)\left(1+\frac{1}{x_{1}}\right)-\frac{Q \sin ^{3} \alpha}{k x_{1}}-\frac{Q \sin \alpha}{k x}+\frac{Q \alpha \cos \alpha}{k x_{1}} .
\end{aligned}
$$

Adding to this the integral $\int_{\alpha}^{\frac{\pi}{2}} \omega_{2} d \varphi$, previously obtained,

$$
0=\frac{\alpha}{d}(M+Q b)\left(1+\frac{1}{x_{1}}\right)-\frac{Q}{k x_{1}}\left(\sin ^{3} \alpha+\sin \alpha-\alpha \cos \alpha\right)+\left(\frac{M}{\gamma}+Q\right)\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)-\frac{Q}{x_{2}} \cos \alpha .
$$

Solving for M,

$$
\begin{equation*}
M=Q_{d}\left\{\frac{\frac{1}{x_{1}}\left(\frac{2 \sin \alpha}{k}-\cos \alpha\right)+\frac{1}{x_{2}} \cos \alpha-\frac{b}{d} \alpha\left(1+\frac{1}{x_{1}}\right)-\left(\frac{\pi}{2}-\alpha\right)\left(1+\frac{1}{x_{2}}\right)}{\alpha\left(1+\frac{1}{x_{1}}\right)+\frac{d}{r}\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)}\right\} \tag{E}
\end{equation*}
$$

The difference between the two expressions for M lies in the first term of the numerat or, which for concentrated load is $\frac{1}{x_{c}}(1-\cos \alpha)$ and for तistrinutan load $\frac{1}{x},\left(\frac{2 \sin \alpha}{k}-\cos \alpha\right)$. For $\alpha=0$, the load must be concentrated, and the second expression should be equal to the first; thus

$$
1-\cos \alpha]_{\alpha=0}=1-1=0
$$

and $\left.\left.\left.\quad \frac{2 \sin \alpha}{k}-\cos \alpha\right]_{\alpha=0}=\frac{2 \sin \alpha}{\alpha+\sin \alpha \cos \alpha}-\cos \alpha\right]_{\alpha=0}=\frac{2}{\frac{\alpha}{\sin \alpha}+\cos \alpha}-1\right]_{\alpha=0}$

$$
=\frac{2}{1+1}-1=0
$$

For $\alpha=\frac{\pi}{2}, \quad 1-\cos \alpha=1$,
and $\frac{2 \sin \alpha}{15}-\cos \alpha=\frac{2 \sin \alpha}{\alpha+\sin \alpha \cos \alpha}-\cos \alpha=\frac{2}{\frac{\pi}{2}}=\frac{4}{\pi}=12732$.
The difference between the values of Maven by the two equations is greatest when $\alpha=\frac{\pi}{2}$ and decreases with α, becoming zero when $\alpha=0$, that is, when the link has a circular instead of an oval center-line.

With a concentrated load, the moment for $\phi=0$, then is, at section B, is

$$
N / 6=M+Q b
$$

while for a distributed load it is

$$
M_{6}=M+Q b-\frac{Q d \sin ^{2} \alpha}{K} .
$$

As will be show, when we arrive at numerical results, the essumption of distribution results in a marked reduction in the stresses computed by the first assumption of a concentrated load.

c. Jink of Iernjacete Form.

10. The equations so far deduced hold for a link in which all parts of the center-jine are concave to the gonmetrical center of the link. The two limiting forms are the link with circular center-line and the link with the center-line made un of two semicircles and two straight sides. We now investigate the case of a link in which the sides are convex to the center - one whose center-ine has somewhat the form of the lemniscate.

A link of this form is shown in Fig 6. The part in of the quarter link is a circular arc within H as a center. The remaining part FA is a circular arc with C as a center and with a radius R. Evidently the pressure between two links is distributed over a
half circumference,
that 15 , the angle α is 90° or $\frac{\pi}{2}$.
The center-line of the quarter link $A B$ must
therefore be considered in three parts:

1. The circillar arc $A F$ of radius R, and subjected to the external force Q;
2. The arc EF, of radius d, and likewise subjected to the external force Q;
3. The arc $B E$, of radius d, and subjected to the force Q and to the distributed pressure of tho adjacent link.

For a section of the link between B and E, the expressions previously deduced for the normal fore e sid bending moment still hold; thus

$$
\begin{aligned}
& P=\frac{Q}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right) \\
& M_{b}=M+Q b-\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)
\end{aligned}
$$

However in the present case, $\alpha=90^{\circ}=\frac{\pi}{2}, \sin ^{2} \alpha=1$, and

$$
\begin{aligned}
K=\alpha+\sin \alpha \cos \alpha & =\frac{\pi}{2} . \quad \text { Substituting there values; } \\
P_{b} & =\frac{2 Q}{\pi}(\cos \varphi+\varphi \sin \varphi) ; \\
M_{b} & =M+Q b-\frac{2 Q d}{\pi}(\cos \varphi+\varphi \sin \varphi) .
\end{aligned}
$$

Between E and F

$$
\begin{aligned}
& P=Q \sin \varphi ; \\
& M_{b}=M+Q(b-d \sin \varphi ;
\end{aligned}
$$

and between F and A

$$
\begin{aligned}
& P=Q \sin \varphi ; \\
& M_{b}=-M+Q r(1-\sin \varphi)
\end{aligned}
$$

The negative sign must be given to the moment M for the arc $A F$, since M, being assumed clockwise, tends to decrease the curvature of the arc.

For the arc BE ,

$$
E f \omega_{1}=\frac{M+Q b}{d}\left(1+\frac{1}{x}\right)-\frac{2 Q}{11}(\cos \varphi+\varphi \sin \varphi) .
$$

For the arc EF

$$
E f \omega_{2}=\frac{M+Q b}{d}\left(1+\frac{1}{x_{1}}\right)-\frac{Q}{x_{1}} \sin \varphi ;
$$

and finally for the arc $F H$,

$$
E f \omega_{3}=\frac{-M+Q_{r}}{r}\left(1+\frac{1}{x_{2}}\right)-\frac{Q}{x_{2}} \sin \varphi .
$$

These are obtained by substituting the proper values of P and M in the general equation

$$
\omega=\frac{1}{E f}\left(\rho_{+} \frac{M_{d}}{r}+\frac{M_{b}}{x r}\right)
$$

For the ares $3 E$ and EF, the radius of curvature is d and

$$
x_{1}=\frac{1}{16}\left(\frac{d}{d}\right)^{2}+\frac{1}{32}\left(\frac{d}{d}\right)^{4}+\cdots \cdot
$$

For the are FA , the radius is R , and

$$
x_{2}=\frac{1}{16}\left(\frac{d}{2}\right)^{2}+\frac{1}{128}\left(\frac{d}{2}\right)^{4}+\cdots
$$

Since the sections at H and B remain at right angles, we have

$$
\int_{0}^{\frac{\pi}{2}} \omega_{1} d \varphi+\int_{\frac{\pi}{2}}^{\frac{\pi}{2}+\alpha} \omega_{2} d \varphi+\int_{\frac{\pi}{2}+\delta}^{\frac{\pi}{2}} \omega_{3} d \varphi=0
$$

Substituting the values of $\%, \omega_{2}$ and ω_{3}, and dropping the factor Ef, the condition that the total change of inclination of the sections A and B shall be zero leads to the equation

$$
\begin{aligned}
& \frac{M+Q b}{d}\left(1+\frac{1}{x},\right) \int_{0}^{\frac{\pi}{2}} d \varphi-\frac{2 Q}{\pi} \int_{1}^{\frac{\pi}{2}}(\cos \varphi+\varphi \sin \varphi) d \varphi+\frac{M+Q b}{d}\left(1+\frac{1}{x_{1}}\right) \int_{\frac{\pi}{2}}^{\frac{\pi}{2}+S} d \varphi \\
& -\frac{Q}{x_{1}} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}+\delta} \sin \varphi d \varphi-\frac{M-Q r}{r}\left(1+\frac{1}{x_{2}}\right) \int_{\frac{\pi}{2}+\delta}^{\frac{\pi}{2}} d \phi-\frac{Q}{x_{2}} \int_{\frac{\pi}{2}+\delta}^{\frac{\pi}{2}} \sin \varphi d \varphi=0 .
\end{aligned}
$$

The integrals have the following values:

$$
\begin{aligned}
& \begin{array}{l}
\int_{0}^{\frac{\pi}{2}} d \varphi=\frac{\pi}{2} ; \\
\int_{0}^{\frac{\pi}{2}} \cos \varphi d \varphi=\sin \frac{\pi}{2}=1 ;
\end{array} \\
& \left.\int_{0}^{\frac{\pi}{2}} \varphi \sin \varphi d \varphi=\sin \varphi-\varphi \cos \varphi\right]_{0}^{\frac{\pi}{2}}=1 ; \\
& \left.\int_{\frac{\pi}{2}}^{\frac{\pi}{2}+\delta} \sin \varphi d \varphi=-\cos \varphi\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}+\delta}=\sin \delta ; \\
& \int_{\frac{\pi}{2}+\delta}^{\frac{\pi}{2}} d \varphi=-\delta ; \quad \int_{\frac{\pi}{2}+\delta}^{\frac{\pi}{2}} \sin \varphi d \varphi=-\sin \delta .
\end{aligned}
$$

Using there values, the equation becomes

$$
\frac{M+Q b}{d}\left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right)+\frac{M-Q_{r}}{r}\left(1+\frac{1}{x_{2}}\right) \delta-\frac{Q}{x_{1}}\left(\frac{4}{\pi}+\sin \delta\right)+\frac{Q}{x_{2}} \sin \delta=0,
$$

or $(M+Q b)\left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right)+\left(M \frac{d}{r}-Q d\right)\left(1+\frac{1}{x_{2}}\right) \delta-\frac{Q d}{x_{1}}\left(\frac{4}{\pi}+\sin \delta\right)+\frac{Q d}{x_{2}} \sin \delta=0$.

Solving ,

$$
M=Q_{d}\left\{\frac{\frac{1}{x_{1}}\left(\frac{4}{\pi}+\sin \delta\right)-\frac{b}{d}\left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right)+\left(\frac{1}{x_{2}}+1\right) \delta-\frac{1}{x_{2}} \sin \delta}{\left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right)+\frac{d}{r}\left(1+\frac{1}{x_{2}}\right) \delta}\right\} .(F)
$$

d. Link with Straight Sides.
11. A limiting case that must receive special consideration is that in which the sidles of the link are straight. This case forms the boundary between the two cases just considered, and therefore equations (E) and (F) should, for this form of center-ine, be identical.

This requirement furnishes a test for the correctness of the equation in question.

