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Quantum Hall solitons with intertwined spin and pseudospin atnÄ1
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In this paper we study in detail different types of topological solitons that are possible in bilayer quantum
Hall systems at filling fractionn51 when spin degrees of freedom are included. Starting from a microscopic
Hamiltonian we derive an effective energy functional for studying such excitations. The gauge invariance and
CP3 character of this energy fuctional and their consequences are examined. Then we identify permissible
classes of finite energy solutions that are topologically nontrivial. We also numerically evaulate a representa-
tive solution in which a pseudospin~layer degrees of freedom! bimeron in a given spin component is inter-
twined with spin skyrmions in each layer and discuss whether it is energetically favored as the lowest-lying
excitation in such system with some numerical results.
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I. INTRODUCTION

Systems that permit topological excitations, i.e., wh
field configurations can be classifield by homotopy sect
characterized typically by some winding number, have b
studied in a general sense in mathematical physics for a
time. That such interesting possibilities can actually arise
play a significant role in the quantum Hall physics was de
onstrated in the work of of Sondhiet al.1 They showed that,
for example, in a single-layer Hall liquid at filling factorn
51, the lowest energy excitations in spin for low Zeem
coupling are the so-called skyrmions and not single s
flips. These skyrmions are topological excitations in the s
texture, in which the spin starts being, say, ‘‘up’’ at the o
gin and as you go outwards, starts tilting down in a flar
manner to become asymptotically ‘‘down’’ spin at large d
tances. Subsequently experimental support for the existe
of such excitations was also discovered in NM
measurements.2

Meanwhile quantum Hall phenomena have also b
studied in double-layer systems.3,4 The double-well Hall pla-
teaus at unit filling can be understood by associating w
each electron a ‘‘pseudospin’’ in addition to its lowest La
dau level~LLL ! orbital wave function.5,6 The up and down
components of this pseudospinor give the probability am
tudes for the electron being in the upper and lower lay
respectively. The ground state of then51 double-layer sys-
tem, known to be a quantum Hall state with a Hall condu
tivity plateau, is a pseudospin ferromagnet with the ps
dospin aligned in thex direction. This is a very remarkabl
phenomenon in that it amounts to interlayer coherence
tween the electrons in the two layers. This pseudospin de
of freedom is in addition to physical spin. To start with,
analyzing double-layer phenomena, the spin degrees of f
dom are suppresed for simplicity. Even then one can
consider excitations in the pseudospin. Inspired by the p
ence of skyrmions in spin, people have also considered
possibility of topological excitations in pseudospin. Su
pseudospin textures called ‘‘merons’’ and ‘‘bimerons’’ ha
been suggested as possible low-lying excitations of dou
layer systems.5 The homotopy groupp2@S2# and its winding
number are identical for spin and pseudospin since m
ematically pseudospin is identical to spin, both being SU~2!
0163-1829/2000/63~3!/035304~12!/$15.00 63 0353
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spinor fields on a plane. The change in terminology fro
skyrmions to bimerons does not indicate any topological d
ference between the two in going from spin to pseudos
excitations but only differences in their detailed profile
This difference in turn happens because of the differenc
the energetics of spin and pseudospin and correspondin
their asymptotic direction. Meron excitations, if present
double layers, can give rise to a Kosterlitz-Thouless7 ~KT!
transition, which may enable them also to be experiment
observable.

Clearly there are prospects of even more esoteric exc
tions when both spin and pseudospin degrees of freedom
considered simultaneously. That is the theme of this pres
work. We will continue to study the unit filling factor (n
51) case. There has already been some discussion o
combined spin-pseudospinn51 double-layer system.8,9 Our
work discusses different aspects of the problem than th
studies. We analyze in substantive detail intertwined sp
pseudospin topological excitations of this system. When b
spin and pseudospin are active degrees of freedom, thes
together described by a four-component object. This fo
component object has been referred to as a CP3 spinor in the
literature.9 That is correct, but needs to be justified. A theo
does not become a CP3 theory just because its field is
normalized four-component object. The system must obe
U~1! gauge invariance, which is what makes the spinors s
a projective space, implied in the acronym CP. Without t
gauge invariance the results on CPN in the literature10,11can-
not be borrowed and applied.

So we begin in Sec. II by showing, starting from the ba
microscopic theory of then51 system that in the effective
LLL theory for the spin-pseudospin texture such gauge
varianceis there. This is a straightforward derivation follow
ing the procedure developed by Moonet al.6 In fact we find
that in the limit where the layer separationd vanishes, the
Coulomb interaction energy is precisely the protoype C3

Euclidean action used in the pioneering papers on
topic,10 for which exact topological solutions are known
terms of analytic functions. Of course, whendÞ0, the en-
ergy functional is more complicated and these analytical
lutions do not hold. But the theory is still a CP3 theory, and
the homotopy classification of the solutions still hold. On
the solutions themselves have to be calculated numerica
©2000 The American Physical Society04-1
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A topologically nontrivial CP3 solution will generally in-
volve an intertwined texture in the physical spin in ea
layer as well as in the pseudospin of each physical spin
jection. One can ask whether such solutions can be le
mately interpreted as containing, as subsystems, spin sky
ons in either or both of the layers, possibly intertwined w
a pseudospin meron or bimeron. If so, then such possibil
of containing several topological entities as subsystems
to be made compatible with the fact that any finite ene
CP3 texture carries altogetheronly onetopological winding
number. We study all these questions in Sec. III and find
there are certain restrictions on the types of solutions per
ted. We show that the individual layers of a double-lay
system cannot accomodate all possible spin structures
may find in a pair of unrelated single layers. The sp
winding numbers in the two layers are related to one ano
and to the pseudospin winding number.

Consistent with these restrictions, we then pick in Sec.
a representative ansatz that can be viewed as a spin skyr
intertwined with a pseudospin bimeron. We then numerica
evaluate such a solution by solving the coupled nonlin
partial differential equations that arise from extremizing t
texture energy functional. In earlier work12,13we had studied
in some detail both meron and bimeron excitations in ps
dospin for double layer systems, with the spin degree
freedom suppressed. The present calculation is a more c
plicated version with CP3 spinors, but is done by simila
numerical techniques. We present the spin and pseudo
proflies of our intertwined solutions for different values
interlayer separation.

