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In this paper we study in detail different types of topological solitons that are possible in bilayer quantum
Hall systems at filling fractionn=1 when spin degrees of freedom are included. Starting from a microscopic
Hamiltonian we derive an effective energy functional for studying such excitations. The gauge invariance and
CP® character of this energy fuctional and their consequences are examined. Then we identify permissible
classes of finite energy solutions that are topologically nontrivial. We also numerically evaulate a representa-
tive solution in which a pseudospiltayer degrees of freedgnbimeron in a given spin component is inter-
twined with spin skyrmions in each layer and discuss whether it is energetically favored as the lowest-lying
excitation in such system with some numerical results.
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I. INTRODUCTION spinor fields on a plane. The change in terminology from
skyrmions to bimerons does not indicate any topological dif-
Systems that permit topological excitations, i.e., whereference between the two in going from spin to pseudospin
field configurations can be classifield by homotopy sectorexcitations but only differences in their detailed profiles.
characterized typically by some winding number, have beer his difference in turn happens because of the difference in
studied in a general sense in mathematical physics for a lonifie energetics of spin and pseudospin and correspondingly,
time. That such interesting possibilities can actually arise antheir asymptotic direction. Meron excitations, if present in
play a significant role in the quantum Hall physics was dem-double layers, can give rise to a Kosterlitz-Thouled€T)
onstrated in the work of of Sondkt al They showed that, transition, which may enable them also to be experimentally
for example, in a single-layer Hall liquid at filling facter ~ observable.
=1, the lowest energy excitations in spin for low Zeeman Clearly there are prospects of even more esoteric excita-
coupling are the so-called skyrmions and not single spiriions when both spin and pseudospin degrees of freedom are
flips. These skyrmions are topological excitations in the spirconsidered simultaneously. That is the theme of this present
texture, in which the spin starts being, say, “up” at the ori- work. We will continue to study the unit filling factory(
gin and as you go outwards, starts tilting down in a flared=1) case. There has already been some discussion of the
manner to become asymptotically “down” spin at large dis- combined spin-pseudospin=1 double-layer systefh? Our
tances. Subsequently experimental support for the existensork discusses different aspects of the problem than these
of such excitations was also discovered in NMRstudies. We analyze in substantive detail intertwined spin-
measurements. pseudospin topological excitations of this system. When both
Meanwhile quantum Hall phenomena have also beeispin and pseudospin are active degrees of freedom, these are
studied in double-layer systertd The double-well Hall pla- together described by a four-component object. This four-
teaus at unit filling can be understood by associating witrcomponent object has been referred to as & €pihor in the
each electron a “pseudospin” in addition to its lowest Lan- literature? That is correct, but needs to be justified. A theory
dau level(LLL) orbital wave functior’:® The up and down does not become a €Rheory just because its field is a
components of this pseudospinor give the probability ampli-normalized four-component object. The system must obey a
tudes for the electron being in the upper and lower layerU(1) gauge invariance, which is what makes the spinors span
respectively. The ground state of the=1 double-layer sys- a projective space, implied in the acronym CP. Without that
tem, known to be a quantum Hall state with a Hall conduc-gauge invariance the results on"€in the literaturé®*! can-
tivity plateau, is a pseudospin ferromagnet with the pseunot be borrowed and applied.
dospin aligned in the direction. This is a very remarkable So we begin in Sec. Il by showing, starting from the basic
phenomenon in that it amounts to interlayer coherence benicroscopic theory of thee=1 system that in the effective
tween the electrons in the two layers. This pseudospin degrdd L theory for the spin-pseudospin texture such gauge in-
of freedom is in addition to physical spin. To start with, in varianceis there. This is a straightforward derivation follow-
analyzing double-layer phenomena, the spin degrees of freéng the procedure developed by Moenal?® In fact we find
dom are suppresed for simplicity. Even then one can stilthat in the limit where the layer separationvanishes, the
consider excitations in the pseudospin. Inspired by the presSoulomb interaction energy is precisely the protoype® CP
ence of skyrmions in spin, people have also considered thEuclidean action used in the pioneering papers on that
possibility of topological excitations in pseudospin. Suchtopicl® for which exact topological solutions are known in
pseudospin textures called “merons” and “bimerons” have terms of analytic functions. Of course, whdr: 0, the en-
been suggested as possible low-lying excitations of doubleergy functional is more complicated and these analytical so-
layer systems.The homotopy groupr,[S,] and its winding  lutions do not hold. But the theory is still a €Eheory, and
number are identical for spin and pseudospin since maththe homotopy classification of the solutions still hold. Only
ematically pseudospin is identical to spin, both beingBU the solutions themselves have to be calculated numerically.
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A topologically nontrivial CB solution will generally in- a;(X)
volve an intertwined texture in the physical spin in each a,(X)
layer as well as in the pseudospin of each physical spin pro- 2
jection. One can ask whether such solutions can be legiti- 3,(X)= az(Xx) |- 2D
mately interpreted as containing, as subsystems, spin skyrmi- au(X)

ons in either or both of the layers, possibly intertwined with
a pseudospin meron or bimeron. If so, then such possibilities . o
of containing several topological entities as subsystems havgr:]]erlﬁut(;fssg:;ptshiug?;grgr']n%eji(; 1t’hZé31’J4 cgrr_rlzspécrml;js_;oin
to be made compatible with the fact that any finite energ){jl per-la or down-spin. lower-laver un-s ?np andylowef-laper’
CP® texture carries altogeth@nly onetopological winding PP Y pin, Yer up-spin, Y

number. We study all these questions in Sec. lll and find thagown-spm states, respectively. It will henceforth be under-

- - - . 2_
there are certain restrictions on the types of solutions permit§t00d that the spinor is normalized, i.&,/a,(X)|°=1 for

ted. We show that the individual layers of a double—layereaChX' In the literature, this,, has sometimes been referred

system cannot accomodate all possible spin structures o8 ?sba tC P spllnor(sei.ttat,l fqr |rt1..;,.tar1[(':e, Iﬁza\%)aé:g:at IS th;]r'
may find in a pair of unrelated single layers. The spin-rec' ut requires a fittie justinication. in a eory, the

winding numbers in the two layers are related to one anothe?)p'tmt))r rr:jusft n(zjt onlly be adntl)rmaI:zedlfour-comtponefnt ObeCt'
and to the pseudospin winding number. ut be defined only modulo a local gauge transformation