With the notation heretofore used, we have the following, when the sides of the link are straight;

$$
\left.\left.\alpha=\frac{\pi}{2} ; \quad r=\infty ; \quad \frac{1}{x_{2}}=16 \frac{r^{2}}{d^{2}}-2-\frac{1}{16} \frac{d^{2}}{r^{2}}\right]_{r=\infty}=16 \frac{r^{2}}{d^{2}}\right]_{2=\infty}=\infty
$$

Let the distance $0 H$, Fig 4, be denoted by Z so that $Z=a-d$; further let β denote the angle 0 CH , whence $\beta=90^{\circ}-\alpha=\frac{\pi}{2}-\alpha$; then

$$
\beta=\frac{\operatorname{arc} A E^{-}}{r}
$$

and when r recedes to infinity and $A E$ becomes equal to $O H=l$,

$$
\left.\beta=\frac{l}{r}\right]_{r=\infty}
$$

The evaluation of the separate terms in tho numerator and denominator of the second member of equation (E) proceeds as follows:

$$
\begin{aligned}
& \left.\frac{2}{k x,} \sin \alpha-\frac{1}{x_{1}} \cos \alpha\right]_{\alpha=\frac{\pi}{2}}=\frac{4}{x_{1} \pi} ; \\
& \left.-\frac{b}{d} \alpha\left(1+\frac{1}{x_{1}}\right)\right]_{d=\frac{\pi}{2}}=-\frac{\pi}{2} \frac{b}{d}\left(1+\frac{1}{x_{1}}\right) ; \\
& \left.\left.\frac{1}{x_{2}} \cos \alpha-\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)\right]_{\alpha=\frac{\pi}{2}}=\frac{1}{2 x_{2}}(\sin \beta-\beta)-\beta\right]_{\beta=0}=\frac{1}{x_{2}}(\sin \beta-\beta) . \\
& \text { Now } \frac{1}{x_{2}}=\frac{16 r^{2}}{01^{2}} \text {, } \\
& \text { and } \sin \beta-\beta=\left[\beta-\beta^{3}+\frac{\beta^{5}}{120}-\cdots\right]-\beta \\
& =-\frac{\beta^{3}}{6}+\cdots=-\frac{l^{3}}{r^{3}}+\text { terms with high er powers of } r \text {. }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left.\left.\frac{1}{x_{2}} \cos \alpha-\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)\right]_{\alpha=\frac{\pi}{2}}=-\frac{16 r^{2}}{d^{2}} \cdot \frac{l^{3}}{r^{3}}\right]_{r=\infty}=0 ; \\
& \begin{aligned}
\left.\alpha\left(1+\frac{1}{x_{1}}\right)\right]_{\alpha=\frac{\pi}{2}} & =\frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right) ; \\
\left.\frac{d}{r}\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)\right]_{\alpha=\frac{\pi}{2}} & \left.=\frac{d}{r}\left(1+\frac{1}{x_{2}}\right) \beta\right]_{\beta=0} \\
& \left.=\left[\frac{\beta \alpha}{r}+\frac{\beta \alpha}{r x_{2}}\right]_{\beta=0}=\frac{\beta \alpha}{r x_{2}}\right]_{\beta=0} \\
& =16 \frac{r^{2}}{\alpha^{2}} \frac{l}{2} \frac{\alpha}{2}=16 \frac{l}{\alpha}
\end{aligned}
\end{aligned}
$$

Substituting the values thus found, the equation becomes

$$
M=Q d\left\{\frac{\frac{4}{\pi x_{1}}-\frac{\pi}{2} \frac{b}{d}\left(1+\frac{1}{x_{1}}\right)}{\frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right)+16 \frac{l}{d}}\right\}
$$

In equation (F) we have, when the sides are straight,

$$
\left.\left.r=\infty ; \quad \frac{1}{x_{2}}=16 \frac{2^{2}}{d^{2}}\right]_{r=\infty}=\infty ; \text { and } \delta=\frac{l}{r}\right]_{r=\infty}=0 \text {. }
$$

The various corms hove tho following values:

$$
\begin{aligned}
& \frac{1}{x_{1}}\left(\frac{4}{\pi}+\sin \delta\right)_{\delta=0}=\frac{4}{x_{1} \pi} ; \\
& \frac{b}{d}\left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right)_{\delta=0}=\frac{\pi}{2} \frac{b}{2}\left(1+\frac{1}{x_{1}}\right) ; \\
& \left.\left(1+\frac{1}{x_{2}}\right) \delta-\frac{1}{x_{2}} \sin \delta\right]_{\substack{\delta=0 \\
x_{2}=\infty}}=\frac{1}{x_{2}}(\delta-\sin \delta)=0 ; \\
& \left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right]_{\delta=0}=\frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right) ;
\end{aligned}
$$

$\left.\frac{d}{\gamma}\left(1+\frac{1}{x_{2}}\right) \delta\right]_{\delta=0}=16 \frac{l}{d}, \quad$ since δ and β have the same limiting values, and $\frac{d}{r}\left(1+\frac{1}{x_{2}}\right) \beta=16 \frac{l}{d}$.

Inserting these values,

$$
M=\left\{\frac{\frac{4}{x_{1} \pi}-\frac{\pi}{2} \frac{b}{d}\left(1+\frac{1}{x_{1}}\right)}{\frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right)+16 \frac{l}{d}}\right\}
$$

This equation is identical with $P G$) as it should be.

```
e.Link with Circiular Center-Line.
```

12. One other limiting value remains to be tested. When in Fig 4 the half-axis 6 of the oval link is made equal. to the half-axis a, the oval centrr-ine becomes a true circle and the anele α becomes zero. If in equation (E) this value of α is inserted, the resulting: value of M should be precisely that given by equation (C). Making this substitution in the second member of (E), the first and third terms of the numerator and the first term of the denominator become zero, and the euration reduces to

$$
\left.\begin{array}{rl}
M & =\left[\frac{Q_{d}}{\frac{1}{x_{2}}-\left(1+\frac{1}{x_{2}}\right) \frac{\pi}{2}} \frac{d}{2}\left(1+\frac{1}{2 x_{2}}\right) \frac{\pi}{2}\right.
\end{array}\right] \operatorname{Qr}\left[\frac{\frac{1}{x_{2}}-\left(1+\frac{1}{x_{2}}\right) \frac{\pi}{2}}{\left(1+\frac{1}{x_{2}}\right) \frac{\pi}{2}}\right]
$$

which is identical with (c), since $x_{2}=x$.

f. LInk with Stud.

13. The links of crane chains and anchor chains are frequently proviced with lateral struts to prevent the collapsing of the sides. It is the general impression that the resistance of the link is increased by the use of such a strut or stud; however, some doubt has been throw on this conclusion by recent experiment. These experiments showed that with chains made of the came size of iron the chain with the ordinary open link withstood a greater breaking load
than the chain with the stud links. On the strength of these expertments, it is claimed that for general purposes the open link chain is preferable to the stud link chain and that the addition of the stud actually weakens the link rather then strengthens it. The discussion following will show that exactly the reverse is true; that with loads within the elastic limit the use of the stud reduces the stresses in links of the usual form by 100% or more.
14. To the system of external
forces heretofore considered an acting on the
Fig. 7
link, a new force, the pressure of the stud, is added. Thus in Fig 7 there are acting at the section $O A$ the normal force Q, the force S, the reaction of the stud, at right angle to Q, and the unknown bending moment M. At a section D making an angle \varnothing with the x-axis, the normal force is evidently $Q \sin \phi+S \cos \phi$; the tangential force is $Q \cos \phi-$ $S \sin \phi$, and the bending moment will be made up of the moment M and the moments of the forces, Q and S. There are now two unknown quantties to determe-the moment and the force s;hence there must be two relations connecting M, Q, and S. As in the previous discussion one equation is given by the integration of the inclinations of the

$$
\int_{0}^{\frac{\pi}{2}} \omega \cdot d \varphi=0
$$

To obtain a recond equation, we rind the derloction of the side of the link from its orfeinal linctrained position under the action of the knom system of external forces, and nurato infr infirntion to the rhortening of the stud under the action of the compressive force S.

15. The change in the coordjates of the center-line of a curved link subjected to external forces may be determined as foliove: Let the curve, Fig. 8 , be the given center-line, P any noint in it, end C the point, the change in the coordinates on which is to be found.

Let the coordinates of C be X_{c} and y_{c}, and let the coordinate increments be denoted by Δx_{c} and Δy_{c}; then the new coordinates of C will be

$$
\begin{aligned}
& x_{c}+\Delta x_{c} \\
& y_{c}+\Delta y_{c}
\end{aligned}
$$

Let x, y he the coordinates of P. By the action of the eyternel forces, the inclination of a normal section at P mill be changed by the angle $\Delta d \phi$, and the tangent to the centergline at p vilj chence its direction from PT to PT'This change of angle
 $p c \cdot \Delta t \phi$ and armure the position C_{1}. The X-component of $C_{1}, 15$ $\mathrm{CC}_{\perp} \sin P C F$, and the Y-component is $\mathrm{CC}, \cos P C F$.
 hence the x -corporent iss

$$
-\left(Y-Y_{c}\right) \cdot \Delta d \varphi ;
$$

and the Y-component is

$$
-\left(x_{c}-x\right) \cdot \Delta d \varphi
$$

In addition to the coordinate increments due to this change in the inclination of the section at P, there is an increment due to the actual lengthening (or shortening) of an element of arc as at P. The amount of this extension is $\varepsilon_{0} d s$; hence by reason of $1 t$, the point c ir carried in the direction of the axis x a distance

$$
\varepsilon_{0} d s \sin \varphi=c_{0} d x
$$

and in the direction of the axis Y a distance

$$
\varepsilon_{0} d s \cos \varphi=\varepsilon_{0} d y
$$

Adding together the increments due to the change in direction and the change in length of the elementary arc $d s$,

$$
\begin{aligned}
& d\left(\Delta x_{c}\right)=-\left(y-y_{c}\right) \Delta d \varphi+\varepsilon_{0} d x=y_{c} \omega d \varphi-y \omega d \varphi+\varepsilon_{0} d x \\
& d\left(\Delta y_{c}\right)=-\left(x_{c}-x\right) \Delta d \varphi+\varepsilon_{0} d y=-x_{c} \omega \cdot d \varphi+x \omega d \varphi+\varepsilon_{0} d y
\end{aligned}
$$

Summing for all the elementary arcs between C and the origin or stationery point. A, at, which point $\phi=0$,

$$
\begin{align*}
& \Delta x_{c}=y_{c} \int_{0}^{\varphi_{c}} \omega d \varphi-\int_{0}^{\varphi_{c}} y \omega d \varphi+\int_{0}^{x_{c}} \varepsilon_{0} d x \tag{9}\\
& \Delta y_{c}=-x_{c} \int_{0}^{\varphi_{c}} \omega d \varphi+\int_{0}^{\varphi_{c}} x \omega d \varphi+\int_{0}^{\varepsilon_{c}} \varepsilon_{0} d y . \tag{10}
\end{align*}
$$

16. Reforming to Fig: 7, it is evident that the point A of the centerlIne is the point whose coordinate increments mon तorired. The ordinate $O A$ is the semj-ayir 6 wren the link is unstrained. Under the action of the external forces the sides of the link approach each other, A approaches 0 , and the ordinate b receives the increment - Δb The immediate morlom is to determine this negative increment.

Taking the point B, Fig 7, as origin, the abscissa of the point A is the semi-axis a; this corresponds to x_{c}, equation (10). For values of ϕ between 0 and α,

$$
\begin{aligned}
& x=d(1-\cos \phi) ; \\
& x-x=a-d(1-\cos \varphi)=a-d+d \cos \varphi=l+d \cos \varphi .
\end{aligned}
$$

For values of φ between α and $\frac{\pi}{2}$,

$$
\begin{aligned}
& x=a-r \cos \varphi ; \\
& x-x=a-(a-r \cos \varphi)=r \cos \varphi
\end{aligned}
$$

From (10)

$$
-\Delta b=\int_{0}^{\varphi_{c}}\left(x_{c}-x\right) \omega d \varphi-\int_{0}^{y_{c}} \varepsilon_{0} d y ;
$$

hence denoting by and ω_{2} the values of Q for the ares of radius d and re respectively,

$$
\begin{align*}
-\Delta b & =l \int_{0}^{\alpha} \omega_{1} d \varphi+d \int_{0}^{\alpha} \cos \varphi d \varphi-\int_{0}^{\alpha} \varepsilon_{0}, d y \\
& +r \int_{\alpha}^{\frac{\pi}{2}} \omega_{2} \cos \varphi d \varphi-\int_{d \sin ^{2} \alpha}^{6} \sum_{0} d y \tag{11}
\end{align*}
$$

To obtain the values of $\omega_{1}, \omega_{2}, \varepsilon_{0}$, and ε_{0}, , we must find the general expressions for the normal force and bending moment at any section.