We also estimate the interaction energy of these solut
for some typical sets of values of system parameters.
discuss the dependence of this energy on the separatio
tween the two meron centers. We find, as expected, th
only the gradient and capacitance energies are conside
their minimization will drive the textures towards zero siz
Therefore we also calculate the topological charge-depen
Coulomb energy of our solutions which, being repulsiv
should drive the merons farther apart, offsetting the abo
noted tendency towards zero size. Then we extremize
total energy so obtained and find that it does show a m
mum at some optimal meron separation, for each value
layer separation.

We also find that these energies are approximately of
same order as those of purely spin skyrmions of the sin
layer system. We make qualitative speculations on whe
or not our spin-pseudospin intertwined solitons can be e
getically favored over solitons purely in spin or pseudosp
or over simple spin flips.

II. TEXTURE ENERGY AND ITS GAUGE INVARIANCE

In a double-layer quantum Hall system with both spin a
pseudospin degrees of freedom present, an electron
carry, apart from its coordinate wave functionfX(rW), a four-
component normalized spinor whose components in gen
may vary with the orbital quantum numberX. For any given
X, this spinor can be denoted by
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as~X!5S a1~X!

a2~X!

a3~X!

a4~X!
D , ~2.1!

where the spin-pseudospin indexs51,2,3,4 corresponds to
amplitudes that the electron is in the upper-layer up-sp
upper-layer down-spin, lower-layer up-spin, and lower-lay
down-spin states, respectively. It will henceforth be und
stood that the spinor is normalized, i.e.,(suas(X)u251 for
eachX. In the literature, thisas has sometimes been referre
to as a CP3 spinor ~see, for instance, Ezawa9!. That is cor-
rect, but requires a little justification. In a CP3 theory, the
spinor must not only be a normalized four-component obje
but be defined only modulo a local gauge transformat
common to all four components. This in turn requires th
the Euclidean action or static energy functional of the spi
field enjoys a corresponding gauge invariance. In this sec
we will verify all this. We will also see that the nature of th
gauge symmetry is different for a double-layer system th
for a pair of isolated single layers. This, as we shall see,
the important consequence of prohibiting certain topologi
spin excitations in the double-layer system that would ha
been present in the individual layers had they been far ap
In this way, along with establishing the CP3 nature of the
system, we will also identify permissible types of excitatio
where the spin and pseudospin are nontrivially intertwin
some of which we numerically evaluate in later sections.

Let us start by deriving the energy functional of any sp
pseudospin texture from the microscopic Hamiltonian. T
is just a straightforward generalization of the procedure
ready in the literature for the simpler case of a spinless
layer problem.6 Therefore we need to present only the ess
tial equations needed for completeness and und
standability. We take the microscopic Hamiltonian to be

H5HK1H11HC . ~2.2!

Here

HK5
1

2m (
s51

4 E drW cs
†D2cs ~2.3!

is the kinetic energy in the presence of the magnetic fie
We will be working at n51 in the lowest Landau leve
~LLL ! approximation. Corespondingly, the operatorcs(rW) is
the LLL-projected electron field operator expanded in ter
of lowest Landau level orbitals as

cs~rW !5 (
X51

N

fX~rW !CsX , ~2.4!

with fX(rW) being a LLL orbital, say, in the Landau gaug
with X as its guiding center.

The second term in the Hamiltonian is the one-body te
representing the Zeeman and interlayer tunneling energi
4-2



bl
o

:

er

a
fo

t

it
th
k

rg

ha

e

th

il-
g

en-

ele-

lem
n

QUANTUM HALL SOLITONS WITH INTERTWINED SPIN . . . PHYSICAL REVIEW B63 035304
H15(
s,d

E drW cs
†~rW !~ g̃ŝz2t t̂x!sdcd~rW !, ~2.5!

where ŝz and t̂x are spin and pseudospin matrices suita
generalized as 434 matrices on the outer product space
spin and pseudospin.

The third term in the Hamiltonian is the Coulomb term

HC5
1

2 (
s1 ,s251

4 E drW1 drW2 cs1

† ~rW1!cs2

† ~rW2!Vs1s2

3~rW12rW2!cs2
~rW2!cs1

~rW1!. ~2.6!

In the above, the Coulomb potentialVs1s2 depends on
whether the particles are in the same layer or different lay

Vs1s25vs[
e2

er 12
, s1 ,s2 in the same layer,

Vs1s25vd[
e2

eAr 12
2 1d2

, s1 ,s2 in different layers

~2.7!

whered is the interlayer distance. To obtain the energy of
arbitrary spin-pseudospin texture, we adopt the strategy
lowed in the work of Moonet al.6 We first consider the
ansatz state

uC&5)
X

F(
s

CsX
† as~X!G u0&, ~2.8!

where u0& is the vacuum~no electron! state,X stands for
Landau gauge orbitals, andas(X) is an orbital-dependen
four-spinor as in Eq.~2.1!. In the high-B limit each Landau
gauge orbital density is uniform along they axis with support
on a thin line localized around some value ofx. Further these
states are closely spaced along thex direction. Using this
feature, we will later on replace the orbital labelX by thex
coordinate itself. In that case the above textureas(X) de-
pends only on thex coordinate and not ony, and therefore
carries zero topological number density@see Eq.~3.14! be-
low#. Nevertheless we will use this ansatz to calculate
energy functional, and then later that energy functional to
more general and topologically nontrivial textures by invo
ing isotropy of the system in thex-y plane. This was exactly
the strategy used in Ref. 6. We will calculate the ene
functional of the spin-pseudospin texture~2.8! by taking the
mean value of the second quantized Hamiltonian in t
state.

At unit filling n51, and in the space of LLL orbitals, th
kinetic term HK is just a constant equal to (N/2)\v, the
energy of the filled LLL band. This constant will hencefor
be neglected.

The Zeeman and tunneling one-body energies yield
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E1@as~X!#5(
X

$g̃@ ua1~X!u22ua2~X!u2

1ua3~X!u22ua4~X!u2#

2t@a1~X!a3* ~X!1a2~X!a4* ~X!1c.c.#%.

~2.9!

The expectation value of the Coulomb interaction Ham
tonian can be conveniently written in terms of the followin
spinorial bilinears for the upper~u! and lower~l! layers:

Fu~X!5ua1~X!u21ua2~X!u2, ~2.10!