Consistent with these restrictions, we then pick in Sec. jyeemmon to all four components. This in turn requires that

a representative ansatz that can be viewed as a spin Skyrmiyﬁe Euclidean action or static energy functional of the spinor

intertwined with a pseudospin bimeron. We then numericall Ield enjoys a corresponding gauge invariance. In this section

evaluate such a solution by solving the coupled nonlineal'® will verify at” thls.d\_/;/fe W"!{ ?ISO sge tgf‘t Ithe natur? of ttrr']e
partial differential equations that arise from extremizing theJauge symmetry 1S difierent for a double-layer system than

texture energy functional. In earlier wdfk*we had studied Iﬁr a pa|rtof |tsolated single Ia)f/ers.h'.rtr)l_?, as Wf .Sh?” s<|ae,.ha|s
in some detail both meron and bimeron excitations in pseu- € Important consequence of prohibiting certain topologica

dospin for double layer systems, with the spin degree o pin excitations in the glquble-layer system that would have
freedom suppressed. The present calculation is a more co een present in the |r_1d|V|duaI [aygrs had they been far apart.
plicated version with CP spinors, but is done by similar n this way, "%'0”9 W'th e.stabl|sh|_ng_ the Emature Of. th_e
numerical techniques. We present the spin and pseudosp stem, we W.'" also identify pgrm|55|ble WP‘?S of_excnat'lons
proflies of our intertwined solutions for different values of Where the spin and pseu_dospm are non_tr|V|aIIy mte_rtwmed,
interlayer separation. some of which we numerically evaluate in later sections.

We also estimate the interaction energy of these solutions Let us ;tart by deriving the energy fur_10t|ona|_of any spin-
for some typical sets of values of system parameters. WBS?UdOSp'n texture from the microscopic Hamiltonian. This
discuss the dependence of this energy on the separation ga.ust a stralghtforward generqhzaﬂon of the proc_edure a!—
tween the two meron centers. We find, as expected, that Peady in the literature for the simpler case of a spinless bi-
only the gradient and capacitance energies are consideredY €’ problgms. Therefore we need to present only the essen-
their minimization will drive the textures towards zero size.t'élI equations needed fpr com_pletene_ss .and under-
Therefore we also calculate the topological charge—dependeﬁ{andab"'ty' We take the microscopic Hamiltonian to be
Coulomb energy of our solutions which, being repulsive,
should drive the merons farther apart, offsetting the above- H=Hg+H;+Hc. 22
noted tendency towards zero size. Then we extremize thﬁere
total energy so obtained and find that it does show a mini-
mum at some optimal meron separation, for each value of . 4
layer separation. _ - to

We also find that these energies are approximately of the HK_% ;::1 f dr D%y,
same order as those of purely spin skyrmions of the single-
layer system. We make qualitative speculations on whetheg the kinetic energy in the presence of the magnetic field.
or not our spin-pseudospin intertwined solitons can be enewe will be working atv=1 in the lowest Landau level

getically favored over solitons purely in spin or pseudospin| | | ) approximation. Corespondingly, the operafigy(r) is

or over simple spin flips. the LLL-projected electron field operator expanded in terms
of lowest Landau level orbitals as

(2.3

II. TEXTURE ENERGY AND ITS GAUGE INVARIANCE N
wg<r>=X21 éx(1)Cox, (2.4

In a double-layer quantum Hall system with both spin and
pseudospin degrees of freedom present, an electron will
carry, apart from its coordinate wave functim(F), afour-  with ¢>X(F) being a LLL orbital, say, in the Landau gauge
component normalized spinor whose components in generatith X as its guiding center.
may vary with the orbital guantum numbXr For any given The second term in the Hamiltonian is the one-body term
X, this spinor can be denoted by representing the Zeeman and interlayer tunneling energies.
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H1=;s f dr ¢l (N)(go,—tT)petbs(r), (2.5 El[ag(X>]:§ {ol]as(X)|2—]ax(X)|?

- ~ . . . . +]ag(X)[2—[as(X)|?]
where o, and r, are spin and pseudospin matrices suitably

generalized as ¥4 matrices on the outer product space of —t[a(X)a3 (X)+ay(X)a; (X)+c.cl}.
spin and pseudospin. 2.9
The third term in the Hamiltonian is the Coulomb term: ’
The expectation value of the Coulomb interaction Hamil-

4 tonian can be conveniently written in terms of the following
|-|C:E > drodr, ¢! (r) gl (ry)Vvoiee spinorial bilinears for the uppdu) and lower(l) layers:
oq,0p=1 ! 72
S Fu(X)=|ay(X)[2+]ay(X)[?, (2.10
X(ri=r2) ¥y, (ra) ¥y (r1). (2.6 , ,
Fi(X)=lag(X)|“+[as(X)|%, (211
In the above, the Coulomb potenti&sd“1?2 depends on
whether the particles are in the same layer or different layers, Gy(X1,X,)= E al(Xy)a* (X,), (2.12
i=12
o2
0109 — ,,S— H . .

Vi72=y S, U2 in the same layer, GI(X1-X2):i:Es4al(xl)al*(xz)- (2.13

) On insertingH¢ from Eg. (2.6) and the statel from Eq.

Vo102 = e in diff | (2.8) straightforward algebra then gives us the Coulomb en-
-v =Em’ 01,02 Indilierent layers ergy in terms of the spinora, :
(2'7) EC[ao(X)]E<\P|HC|\P>:<Hc>direct_<HC>exchange
whered is the interlayer distance. To obtain the energy of an (214

arbitrary spin-pseudospin texture, we adopt the strategy folwith
lowed in the work of Moonet al® We first consider the

ansaiz state <Hc>dnem=%XEX {D*+(D?=D)[Fy(X)Fi(X2)
1:72
=11 | = czxa(,<x>}|0>, 289 HRCWROR) (219
X loe and

where |0) is the vacuum(no electron state,X stands for
Landau gauge orbitals, aral (X) is an orbital-dependent
four-spinor as in Eq(2.1). In the highB limit each Landau 4 s .
gauge orbital density is uniform along ti@xis with support +ENGLGI+ GG ] (2.1
on a thin line localized around some valuexof-urther these  pygre

states are closely spaced along thélirection. Using this

1
<Hc>exchange:§ z [Es(|Gu|2+|GI|2)
X1 %o

feature, we will later on replace the orbital labéby the x DSU(X,—X)=V3dy o s,
. : 1272271072
coordinate itself. In that case the above textay€X) de-
pends only on the coordinate and not og, and therefore Es‘d(Xz—Xl)=V§’§,xl,xl,x2, 217