For sections between $\phi=0$ and $\varphi=\alpha$,

$$
\begin{aligned}
& P=\frac{Q}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)+S \cos \phi ; \\
& M_{b}=M+Q b-\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)-S(l+d \cos \varphi) .
\end{aligned}
$$

From equations (5), remembering that within there limits, the radius of curvature of the center-line is $\underline{\alpha}$,

$$
\begin{aligned}
& E f \varepsilon_{0}=P+\frac{M_{b}}{d}=\frac{M+Q b-S l}{d} ; \\
& E=f \omega_{1}=E f \varepsilon_{0}+\frac{M_{b}}{\mu_{1} d}=\frac{M+Q b-s l}{d}\left(1+\frac{1}{x_{1}}\right)-\frac{Q}{k x_{1}}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)-\frac{s}{x_{1}} \cos \varphi .
\end{aligned}
$$

For sections between $\varphi=\alpha$ and $\varphi=\frac{\pi}{2}$

$$
\begin{aligned}
& V_{b}=\mu+Q r-Q r \sin \varphi-\operatorname{Sr} \cos \varphi ; \\
& P=Q \sin \varphi+S \cos \varphi ; \\
& E f \varepsilon_{2}=\frac{M}{r}+Q ; \\
& E f \omega_{2}=\left(\frac{M}{r}+Q\right)\left(1+\frac{1}{x_{2}}\right)-\frac{1}{x_{2}}(Q \sin \varphi+S \cos \varphi) .
\end{aligned}
$$

From the condition

$$
\int_{0}^{\alpha} \omega d \varphi+\int_{\alpha}^{\frac{\pi}{2}} \omega_{2} d \varphi=\sigma
$$

we obtain

$$
\begin{aligned}
& \frac{M+Q b-s l}{d}\left(1+\frac{1}{x_{1}}\right) \int_{0}^{\alpha} d \varphi-\frac{Q}{k x_{1}} \sin ^{2} \alpha \int_{0}^{\alpha} \cos \varphi d \varphi-\frac{Q}{k x_{1}} \int_{0}^{\alpha} \varphi \sin \varphi d \varphi-\frac{S}{x_{1}} \int_{0}^{\alpha} \cos \varphi d \varphi \\
& +\left(\frac{M}{2}+Q\right)\left(1+\frac{1}{x_{2}}\right) \int_{\alpha}^{\frac{\pi}{2}} d \varphi-\frac{Q}{x_{2}} \int_{\alpha}^{\frac{\pi}{2}} \sin \varphi d \varphi-\frac{S}{x_{2}} \int_{\alpha}^{\frac{\pi}{2}} \cos \varphi d \varphi=0 .
\end{aligned}
$$

performing the int.cerations and reducing,

$$
\begin{align*}
& (M+Q b-5 l)\left(1+\frac{1}{x_{1}}\right) \alpha+\left(M \frac{\alpha}{r}+a d\right)\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)-\frac{a d}{x_{1}}\left(\frac{2 \sin \alpha}{A}-\cos \alpha\right) \\
& -\frac{5 d}{x_{1}} \sin \alpha-\frac{a d}{x_{2}} \cos \alpha-\frac{\operatorname{sd}}{x_{2}}(1-\sin \alpha)=0 . \tag{12}
\end{align*}
$$

Now substituting the values of $\omega_{1}, \omega_{2}, \varepsilon_{0}, \varepsilon_{0}$ in equation (ll),
$-E f \cdot \Delta b=\frac{l}{\alpha}(m+a b-s l)\left(1+\frac{1}{x_{1}}\right) \int_{0}^{\alpha} d \varphi-\frac{a l}{k x_{1}} \sin ^{2} \alpha \int_{0}^{\alpha} \cos \varphi d \varphi$
$-\frac{a l}{k x_{1}} \int_{0}^{\alpha} \varphi \sin \varphi d \varphi-\frac{s l}{x_{1}} \int_{0}^{\alpha} \cos \varphi d \varphi+(n+a b-s l)\left(1+\frac{1}{x_{1}}\right) \int_{0}^{\alpha} \cos \varphi d \varphi$
$-\frac{a d}{k x_{1}} \int_{0}^{\alpha} \cos ^{2} \varphi d \varphi-\frac{Q d}{k x_{1}} \int_{0}^{\alpha} \varphi \sin \varphi \cos \varphi d \varphi-\frac{s d}{x_{1}} \int_{0}^{\alpha} \cos ^{2} \varphi d \varphi$ $+\left(M+Q_{r}\right)\left(1+\frac{1}{x_{2}}\right) \int_{\alpha}^{\frac{\pi}{2}} \cos \varphi d \varphi-\frac{Q_{r}}{x_{2}} \int_{\alpha}^{\frac{\pi}{2}} \sin \varphi \cos \varphi d \varphi-\frac{S_{r}}{x_{2}} \int_{\alpha}^{\frac{\pi}{2}} \cos ^{2} \varphi d \varphi$ $-(M+Q b-S l) \sin \alpha-\left(\frac{m}{2}+Q\right)(b-d \sin \alpha)$.

Performing the integrations,
-Eff: $\Delta b=(M+Q b-s l)\left(1+\frac{1}{x_{1}}\right) \frac{\alpha l}{d}-\frac{Q l}{k x_{1}} \sin ^{3} \alpha-\frac{Q l}{k x_{1}}(\sin \alpha-\alpha \cos \alpha)$

$$
-\frac{s l}{x_{1}} \sin \alpha+(m+a b-s l)\left(1+\frac{1}{x_{1}}\right) \sin \alpha-\frac{Q \alpha}{2 k x_{1}} \sin ^{2} \alpha(\alpha+\sin \alpha \cos \alpha)
$$

$$
-\frac{Q_{\alpha}}{4 k x_{1}}\left(2 \sin ^{2} \alpha+\sin \alpha \cos \alpha-\alpha\right)-\frac{5 \alpha}{2 x_{1}}(\alpha+\sin \alpha \cos \alpha)
$$

$$
+\left(M+Q_{r}\right)\left(1+\frac{1}{x_{2}}\right)(1-\sin \alpha)-\frac{Q_{r}}{2 x_{2}} \cos ^{2} \alpha-\frac{S_{r}}{2 x_{2}}\left(\frac{\pi}{2}-\alpha-\sin \alpha \cos \alpha\right)
$$

$$
\begin{equation*}
-(m+a b-\operatorname{se}) \sin \alpha-\left(\frac{m}{r}+a\right)(b-d \sin \alpha) . \tag{13}
\end{equation*}
$$

Let E^{\prime} and f^{\prime} denote, respectively, the modulus of elasticity of the material of the stud and the cross section of the stud; then since $-\Delta b$ is the amount of compression in the half length, $6-\frac{d}{2}$, of the stud, we have

$$
-E^{\prime} f^{\prime} \cdot \Delta b=S\left(b-\frac{d}{2}\right) .
$$

If we denote by c the ratio $\frac{E f}{E^{\prime} f^{\prime}}$; then

$$
-E f \cdot \Delta b=c S\left(b-\frac{d}{2}\right) .
$$

After slight reduction, equations (12) and (13) may be written
as follows:

$$
\begin{align*}
& \Gamma M=\Omega \cdot 5 d-\psi \cdot Q d \\
& \Omega M=\Sigma \cdot s d-\chi \cdot Q d \tag{15}
\end{align*}
$$

(14)
ill which the coefficients of M, Sd, and Rd have the following values:

$$
\begin{align*}
\Gamma= & \alpha\left(1+\frac{1}{x_{1}}\right)+\frac{\alpha}{r}\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right) ; \\
\Omega= & \frac{l}{\alpha}\left(1+\frac{1}{x_{1}}\right) \alpha-\sin \alpha\left(\frac{1}{x_{2}}-\frac{1}{x_{1}}\right)+\frac{1}{x_{2}} ;(16) \\
\psi= & \frac{b}{\alpha}\left(1+\frac{1}{x_{1}}\right) \alpha+\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)-\frac{\cos \alpha}{x_{2}}-\frac{1}{x_{1}}\left(\frac{2 \sin \alpha}{k}-\cos \alpha\right) ;(18) \\
\Sigma= & \frac{l}{\alpha}\left(1+\frac{1}{x_{1}}\right)\left(\alpha \frac{l}{\alpha}+\sin \alpha\right)+\frac{k}{2 x_{1}}+\frac{1}{2 x_{2}} \frac{r}{\alpha}\left(\frac{\pi}{2}-k\right) \\
& +\frac{l}{\alpha} \sin \alpha\left(\frac{1}{x_{1}}-1\right)+c\left(\frac{k}{\alpha}-\frac{1}{2}\right) ; \\
& +\frac{l}{\alpha} \frac{l}{\alpha} \alpha\left(1+\frac{1}{x_{1}}\right)+\frac{1}{\alpha} \cdot \frac{1}{2 x_{2}}(1-\sin \alpha)^{2} \tag{19}
\end{align*}
$$

Solving (14) and (15) for M and S,

$$
\begin{align*}
& M=Q d \frac{\psi \Sigma-\Omega \chi}{\Omega^{2}-\Gamma \Sigma} \tag{H}\\
& S=Q \frac{\Omega \psi-\Gamma \chi}{\Omega^{2}-\Gamma \Sigma}
\end{align*}
$$

Having found from formulas (H) and (I) the valuer of N and S, we can readily find the normal force and bending moment at any section, and then from formula (A) the stresses in the various fibers. If in (14) we make $S=0$, we have the case of an open link; the value of M then becomes

$$
M=-Q d \frac{\psi}{r}
$$

which is focentical with formula (E), as it. should be.
17. The Itm土ting cire irk which tho sides of the link are ate right must receive special consideration.

For this case,

$$
\begin{aligned}
& \left.\left.\alpha^{\prime}=\frac{\pi}{2} ; \quad \beta\left(=\frac{\pi}{2}-\alpha\right)=\frac{l}{r}\right]_{r=\infty}=0 ; \quad \frac{1}{x_{2}}=\frac{16 r^{2}}{d^{2}}\right]_{r=\infty}=\infty . \\
& \left.\Gamma=\frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right)+\frac{d}{r}\left(1+\frac{16 r^{2}}{d^{2}}\right) \frac{l}{r}\right]_{r=\infty}=\frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right)+16 \frac{l}{d} . \\
& \left.\Omega=\frac{\pi}{2} \frac{l}{\alpha}\left(1+\frac{1}{x_{1}}\right)+\frac{1}{x_{2}}(1-\sin \alpha)_{1=\frac{\bar{\sigma}}{2}}+\frac{1}{x_{1}}=\frac{\pi}{2} \frac{l}{\alpha}\left(1+\frac{1}{x_{1}}\right)+\frac{1}{x_{1}}+\frac{1}{x_{2}}(1-\cos \beta)\right]_{\substack{x_{1}=\infty \\
\beta=0}} \\
& =\frac{\pi}{2} \frac{l}{d}\left(1+\frac{1}{x_{1}}\right)+\frac{1}{x_{1}}+\frac{16 r^{2}}{d^{2}} \cdot \frac{1}{2} \frac{l^{2}}{r^{2}}=\frac{\pi}{2} \frac{l}{d}\left(1+\frac{1}{x_{1}}\right)+\frac{1}{x_{1}}+8 \frac{l^{2}}{d^{2}} \text {. } \\
& \left.\psi=\frac{\pi}{2} \frac{b}{\alpha}\left(1+\frac{1}{x_{1}}\right)+\frac{1}{x_{2}}(\beta-\sin \beta)_{\beta=0}-\frac{4}{\pi x_{1}}=\frac{\pi}{2} \frac{b}{\alpha}\left(1+\frac{1}{x_{1}}\right)+\frac{16 r^{2}}{d^{2}} \cdot \frac{l^{3}}{6 r^{3}}\right]_{t=\infty}-\frac{4}{\pi x_{1}} \\
& \left.\left.=\frac{\pi}{2} \frac{b}{d}\left(1+\frac{1}{x_{1}}\right)-\frac{4}{\pi x}, \quad \sin c \epsilon \frac{16 r^{2}}{d^{2}} \cdot \frac{e^{3}}{6 r}\right]_{r=\infty}=\frac{8}{3} \frac{l^{3}}{d^{2} r}\right]_{r=\infty}=0 \text {. } \\
& \sum=\frac{l}{d}\left(\frac{\pi}{2} \frac{l}{d}+1\right)\left(1+\frac{1}{x_{1}}\right)+\frac{\pi}{4 x_{1}}+\frac{l}{d}\left(\frac{1}{x_{1}}-1\right)+c\left(\frac{b}{d}-\frac{1}{2}\right)+\frac{1}{2 x_{2}} \frac{2}{d}\left(\frac{\pi}{2}-k\right) .
\end{aligned}
$$

To evaluate the last term we have

$$
\frac{\pi}{2}-k=\frac{\pi}{2}-\alpha-\sin \alpha \cos \alpha=\beta-\sin \beta \cos \beta=\beta-\left(\beta-\frac{2}{3} \beta^{3}+\cdots\right)=\frac{2}{3} \beta^{3}+\cdots
$$

and terms with higher powers of β.