Fl~X!5ua3~X!u21ua4~X!u2, ~2.11!

Gu~X1 ,X2!5 (
i 51,2

ai~X1!ai* ~X2!, ~2.12!

Gl~X1 ,X2!5 (
i 53,4

ai~X1!ai* ~X2!. ~2.13!

On insertingHC from Eq. ~2.6! and the stateC from Eq.
~2.8! straightforward algebra then gives us the Coulomb
ergy in terms of the spinorsas :

EC@as~X!#[^CuHCuC&5^HC&direct2^HC&exchange,

~2.14!
with

^HC&direct5
1

2 (
X1 ,X2

$Ds1~Dd2Ds!@Fu~X1!Fl~X2!

1Fl~X1!Fu~X2!#% ~2.15!

and

^HC&exchange5
1

2 (
X1 ,X2

@Es~ uGuu21uGl u2!

1Ed~Gu* Gl1GuGl* !#. ~2.16!

Here

Ds,d~X22X1!5VX1 ,X2 ,X1 ,X2

s,d ,

Es,d~X22X1!5VX2 ,X1 ,X1 ,X2

s,d , ~2.17!

with

VX1 ,X2 ,X3 ,X4

sd 5E drW1 drW2 Vs,d~rW12rW2!

3fX1
* ~rW1!fX2

* ~rW2!fX3
~rW1!fX4

~rW2!.

~2.18!

These direct and exchange Coulomb interaction matrix
mentsDs,d and Es,d between two electrons in LLL orbitals
X1 andX2, in the same~s! or different~d! layers, are exactly
the same as were used in the spinless double-layer prob
by Moon et al.6 However, the inclusion of the physical spi
4-3
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degrees of freedom is reflected in the energy expression
Eqs.~2.15! and~2.16!, which involve all four components o
the spin-pseudospin multipletas .

Adding the contributions in Eq.~2.14! and Eq.~2.9! we
get the total energy expectation value

E@as~X!#5E1@as~X!#1EC@as~X!#. ~2.19!

In the Hartree-Fock approximation, this energy expectat
value E@as(X)# in Eq. ~2.14! will be minimized to get the
ground-state and excited-state spin-pseudospin textures

But, let us first examine the gauge invariance of the
ergy functionalE@as(X)#. Consider the transformation

as~X!→eiLu(X)as~X! for s51,2

as~X!→eiL l (X)as~X! for s53,4. ~2.20!

Notice that we have used different phasesLu(X) andL l(X)
for the upper- and lower-layer components, respectiv
This is a U(1)3U(1) transformation. These phases can a
vary with the orbital indexX. @Note: X is not the space co
ordinate. But, following accepted approximations~see Ref.
6! eventually the sum over the orbital indexX will be con-
verted into an integral over space coordinate, invoking
fact that for large magnetic fields, each LLL orbital wa
function is highly localized. Hence the aboveX-dependent
transformation corresponds to spatially local gauge trans
mations.#

Under these local U(1)3U(1) transformations, the one
body Zeeman energy in Eq.~2.9! and the direct part of the
Coulomb energy~2.15! are trivially invariant since they in-
volve only the squared modulus ofas(X). So is the first part
~proportional toEs) of the exchange Coulomb energy~2.16!.
But the tunneling energy in Eq.~2.9! and the second piece o
the exchange energy~2.16!, which involves exchange Cou
lomb interactionEd between different layers, are invaria
only if

Lu~X!5L l~X!5L~X!. ~2.21!

Thus the full energy of the double-layer system enjoys o
a U~1! subgroup of U(1)3U(1) defined in~2.20!—a sub-
group where all four components ofas are transformed by
thesamephase. This is the U~1! gauge invariance modulo b
which our CP3 spinors are defined.

Consider, however, what would happen if we had ve
widely separatedn51 layers~the separationd→`). Then
each can have its own two-component spin texture descr
03530
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by a CP1 system@equivalent to a nonlinear O~3! s model#
with its own U~1! gauge symmetry~see Refs. 5 and 11!. The
well-separated pair of layers should obey U(1)3U(1) gauge
symmetry. Our derivation shows a similar effect. Whend
→`, both the tunneling parametert in ~2.9! and the inter-
layer Coulomb potentialvd involved in Eq. ~2.16! would
vanish and the full U(1)3U(1) gauge invariance would in
deed be restored. We will see later that this reduced ga
symmetry of a double-layer system at finite separation
consequences in terms of what types of finite energy exc
tions are permitted in it as compared to a pair of isola
single layers.

III. GRADIENT EXPANSION AND THE CP 3 FIELD
THEORY

To rewrite the energy expression~2.19! in a continuum
field theory language, we proceed following Moonet al.6

and convert sums over the LLL labelX into an integral over
space. Clearly the one-body energy~2.9!, which involves
only a single sum over the indexX, will become a local term,
i.e., a spatial integral over the one-body energy density.
the Coulomb term~2.14! containing a double sum overX1
andX2 will become a nonlocal term involving a double in
tegral over some coordinatesx1 andx2. For long-wavelength
excitations one then makes the usual gradient expansion.
pand the spinor forX2 as

as~X2!5as~X1!1~X22X1!
]

]X1
as~X1!1••• . ~3.1!

Up till now we found the energy of textures that werey
independent.

Now we will invoke the isotropy of the basic system
the x-y plane and generalize this expression for arbitra
textures. This is done by making the replacement

(
X

→ 1

2p l 2E d2r ~3.2!

and by replacingx derivatives by gradients. Insert the abo
expansion ~3.1! into the Coulomb energy expression
~2.13!–~2.16!. Keep terms only up to order]X1

2 and replace

the sum(X1
by an integral over space as indicated.~These

steps are given in the work by Moonet al.6 for the simpler
spinless double-layer case!. The result for our problem is the
following local expression for the total energy~2.19!, with
overall constants subtracted:
E@as#5
1

2p l 2E d2r @ g̃~ ua1u22ua2u21ua3u22ua4u2!2t~a1a3* 1a2a4* 1H.c.!#

1bmE d2r @Fu~rW !2Fl~rW !#212rsE d2r F (
i 51,4

@]mai* ~rW !]mai~rW !#1 (
i 51,4

ai* ~rW !]mai~rW !2G
1~rd2rs!E d2r @a1a3* ¹W 2~a3a1* !1a1a4* ¹W 2~a4a1* !1a2a3* ¹W 2~a3a2* !1a2a4* ¹W 2~a4a2* !1H.c.#,