carries zero topological number densisee Eq.(3.14) be-
low]. Nevertheless we will use this ansatz to calculate itsyith
energy functional, and then later that energy functional to the
more general and topologically nontrivial textures by invok- sd
ing isotropy of the system in the-y plane. This was exactly X1 X2, X3, %,
the strategy used in Ref. 6. We will calculate the energy . R . R
functional of the spin-pseudospin textu8) by taking the X % (1) d%,(12) dx,(r1) dx,(r2).
mean value of the second quantized Hamiltonian in that
state. (218
At unit filling v=1, and in the space of LLL orbitals, the These direct and exchange Coulomb interaction matrix ele-
kinetic termHy is just a constant equal toN(2)%w, the  mentsDSY and ESY between two electrons in LLL orbitals
energy of the filled LLL band. This constant will henceforth X; andX,, in the sames) or different(d) layers, are exactly
be neglected. the same as were used in the spinless double-layer problem
The Zeeman and tunneling one-body energies yield by Moon et al® However, the inclusion of the physical spin

= f dFl sz Vs’d(Fl_ Fz)
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degrees of freedom is rgflegted in the energy expressions )y a CP system[equivalent to a nonlinear @) o model
Egs.(2.195 and(2.16), which involve all four components of  with its own U1) gauge symmetrysee Refs. 5 and 11The

the spin-pseudospin multiplet; . well-separated pair of layers should obey UKI)(1) gauge
Adding the contributions in Eq2.14 and Eq.(2.9) we  symmetry. Our derivation shows a similar effect. When
get the total energy expectation value —oo0, both the tunneling parametéiin (2.9) and the inter-

layer Coulomb potentiab? involved in Eq.(2.16 would
E[a,(X)]=Ei[as(X)]+Ec[as(X)]. (2.19  vanish and the full U(1¥ U(1) gauge invariance would in-
In the Hartree-Fock approximation, this energy expectatiorfl€€d be restored. We will see later that this reduced gauge
value E[a,(X)] in Eq. (2.14 will be minimized to get the symmetry of a _double—layer system at flr_ut_e separation has
ground-state and excited-state spin-pseudospin textures. CONséguences in terms of what types of finite energy excita-
But, let us first examine the gauge invariance of the enlions are permitted in it as compared to a pair of isolated

ergy functionalE[a,(X)]. Consider the transformation single layers.

a,(X)—eMMa,(X) for o=1,2 IIl. GRADIENT EXPANSION AND THE CP 3 FIELD
. THEORY

a,(X)—etMa _(X) for o=3,4. (2.20
Notice that we have used different phageg X) andA,(X)
for the upper- and lower-layer components, respectively
This is a U(1)x U(1) transformation. These phases can als
vary with the orbital indexX. [Note: X is not the space co-
ordinate. But, following accepted approximatiofsee Ref.
6) eventually the sum over the orbital indéxwill be con-
verted into an integral over space coordinate, invoking thednd X, will become a nonlocal term involving a double in-

fact that for large magnetic fields, each LLL orbital wave :

S 4 ’ tegral over some coordinatgg andx,. For long-wavelength
Iuncufon |sth|ghly Iocallzedd. tHenC(?[. tne Iabo;)@depentdentf excitations one then makes the usual gradient expansion. Ex-
ransformation corresponds to spatially local gauge trans Orf)and the spinor foKX, as
mations]

Under these local U(YU(1) transformations, the one- B d
body Zeeman energy in E¢R.9) and the direct part of the a‘T(XZ)_a"(xl)+(XZ_Xl)a—xla‘f(xl)Jr e B
Coulomb energy(2.19 are trivially invariant since they in-  yp till now we found the energy of textures that weye
volve only the squared modulus af(X). So is the first part  jngependent.

(proportional toE®) of the exchange Coulomb ener#.16. Now we will invoke the isotropy of the basic system in
But the tunneling energy in E¢2.9) and the second piece of the x-y plane and generalize this expression for arbitrary

the exchange energ.16), which involves exchange Cou- textures. This is done by making the replacement
lomb interactionE® between different layers, are invariant

only if s 12f 42 3.2
Ay(X)=A(X)=A(X). (2.2 X 2l

Thus the full energy of the double-layer system enjoys onl)f’ind by _replacing<_derivatives by gradients. Insert the al_Jove
a U(1) subgroup of U(1X U(1) defined in(2.20—a sub- expansion (3.1) into the Coulomb en;rzgy expressions
group where all four components af, are transformed by (2.13~(2.16. Keep terms only up to ord X1 and replace
the samephase. This is the (1) gauge invariance modulo by the sumZy by an integral over space as indicatétihese
which our CP spinors are defined. steps are given in the work by Moaet al® for the simpler

Consider, however, what would happen if we had veryspinless double-layer cas& he result for our problem is the
widely separated’=1 layers(the separatiom—o). Then following local expression for the total energg®.19, with
each can have its own two-component spin texture describeglverall constants subtracted:

To rewrite the energy expressi@@.19 in a continuum
field theory language, we proceed following Moenal®
and convert sums over the LLL labXlinto an integral over
%pace. Clearly the one-body ener(8.9), which involves
only a single sum over the indeg will become a local term,
i.e., a spatial integral over the one-body energy density. But
the Coulomb term(2.14) containing a double sum ove{;

e, =—— | Tl 2l + ool af?) - 2,2} + 2,2 + He]

27l

+/amf dzr[Fu(F)—F,(F)]ZJrszf er{E [9,a* (o al(r)]+ 2, a*(r)d,al(r)?
i=14 i

Ha
+(p9—p%) J d?r[ala®* VZ(alal*)+ala** Vi(a*al*)+a2a%* V4(ala?*)+aa** V4(a*a?*)+H.c],
(3.3
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where the constants appearing above are defined by

A#Eig [a%d,a,]. (3.9
_= diX.—X.)— ES(X.—
le_4 (xzle) B (X=X —BX(Xp=X4)] Clearly under the gauge transformatitt?),
—[D(X=X1) = D(X— X1) 1}, (3.9 Ay— A=A (3.10
1 o X)2 The energyEcp can then be written in a manifestly gauge
pS== gES(XZ—Xl), (3.5  invariant manner as
2 (x-x) 2
1 (Xp—X1)2 EcpEZPSf der E IDa%(NZ (3.1
pi=5 ————EYX,—Xy). (3.6) o=t
2 (X2—=X1) 2

whereD ,=d,+iA, is the covariant derivative of the(l)