$$
\begin{aligned}
& \frac{1}{2 x_{2}} \frac{r}{d}\left(\frac{\pi}{2}-k\right)=\frac{1}{2 x_{2}} \cdot \frac{r}{\alpha} \frac{2}{3} \beta^{3}=\frac{8 r^{2}}{d^{2}} \cdot \frac{r}{d} \cdot \frac{2}{3} \frac{l^{3}}{r^{3}}=\frac{16}{3} \frac{l^{3}}{d^{3}} ; \text { hence } \\
& \sum=\frac{l}{d}\left(\frac{\pi}{2} \cdot \frac{l}{d}+1\right)\left(1+\frac{1}{x_{1}}\right)+\frac{\pi}{4 x_{1}}+\frac{l}{d}\left(\frac{1}{x_{1}}-1\right)+c\left(\frac{b}{d}-\frac{1}{2}\right)+\frac{16}{3} \frac{l^{3}}{d^{3}}
\end{aligned}
$$

In the expression for X the indeterminate term is

$$
\frac{r}{\alpha} \cdot \frac{1}{2 x_{2}}(1-\sin \alpha)^{2}
$$

Since $(1-\sin \alpha)_{\alpha=\frac{\pi}{2}}^{2}=(1-\cos \beta)_{\beta=0}^{2}=\left(\frac{\beta^{2}}{2}\right)_{\beta=0}^{2}=\frac{l^{4}}{4 r^{4}}$
the expression is

$$
\left.\left.\frac{r}{d} \cdot \frac{8 r^{2}}{d^{2}} \cdot \frac{l^{4}}{4 r^{4}}\right]_{r=\infty}=\frac{2 l^{4}}{d^{3} r}\right]_{r=\infty}=0
$$

hence,

$$
X=\frac{1}{x_{1}}\left(\frac{b}{d}-\frac{3}{4}\right)-\frac{4}{\pi} x_{1} \frac{l}{d}+\frac{l}{d} \frac{b}{d} \frac{\pi}{2}\left(1+\frac{1}{x_{1}}\right)
$$

g. Résumé of Formulas.
18. For convenience of reference we collect the various formulas for the bending moment M.
(I) Link with elliptical center-line, load assumed as concentrated:

$$
M=Q_{d}\left\{\frac{a}{d} \frac{8 \frac{a^{2}}{d^{2}} 2-\frac{2}{3} \frac{b^{2}}{a^{2}}-\frac{4}{3}}{\frac{\pi}{2}\left(16 \frac{a^{2}}{d^{2}} \alpha-\frac{a^{2}}{b^{2}} \beta\right.}-\frac{b}{\alpha}\right\}, \quad \text { (B) }
$$

in which

$$
\begin{aligned}
& \alpha=1-\frac{1}{4} k^{2}-\frac{3}{64} k^{4}-\frac{5}{256} k^{6} \ldots \\
& \beta=1-\frac{3}{4} / \tau^{2}+\frac{9}{64} k^{4}+\frac{3}{256} k^{6}+\ldots \\
& \gamma=\frac{b^{2}}{a^{2}}+\frac{b}{\sqrt{a^{2}-b^{2}}} \tan ^{-1} \frac{\sqrt{a^{2}-b^{2}}}{b}
\end{aligned}
$$

and

$$
k^{2}=1-\frac{b^{2}}{a^{2}}
$$

(2) Link with circular center-ine of radius r :

$$
M=Q r\left\{\frac{2}{\pi(1+x)}-1\right\}
$$

(3) Link with center-line of four circular arcs, two of radius d and two of radius r, load assumed concentrated:
(4) Link as described under (3) hut with lond froured as distribute:

$$
M=Q d\left\{\frac{\frac{1}{x_{1}}\left(\frac{2 \sin \alpha}{x}-\cos \alpha\right)+\frac{1}{x_{2}} \cos \alpha-\frac{b}{\alpha} \alpha\left(1+\frac{1}{x_{1}}\right)-\left(\frac{\pi}{2}-\alpha\right)\left(1+\frac{1}{x_{2}}\right)}{\alpha\left(1+\frac{1}{x_{1}}\right)+\frac{d}{2}\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)}\right\} \cdot(E)
$$

(5) Link of four circular arcs but of lemniscate form; load distribute:

$$
M=Q d\left\{\frac{\frac{1}{x_{1}}\left(\frac{4}{\overline{1}}+\sin \delta\right)-\frac{b}{d}\left(1+\frac{1}{x_{1}}\right)\left(\frac{\pi}{2}+\delta\right)+\left(1+\frac{1}{x_{2}}\right) \delta-\frac{1}{x_{2}} \sin \delta}{\left(\frac{\pi}{2}+\delta\right)\left(1+\frac{1}{x_{1}}\right)+\frac{d}{r} \delta\left(1+\frac{1}{x_{2}}\right)}\right\}
$$

(6) Link composed of two circular arcs and two siraight lines; load distributed:

$$
M=Q d\left\{\frac{\frac{4}{u_{1} \pi}-\frac{\pi}{2} \frac{b}{d}\left(1+\frac{1}{x_{1}}\right)}{\frac{\pi}{2}\left(1+\frac{1}{u_{1}}\right)+16 \frac{l}{d}}\right\}
$$

(7) Link of four circular arcs with sid:

$$
\begin{aligned}
& M=\frac{\psi \Sigma-\Omega x}{\Omega^{2}-\Gamma \Sigma} \\
& S=\frac{\Omega \psi-\Gamma x}{\Omega^{2}-\Gamma}
\end{aligned}
$$

in which Γ, Ω, ψ, and \sum are given by equations (16), (17), (18), and (19).

V. COMPUTATION OF STRESSES.

a. Stresses in Link of Length 6 a

19. Proportions of links- The proportions of shin links in ordnary use vary somewhat. The semi-axis at the conter-line may be as small as 1.8 d, or as large as 4.5 d ; while the semi-axis may vary botwoon 12 and 2.25 d . For anchor chains with studs, Each given the proportions

$$
\begin{aligned}
& a=1.5 d, \\
& b=1.3 \mathrm{~d} .
\end{aligned}
$$

To show the influence of the breadth of the link, I have as a first example, assumed $a=2.5 d$ (that $1 s$, total length $=6 \mathrm{~d}$) and have varied the semi-axis b from d to 2.5 d. With $b=d$, the sides of the link are straight, and with $b=2.5$ d, the center-Inc becomes a true circle.
20. Computation of normal forces and bending moments. - The first step in the computation is the determination of the radius r of the arcs that form the sides and of the angle α and its functions.

Taking the ratio $\frac{b}{d}$ as the independent variable, the values given in table 1 are readily. found. Formula (7) is used to compute $\sin \alpha$ and $\cos \alpha$, (8) to compute $\frac{r}{\alpha}$, and the formula

$$
\frac{1}{x_{2}}=4\left(\frac{r}{\sigma}\right)^{2}-2-\frac{1}{4}\left(\frac{e}{r}\right)^{2}=16\left(\frac{r}{d}\right)^{2}-2-\frac{1}{16}\left(\frac{d}{r}\right)^{2},
$$

which may be obtained thy taking the reciprocsl of the series of formula (6), is used to compute the function $\frac{1}{x_{2}}$ for different values of $\frac{r}{d}$. The value of $\frac{1}{x}$, is $16\left(\frac{d}{d}\right)^{2}-2-\frac{1}{16}\left(\frac{d}{d}\right)^{2}=13.93$

The substitution of the numerical values of there functions in
the expression row Γ, Ω, \sum, etc, equation (16) to (30) fives the numerical values of these coefficients; and the substitutions or these last values in formulas (H) and (I) gives the numericsi values of the moment M and the stress S in the stud. The results, ar s obtained, are shown in tangle II.

The value of $c=\frac{E f}{E^{\prime} f^{\prime}}$ in the expression for \sum is assumed to be 4 ; this holds for a cast iron stud with a sectional area onehalf the area of the link section. The values of M^{\prime} for the open link given in the last column are obtained from the formal

$$
M=-\frac{\Psi}{\Gamma} Q d
$$

thus for $\frac{b}{d}=1, \quad M=-\frac{5.7178}{47.452} Q d=-.1205 Q d, \quad$ and \quad so on.
It will be shown later that in the case of the open link, the maximum stresses occur at sections A and fo, that is, at the side and end of the link; that with the stud link there are in each quadrant two sections of minimum stress and that maximum stresses occur at sections A and B and at a third section lying between them. The stresses at actions A and B are therefore of prime importance, and to these we now turn our attention.

It has been shown that for sections between $\phi=0$ and $\varphi=\alpha$,

$$
\begin{aligned}
& P=\frac{Q}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)+S \cos \varphi ; \\
& M_{b}=M+Q b-\frac{Q d}{k}\left(\sin ^{2} \alpha \cos \varphi+\varphi \sin \varphi\right)-S(l+d \cos \varphi) .
\end{aligned}
$$

At section $\mathrm{B}, \phi=0$: hence

$$
\begin{aligned}
P & =Q \frac{\sin ^{2} \alpha}{k}+5 ; \\
M_{b} & =n+Q b-Q \alpha \frac{\sin ^{2} \alpha}{k}-5(l+\alpha) \\
& =m+Q \alpha\left(\frac{k}{\alpha}-\frac{\sin ^{2} \alpha}{k}-5 a\right.
\end{aligned}
$$

At section \AA,

$$
\begin{aligned}
& P=Q ; \\
& M_{0}=M
\end{aligned}
$$

The expressions as here given, apply to the stud link; for the open link we have merely to substitute for M the moment for the open Jink and to make 5 zero. The mimerical va woes of the norma? force and bending moment at section A and B for both stud s nd open inks are given in table III.
21. Stresses jul Sections is and B. It is evident from formula (A) that the fibers of the cross section for winch is greatest will be subjected to the greatest intensity or stress. For a circular sectimon of diameter d the maximum values of η are $+\frac{d}{2}$ at the outermost fiber and $-\frac{d}{2}$ at. the fiber nearest the center of curvature; and to find the absolute maximum intensity of stress at any section of the link, we need only to consider the stresses in these two firers. At section B the radius of curvaiveris d, and $\frac{1}{x}$, is inn? At the outermost fiber, $\frac{\eta}{r+\eta}=\frac{\frac{d}{2}}{d+\frac{d}{2}}=\frac{1}{3}$;
and at the innermost fiber $\frac{\eta}{2+\eta}=\frac{-\frac{d}{2}}{d-\frac{d}{2}}=-1 ;$
hence $1+\frac{1}{x}, \frac{\eta}{r+3}$ becomes

$$
\begin{aligned}
& 1+\frac{1}{3} \times 13.93=5.6433 \text {, at outer fiber: } \\
& 1 \rightarrow 1 \times 13.93=-12.93 \text {, at } 11717 \text { er fiber. }
\end{aligned}
$$

Formula (A) reduces to

$$
\begin{aligned}
\sigma & =\frac{p}{f}+5.6433 \frac{M_{3}}{f d}, \text { at outer fiber, } \\
\text { and } \quad \sigma & =\frac{p}{f}-12.93 \frac{M_{b}}{f d}, \text { at inn cr fiber. }
\end{aligned}
$$

Substitut ing in these euvit Loms tle munericnl values of P and M, as given in columns 4 and 5,8 and 9 , table 111 , we obtain the
results given in tatile V for section B.
The conowtation or the stresses at section A is complicated by the fact that for different values of b, we have difforent values of r and X_{2}. The various stens in the calculation and the numerical results are shom in table IV.

Let the expression $\frac{c}{r}\left(1+\frac{1}{x_{2}} \frac{\eta}{r+\eta}\right)$ be denoted by K; then formula (A) may be written

$$
\sigma=\frac{P}{f}+\frac{K M_{b}}{f}=\frac{Q}{f}+\frac{K M_{b}}{f},
$$

since at Section $A, P=Q$.