~3.3!
4-4
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where the constants appearing above are defined by

bm5
1

4 (
(X22X1)

$@Ed~X22X1!2Es~X22X1!#

2@Dd~X22X1!2Ds~X22X1!#%, ~3.4!

rs5
1

2 (
(X22X1)

~X22X1!2

2
Es~X22X1!, ~3.5!

rd5
1

2 (
(X22X1)

~X22X1!2

2
Ed~X22X1!. ~3.6!

These constants are again the same as given by Moonet al.6

in the spinless double-layer problem. The term involvingb
represents the ‘‘capacitance energy’’ of the double-layer s
tem. It is proportional to the square ofFu(rW)2Fl(rW), which
gives the difference in charge density between the two
ers. The constantsrs andrd represent spin-pseudospin stif
ness coming from intralayer and interlayer Coulomb inter
tions, respectively.

This energy functional~3.3! will act as the effective clas
sical Hamiltonian to be minimized to find different texture
solutions. The ground state will correspond to a spatia
uniform texture, and so can be obtained by minimizing
gradient-free terms in Eq.~3.3!. This is acheived by the
spinoras(X)5(1/A2)(0,1,0,1). The one-body Zeeman a
tunneling energies are clearly minimized by this choice si
the spin is polarized ‘‘down’’ in both layers and the psu
dospin is along thex direction, i.e., a layer-symmetric stat
This choice also minimizes the capacitance energy sinc
has equal occupancy in the two layersFu5Fl5

1
2 .

Moving on to excited states with nontrivial textures, the
are obtained by extremizing the full energy functional~3.3!.
Note that Eq.~3.3! including its gradient terms is still gaug
invariant under the local U~1! transformation mentioned ea
lier,

as~X!→eiL(X)as~X! ~3.7!

so that this is still a CP3 theory. In fact the term proportiona
to the isotropic spin-pseudospin stiffnessrs, namely,

ECP[2rsE d2r F (
i 51,4

@]mai* ~rW !]mai~rW !#

1 (
i 51,4

ai* ~rW !]mai~rW !2G ~3.8!

is the Euclidean action for the prototype minimal C3

theory.10 Indeed, in the limit where the layer separationd is
zero, thisECP will be the only surviving term from the Cou
lomb energy in Eq.~3.3! since the interlayer and interlaye
Coulomb potentials will become equal (vs5vd) and hence
both b andrs2rd will vanish.

The properties of this prototype CP3 system and its topo
logical solitons are well known.10,11 Let us briefly recall
those salient features that will be of relevance to us. Defin
gauge fieldAm as follows:
03530
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s

@as* ]mas#. ~3.9!

Clearly under the gauge transformation~3.7!,

Am→Am2]mL. ~3.10!

The energyECP can then be written in a manifestly gaug
invariant manner as

ECP[2rsE d2r (
s51

4

(
m51

2

uDmas~rW !u2, ~3.11!

whereDm5]m1 iAm is the covariant derivative of the U~1!
gauge transformation. Then any finite energy field m
obey, asrW→`, the boundary condition

Dmas5~]m1 iAm!as50. ~3.12!

SinceAm is independent of the spinor indexs, this implies
~see Ref. 11! that asrW→`,

as→bseif(u), ~3.13!

wherebs is some constant spinor. The important point is th
all four components ofas have the same asymptotic pha
f, which may depend on the spatial angleu. The underlying
reason is that the system is invariant under the same si
U~1! gauge transformation~3.7! acting on all the four com-
ponents ofas . Finally, the phase functioneif(u) asrW→` is
a mapping of one circle~spatial infinity! into another@the
U~1! group manifold#, and can therefore be divided into ho
motopy classes characterized by a winding number

Q52
i

2pE d2r @emn~Dmas!* ~Dmas!#. ~3.14!

For more details supporting these results see Ref. 11. E
soliton solutions for the minimal CP3 system also known
analytically in terms of analytic functions. Those will no
however, hold for our full system~3.3!, which has to be used
when the layer separationdÞ0. The solutions will have to
be obtained numerically by using appropriate ansatz. But
boundary condition~3.13! and the winding-number classifi
cation will still hold. They can be used to decide what form
of intertwined spin-pseudospin solitons are permitted
double layers.

An important consequence of the common phase bou
ary condition ~3.13! is that certain spin textures one ca
imagine having for two separate single layers are not perm
sible in the double-layer system. Consider a single laye
n51 carrying a skyrmion with winding numbern. This is a
finite energy configuration which can be described by a tw
component spinor, say,

S l~r !

f ~r !einuD ,

obeying boundary conditions asr→` given by

l~r !→0,
4-5
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f ~r !→1,

and asr→0

l~r !→1,

f ~r !→0. ~3.15!

One can have two such layers, widely separated, with
different spin-winding numbersn andm, respectively. Noth-
ing prohibits this. However, suppose the two layers are p
of a n51 double-layer system at finited, and are described
by a CP3 four-spinor

1

A2 S l1~r !

f 1~r !eimu

l2~r !

f 2~r !einu
D . ~3.16!

This would violate the condition~3.13! since asymptotically
the second and fourth components would have differ
phase functions. Such a texture is forbidden as per our an
sis and indeed if one calculates its energy by inserting i
Eq. ~3.3! one will find the energy diverging logarithmically
The divergence comes from the angular derivative
(1/r 2)]u

2 contained in the Laplacians¹2 in Eq. ~3.3!. That
yields a contribution to the energy density proportional to

n21m2

2r 2
2

~n1m!2

4r 2
~3.17!

asr→`, which will lead to a logarithmic divergence unles
n5m. At the theoretical level the reason for this can
traced to the reduction of gauge symmetry discussed ea
from U(1)3U(1) to U(1) when two layers are together.

Keeping in mind this constraint of equal spin-windin
numbers in each layer, let us illustrate nontrivially inte
twined spin-pseudospin configurations with the followi
example that is allowed:

AS l1

z2b

l2

z1b
D . ~3.18!