These constants are again the same as given by Mbalf  gauge transformation. Then any finite energy field must
in the spinless double-layer problem. The term involv®ig obey, asr— o, the boundary condition
represents the “capacitance energy” of the double-layer sys-
tem. It is proportional to the square Bf,(r) —F,(r), which D,a,=(d,+iA,)a,=0. (3.12
gives the difference in charge density between the two IaySlnceA
ers. The constanis® andp® represent spin-pseudospin stiff-
ness coming from intralayer and interlayer Coulomb interac-
tions, respectivel ib(0

This er?ergy fu¥1ction843.3) will act as the effective clas- a,—b,e?, 313
sical Hamiltonian to be minimized to find different textured whereb,, is some constant spinor. The important point is that
solutions. The ground state will correspond to a spatiallyall four components of,, have the same asymptotic phase
uniform texture, and so can be obtained by minimizing theg, which may depend on the spatial angleThe underlying
gradient-free terms in Eq(3.3). This is acheived by the reason is that the system is invariant under the same single
spinora,(X)=(1/12)(0,1,0,1). The one-body Zeeman and U(1) gauge transformatiof8.7) acting on all the four com-
tunneling energies are clearly minimized by this choice sincgyonents ofa, . Finally, the phase functioa'®?) asr—c is
the spin is polarized “down” in both layers and the psue-a mapping of one circléspatial infinity into another(the
dospin is along thex direction, i.e., a layer-symmetric state. y(1) group manifold, and can therefore be divided into ho-

This choice also minimizes the CapaCItance energy since motopy classes characterized by a W|nd|ng number
has equal occupancy in the two layérs=F,=

Moving on to excited states with nontrivial textures, these i 5 .

are obtained by extremizing the full energy functiof@). Q=- ﬂf drle,.(Dya,)*(Doas)]. (314

Note that Eq(3.3) including its gradient terms is still gauge

invariant under the local (1) transformation mentioned ear- For more details supporting these results see Ref. 11. Exact

lier, soliton solutions for the minimal CPsystem also known

analytically in terms of analytic functions. Those will not,

a,(X)—e*Ma_(X) (3.7 however, hold for our full syster8.3), which has to be used

when the layer separatiath= 0. The solutions will have to

be obtained numerically by using appropriate ansatz. But the

boundary condition(3.13 and the winding-number classifi-

cation will still hold. They can be used to decide what forms

D [d,a™ () d#al(r)] of intertwined spin-pseudospin solitons are permitted in

i=14

is independent of the spinor index this implies
(see Ref 11that asr — o,

so that this is still a CPtheory. In fact the term proportional
to the isotropic spin-pseudospin stiffngss namely,
double layers.

ECPE ZPSJ’ d2r
An important consequence of the common phase bound-
+ 2 i r)(? al(r) } (3.9  ary condition(3.13 is that certain spin textures one can

imagine having for two separate single layers are not permis-
sible in the double-layer system. Consider a single layer at
v=1 carrying a skyrmion with winding humbex. This is a
finite energy configuration which can be described by a two-
component spinor, say,

is the Euclidean action for the prototype minimal TP
theory2® Indeed, in the limit where the layer separatibis
zero, thisEcp will be the only surviving term from the Cou-
lomb energy in Eq(3.3) since the interlayer and interlayer
Coulomb potentials will become equatS=v?) and hence A(T)
both 8 and p*— p? will vanish. ( mg),

The properties of this prototype €Bystem and its topo- f(rye
logical solitons are well knowf** Let us briefly recall opeying boundary conditions as-= given by
those salient features that will be of relevance to us. Define a
gauge fieldA,, as follows: A(r)—0,

035304-5
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f(ry—1, ample (3.18. See Ref. 13 for more on bimergn8But, we
should remember that the the upper and lower layers are not

and as—0 separately normalized in the examgi18. As r varies so
Ar)—1, does the relative charge density in the two layers. Thus the
spin vector in the uppefor lowen layer in examplg3.18
f(r)—o0. (3.15  Will not be a unit vector at every point unless it is is locally

renormalized by the charge density of that layer at that point.
One can have two such layers, widely separated, with tw@imilarly, while the pseudospin of the down-spin component
different spin-winding numbens andm, respectively. Noth- in the examplg3.18 forms a bimeron, this pseudospin will
ing prohibits this. However, suppose the two layers are parilso be a unit vector at eachonly after being renormalized
of a»=1 double-layer system at fini and are described by the down-spin density, which varies from point to point.

by a CP four-spinor Such renormalization can be achieved by writing any general
CP four-spinor(2.1) in terms of spin and pseudospin polar
Ay(r) angles:
1 fl(r)eimB ,
2 7\2(f_) : (3.16 cos%cosiu
fz(r)emﬁ
a 6, .
cos_ sin—-¢e'%u

This would violate the conditio3.13 since asymptotically 22
the second and fourth components would have different a,= a0, | (3.19
phase functions. Such a texture is forbidden as per our analy- Sin= Cos5 €

sis and indeed if one calculates its energy by inserting it in
Eq. (3.3 one will find the energy diverging logarithmically.
The divergence comes from the angular derivative of
(1/r%) 65 contained in the Laplaciang? in Eg. (3.3). That
yields a contribution to the energy density proportional to  here the angles, ,, and #., are the polar angles of the

spin in the uppeflower) layer while « and 8 are the polar
angles of the pseudospin, each of which is a the function of

the coordinater. (Recall that the CP spinor has six real
gauge invariant degrees of freedgrBuppose we tentatively

asr—c, which will lead to a logarithmic divergence unless gefine using these polar angles, the familiar expression for
n=m. At the theoretical level the reason for this can bey,, spin-skyrmion number in each layer by

traced to the reduction of gauge symmetry discussed earlier,
from U(1)xU(1) to U(1) when two layers are together. 1

Keeping in mind this constraint of equal spin-winding nu,,=4—J' d2rewaﬂ(cosaw)ay(qsw). (3.20
numbers in each layer, let us illustrate nontrivially inter- m
twined spin-p_seudospin configurations with the following one can then verify that the configuratid8.18 indeed
example that is allowed: yields unit spin-winding numbens, ;=1 in each layer.
Similarly, to get the pseudospin winding number one uses

a 0| .
in— sin— e (B4
sinz sin--e

n+m? (n+m)?
2r? 4r?