The values of $i f$ for stud ano open link, romentively are piven in table III, and the corresmoning values of K are given in the last two columns of table IV . The substitution of the values of K and M in the equation just given leads to the results given in table V for section A.
22. Link of Lemniscate Form. In table V/ are given the data and results for the link with sides convex to the center. For the value $\frac{b}{d}=\frac{1}{2}$, the sldes touch; for $\frac{b}{a}=1$, the sides are stralght. The values given in the table are taken from tables III, IV, and V. The value of the bending morent M is obtained from formula (F) , the values of the variabirs δ, r, x_{2}, etc. in this formula being readily found from the geometry of the configuration: The moment at section B is obtained by makine $\phi=0$ in the Ennern exnession

$$
M_{b}=M+Q b-\frac{2 Q \alpha}{\pi}(\cos \varphi+\phi \sin \phi) ;
$$

hence $\quad M_{b}$ at section $B=M+Q b-\frac{2 Q d}{11}=M+Q d\left(\frac{b}{d}-\frac{2}{\pi}\right)$.

The normal force at section A is Q; that at section B is $\frac{2}{\pi} Q$, The normal force and bending moment at coction A and B being given, the stresses in the extreme fibers at these sections, as given in table VI, are readily form from the general formula (A)

It is evident that with a. Ink of this form the stud will have little influence on the stresses. When the sties are straight, the moment M at the sides is small and there is little tendency for the sides to approach each other; and, as chow by table VI, when $\frac{b}{d}=8$, or less, the moment M becomes positive and the sides tend to recede from each other. For this reason it has been deemed unnecessary to consider the case of a link of this form with a restraining stud. 23. Concentrated Lords. If the neosure between two links is assumed to be concentrated at a single point we have the results shown in table VII. The bending moment is is computed from formula (D), the functions $\alpha, \sin \alpha, \cos \alpha, \frac{1}{x_{2}}$, etc, having the values given in table I; the bending moment ot section B is

$$
M_{b}=M+Q b
$$

At section A the moment force is Q, and at section B it is 0 . The moment and normal fore e at each section being given, the method of computating of the fiber stresses is precisely the same as in the case of the open link, disitibutco load.
24. Curves of Bending Moments. The bending moments at section A under the different assumed nondttone are shown graphically by the curves of sheet I. These curves were obtained by plotting the values of M in tables III, VI and VII. The ratio $\frac{b}{d}$ is taken as the abscissa and the bending moment at section A, as the ordinate. It will be observec that the curve for the open link, disuributed load is continuous after the ratio $\frac{b}{d}$ becomes less tinan 1 , and the link has the lemniscate form. This curve crosscs the zero line sor $\frac{b}{a}=.83$; hence for this value of $\frac{b}{a}$, the moment at section A disappears and the section is subjected to the direct tension Q. Regarding the sense of the moment, the negative sicn of M for the open link shows that the moment tends to decrease the curvature at A. In the case of the stud link, on the other hand, the moment has the positive sign and therefore tends to increase the cirvature at section A. Regarding the magniture of the roment, it appesres that with the same value of b, the numerical value of M is greater for the open link then for the stuxi link between the limits $\frac{b}{d}=1$ and $\frac{b}{d}=2.5$. A peculiar and unexpected fact is that the minimum value of M for the stud link occurs ror $\frac{b}{d}=7.3$, about, After passine this minimum, the value of in incroases uniformiv with $\frac{b}{d}$. In the case of the oper. link there is no minimum value of M in the algebralc sense. The numertori value of M increases from 0 at $\frac{b}{a}=.83$ to .97 Qd for $\frac{b}{d}=2.5$. The assumption of a concentrated load incresses the moment in, as shom by the curves. Naturally this increase in greatest with the smaller valixos oir b and the corresponding
larger values of the mimic . As $\frac{b}{d}$ increases, the angle α decreases In value and the moments grow nearly equal: finally when $\frac{b}{d}=2.5$, the center-line of the link is a circle, the ankle α is zero, the load is concentrated, and the two values of in are the same.

The bending moment at section B are show in the curves of sheet II . At this section the moment is boettre in every case and therefore tends to increase the curvature at tho fir t of the link, As at section \dot{A}, the moment is very greatly nooratsen y the use of the stud ; but even in the case of the stud link, the moment increases very rapidly as b increases, much more so than the moment at section A. The influence of the assumption of a concentrated load is very marked. With a link of the ordinny width, $b=1.3 \mathrm{~d}$, the moment with a concentrate load is more than double that with a distributed load, As before, this direcrence decreases as the link becomes more nearly circular.
25. Curves showing Stresses in Sections A and B. The curves of sheet III shows the fiber stresses at sections Λ and B, the unit being $\frac{Q}{f}$, the stress in a straight bar of cross sections f and subjected to a load Q.
From $\frac{b}{d}=1$ to $\frac{b}{d}=1,3$ the tension in the outer fiber at both sections A and B is about the same, and approximately $1.5 \frac{Q}{f}$. For larger values of $\frac{b}{o f}$ the tension in the outer fiber of section B exceeds that in the outer fiber of section A, the difference increasing rapidly as $\frac{b}{d}$ increases. The stress in the inner fiber of section A is small and changes from tension to compression for $\frac{b}{a}=1.93$. The compression in the inner fiber of section B,
though small for small values of $\frac{b}{d}$, increasesvery rapidly when $\frac{b}{d}$ exceeds 1.5^{-}. The stresses at section A and B of the open link with distributed load are shown graphically in sheot IV • For values of $\frac{b}{d}$ greater than 1 , the tension in the innor fiber of section A is greater than thet in the outer fiber of section B, though the difference is not marked. The compression in the inner fiber of section $I 3$ is, however largely in excess of that in the outer fiber of section A, and increases very rapidly as the wicth b is made larger. A comparison of sheets III and IV shows thet for $\frac{b}{d}$ Ereater than 1 , the stressess in seciions A mor Prom much reater in the open link than in the stuc link. It is interesting to note the stresses for values of $\frac{b}{\alpha}$ less than 1 , that $1 s$, for links of the lemniscete form. At ection B, the tension in the outer riber gradually diminishes with $\frac{b}{d}$ becoming about $1.3 \frac{Q}{d}$ for $\frac{b}{d}=.5$; Inkewise the compression in the inner fiber diminishes to about $.85 \frac{a}{d}$ for $\frac{b}{d}=.5$. The stress in the outer fiber of rection A is practicully 0 for $\frac{b}{d}=1$, and increases as b crows maller until it reaches the value $\because 55 \frac{a}{d}$ when $\frac{b}{a}=.5$. The tencion in the inner fiber grows smaller with b and becomes 0 when $\frac{b}{d}=.68$; for smaller values of $\frac{b}{a}$, this fiber is in compression. When $\frac{b}{a}=.83$, the stress in the inner and outer fibers or section A is the rame and is a tension of magiiture $\frac{Q}{f}$. As was chown in sheet I, the bending moment at. section A disappears for this value of $\frac{b}{d}$, and the section is acted unon by the normal force alone.
26. Strossens in Intermediate Sections. - While sections A and B are of prime importance, it is instructive and interesting to find the stresses in intermed late cross sections and to observe the law of variation of stress from section to section. With the length of link we have assumed in the proviour computations, we shall find that in the case of the open link, the maximum absolute stress occurs in either section \mathcal{F} or section B; but in the case of the stud link, it will be found that the maximum tensile stress occurs at sore interreciisate section.

For the purpose of exhibiting the stress throughout the link, let us take a Ink with the proportions $b=1.5 d, a=2.5 d$.

Referring to the preceding t, ah les, we find in connection with this link the following values:

$$
\begin{array}{ll}
r=3.5 d ; & \frac{1}{x_{2}}=194 ; \\
\alpha=.9273 \text { radian; } & M=.0696 Q_{d} ; \\
\sin \alpha=.8 ; & M=-4467 Q_{d} ; \\
\cos \alpha=.6 ; & S=.3625 Q ; \\
H=\alpha+\sin \alpha \cos \alpha=1.4073 ; & \frac{1}{K}=.71058 .
\end{array}
$$

We will consider first the case of the stud ink. The general equations for the normal force and bending moment are:

$$
\begin{aligned}
& \varphi=0 \\
& \frac{t}{t} \\
& \varphi=\alpha
\end{aligned}\left\{\begin{array} { l }
{ P = \frac { Q } { k } (\operatorname { s i n } ^ { 2 } \alpha \operatorname { c o s } \varphi + \varphi \operatorname { s i n } \varphi) + S \operatorname { c o s } \varphi ; } \\
{ M _ { b } = M + Q b - \frac { Q d } { k } (\operatorname { s i n } ^ { 2 } \alpha \operatorname { c o s } \varphi + \varphi \operatorname { s i n } \varphi) - S (1 + d \operatorname { c o s } \varphi) . } \\
{ \varphi = \alpha } \\
{ \omega } \\
{ \varphi = \frac { \pi } { 2 } }
\end{array} \left\{\begin{array}{l}
P=Q \sin \varphi+5 \cos \varphi ; \\
M_{b}=M+Q r(1-\sin \varphi)-\operatorname{sr} \cos \varphi
\end{array}\right.\right.
$$

Vie nov resume values of \varnothing as $0^{\circ}, 10^{\circ}, 20^{\circ}, \ldots .90^{\circ}$ and compute for each value of ϕ the value of p and w_{b} at that section; there being obtained, we find the stresses in ibo outre and firer fires or in any desired intermediate fibers by means of formula (A). The results obtained are shown in table VIII.

The bending moment M_{b}, it will be observed, is positive for value of ϕ between 0 and α, negative between 60° and 80°, and is again positive at 90°, that is, at section \mathcal{A}. There are therefore two sections at which M_{b} passes through the value 0 ; one lifer, α and 60° the other between 80° and 90°. To determine these sections, we have the equation

$$
M_{b}=0=M+Q_{r}(1-\sin \varphi)-\operatorname{Sr} \cos \varphi,
$$

from which

$$
\begin{aligned}
& Q(1-\sin \varphi)-S \cos \varphi=-\frac{M}{r} \\
& \sin \varphi+\frac{S}{Q} \cos \varphi=1+\frac{M}{Q r} \\
& \sin \varphi+.3625 \cos \varphi=1.0199 .
\end{aligned}
$$

Solving,

$$
\begin{aligned}
\cos \varphi & =\left\{\begin{array}{l}
.05974, \\
59371
\end{array}\right. \\
\varphi & = \begin{cases}5133^{\circ} & 344^{3} \\
86^{\circ} & 34 \frac{1}{2}\end{cases}
\end{aligned}
$$

The sections corresponding to those values of ϕ are vrbiect to a uniformly distributed stress whose magniturle is

$$
\frac{P}{f}=\frac{Q}{f} \sin \varphi+\frac{5}{f} \cos \varphi=1.0199 \frac{Q}{f} .
$$

The stress in the outer fiber is positive, the Is, tensile for
$\phi=0$, and decreases in magnitude as ϕ increases until between 60° and 70° it changes sign and becomes negative or compressive. Between 70° and 80° the stress ngein chances ripen, becomes tensile, and increases as ϕ approaches 90°. The stress in the mintier fiber Is compressive for $\phi=0$ and decreases in absolute magnitude as ϕ Increases from 0° to 40°. Between 40° and 50° the stress changes sign, becomes tensile and remains tensile as ϕ approaches 90°

The maximum value of this stress occurs when $\phi 1 s$ about 70°; as shown by the table this stress is the greatest that occurs any section of the link. To find the exact location of this erection of maximum tensile stress, we proceed as follows:

From formula (A),

$$
\begin{aligned}
f_{6} & =P+\frac{M_{6}}{r}\left(1+\frac{1}{2} \frac{\eta}{r+\eta}\right) \\
& =P+\frac{M_{b}}{r}\left(1-\frac{1}{x} \frac{d}{2 r-d}\right)
\end{aligned}
$$

since for the inner fiber, $\eta=-\frac{1}{2} d$.
The section in question lies betmonen $\phi=\alpha$ and $\varphi=\frac{\pi}{2}$; hence

$$
\begin{array}{rl}
P & =Q \sin \varphi+S \cos \varphi \\
M_{b} & =M+Q r-r(Q \sin \varphi+S \cos \varphi) \\
P_{+} \frac{M_{0}}{r} & =\frac{M}{r}+Q \\
f_{\sigma}=\rho+\frac{M_{0}}{r}-\frac{M_{0}}{r} \frac{1}{x_{2}} \frac{\alpha}{2 r}-d & Q+\frac{M}{r}-h \frac{M_{0}}{r}
\end{array}
$$

where h denotes the constant $\frac{1}{x_{2}} \frac{d}{2 r-d}$.