Herel1,2 andb are nonzero constants whilez is the complex
coordinate on the plane. A5(l1

21uz2bu21l2
21uz

1bu2)21/2 is the normalization factor. Asymptotically, th
first and third components of Eq.~3.18! both behave as
(1/A2)eiu while the other two components vanish. This
therefore a permitted~energetically finite! CP3 configuration
with winding numberQ51.

One can see that this example is so designed that w
each layer the spin texture looks like that of a sing
skyrmion, while at the same time it is also a ‘‘bimeron’’ i
the ‘‘psuedospin of the down-spin component’’@contained in
the second and fourth components of the four-spinor of
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ample ~3.18!. See Ref. 13 for more on bimerons#. But, we
should remember that the the upper and lower layers are
separately normalized in the example~3.18!. As rW varies so
does the relative charge density in the two layers. Thus
spin vector in the upper~or lower! layer in example~3.18!
will not be a unit vector at every point unless it is is local
renormalized by the charge density of that layer at that po
Similarly, while the pseudospin of the down-spin compone
in the example~3.18! forms a bimeron, this pseudospin wi
also be a unit vector at eachrW only after being renormalized
by the down-spin density, which varies from point to poin
Such renormalization can be achieved by writing any gen
CP3 four-spinor~2.1! in terms of spin and pseudospin pol
angles:

as51
cos

a

2
cos

uu

2

cos
a

2
sin

uu

2
eifu

sin
a

2
cos

u l

2
eib

sin
a

2
sin

u l

2
ei (b1f l )

2 , ~3.19!

where the anglesuu.l , andfu,l are the polar angles of th
spin in the upper~lower! layer whilea andb are the polar
angles of the pseudospin, each of which is a the function
the coordinaterW. ~Recall that the CP3 spinor has six real
gauge invariant degrees of freedom.! Suppose we tentatively
define, using these polar angles, the familiar expression
the spin-skyrmion number in each layer by

nu,l5
1

4pE d2r emn]m~cosuu,l !]n~fu,l !. ~3.20!

One can then verify that the configuration~3.18! indeed
yields unit spin-winding numbersnu,l51 in each layer.

Similarly, to get the pseudospin winding number one u
an alternate parametrization of the same four-spinor:

as5S cos
a↑
2

cos
us

2

cos
a↓
2

sin
us

2
eifs

sin
a↑
2

cos
us

2
eib↑

sin
a↓
2

sin
us

2
ei (b↓1fs)

D . ~3.21!

Then the pseudospin winding number for the down-s
component, for example, can be written as

nps~↓ !5
1

4pE d2r emn]m~cosa↓!]n~b↓!. ~3.22!
4-6
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QUANTUM HALL SOLITONS WITH INTERTWINED SPIN . . . PHYSICAL REVIEW B63 035304
Again, the example~3.18! happens to yieldnps(↓)51 in
addition to, as we have seen,nu,l51. Thus the example
~3.18! illustrates an intertwined spin-pseudospin topologi
configuration, containing the spin texture of a skyrmion
each layer and the pseudospin texture of a bimeron in
down-spin component.

One should however be cautioned that there is only
true topological chargeQ in the full CP3 theory, given in Eq.
~3.14!. Although the above example~3.18! contains the tex-
ture of two skyrmions and a bimeron, its CP3 topological
indexQ obtained by inserting it into Eq.~3.14! will come out
to be not 3, but unity. The separate subcharges for spin
pseudospin defined in Eqs.~3.20! and ~3.22! in general do
not have the same characteristics as they would have ha
skyrmions in a single layer or bimeron in a spinless proble
Although in the above example these separate spin
pseudospin winding numbers turn out to be integers, in g
eral they need not be integers, or more importantly, be c
served in time. They are not protected by homotopy con
erations in our full four-component theory. The anglesuu,l ,
etc., used in Eq.~3.19! cannot always be obtained from th
original componentsas of the four-spinor~2.1!, since they
are not defined at those singular points wherea5p,0, re-
spectively. A similar remark holds for the other angles us
above. The numbersnu,l andnps can change in time due t
leakages through such singular points. It is, however, in
esting to note that the exact CP3 winding number can be
rewritten in expanded form using the angles defined in
~3.19! into parts that can be attributed to winding of spin a
pseudospins. This also brings out the intertwining of sp
psedospin texture. We have

Q5
1

4pE dr emn$]m~cosa!@ 1
2 ~12cosuu!]nfu

2 1
2 ~12cosu l !]nf l2]nb#2Fu~rW !]m~cosuu!]nfu

2Fl~rW !]m~cosu l !]nf l%, ~3.23!

where Fu(rW)5(1/2)@11cosa(rW)# and Fl(rW)5(1/2)@1
2cosa(rW)# are, respectively, the same quantities as in E
~2.10! and ~2.11! and denote the number density in the t
and bottom layers. For the spinless~spins fully frozen! case
one can setuu , u l , fu , and f l to be constants. Then on
will recover the pseudospin topological charge formula

nps52
1

4pE dr emn]m~cosa!]nb. ~3.24!

Similarly for a single-layer~say the upper-layer! case one
can seta50 and recover the spin winding-number formu

nu52
1

4pE dr emn]m~cosuu!]nfu . ~3.25!

In general, where both spin and pseudospin have some i
twining texture, the full topological charge will receive co
tributions from the windings of all these, as given in E
~3.23!.
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Finally, the very simple example~3.18! not only illus-
trates a nontrivial intertwining texture, it is also an exa
solution of the prototype CP3 theory ~3.8! since its compo-
nents are analytic functions~see Ref. 11!. But, for our full
theory in the presence of a nonzero layer separation and
Zeeman and tunneling energies, classical solutions minim
the full energy functional~3.3!, have to be obtained numer
cally by solving the nonlinear coupled partial differenti
equations that the minimization conditions yield. The simp
analytical example~3.18!, however, will guide us in setting
up the desired ansatz for the numerical solution with app
priate boundary conditions so that intertwined textures wh
are nontrivially wound in both spin and pseudospin can
obtained for our full theory. An illustrative family of such
solutions is obtained in the next section.

IV. FIELD EQUATIONS AND THEIR SOLUTIONS

Classical solutions that minimize the full energy fun
tional ~3.3! have to be obtained numerically. To do this w
use the parametrization of the spinor components of the f

as5S cos
a

2
cos

uu

2

cos
a

2
sin

uu

2
eifu

0

sin
a

2
eif l

D . ~4.1!