(3.17

! an alternate parametrization of the same four-spinor:
z—b
Al x| (319 cos%cos%
z+b
a s »
L COS—-Sin—-¢€'?s
Here\ ; , andb are nonzero constants whitds the complex 2 2
coordinate on the plane. A=(\3+|z—b[?+\5+|z 85= o 6. - (3.2
+b|?) "2 is the normalization factor. Asymptotically, the sin%cosfe“%
first and third components of Ed3.18 both behave as
(1/y/2)€'? while the other two components vanish. This is TS I8+ b9
therefore a permitteéenergetically finitg CP* configuration Sin-sinZew o

with winding numberQ=1. S _
One can see that this example is so designed that withifihen the pseudospin winding number for the down-spin

each layer the spin texture looks like that of a singlecomponent, for example, can be written as

skyrmion, while at the same time it is also a “bimeron” in 1

the “psuedospin of the down-spin componeilfitbntained in _ _f 2

the second and fourth components of the four-spinor of ex- Mps( L) A d°r €4,0,(C0S)9,(B)). (322
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Again, the examplg3.18 happens to yieldh,((|)=1 in Finally, the very simple examplé3.18 not only illus-
addition to, as we have seen, ;=1. Thus the example trates a nontrivial intertwining texture, it is also an exact
(3.18 illustrates an intertwined spin-pseudospin topologicalsolution of the prototype CPtheory (3.8) since its compo-
configuration, containing the spin texture of a skyrmion innents are analytic functionsee Ref. 1L But, for our full
each layer and the pseudospin texture of a bimeron in theheory in the presence of a nonzero layer separation and with
down-spin component. Zeeman and tunneling energies, classical solutions minimize
One should however be cautioned that there is only on¢he full energy functiona(3.3), have to be obtained numeri-
true topological charg® in the full CP theory, given in Eq. cally by solving the nonlinear coupled partial differential
(3.14). Although the above exampl8.18 contains the tex- equations that the minimization conditions yield. The simple
ture of two skyrmions and a bimeron, its €Bpological analytical exampleé3.18, however, will guide us in setting
indexQ obtained by inserting it into Eq3.14) will come out  up the desired ansatz for the numerical solution with appro-
to be not 3, but unity. The separate subcharges for spin angriate boundary conditions so that intertwined textures which
pseudospin defined in Egé3.20 and (3.22 in general do are nontrivially wound in both spin and pseudospin can be
not have the same characteristics as they would have had fobtained for our full theory. An illustrative family of such
skyrmions in a single layer or bimeron in a spinless problemsolutions is obtained in the next section.
Although in the above example these separate spin and
pseudospin winding numbers turn out to be integers, in gen-
eral they need not be integers, or more importantly, be con-
served in time. They are not protected by homotopy consid- Classical solutions that minimize the full energy func-
erations in our full four-component theory. The angtgs, tional (3.3) have to be obtained numerically. To do this we
etc., used in Eq(3.19 cannot always be obtained from the use the parametrization of the spinor components of the form
original components,, of the four-spinor(2.1), since they

IV. FIELD EQUATIONS AND THEIR SOLUTIONS

are not defined at those singular points where 7,0, re- a 6,
spectively. A similar remark holds for the other angles used C0550057
above. The numberns, | andn,s can change in time due to
leakages through such singular points. It is, however, inter- @ O i
esting to note that the exact €mvinding number can be a—| 527 _ 4.1)
rewritten in expanded form using the angles defined in Eq. 7 0
(3.19 into parts that can be attributed to winding of spin and
pseudospins. This also brings out the intertwining of spin- P
psedospin texture. We have sin> €
) 1 One can see that this is a sub-family of the general case in
Q= Ef dr e#"{d,,(cosa)[3(1—C0s6y)d, by Eq. (3.19, where for simplicity we have set, equal tomr
. and5=0.
—2(1—cosb)d,d,—d,B8]— Fu(r)d,(cos,)d, o, We will look for numerical solutions that would have cor-
. responded if the energy had been of the simple prototype
—Fy(r)d,(cos6))d, ¢}, (323 functional (3.18, to its exact analytic solution

where Fy(r)=(1/2)[1+cosa(r)] and F(r)=(1/2)[1 \
—COSa(F)] are, respectively, the same quantities as in Egs.
(2.10 and (2.1 and denote the number density in the top z—b
and bottom layers. For the spinle@pins fully frozen case Al o |- (4.2
one can se#¥,, 6,, ¢,, and ¢, to be constants. Then one 74b

will recover the pseudospin topological charge formula

1 v This configuration represents a spin skyrmion in the upper
Nps=— Ef dr e*%9,(cosa)d,B. (329 |ayer intertwined with a bimeron in the “pseudospin of the
downspin component.” It does not have any nontrivial wind-
Similarly for a single-layer(say the upper-laygrcase one ing in the real spin of the lower laydthough the fourth
can setae=0 and recover the spin winding-number formula component in the spinor varies over the coordinate space the
spin will always be dowh To ensure that our numerical
1 , solutions have the same topological properties as well as
Nu="— E.J dr €""9,(cos6,)d, ¢y - (329 similar profiles as the prototype spin6t.2) we impose the
same boundary conditions on the components of the former
In general, where both spin and pseudospin have some inteas obtained in the latter, both asymptotically and at the
twining texture, the full topological charge will receive con- meron centerg= *b.
tributions from the windings of all these, as given in Eq. In terms of the ansat#4.1) the local energy functional
(3.23. (3.3) takes on the form
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. J1/0 o a . 1 N -
EC=,BmJ drCO§a+2p5f dr 7 (Va)2+0052§(V6u)2 +Z[(1+c05a)(1—cosau)(v¢u)2+2(1—c03a)(v¢|)2]

1 R B, .
- 1—6[(1+ cosa)2(1—cos6,)%(V ¢,)>+4(1—cosa)?(V¢))2+4(1—coSa)(1—cosb,)V ¢, V]

+(ps—p|)f dr| %[(V”cosmz—(v”a)zﬁsin?a( - %(V” 6,)%— %[(1—cosau)(ﬁ¢u)2

+2(€¢|)2+2(1—cos9u)€¢u-%.])] 4.3

This energy functional has to be minimized with respect X(V b )2+ (1— V)2
to all the angle fields in the anstatz. As we did in our earlier (Vo)™ + (1=cosa) (V)
work on the spinless problefi,here too we will use the _ R
bipolar coordinate systethto describe the spatial plane: +cosa(l—cosh,)(Veo, Vo)) |=0,