$$
\begin{aligned}
f_{G} & =Q+\frac{M}{r}-h\left(Q+\frac{M}{r}\right)+h(Q \sin \varphi+5 \cos \varphi) \\
& =m+h(Q \sin \varphi+\operatorname{sos} \varphi)
\end{aligned}
$$

$$
\frac{d \sigma}{d \varphi}=\frac{h}{f}(Q \cos \varphi-5 \sin \varphi)
$$

For σ el maximum,

$$
\begin{aligned}
& Q \cos \varphi-5 \sin \varphi=0 \\
& \frac{\cos \varphi}{\sin \varphi}=\cot \varphi=\frac{5}{Q}=.3625 \% \\
& \varphi=7_{0}{ }^{\circ} 4.5^{\circ} .
\end{aligned}
$$

If desired, tho values of φ for which the stupors in the outer enc inner fibers is zero, may readily be computed. For the outer fiber:

$$
f_{6}=0=P+\frac{M_{6}}{r}\left(1+\frac{1}{x_{2}} \frac{\alpha}{2 r+\alpha}\right)=P_{+} 25.25-\frac{M_{6}}{2} .
$$

substituting $P=Q \sin \varphi+S \cos \varphi$,
and

$$
M_{b}=M+\operatorname{ar}(1-\cos \varphi)-S_{2} \cos \varphi,
$$

we obtain after reduction

$$
\sin \varphi+.3625-\cos \varphi=1.06196,
$$

from which

$$
\begin{aligned}
\cos \varphi & =\left\{\begin{array}{l}
.39363 \\
.28687
\end{array}\right. \\
\varphi & =\left\{\begin{array}{lll}
66^{\circ} & 49^{\circ} & 10^{\prime \prime} \\
73^{\circ} & 19^{\circ} & 45^{\prime \prime}
\end{array}\right.
\end{aligned}
$$

The location of the neutral line is obtained as follows: For this lIne the stress is zero: hence

$$
f_{6}=0=\beta+\frac{M_{0}}{d}\left(1+\frac{1}{x}, \frac{\eta}{d+\eta}\right) ; \quad \left\lvert\, \begin{aligned}
& \varphi=0 \\
& \varphi=\alpha \\
& \varphi=\alpha
\end{aligned}\right.
$$

and $f \cdot \sigma=0=P+\frac{M_{0}}{2}\left(1+\frac{1}{x_{2}} \frac{\eta}{\gamma+\eta}\right) \cdot \quad\left(\begin{array}{l}\varphi=\alpha \\ \varphi=\frac{\pi}{2}\end{array}\right.$

From the fist of these osuntions,

$$
\begin{aligned}
& \frac{\eta}{d+\eta}=-\left(\frac{P_{d}}{M_{b}}+1\right) x_{1}=-x_{1} \frac{P_{d}+M_{b}}{M_{b}} \\
& \frac{d+\eta}{\eta}=-\frac{M_{b}}{x_{1}\left(P_{d}+M_{b}\right)}=-\frac{13 \cdot 93 M_{b}}{P_{d}+M_{b}} \\
& \frac{d}{\eta}=-\frac{13.93 M_{b}}{P_{d}+M_{b}}-1=-\frac{14.93 M_{b}+P_{d}}{M_{b}+P_{d}} \\
& \frac{M_{b}+P_{d}}{\eta}=-\frac{M_{b}+P}{14.93 M_{b}+P_{d}}=-\frac{14.93 \frac{M_{b}}{d}+P}{}=-1
\end{aligned}
$$

for values of φ between o and α.

Likewise from the second nouetion,

$$
\begin{aligned}
& \frac{\eta}{r}=-\frac{\frac{\eta_{b}}{r}+\rho}{\left(1+\frac{1}{x_{2}}\right) \frac{M_{3}}{\gamma}+p} \\
& =-\frac{\frac{M_{3}}{2}+P}{195 \frac{M_{6}}{2}+P}, \text { in the present case. } \\
& \frac{\eta}{d}=\frac{\eta}{r} \cdot \frac{r}{d}=-\frac{\frac{M_{3}}{\alpha}+p \frac{\gamma}{\alpha}}{195 \frac{M_{6}}{\alpha} \cdot \frac{d}{r}+p} \\
& =-\frac{\frac{M_{0}}{\alpha}+3.5 p}{55.7 \frac{m_{3}}{\alpha}+P} \text {, into presentcase. }
\end{aligned}
$$

Fife ? chow graphically the varlation or the etrerses in the intermediate sections of a situd link. The iwo curves in the upper quadrant are obtained by lying off radicully the intensities of stress in the immer and outer fibers of any section, using the conter line as a base, Fensite strenses are mearured outwerds, compres ive stresses towards the center of curvature. The rcale adopted is shown in the figure. In the lower quadrant is fhown the location of the neutral line. Taking the whole link,there are eifht sections at which the bending moment disappears- two in cach quadrant; hence the neutral line is a curve with cight branches, each branch having radii through two sections of zero bending moment as asymptotes.
27. The curves of the stresses in the intermedinte sections of the open link are shown in Fig 10. The figure is self-explaining arid hardly needs comment. There are only four sections of zero bending moment and in conseufence the neutral line has four brancher, of the form how in the lower quadrant. The data from which the figure is drawn are readily obtained by methods already oxplained, and are given in table IX .
28. Stress at a Section at which the Link has a Sudien Change of Curvature,- - In connection rith the results given in tables VIII and IX,there is one diffenty to be noted. Reforing fo Fig 4, i.t is seen that the sections E, E^{\prime}, F and F^{\prime} soparate parts of the linf heving quite different radil of curvature; therefore, at these sections there is a cadden change of curvature. Now ordinary 'static conditions require that the change in the normal force and likevise the change in the bendine :roment, as mos from one side of the section to the
60

other, chall he continuous: that is,arrive at the same normal force and morrent whether we a pronach the rection Efom along the: arc AE or alone the arc BF. But the arc BE has the radius of curvature $B H$ Wh1le the are i.E has the emeator madius CF=r ; furtherrore, the function x res different velues for the two shes. If now we conclaer the section E as belonging to the roint BF, the stross is etven hy the expresaion

The Secretary

Western Society of Engineers

 ress is1734-41 Monadnock Block

Chicago, U. S. A.
orence being his result is rivation of curvature is of the siress
over such sections seems on that hypothesis(the Bernoulli-bulerian) to be arhitrary, but it monahly may be safely taiken equal to the mean of the tractions on either side. I do not think this peculiarity invalidates the solution for sections at sminl distances from those of discontinuity. "Doubtless the actual stress at such a section can be determined by an extension of the method employed to derive formule (A). Since, however, the ciress ot the ooction in questIon fis of relatively small importance, I have not ettempted to derive n formala for it.

62
other, chall he continlious; that is,arrive at the same normal force and morent whether we amparh the rectlon E fenm along the arc $A E$ or alone the arc $B E$. But the arc $B E$ has the radius of curvature $B H$ While the are i.E has the ereator radius CF=r ; murtherrore, the functionxhes different veluer for the two sres. If now we consider the section E as belonging to the soint $B F$, the stress is fiven by the exprescion

$$
G=\frac{P}{f}+\frac{M_{b}}{d}\left(1+\frac{1}{M_{1}} \frac{\eta}{d+\eta}\right) ;
$$

but if we concicer it as belonging to the part AE, the etress is given by

$$
\sigma=\frac{P}{f}+\frac{M_{6}}{r}\left(1+\frac{1}{x_{2}} \frac{\eta}{r+\eta}\right)
$$

These stresses are different, the magnitude of the difference being shown in tables vIll and IX by the two values for $\phi=\alpha$. This result is manifestly abeurd, and is due to the fact that in the derivation of formula (A) it is tacitly assumed that the variation of curvature is continuous. Prof. Pearson says: "The exact distribution of the stress over such sections seems on that hypothesis(the Bernoulli-iulerian) to be arhitrary, but it mobshly may be safely taien equal to the mean of the tractions on either ride. I do not think this peculiarity invalidates the solution for sections at smil distances from those of discontinuity. "Doubtless the actual stross at such a sectIon can be determined by an extension of the method employed to derive formule (A). Since, however, the eiress at inc coctjon in questIon is of relatively small importance, I have not stempted to derive a formala for it.
29. Maximum Tensile Stresses in Stud Links.- It mas shown in Art. 26 that the tensile stress in the inner fiber of 2 stud link has n maximum value for a value of ϕ given by the equation

$$
\cos \varphi=\frac{S}{Q}
$$

It is necessary to investigate the magnitude of this stress for different values of $\frac{b}{d}$ and compare it with the tencile stress in the outer fiber at section A.

$$
\text { since } S=Q \cot \varphi,
$$

the normal force ind moment at this section are

$$
\begin{aligned}
& P=Q \sin \varphi+S \cos \varphi=Q \sin \varphi+Q \cos \varphi \cot \varphi=\frac{Q}{\sin \varphi} \\
& M_{b}=M+Q r-Q r \cos \varphi-S r \cos \varphi=M-(P-Q) r .
\end{aligned}
$$

The values of the moment, normal fores, and resulting tensile stress are given in table x. The stresses are row the dash lIne curve, sheet III. Comparing this curve with the other curves, it appears that for values of $\frac{b}{d}$ less than 2 , this metres is the absolute maximum tensile stress in the link, and the for values of $\frac{b}{d}$ less than about I.G, it is the maximum stress, tensile or compressive.
b. Stresses in Link of width 3.5 d
30. To determine the influence of lrmeth, I have chosen a constant width 3.5 ! $b=1.25 d$ for the link, and have varied the length from 4 di to 8 d $(a=1.5 d$ to $a=3.5 \alpha)$.

The details of the computation need not be efven; the principal data and the re iilts ohtained ore axhititen in tonle YI.

The results nre shown graphically by the curves of shoets V and VI. Inspection of sheet V shows that the bending morent at rection A has its greatest numerical value for $\frac{a}{\alpha}=1.5$, that $1 s$, for the shortest link; this moment decreases as the length of the link is taken greater, and becones zero when the link becomes infinitely Jong. The moment at section B hat liknise a raximu value for $\frac{u}{a}=1,5$; it reaches a minimum when $\frac{a}{d}=2.25$, atout, and then increases, thoith very slowly, as the length of the link is increased. The rise in the moment for values of $\frac{a}{d}$ less than a is accounted for by the ranid decrase in the nomen force as the link hecomes shorter; this is show by the curve of the normal force at section B. The dron in the norral force is due, of course, to the decrease in the angle α. If the length is made infinite, the normal force has the value $\frac{2}{1} Q=.6366 Q$, and the moment at B the value $(1.25-.6 P 66) Q d=6134 Q d$; these aro, therefore, the linits that the normal force and moment at B cannot pass.

The variation of the stress at sections A and B as the length is varied is shown by the curves in shoct VI. For values of $\frac{a}{d}$ lers than 3.5 , the tensile stress in the incer Abor of rection A exceeds that in the outer fiber of section E by an appreciable arount. However, the first mentioned stress decreases, while the other increases, as the Ieneth of the link in increased; and for all velurs
 that at section A. The corpressive stress in the cutcr fiber of

 stresses; it is a minimum for values of $\frac{a}{d}$ lying betwoen 2 and 2.5 , and slowly increascs on the link is lengthened.

It is evident Fror this investieation thet vithin monronnhon firit: the length of the link exorts comparatively little influence on the maximum stresses. With the width chosen, the most favorable value of a is 3.5 d , if only tension is conridered, and anout 2.5 d ff we be the resistence of the link upon the nerolute maximum otreses, whirh irs the compressive rtress in section B.
VI. DISCUSSION OF RESULTS. a. Influence of the Form of the Innk.
31. The inferences to be drevn from the restilt: of tho proceding analyses, as regard the form of the $11 n k$, may be stated in few words.

The breadth of the link has a marked influence unon the stresses produced by a given load. As shown by the curves of wheet IV, the wicler the link, the greiter the maximum stresses. This conclusion might have been predicted, as it is evident that the wider the link the greater the hending action.