One can see that this is a sub-family of the general cas
Eq. ~3.19!, where for simplicity we have setu l equal top
andb50.

We will look for numerical solutions that would have co
responded if the energy had been of the simple protot
functional ~3.18!, to its exact analytic solution

AS l

z2b

0

z1b
D . ~4.2!

This configuration represents a spin skyrmion in the up
layer intertwined with a bimeron in the ‘‘pseudospin of th
downspin component.’’ It does not have any nontrivial win
ing in the real spin of the lower layer~though the fourth
component in the spinor varies over the coordinate space
spin will always be down!. To ensure that our numerica
solutions have the same topological properties as wel
similar profiles as the prototype spinor~4.2! we impose the
same boundary conditions on the components of the for
as obtained in the latter, both asymptotically and at
meron centersx56b.

In terms of the ansatz~4.1! the local energy functiona
~3.3! takes on the form
4-7
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EC5bmE drW cos2a12rsE drWF1

4 S ~¹W a!21cos2
a

2
~¹W uu!2D1

1

4
@~11cosa!~12cosuu!~¹W fu!212~12cosa!~¹W f l !

2#

2
1

16
@~11cosa!2~12cosuu!2~¹W fu!214~12cosa!2~¹W f l !

214~12cos2a!~12cosuu!¹W fu•¹W f l #G
1~rs2r l !E drWF1

2
@~¹W cosa!22~¹W a!2#1sin2aS 2

1

8
~¹W u1!22

1

4
@~12cosuu!~¹W fu!2

12~¹W f l !
212~12cosuu!¹W fu•¹W f l # D G . ~4.3!
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This energy functional has to be minimized with resp
to all the angle fields in the anstatz. As we did in our ear
work on the spinless problem,13 here too we will use the
bipolar coordinate system16 to describe the spatial plane:

h5 lnuz2au2 lnuz1au; f5arg~z2a!2arg~z1a!.
~4.4!

We have already elaborated in Ref. 13 the advantages of
coordinate system when one has to impose the bimeron-
boundary conditions. However, here the advantages of in
ducing such an unfamiliar coordinate system is not as m
as in the simple spinless bilayer problem of Ref. 13 beca
the ansatz here is not symmetric between the two lay
Consequently unlike the spinless case cosa is no more anti-
symmetric abouth 5 0 axis. All these features along wit
the fact that the energy minimization unavoidably requi
solving coupled nonlinear partial diffential equations~PDE!
render the numerical exercise much more complicated h
What we have done under these circumstances is the fol
ing.

We have solved the field equations numerically for t
case where just the capacitance term is added to the min
CP3 energy. From our earlier calculations we know that t
term is going to change the solutions considerably. T
terms in each equation with the coefficient (rs2r l), which
accounts for the anisotropy in the exchange energy is
included in the process of numerical integration. As a ju
fication of such simplification we can say that the anisotro
terms that involve higher-order gradients of the sp
pseudospin field will have a less pronounced effect co
pared to the capacitance term on the solutions. This has
graphically shown in Figs. 1 and 2 of our earlier work13

Even after this drastic simplification we are still left wit
solving four coupled nonlinear PDE’s. For example, t
equation which is obtained by extremizing the energy w
respect to cosa is

S dEC

d cosa D
rs5r l

52bmQs
2 cosa1rsF22

cosa~¹W cosa!2

~12cos2a!2

22
¹2 cosa

12cos2a
1~12cosuu!~¹W fu!2

22~¹W f l !
22

1

4
~11cosa!~12cosuu!2
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3~¹W fu!21~12cosa!~¹W f l !
2

1cosa~12cosuu!~¹W fu•¹W f l !G50,

~4.5!

where

Qs
2~h,f!5

b2

~coshh2cosf!2
~4.6!

is the Jacobian of this coordinate transformation and all g
dient operators are defined in the bipolar-coordin
system.16 Similarly we will have three more equations ob
tained by extremizing the energy functional with respect
uu , fu , andf l and then writing the resulting equations
bipolar coordinates. We will not display them here.

FIG. 1. The solution cosa(h) of the field equations for a set o
values forf. The curves correspond, as one goes inwards, tof
50.09p,0.36p,0.63p,0.90p, respectively, where the outermo
one corresponds tof equal to 0.09p. The layer separationd is
equal to 0.6l and bimeron separationb is equal to 2.5l . The value of
l in the analytic ansatz is 1l .
4-8
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A. Numerical procedure

The numerical procedure is almost the same as tha
Ref. 13. Here also one can see that the Jacobian factorQs in
the first term of Eq.~4.5! is singular at the point (h50,f
50). The behavior of cosa near this point is also going to
be same as the behavior ofmz in Ref. 13. The major differ-
ence compared to the earlier problem, however, comes f
the fact that it is no longer sufficient to find out the solutio
in one quadrant and get the rest from symmetry consid
ations. We have to solve this problem on both sides of
h50 axis since our starting ansatz solution is not comple
antisymmetric aroundh50. During the numerical work one
also has to be careful about the different branches of
anglesfu,l . As one needs to integrate the equations on
both sides of theh50 axis the size of the mesh on which w
have to discretize the field equations becomes larger c
pared to the earlier case of spin-frozen double-la
problem.13 Also here we have to solve four coupled PDE
simultaneously. This simultaneous increase in the numbe
lattice points as well as independent fields demands tha
have to invert a huge determinant in the Newton-Raph
procedure17 while improving over the initial guess solution
This forces us to increase the lattice constants of the m
slightly compared to what we have done in our earl
work.13 However, we have checked that the error introduc
in this way is not very high. In the next subsection we sh
present our results along with the discussion.

B. Results and discussion

Our solutions of Eq.~4.5! along with the other three field
equations yield the spatial behavior of the CP3 fields param-
etrized in term of the anglesa, b, uu,l , andfu,l . The cal-
culations are done iteratively. We start with the simple a
lytical spinor ~4.2!, which is the exact solution when th
capacitance and anisotropy terms in the energy~4.6! are ab-
sent. Then the capacitance term in the equation is introdu
in small steps and the corresponding solution obtained
merically. We have performed several calculations e
starting from different initial values of the constantsl andb.
The constantl represents the starting value of the first co
ponent of the spinor in the iteration process. It stands for
spin-skyrmion size in the CP3 limit, but when subsequen
iterations are performed in the presence of other ene
terms, it is replaced by a space-dependent solution. But
parameterb is fixed for a given calculational run. It repre
sents the meron separation and enters into Eq.~4.5! explicitly
through the first~capacitance! term. While we do calcula-
tions for different values ofb, the optimal value ofb will
have to be obtained by minimizing the energy with respec
it. We will return to this point later.