n=In|z—a|—In|z+a|; ¢=argz—a)—argz+a).
(4.4 (4.5
We have already elaborated in Ref. 13 the advantages of this
coordinate system when one has to impose the bimeron-typghere
boundary conditions. However, here the advantages of intro-
ducing such an unfamiliar coordinate system is not as much
as in the simple spinless bilayer problem of Ref. 13 because b2
the ansatz here is not symmetric between the two layers. Qg(n,¢):—2 (4.6)
Consequently unlike the spinless case @ds no more anti- (coshzy—cosé¢)
symmetric abouty = 0 axis. All these features along with
tsr:)?\/{g gt Ctgl?;lézen%?]ﬁ;geyapq ngézleg;ggnltjigﬁ\ézlggg gﬁgg)uwesls the Jacobian of this coor.dinate' transformation and aI! gra-
render the numerical exercise much more complicated heréi.'ent Oepefat_OfS are o_Iefmed in the blpolar-c_oordmate
What we have done under these circumstances is the follovgyStem-" Similarly we will have three more equations ob-
ing. tained by extremizing the energy functlongl with re:.spect' to
We have solved the field equations numerically for thefu. ¢u. and ¢, and then writing the resulting equations in
case where just the capacitance term is added to the minimBiPolar coordinates. We will not display them here.
CP® energy. From our earlier calculations we know that this
term is going to change the solutions considerably. The 1.0
terms in each equation with the coefficiept¢ p'), which
accounts for the anisotropy in the exchange energy is no
included in the process of numerical integration. As a justi-
fication of such simplification we can say that the anisotropic
terms that involve higher-order gradients of the spin
pseudospin field will have a less pronounced effect com-
pared to the capacitance term on the solutions. This has bee§ °f
graphically shown in Figs. 1 and 2 of our earlier wdrk.
Even after this drastic simplification we are still left with
solving four coupled nonlinear PDE’s. For example, the s
equation which is obtained by extremizing the energy with
respect to co& is

0.5

SEc ) cosa(Vcosa)? 2
=2pB Q2005a+p5 -2 '
(5COSaf ps=pl mes (1—coSa)? n
V2 cosa FIG. 1. The solution coa(#) of the field equations for a set of
—2—+(1—C050u)(€¢u)2 values for¢. The curves correspond, as one goes inwardsp to
1-coSa =0.097,0.367,0.637,0.90m, respectively, where the outermost
1 one corresponds t¢ equal to 0.09. The layer separatiod is
V) 2— = (1+ 1— 2 eq.ual to 0.6 anq bimeron.separati(mis equal to 2.5 The value of
(V) 4( cosa)(1-cosfy) \ in the analytic ansatz isl1
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A. Numerical procedure 1.0

The numerical procedure is almost the same as that ir
Ref. 13. Here also one can see that the Jacobian fagtor
the first term of Eq.4.5 is singular at the point{=0,¢ 05
=0). The behavior of cos near this point is also going to
be same as the behavior wf, in Ref. 13. The major differ-
ence compared to the earlier problem, however, comes fron
the fact that it is no longer sufficient to find out the solutions §
in one quadrant and get the rest from symmetry consider
ations. We have to solve this problem on both sides of the
7n=0 axis since our starting ansatz solution is not completely
antisymmetric aroundy=0. During the numerical work one
also has to be careful about the different branches of the
angles¢, . As one needs to integrate the equations on the "_-g_o 15 o 15 3.0
both sides of the;=0 axis the size of the mesh on which we
have to discretize the field equations becomes larger com-
pared to the earlier case of spin-frozen double-layer FIG. 2. The plot of cos () (down-spin for a set of values for
problem®® Also here we have to solve four coupled PDE’s ¢. The curves correspond, as one goes inward, ¢o
simultaneously. This simultaneous increase in the number of 0.097,0.36m,0.63m,0.907, respectively, where the outermost
lattice points as well as independent fields demands that weurve corresponds tg equal to 0.09. The layer separatiod is
have to invert a huge determinant in the Newton-Raphso@gain equal to Ol6and bimeron separatidnis equal to 2.5 The
procedurd’ while improving over the initial guess solution. value ofA in the analytic ansatz is alsd .1
This forces us to increase the lattice constants of the mesh
slightly compared to what we have done in our earlierThese solutions correspond to layer separatibr0.6,
work ** However, we have checked that the error introduced?imeron center separatidi=2.9, and start from an initial
in this way is not very high. In the next subsection we shallvalue of \=1 in the starting trial solutior(4.2. The se-
present our results along with the discussion. quence of curves shown corresponddoequal to 0.0%,
0.367, 0.63m, and 0.90r, respectively, with the outermost
one belonging tap equal to 0.09r. As we have discussed
earlier’® note from the definition of the bipolar coordinates
Our solutions of Eq(4.5) along with the other three field that spatial infinity inx-y plane corresponds te and ¢
equations yield the spatial behavior of the3dRelds param-  both equal to zero. As we approach this point in tkie »)
etrized in term of the angles, 8, 6,,, and¢, . The cal- plane, the solution should damp exponentially as
culations are done iteratively. We start with the simple anaexp(_,(/‘/nzju ¢2), where
lytical spinor (4.2), which is the exact solution when the
capacitance and anisotropy terms in the endé#g§) are ab- 2B
sent. Then the capacitance term in the equation is introduced K= ab- (4.7)
in small steps and the corresponding solution obtained nu-
merically. We have performed several calculations eaclCorrespondingly we see in Figs. 1 and 2 that the lpw-
starting from different initial values of the constant@indb.  curves rise very slowly ag increases away from zero.
The constank represents the starting value of the first com-  The interesting point to note about these solutions is that
ponent of the spinor in the iteration process. It stands for thén Fig. 1 cosa approaches differenfabsolutg¢ asymptotic
spin-skyrmion size in the CPlimit, but when subsequent values asy approaches-«. (These are the centers of the
iterations are performed in the presence of other energywo merons that form the bimeron. Although computational
terms, it is replaced by a space-dependent solution. But thiémitations allow us to go only up to values af==*3, it is
parametemb is fixed for a given calculational run. It repre- clear from the figure that asymptotic behavior has been ob-
sents the meron separation and enters inta £§) explicitly ~ tained) This asymptotic behavior is extracted directly from
through the first(capacitanceterm. While we do calcula- the analytic ansatz4.2) and implies the leakage from the

‘down-spin

B. Results and discussion

tions for different values ob, the optimal value ob will pseudospin to spin. It is useful to remember at this point that
have to be obtained by minimizing the energy with respect tave have a bimeron only in the “pseudospin of the down-spin
it. We will return to this point later. component,” whereas cas represents the component of

We present below the salient features of our numericathe total pseudospin. This is realized in Fig. 2. Here €os
results. The major feature we want our numerical solution tddown-spin represents the component of the “pseudospin
have is the intertwining of the spin skyrmion with the pseu-of the down-spin component.” It is completely antisymmet-
dospin bimeron. We would also like to show the leakage ofric about =0 and approaches 1 as n approachest .
electrons of either spin from one layer to another as we mov&his behavior is same as the behaviomaf in the spinless
in space, as a fallout of this intertwining. To show this, webilayer case. This is how we can extract from our results the
have plotted both cag and cosy as a function ofy foraset  pure bimeron by suitably partitioning the pseudospin into
of values of the angle) in Fig. 1 and Fig. 2, respectively. different spin components.