The introduction of the stud mractically doubles the strength of the link, provided the load is never great onough to induce stressen beyond the elastic limit of the material. [It has been the general opinion of engineers that the stud link chain is stronger than the open link chain; however the experiments of committee D of the United states board appointect to test iron steel men other metals (see eyecutive Document No 08 , Houso of Romonsontuivor, Forty fifth

Congress, second sesmion) seem to indicate that the stud actually weakens the chain, causing it, to runture at a load lower than that required to treak an onen link chain. At firet aigt thore cynerirents frem to dirprove the results given in the precneding pager; however, in this case, fact and theory are sacily rononofred. It is quite easy to understand that whtle the stur link is much strongor than the open link, movired the elantic limit is not reached, the former may runture with a mmiller load than the letter. In the first prece, the collapse of the sides of the open link after the elastic limit is passed deoroancs the offoctive midth of the Iink, and thus decreases the bending momert and etresses. If the iron of which the link is constructrais nuctile, the link may collapse until the sides are nearly parallel, and the strosses are lower than in the stud link, the sides of which are prevented from collapsing by the stud. Thus the actual distorsion or the omen link gives it a form of groater streneth, which is not the case with the stud link.

Again, as will be shown presently the collapse of the sides causes the links to nip each other, and this nipping action still further rectuces the sitresses •
[on the whole,it seems probable near the point of runture the stresses in the open link are less than those in the stuc link; but this fact cannot be made to prove mytring regnring the stresses within the elastic limit, and there can be no doubt that for ordinary working loads the chain made of etud links is materiolly stronger than one made of oner links. I

The length of the link has comparatively little influence upon the strength of the Ink.

The strongest link is one with rides co:ivex to the center (Lemniscate form) with a semi-axis $b=.7$ d, ahout; that ir, the breadth of the link is about 2.4 d .

In any link there is in each quadrent at least oneoction at which the bending moment is zero. At this scotion the ruress is minimum, and here the link should be welded. The end of the link is one of the dangerous points; hence the link should nover be welded at the end.
h. The Distribution of the Pressure between the Links. 32. It has been shom very clearly in the preceding analyses that considerable importance attaches to the question of the distribution of the pressure netween the arjacont Inks. As has boon rhom, the worst posstble case so far as concerasthe strength of the link is that in which this pressure is concentrated at a point or along a Ine, as would be the case were a mife ciece employed. In rare in-stances- as in weighing machinery- mifo oreos may be used, and the load may thus be concentrated. On the other hand, links of chains fit each other to some nxtent, and the pressure must be more or less distributed. In the analysis, I have assumed that the action is of a journal and bearing and that the intensity of pressure varies as the cosine of a certafn angle. This assumption I believe to be near the truth in the cone of chains that have been sore used so that the links have worl to n boerfng and provided the load is not ereat
ennilen to appreciably distort the link. Under different circumstances, however, the corine law, so to speak, may not correctly represent the distribution of pressure. Tn the first place the adjacent links may not fit like a journal and bearing. If the link is rather wide, the ressure may be nearly concentrated, and ar a result, the jink will be weaker than a link that fulfills the assumed law. On the other hand the links, if mather narrow, may wedge at their small ends so that the pressure is concentrated at two points at sore distance from the ends.

In this case the stresses will be Jess than if the notion is that of a journal and bearing. Again the link distorts when subjected to a heavy load and the rides ammoach each other. This action causes the sides of each link to pinch or hin the adjacent link, and there will result a new distribution of pressure that evidently will not be in accordance $\because i t h$ the cosine law.

Fig. II.
Suppose there are two links in contact as shown in Fig Il, and
that the cosine law of distribution 'oles [oud. The resultant of the pressure on one side of the axis $H B$ has the direction ITR and makes an angle γ with HB . Now if the sidles of the link are made to approach each uther, it ja evjacnt that three oil he a pinching or nipping action set up, and because of the resistance of the link to compression; the intensity of pressure will be increased near the section HE and diminished near the section HB, on the whole, therefore, the pinching of the links will carse the resultant HR to assume a new position $H R^{\prime}$ maxing the greater angle γ^{\prime} with the axis $H B$.

It is almost colfovicent that the increase in the angle reduces the stresses in the Ink. 'Io show the extent of the reciliction I have chosen a somewhat extrome case. Let the serf=axir of the centerInc of the link be $a=2.5 d$ and $b=1.5 \mathrm{~d}$. The normal force at section B we have found to be $4548 Q($ see table III). This normal force is the V-component of the resultant r, and the H-component is Q ; hence

$$
\begin{aligned}
\tan v & =4548 Q \div Q=4548 i \\
\gamma & =24^{\circ} 27^{\prime} .
\end{aligned}
$$

Suppose row that the resultant is shifted by the pinching action between the links so that the new angle V^{\prime} is 45°; then

$$
R^{\prime}=Q \sqrt{2}
$$

and the normal force at the section B is equal to Q. For sections between $\phi=0$ and $\varphi=\alpha$

$$
\begin{aligned}
& \text { normal force }=Q \sin \varphi+R^{\prime} \sin \left(\gamma^{\prime}-\varphi\right) \\
& \text { Moment }=M+Q(b-d \sin \varphi)-R^{\prime} d \sin \left(\gamma^{\prime} \phi\right)
\end{aligned}
$$

For sections betionen $\phi=\alpha$ and $\varphi=\frac{\pi}{2}$,

$$
\begin{aligned}
& \text { Normal force }=Q \sin \phi, \\
& \text { Moment }=Q r(1-\sin \varphi)+M \\
& E f \omega_{1}= \frac{Q b+M}{\alpha}\left(1+\frac{1}{x_{1}}\right)-\frac{Q \sin \varphi}{x_{1}}-\frac{R^{\prime} \sin \left(r^{\prime}-\varphi\right)}{x} \\
& E f \omega_{2}=\left(\frac{M}{2}+Q\right)\left(1+\frac{1}{x_{2}}\right)-\frac{Q}{x_{2}} \sin \varphi
\end{aligned}
$$

The condition

$$
\int_{0}^{\alpha} \omega_{1} d \varphi+\int_{\alpha}^{\frac{\pi}{2}} \omega_{2} d \varphi
$$

leads to the equation

$$
\begin{aligned}
0= & \alpha\left(\frac{\alpha b+M}{\alpha} /\left(1+\frac{1}{x_{1}}\right)-\frac{\mathbb{L}}{x_{1}}(1-\cos \alpha)-\frac{r^{\prime}}{x_{1}}\left[\cos \left(r^{\prime}-\alpha\right)-\cos v^{\prime}\right)\right. \\
& +\left(\frac{M}{r}+Q\right)\left(1+\frac{1}{x_{2}}\right)\left(\frac{\pi}{2}-\alpha\right)-\frac{Q}{x_{2}} \cos \alpha .
\end{aligned}
$$

The insertion of the numerical values gives

$$
M=-.3764 Q d
$$

The bending moment at section B is therefore

$$
\begin{aligned}
M+a b-a \sqrt{2} d \sin 45^{\circ} & =Q d(-.3764+15-1) \\
& =.1236 a d
\end{aligned}
$$

The stresses obtained by substituting these moments in equation
(A) are as follows:

Outer fiber, Section $A \ldots-.$.
Inner ". " $+4.3696 \frac{Q}{f}$
Outer ". Section B
Inner"

$$
+1.6975 \frac{Q}{f}
$$

$$
-.5981 \frac{a}{f}
$$

Comparing these with the stresses in table v, we see that there is a reduction, especially at section B. The shjuting of tho rerivitant has reduced the heavy compression in the inner fiber ($-7.2838 \frac{Q}{f}$) to the low value $-.5981 \frac{Q}{f}$. It is of course, ovident thet the wedging of the links must greatly relieve the heavy compression at section B; and as shown by this cxample, it reduces, though to a less degree, the other stresses.

This case is no doubt extreme, as it is unlikely that the ancleq could reath a value as great as 45° with a link of the assumed proportions; still it is clear that an increase of γ, icever small, results in a diminution of the stresses produced by a \&iven load.

This fact explains in some measure the high breaking load of the open link as compared with the stud link. When the open link is subjected to the heavy load imposed by the testing machine, the ends of the links are wedged so tightly that the chain becomer rigid and relative motion botwann the links is almost impossible. This severe wedging action must relieve to a great extent the large compression at section B, as well as the tensile stresses at both sections A and B. When the stun link is pulled in the testing machine, this wedging action is almost entirely prevented by the atud. "rhe points presented in this artinie may be assumed up as follows:
(I). The maximum stresses possible are these civen in table VII for a concentrated load.
(2). The stresses छiven in tahle V are substantiolly oorrect for ordinary chains in which the links have worn to a bearing.
(3). If adjacsint links have but a small surface in contact, so that
the resultant R, Fig ll, makes on angle with the axis HB smaller than γ, the stresses Will be between those given in table V and VII. (4). When the open inks is subjected to a load that causes its sides to collanse, the resultant R, Fig ll, will make miracle with HB greater that γ, and the stresses mils be less than those of table V.

VII. FORITUSAS FOR THE LOADING OF CHAINS.

33. Unwir, iownhts of lrohine Design, Part I,P.438, fivers the following formulas.

$$
\begin{aligned}
P & =9 d^{2} \text { for shied der hints chain; } \\
& =6 d^{2} \text { for unstind ded close link chain. }
\end{aligned}
$$

He says further: ". For much used chain, subject frociuently to the maximum load, it, is better to limit the stress to $3 \frac{1}{4}$ tons per si in. Then

$$
P=5 d^{2} \text { tons. }
$$

In these formulas, P denotes the load in tons, and \underline{d} the diameter in inches of the iron from which the chain is made.

Unwin says that Town limits the loads in ordinary crane chains to

$$
P=3.3 d^{2} \text { tons }
$$

but quotes the foldomine table from Townes "Treatise on Cranes", $\begin{array}{llllllllllll}\text { Diameter of iron } & \frac{3}{16} & \frac{1}{4} & \frac{9}{32} & \frac{5}{16} & \frac{3}{8} & \frac{7}{16} & \frac{1}{2} & \frac{9}{16} & \frac{5}{8} & \frac{11}{16} & \frac{13}{16}\end{array}$ Load on chain,toms .06 .25 .5 .75 / $1.5 \quad 2 \quad 3.5 \quad 3 \quad 4 \quad 5$

This table seems to be obtained from the roman

$$
P=8 \mathrm{~d}^{2} \text { Tons. }
$$

Weisbach gives the formulas (Kente Pocket Book, n,:339)

$$
\begin{array}{ll}
P=17800 d^{2}, & \text { stud } 1 \mathrm{ink} \\
P=13350 d^{2}, & \text { open link. }
\end{array}
$$

In these formulas pdenotes the load in pounds.
Bach, in his " laschinenclemente", p.5l.3, gives for chains with open
links

$$
\begin{aligned}
& P=1000 d^{2} \text { for new chains, maximum load seldom applied. } \\
& P=800 d^{2} \text { for much used chain. }
\end{aligned}
$$

Using pounds and inches as the units, the formulas become

$$
\begin{aligned}
& p=13750 \mathrm{~d}^{2} \\
& p=11000 \mathrm{~d}^{2}
\end{aligned}
$$

For a stud link chain, Bach increases the safe load 20 per cent.
If we write the formula for the safe load

$$
E=k d^{2},
$$

The values of k given by the authorises quoted are as follows, P being taken in pounds:
Unwin... $\begin{cases}\frac{0 n e n}{} 13440 \\ 11200 & \text { Stud link } \\ \text { Weisbach.. } 13350 & 20160 \\ 13800\end{cases}$

Bach $\left\{\begin{array}{l}13>50 \\ 11000\end{array}\right.$ $\left\{\begin{array}{l}16500 \\ 13200\end{array}\right.$
34. These formulas seem to be based entirely upon the ultimate strength of the chain when tested to destruction; Thus the safe
load is made a definite fraction of the proof load, which in turn is a definite fraction of average brewing load. The more rational pro-
certure is to employ the maximum stress producer hey o given load in a link of given form as basis for the determination of the safe lord.

Jet, s denote the maximum permisoin? intensity of stress;
p " the safe load;
m " a constant, which multiplied by $\frac{Q}{f}$ gives the maximum fiber stress in the link.