We present below the salient features of our numer
results. The major feature we want our numerical solution
have is the intertwining of the spin skyrmion with the pse
dospin bimeron. We would also like to show the leakage
electrons of either spin from one layer to another as we m
in space, as a fallout of this intertwining. To show this, w
have plotted both cosa and cosa↓ as a function ofh for a set
of values of the anglef in Fig. 1 and Fig. 2, respectively
03530
in

m

r-
e
ly

e
e

-
r

of
e
n

sh
r
d
ll

-

ed
u-
h

-
e

y
he

o

l
o
-
f
e

These solutions correspond to layer separationd50.6l ,
bimeron center separationb52.5l , and start from an initial
value of l51 in the starting trial solution~4.2!. The se-
quence of curves shown correspond tof equal to 0.09p,
0.36p, 0.63p, and 0.90p, respectively, with the outermos
one belonging tof equal to 0.09p. As we have discussed
earlier,13 note from the definition of the bipolar coordinate
that spatial infinity inx-y plane corresponds toh and f
both equal to zero. As we approach this point in the (f,h)
plane, the solution should damp exponentially
exp(2k/Ah21f2), where

k5A2b

rA
b. ~4.7!

Correspondingly we see in Figs. 1 and 2 that the lowf
curves rise very slowly ash increases away from zero.

The interesting point to note about these solutions is t
in Fig. 1 cosa approaches different~absolute! asymptotic
values ash approaches6`. ~These are the centers of th
two merons that form the bimeron. Although computation
limitations allow us to go only up to values ofh563, it is
clear from the figure that asymptotic behavior has been
tained.! This asymptotic behavior is extracted directly fro
the analytic ansatz~4.2! and implies the leakage from th
pseudospin to spin. It is useful to remember at this point t
we have a bimeron only in the ‘‘pseudospin of the down-s
component,’’ whereas cosa represents thez component of
the total pseudospin. This is realized in Fig. 2. Here cosa↓
~down-spin! represents thez component of the ‘‘pseudospin
of the down-spin component.’’ It is completely antisymme
ric abouth50 and approaches61 as h approaches6`.
This behavior is same as the behavior ofmz in the spinless
bilayer case. This is how we can extract from our results
pure bimeron by suitably partitioning the pseudospin in
different spin components.

FIG. 2. The plot of cosa↓(h) ~down-spin! for a set of values for
f. The curves correspond, as one goes inward, tof
50.09p,0.36p,0.63p,0.90p, respectively, where the outermo
curve corresponds tof equal to 0.09p. The layer separationd is
again equal to 0.6l and bimeron separationb is equal to 2.5l . The
value ofl in the analytic ansatz is also 1l .
4-9
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Since bipolar coordinates are not very familiar we ha
given an alternate representation of the above results thro
a vector plot in the physicalx-y space in Figs. 3 and 4. Th
values of the parameters in these figures are same as tho
Fig. 1. In Fig. 3 the magnitude of each arrow gives the
solute value of the transvere component of the total ps
dospin sina and its angle with thex axis givesfu2f l . One
should note in this regardfu2f l5b↓ in the other param-
etrization. Here also one can see the length of the arrow d
not quite vanish in one of the bimeron centers and makes
construction singular at this point. However, when we lo
at Fig. 4 where the magnitude of each arrow is sina↓ and the
angle is againfu2f l , the magnitude of the arrow vanishe
at each bimeron center and the profile is no longer singu
This makes Fig. 4 identical to the vector plot of the bimer
pseudospin in the pure layer case.15,13

FIG. 3. This figure gives the magnitude and direction ofx-y
projection of the total pseudospin at different points on the pla
The magnitude of each arrow at a given point is sina and its angle
with thex axis isf l2fu at that point. The layer separation and t
bimeron separation are same as in Figs. 1 and 2.

FIG. 4. This figure gives the magnitude and direction ofx-y
projection of the ‘‘pseudospin in the down-spin component’’ at d
ferent points on the plane. The magnitude of each arrow at a g
point is sina↓ and its angle with the thex axis isb↓ at that point.
The layer separation and the bimeron separation are same
Figs. 1 and 2.
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In Fig. 5 we have given a similar vector plot for the sp
skyrmion in the upper layer. Here the length of the ea
arrow corresponds to the planar projection of the spin in
upper layer (sinuu) and the its direction gives the azimuth
angle (fu) of the projected vector. This picture very clear
points out how the skyrmion winds in the azimuthal pla
about its center atx5b. Here also the layer separationd and
the starting values ofb andl are the same as those in Fig.
This set of parameters represents a typical example.

Last, we have evaluated the energy of these solutions
a set of values of the meron separation parameterb. The
optimal value ofb should be obtained by minimizing the fu
energy as a function ofb. But if we include only the capaci-
tance term and the~pseudo!spin-stiffness gradient terms i
our energy, these will not lead to a nonzerob, i.e., the tex-
tures will want to shrink to zero size. The reason is th
under rescaling, the capacitance term grows proportiona
the square of the scale while the gradient terms are s
invariant. Of course a change inb will not result in just an
overall rescaling of the solution. The shape of the solut
will also change sinceb occurs as a constant multiplying th
capacitance term in the differential equation~4.5!. As a re-
sult, theb dependence of the gradient and capacitance te
will not be simple, although qualitatively it should still driv
the meron separation to zero size. This can be seen in T
I, where we show these energies for ten different values ob
for a fixed value of other parameters. As expected the sum
both these energy contributions decreases strongly with
creasingb, thus driving the texture to zero size. In reali
however, these two terms are just the first two terms in
gradient expansion of the full energy functional. Highe
order terms in the gradient expansion, if included, will ma
our nonlinear differential equation even more difficult
solve, but they can offset this tendency to shrink.