035304-9



SANKALPA GHOSH AND R. RAJARAMAN PHYSICAL REVIEW B63 035304

\\\\\\\ NN NN AN AN VAN IO NN N O LU NN N2 e i hid i i i brerviiise

T S R A R G N L a e P sttt R AR
T

SRR \Q‘\Q‘{.’\\\\\\\\\ S
e

\\\\\\\\\\\\\\ R N S R RN R R N R R N R NN VSV PV PV P rppp o

LaRALAAARRA ALY NAAANS NNV AC O I 3808ty rrrrrwwn

ARRARRRRRANNANNANNNNNNNN AN Rt H NS r st s

ARG L AL PP 7 AT PR FA A RRERTRERAR D AN b el

N \\
TITIENEN \\\x\
Mx@s\\ \§ \\\\ ritawmamaRRRAARI Loaiaann B T N S TR PR R X R R R DT R R DV T PN
B DR T \\\\\\Q\\\\ T eTaaaasaaaatmes  aeeeseeceanssss AR AN RANANANARKXNNNNRN NSRS POV R P A A prp s srrrmasmismecn,
e neraaaaaal \ \\\\‘MN {Q«\ ¥ N e N L L L Ry s PP e
N NN
N i ,; N NN £
0 A AR e e e GOy s R NN & P Rwrs !
J ARSI it e nr
) //,) PSS T SO Ao
s B ~
NN = T [ —
227N NR tﬁﬁ;;;;;;;j e : | NS e
ey A e =R e AN NN
) iy /C;/;;;%M ~~~~~~~~ e e 1 L A SO
g 7 rrstssesarrmmsrro i
f’J:, i H ; ARl it ts mpmemitcammanacs

LR LTLEI T e
e e I A Vs

e LRIV S e e
e B A A S
e e E LRI E R AR AN AN AN NN

A T T T ittt g m s e ceciicciiiiissicisns R R A R R R R R R R R R R R RTINS

j

-

Mj%%%ﬁ//ﬁf iy, e TR Y TR T SO
PR 4 ot mant s ceececcs i o
= 7 % I A fAs sy SUNLLLLEA AL LIS SELEEEEEEREEYAVA AL RNRRN NSNS SN

e A /

e

PO 223 //

A R LTttt s oo eecciisiiciies e N R TR R ]

FIG. 3. This figure gives the magnitude and directionxey L . . L
projection of the total pseudospin at different points on the plane. I_:IG_. 5. This f|gL_4re_ gives the magnitude _and dlrect_lonxej
The magnitude of each arrow at a given point iseiand its angle projection of the spin in the upper layer at different points on the

with the x axis isé,— ¢, at that point. The layer separation and the Plane. At each point the magnitude of the arrow givesfgiand its
bimeron separation are same as in Figs. 1 and 2. direction with thex axis givese,, at that point. The layer separation
and the bimeron separation and initialare the same as in the

. . . - earlier figures.
Since bipolar coordinates are not very familiar we have g

given an alternate representation of the above results through In Fig. 5 we have given a similar vector plot for the spin
a vector plot in the physical-y space in Figs. 3 and 4. The skyrmion in the upper layer. Here the length of the each
values of the parameters in these figures are same as thosegifiow corresponds to the planar projection of the spin in the
Fig. 1. In Fig. 3 the magnitude of each arrow gives the ab-upper layer (sir§,) and the its direction gives the azimuthal
solute value of the transvere component of the total psewangle (p,) of the projected vector. This picture very clearly
dospin sinx and its angle with the axis gives¢,— ¢,. One points.out how the skyrmion winds in the azimut.hal plane
should note in this regargh,— ¢, =3, in the other param- about its center at=h. Here also the layer separan_drar_ld
etrization. Here also one can see the length of the arrow dodge starting values df andi are the same as those in Fig. 1.
not quite vanish in one of the bimeron centers and makes thisis set of parameters represents a typical example.
construction singular at this point. However, when we look @St, we have evaluated the energy of these solutions for
at Fig. 4 where the magnitude of each arrow is@imnd the ~ & S€t (I)f vlalues;bofhth? d"b]erog s_epgrgtlon_ Paf_ambte; h? "
angle s aga, . tne magniuce ofthe arow vanishes T AL o ot be iened oy mnneng e
e e andiefance term and hgseudcpin-tifness racent tems i
dospin i t'h laver cdSd? our energy, these will not lead to a_nonzder,u.e., the tex-
pseudospin in the pure iay ’ tures will want to shrink to zero size. The reason is that
under rescaling, the capacitance term grows proportional to
the square of the scale while the gradient terms are scale
invariant. Of course a change mwill not result in just an
overall rescaling of the solution. The shape of the solution
will also change since occurs as a constant multiplying the
capacitance term in the differential equati@gh5). As a re-
sult, theb dependence of the gradient and capacitance terms
will not be simple, although qualitatively it should still drive
the meron separation to zero size. This can be seen in Table
I, where we show these energies for ten different valuds of
for a fixed value of other parameters. As expected the sum of
both these energy contributions decreases strongly with de-
creasingb, thus driving the texture to zero size. In reality
however, these two terms are just the first two terms in the
gradient expansion of the full energy functional. Higher-
order terms in the gradient expansion, if included, will make
FIG. 4. This figure gives the magnitude and directionxey ~ Our nonlinear differential equation even more difficult to
projection of the “pseudospin in the down-spin component” at dif- SOIve, but they can offset this tendency to shrink.
ferent points on the plane. The magnitude of each arrow at a given In particular, one prominent higher gradient contribution
point is sina; and its angle with the the axis is 8, at that point. ~ to the energy is the Coulomb interaction between different
The layer separation and the bimeron separation are same as frortions of the topological charge densities. It is given by
Figs. 1 and 2. (see Ref. &
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TABLE I. Different contributions to the total energ¥{,.,,) of TABLE Il. The size(i.e., the optimal meron separatidn) and
spin-pseudospin intertwined solitons for a setddt a layer sepa- the total energy,,)) at different layer separatiors The unit of
ration ofd=0.8. HereE,,4 refers to the gradient energigotropic  energy ise?/ el and the unit of length i$.
plus anisotropik; while E¢,p,is the capacitance energy aBd,,, is
the Coulomb interaction energy between topological charge densi- d b Eotal
ties. Eqrar iS the sum of these three contributions to the energy. The