Then, when 1 he chain is subjected to its maximum load, we have

$$
\begin{aligned}
m \frac{Q}{f} & =S \\
P=2 Q & =\frac{2 f S}{m}=\frac{\pi}{2} \frac{S}{m} d^{2}
\end{aligned}
$$

Referring to the curves, sheets III and IV, we find that for a stud link of the ordinary proportion ($a=2.5 d ; b=1.3 d$), the maximum stress is bout $2 \frac{Q}{f}$, as sown by tin dotted curve.
With an open link of the same mronortione, the maximum tensile stress is a little less than $4 \frac{Q}{f}$ and the maximum compressive stress, about $5 \frac{Q}{f}$. Open links however are, however, urnlilly a little shorter, the semt-axis a being as low as 1.8 d . As shown by sheet $\mathrm{Y} I$, this shortening "omewhat increases the stress. We are there sore justified Is assuming the value $4 \frac{Q}{f}$ for the maximum tensile stress for all open links of ordinary proportions; further it seems proper to base the safe load on this tensile stress cather than won the greater compressive stress at section B, because, as we have shown, this compressive stress will be materially rectum by the nipping action between adjacent links.

Fudging frow the maximum permissible atwosros prod in machine construction in general, the veilie of s hound not renee 1.5000 pounds per square inch. We have then

$$
\begin{aligned}
& p=\frac{\pi}{2} \frac{15000}{2} d^{2}=11780 d^{2}, \text { for stud link; } \\
& p \quad \frac{\pi}{2} \frac{15000}{4} d^{2}=5800 d^{2}, \text { for over ins. }
\end{aligned}
$$

or in round numbers,

$$
\begin{aligned}
P & =12000 d^{2}, \quad \text { for stun link; } \\
& =6000 d^{2}, \quad \text { for one link. }
\end{aligned}
$$

If the link have straight sides, the value of m as shown by sheet IV is about 3 ; and for a link of lemnscate form with $b=73$ d, the values of m is 1.5 ; hence the sere lode for these links are in round numbers

$$
\begin{aligned}
& P=\frac{\pi}{2} \frac{15000}{2} d^{2}=12000 \mathrm{~d}^{2} \text { for link with straight sides } \\
& P=\frac{\pi}{2} \frac{15000}{1.5}=16000 \mathrm{~d}^{2} \text { for link, lemnecate form. }
\end{aligned}
$$

These values of the coefficient of \underline{d}^{2} are much smaller than those given by Unwin, Bach, and Weisbach; it is evident, therefore, that when a chain is subjected to the maximum load nermitted by the formulas in current list, the intensity of stress is considerably above 15000 pounds per sq. in, and may exceed the elastic limit. Doubtless the frequent failure of crane chains may be ascribed to this fact.

Table 1.

$\frac{b}{d}$	$\frac{r}{d}$	$\sin \alpha$	$\cos \alpha$	α (radians)	$\frac{1}{x_{2}}$
1	∞	1	0	1.5708	∞
$1 \frac{1}{4}$	$\frac{45}{8}$	$\frac{35}{17}$	$\frac{12}{37}$	1.2405	304.25
$1 \frac{1}{2}$	$\frac{7}{2}$	$8 / 10$	$6 / 0$.9273	194.00
$1 \frac{3}{4}$	$\frac{23}{8}$	$\frac{6}{10}$	$8 / 10$.6435	130.24
2	$\frac{21}{8}$	$\frac{5}{13}$	$\frac{12}{13}$.3948	108.24
$2 \frac{1}{4}$	$\frac{101}{40}$	$\frac{11}{61}$	$\frac{60}{61}$.1813	100
$2 \frac{1}{2}$	$\frac{5}{2}$	0	1	.0000	98.

TAbLE IV.

$\frac{b}{d}$	$\eta / r+\eta$		$\frac{1}{x_{2}} \eta / r+\eta$		$\frac{d 1}{r}\left(1+\frac{1}{x_{2}} \frac{\eta}{r+\eta}\right)$	
	Outer Fiber	Inner Fiber	Outer Fiber	liner Fiber	Outer Fiber	Inner Fiber
1	0	0	∞	∞	θ_{1}	-8,
$1 \frac{1}{4}$	$\frac{4}{49}$	$-\frac{4}{41}$	41.1633	-49.195	7.4959	-8.5680
$1 \frac{1}{2}$	$\frac{1}{8}$	$-\frac{1}{6}$	24.2500	-32.333	7.2143	-8.9523
$1 \frac{3}{4}$	$\frac{4}{27}$	$-\frac{4}{19}$	19.2950	-27.419	7.0591	-9.1892
2	$\frac{4}{25}$	$-\frac{4}{17}$	17.3184	-25.468	6.9784	-9.3214
$2 \frac{1}{4}$	$\frac{20}{121}$	$-\frac{20}{81}$	16.5290	-24.691	6.9422	-9.3826
$2 \frac{1}{2}$	$\frac{1}{6}$	$-\frac{1}{4}$	16.3333	-24.500	6.9333	-9.4000

Values of Various Functions Length of Lime, Gd.
Table II.

$\frac{b}{a}$	Γ	S	ψ	\sum	X	M	5	M^{\prime} (open Link)
$/$	47.4520	67.1081	5.7178	$125: 4977$	12,0578	+.0631 Qd	.12986	$-.1205 Q d$
$1 \frac{1}{4}$	48.1897	68.2146	13.9423	128.3350	27.3957	. 0585	.2457	-. 2893 "
$1 \frac{1}{2}$	49.6543	70.7247	22.1795	133.5760	43.9436	.0696.	.3625.	-. 4467
$1 \frac{3}{4}$	51.9343	74.8612	30.5854	143.2530	60.7597	.0912"	4718."	-.5-891.
2	54.8193	80.8267	38.9015	157.2191	78,6745	. 1160 "	. 5600 "	-7096
$2 \frac{1}{4}$	58.2863	88.5400	47.7417	176.1545	98,8188	. 13981	.63/2.	-.8191
$2 \frac{1}{2}$	62.2064	98,0000	57.5092	200.423	122,5000	.16721	.6929.	-. 9245°

Table III.
Table V.

$\frac{b}{d}$	Stud Link				Open Link			
	Section A.		Section B		Section A		Section B	
	Outer. Fiber	Inner Fiber	Outer Fiber	/nner Fiber	Outer Fiber	$\begin{aligned} & \text { Inner } \\ & \text { Fiber } \end{aligned}$	Outer Fiber	$\begin{aligned} & \text { limer } \\ & \text { Fiber } \end{aligned}$
/	$+1.5048 \frac{44}{4}$	$+.4952 \frac{Q}{7}$	$+1.3430 \frac{6}{7}$	$-.5525 \frac{6}{7}$	$+0.0360 \frac{6}{7}$	$+1,9640 \frac{Q}{f}$	$+2,00>4 \frac{Q}{f}$	$-2.5041 \frac{Q}{f}$
$1 \frac{1}{4}$	1.4385	. 4988	1.4786 "	$-.6759$	$-1.1686 \ldots$	3.4787.	2.8264..	-4,3661"
$1 \frac{1}{2}$	1.5021.	. 3769.	1.9959.	-1.8766	-2.2236"	4.9990.	3.8323.	-7.2838"
$1 \frac{3}{4}$	$1.6438 \prime$.1619	2.7104%	-3.6143	-3.1585	$6.4104 \prime$	$5.0647 \ldots$	-10.5499.
2	$1.8095^{\circ \prime}$	-.08/3"	3.6845	-5.9495°	-3.9519.	7.6146	6.3660%	-13,9365
$2 \frac{1}{4}$	1.9713	$-.3117 .1$	4.7913,	-8.6019.	$-4.6864 \ldots$	8,6853..	7.6539..	-17.4195
$2 \frac{1}{2}$	2.1593.	-.5717"			-5.4099.	9.6903.		

Stresses at Sections A and B.
Length of Link, 6 d.
Table VI.
Stresses in Link of Lemniscate Form - Length, 6 d
TAbLE VII
Stresses in OpenLink, Length 6d: Concentrated Laad.

$\frac{b}{d}$	Moment at Section A	Moment at Section B	Stresses - Section A		Stresses - Section B	
			Outer Fiber	Inmer Fiber	Outer Fiber	Innor Fibor
/	-2007 Qd	+.79934d	- $0.6056 \frac{\alpha}{\frac{\alpha}{x}}$	$+2.6056 \frac{Q}{4}$	$+4.5107 \frac{6}{x}$	-10.335 妟
1年	-.3546"	.8954."	-1.6580	4.0382 "	5.0530	-11. 576
$1 \frac{1}{2}$	-.485\%	$1.0149^{\prime \prime}$	-2.4997	5.3428 "	$5: 7274$	-13.123
$1 \frac{3}{4}$	-.6072.	1.1428."	-3.2863	6.5797	6,4492.	-14.776
2	-.7162.	1.2838."	-3.9980	7.6760 "	7.2449"	-16.600
$2 \frac{1}{4}$	-.8202."	1.4298..	- 4.6940	8.6956	8.0688"	-18.487
$2 \frac{1}{2}$	$-.9245^{5}$.	$1.5755^{\prime \prime}$	-5.4099"	9.6903.		

Table VIII.
Stresses in Sections of Stud Link
Length Gd ; Width 4 d.

$$
T_{A B L E} \mid X .
$$

Stresses in Sections of Open Link
Length bd: Width $4 d$.

TABLEX.
Maximum Tensile Stress in Stud Link

$\frac{b}{d}$	$\frac{r}{d}$	P	M	M_{b}	$\frac{d}{r}\left(1+\frac{1}{\mu_{2}} \frac{\eta}{r+\eta}\right)$	Stress in Inner Fiber	Angle φ of Section Naximum Stress
$1 \frac{1}{4}$	$\frac{45}{8}$	1.02980	. $0585 Q_{d}$	-.1088 Gd	-8.5680	$1.9619 \frac{Q}{J}$	$76^{\circ} 11{ }^{\prime \prime}$
$1 \frac{1}{2}$	$\frac{7}{2}$	1.0637	. 0696	$-.1534$	-8.9523	2.4370	$70^{\circ} 4^{\prime} 30^{\prime \prime}$
$1 \frac{3}{4}$	$\frac{23}{8}$	1.10572	.0912.	$-.2127$	-9.1892	3,0603"	$64^{\circ} 44^{\prime} 30^{\prime \prime}$
2	$\frac{21}{8}$	1.14613.1	.1160 "	$-.2676 \cdots$	-9.3214	3.6405 "	$60^{\circ} 45^{\prime \prime} 4^{\prime \prime}$
$2 \frac{1}{4}$	$\frac{101}{40}$	1.1827	.1398 .	$-.32 / 5^{\prime \prime}$	-9.3826	$4.1992 "$	$57^{\circ} 44^{\prime} 23^{\prime \prime}$
$2 \frac{1}{2}$	$\frac{5}{2}$	1.2146	.1672	-.3693..	-9.4000	4. 6860.	$55^{\circ} 16^{\prime} 55^{\prime \prime}$

TAbLEXI.
Moments and Stresses at Sections Aand B.

			Monvent	Moment	Normal Force	Stresses, Section A		Stresses, Section B	
$\frac{d}{}$	d	x_{2}	$\text { Section } A$	Section B	Seetion B	Outer Fiber	Inner Fiber	Outerfiber	Inner Fiber
$1 \frac{1}{2}$	$\frac{13}{8}$	40.244	$-.4321 Q_{d}$	$+4974 Q_{d}$. 3205 Q	$-1.7774 \frac{Q}{f}$	$+5.4902 \frac{Q}{f}$	$+3.12>5 \frac{Q}{f}$	$-6.1109 \frac{0}{f}$
2	$\frac{25}{8}$	154.25	$-3406 \prime$	+.3890"	. 5204 "	$-1.4279 \prime$	4.0933	2.7156	-4.5094"
$2 \frac{1}{2}$	$\frac{45}{8}$	504.25	$-.2893 \ldots$	$+.3824 \ldots$.5783	-1.1686 "	3.4787	2.7363.	-4.3661"
3	$\frac{73}{8}$	1330.25	$-.2577 \prime$	+.3904"	. 6019 "	$-.9798 \prime$	3,1496"	2.8050.	-4.4460"
$3 \frac{1}{2}$	$\frac{109}{8}$	2968.25	$-.2333 "$	+4030"	.6137 .	-.8162.	$2.9191 \ldots$	$2.8880 \ldots$	-4.5971