In particular, one prominent higher gradient contributi
to the energy is the Coulomb interaction between differ
portions of the topological charge densities. It is given
~see Ref. 8!:

.

n

in

FIG. 5. This figure gives the magnitude and direction ofx-y
projection of the spin in the upper layer at different points on
plane. At each point the magnitude of the arrow gives sinuu and its
direction with thex axis givesfu at that point. The layer separatio
and the bimeron separation and initiall are the same as in th
earlier figures.
4-10
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ECoul5
1

2E drW drW8V~rW2rW8!dr~rW !dr~rW8!, ~4.8!

wheredr(rW) is the CP3 topological charge density given b
the integrand of the right-hand side~r.h.s.! of Eq. ~3.14!.

Inclusion of the contribution of this term into our differ
ential equation for the texture will introduce anonlocalnon-
linear term, which will make it very difficult for us to solve
it numerically. We can, however, make the following es
mate. We can insert our texture solution, obtained with
the Coulomb term, into the Coulomb energy integral a
evaluate it as a function ofb. This contribution is also shown
in the Table I. As expected, the Coulomb repulsion ene
ECoul decreases with increasingb. This term would like to
keep the merons farther apart and offset the tendenc
shrink because of the other terms. Thus one may hope to

TABLE I. Different contributions to the total energy (Etotal) of
spin-pseudospin intertwined solitons for a set ofb at a layer sepa-
ration ofd50.8l . HereEgrad refers to the gradient energy~isotropic
plus anisotropic!, while Ecapa is the capacitance energy andECoul is
the Coulomb interaction energy between topological charge de
ties.Etotal is the sum of these three contributions to the energy. T
unit of energy ise2/e l and the unit of length isl.

b Ecapa Egrad ECoul Etotal

4.5 0.285 0.261 0.141 0.687
4.0 0.250 0.251 0.152 0.653
3.5 0.229 0.228 0.168 0.625
3.0 0.205 0.223 0.183 0.611
2.5 0.153 0.227 0.217 0.597
2.3 0.143 0.227 0.225 0.595
2.0 0.126 0.203 0.262 0.591
1.8 0.121 0.192 0.290 0.603
1.5 0.104 0.196 0.328 0.628
1.2 0.091 0.200 0.390 0.681
1.0 0.081 0.192 0.456 0.729
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an optimal bimeron separation at which the sum of all th
three energy contributions will become minimized as a fu
tion of b.

In Table I we have presented our calculation for the la
separationd50.8l where different contributions to the tota
energy are shown along with their sum, the ‘‘total energy
For this particular layer separation a distinct minimum
obtained aroundb52.0l .

To see whether this behavior is common to other la
separations we have plotted in Fig. 6 the total energyEtotal
as a fuction of bimeron separationb for a set of layer sepa
rations. The three sets of points in this figure correspond
three different layer separations, namelyd equal to 0.5l ,
0.7l , and 0.8l . All these three curves show distict minima fo
the total energy as a function of bimeron separation.
have also provided in Table II the size~b! and total energy of
the optimal bimeron for five values of layer separation.

Notice from Table II that the optimal meron separationb
decreases with the increase of layer separationd. For d
50.8l the optimal separation is aroundb52.0l and gradu-
ally increases tob52.5l for d50.4l . For the case of pure
layer bimeron Breyet al. also found15 a similar behavior.
This behavior could be attributed to the following. By low
ering the layer separation~decreasing thed/ l ratio! one in-
creases the relative importance of Coulomb repulsion am
topological charge densities~coming from the intralayer
Coulomb energy! to the capacitance term~coming from the

si-
e

TABLE II. The size~i.e., the optimal meron separationb) and
the total energy (Etotal) at different layer separationsd. The unit of
energy ise2/e l and the unit of length isl.

d b Etotal

0.8 2.0 0.59
0.7 2.2 0.59
0.6 2.3 0.60
0.5 2.4 0.60
0.4 2.5 0.59
l

,

FIG. 6. This figure gives a plot of the tota
energy E ~total! as a function of the bimeron
separationb for three different layer separations
namelyd50.5l , 0.7l , and 0.8l . The unit of en-
ergy is againe2/e l .
4-11
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interlayer Coulomb repusion!. Hence the balancing of th
capacitance term by the Coulomb energy will take place
larger bimeron separation, thereby increasing the size of
bimeron.

We found that resulting energy of these solitons at th
optimal sizes varies very little as one changes the layer s
ration. Although bimerons of larger size at lower layer se
rations cost higher capacitance energy, the decrease in
Coulomb energy seems to fully offset that. As a result
total energy remains almost the same for different layer se
rations in the ranged50.4l to d50.8l that we have studied

An important question is whether our spin-pseudospin
tertwined solution has a lower energy than other candid
among the low-lying excitations. Prominent among the
other low-lying excitations with whom such compariso
have to be done are~i! the particle-hole excitations and~ii !
purely spin or pseudospin textured solitons. To start w
note that in the minimal prototype CP3 system@valid in the
d50 limit; see Eq.~3.8!# the energy is just equal toECP
54prsQ ~see Ref. 11!. Now, a pure-spin skyrmion in, say
one of the layers can also be written in our CP3 four-spinor
notation and will have a CP3 topological numberQ51. So
will a bimeron in pseudospin of some spin compone
Therefore in the prototype CP3 system our spin-pseudosp
intertwined soliton withQ51 will have the same energy a
a purely spin or pseudospin textured soliton withQ51. The
intertwining will not cost more energy. All these energie
which are equal, are a quarter of that of a particle-hole p
~see Ref. 8!, which costs an energy ofAp/2'1.25 in units
n

s

y

n

.

c
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of e2/e l . However, the difference in the energies of the
various types of topological excitations come from the ad
tional terms in the full energyEC due to capacitance, aniso
ropy, and Coulomb repulsion. As we can see from Table
our intertwined soliton over a range of layer separation
energy around 0.60e2/e l . It is encouraging that a pair o
these excitations would have somewhat lower energy t
the particle-hole pair energy of 1.25.

Of course our computational accuracy is not very hig
given that we are limited in how many lattice points we c
use. One must also improve on the results by solving for
texture functions and their energy after including single p
ticle terms due to the Zeeman coupling and tunneling. E
amples of such calculations can be found in the case on
52 by Pardeset al.,14 but not for n51 yet to date. Mean-
while, our result for the intertwined soliton atn51 and its
energy at best raise hopes that they may be competetiv
candidates for low-lying excitations in double-layer syste
with spin.
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