unit of energy ise?/ el and the unit of length is. 0.8 2.0 0.59

0.7 2.2 0.59
b Ecapa Egrad ECoul Etotal 0.6 2.3 0.60

0.5 24 0.60
4.5 0.285 0.261 0.141 0.687 04 o5 059
4.0 0.250 0.251 0.152 0.653
3.5 0.229 0.228 0.168 0.625
3.0 0.205 0.223 0.183 0.611 an optimal bimeron separation at which the sum of all these
25 0.153 0.227 0.217 0.597 three energy contributions will become minimized as a func-
2.3 0.143 0.227 0.225 0595  tionofb. .
20 0.126 0.203 0.262 0.591 In Table | we have presented our calculation for the layer
18 0.121 0.192 0.290 0.603 separatiord=0.8 where different contributions to the total
15 0.104 0.196 0.328 0.628 energy are shown along with their sum, the “total energy.”
12 0.091 0.200 0.390 0.681 For this particular layer separation a distinct minimum is
1.0 0.081 0.192 0.456 0.729 ~ obtained arounth=2.0.

To see whether this behavior is common to other layer
separations we have plotted in Fig. 6 the total endtgy,,
1 as a fuction of bimeron separatitnfor a set of layer sepa-
Ecm:—f drdr’'V(r—r")dp(r)dp(r'), (4.8  rations. The three sets of points in this figure correspond to
2 three different layer separations, namalyequal to 0.5,
_ 0.7, and 0.8. All these three curves show distict minima for
where dp(r) is the CP topological charge density given by the total energy as a function of bimeron separation. We

the integrand of the right-hand sideh.s) of Eq. (3.14). have also provided in Table Il the si#l®) and total energy of
Inclusion of the contribution of this term into our differ- the optimal bimeron for five values of layer separation.
ential equation for the texture will introducenanlocalnon- Notice from Table Il that the optimal meron separation

linear term, which will make it very difficult for us to solve decreases with the increase of layer separatioror d

it numerically. We can, however, make the following esti- =0.8 the optimal separation is arourd=2.0 and gradu-
mate. We can insert our texture solution, obtained withoutlly increases tdo=2.9 for d=0.4. For the case of pure
the Coulomb term, into the Coulomb energy integral andayer bimeron Breyet al. also found® a similar behavior.
evaluate it as a function df. This contribution is also shown This behavior could be attributed to the following. By low-
in the Table I. As expected, the Coulomb repulsion energyering the layer separatiofecreasing thel/l ratio) one in-
Ecou decreases with increasing This term would like to  creases the relative importance of Coulomb repulsion among
keep the merons farther apart and offset the tendency tmpological charge densitiecoming from the intralayer
shrink because of the other terms. Thus one may hope to g€loulomb energyto the capacitance tericoming from the

0.85 T T T T T T T

8I +
70X
5
08 |- * .
075 | .
* x
3 : FIG. 6. This figure gives a plot of the total
g o7l i energy E (total) as a function of the bimeron
w . * X + separatiorb for three different layer separations,
% namelyd=0.9, 0.1, and 0.8. The unit of en-
0.5 L x + i ergy is againe?/el.
*
% “ +
x +
06 x5 g : i
055 1 1 1 1 1 1 1 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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interlayer Coulomb repusionHence the balancing of the of e?/el. However, the difference in the energies of these
capacitance term by the Coulomb energy will take place at &arious types of topological excitations come from the addi-
larger bimeron separation, thereby increasing the size of thgonal terms in the full energ. due to capacitance, anisot-
bimeron. ropy, and Coulomb repulsion. As we can see from Table Il
We found that resulting energy of these solitons at theilpyr intertwined soliton over a range of layer separation has
optimal sizes varies very little as one changes the layer SepP@nergy around 0.68/el. It is encouraging that a pair of

ration. Although bimerons of larger size at lower layer sepayhese excitations would have somewhat lower energy than
rations cost higher capacitance energy, the decrease in thg, particle-hole pair energy of 1.25.

Coulomb energy seems to fully offset that. As a result the ¢ <qurse our computational accuracy is not very high,

total energy remains almost the same for different layer sepggiyen that we are limited in how many lattice points we can
rations in the rangel=0.4 to d=0.8 that we have studied. ;5o One must also improve on the results by solving for the

An important question is whether our spin-pseudospin inyeyqyre functions and their energy after including single par-
tertwined solution has a lower energy than other candidateg|e terms due to the Zeeman coupling and tunneling. Ex-

among the low-lying excitations. Prominent among these,mpjes of such calculations can be found in the case of
other low-lying excitations with whom such comparisons _, by Pardeset al,1 but not for =1 yet to date. Mean-

have to be done ar@) the particle-hole excitations arid) \yhile "our result for the intertwined soliton at=1 and its

purely spin or pseudospin textured solitons. To start withenergy at best raise hopes that they may be competetive as

note that in the minimal prototype €Bystem[valid in the 5 qidates for low-lying excitations in double-layer systems
d=0 limit; see Eq.(3.9] the energy is just equal tBcp  \ith spin.

=47p°Q (see Ref. 1L Now, a pure-spin skyrmion in, say,
one of the layers can also be written in our3dBur-spinor
notation and will have a CPtopological numbeQ=1. So
will a bimeron in pseudospin of some spin component.
Therefore in the prototype CRsystem our spin-pseudospin R.R. has benefitted greatly by discussions with Professor
intertwined soliton withQ=1 will have the same energy as Allan MacDonald on spin-pseudospin systems. We thank
a purely spin or pseudospin textured soliton Wik 1. The  Professor R. Ramaswamy for allowing us to use computa-
intertwining will not cost more energy. All these energies, tional facilities in his laboratory for some of the numerical
which are equal, are a quarter of that of a particle-hole paiwork done here. The work of S.G. was partially supported by
(see Ref. 8 which costs an energy of 7/2~1.25 in units a CSIR Grant No. 9/26225)/94-EMR-1.dt.2.9.1994.
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