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I. INTRODUCTION.

Poincare in his article published in the Monist^ has

shown how the group concept is connected with the most ancient

mathematical thought. The group idea, however, was first explicit-

ly used "by Lagrange^) where he considers the permutations of let-

ters and their use in the solution of equations. Vandermonde^^

also used group theory in the solution of algebraic equations.

In the latter part of the tenth century Ruffini worked

on the solution of algebraic equations of order higher than four

(1) Poincare - Monist, 9, (1898), pp. 1-43.
(2) Lagrange - Oeuvres, 3, pp. 205-421.
(3) Vandermonde -"Memoire sur la resolution des equations," His-

toire de l'academie des Sciences, Paris, 1771, pp. 365-414.





by means of groups or the permutations of letters among themselves.

Started by these men the final definition of groups was developed

in the long stretch of a century. The following definition: "A set

consisting of a finite number of substitutt ions such that the pro-

duct of any two (identical or distinct) of the set equals a sub-

stitution of the set, is termed a group of substitutions" was given

"by Galois (1811-1832).

The study of abstract groups was of a later date. Jor-

dan was one of the first to make any considerable study of these

groups and their properties. Klein also dealt with groups other

than substitution groups in some of his early memoirs. The honor

of the first explicit statements in reference to abstract groups
(1)

is, however, due to Cayley with this dictum: A group is defined

by means of the laws of the combinations of its symbols." The

earliest explicit set^ of postulates for abstract groups were

given by Kronecker^) &nd Weber^ 3 ^. Weber's definition was some-

what simplified by Burnside^ 4
) and more explicitly by Pierpont( 5 )

and others.

Next we come to isomorphisms. If we arrange the elements

of a group in two orders and if these arrangements are made so

that in them corresponding elements have the same law of combination

they are said to define an isomorphism of the group with itself.

(1) Cayley - Philosophical Magazine. Vol. 7 (1854) p. 40.
American Journal of Mathematics, Vol. 1, (1878) p. 50.

(2) Kronecker - Monatsberichte der kbniglich preusschen Akademie
der Wissenschaften zu Berlin, 1870, p. 882.

(3) Weber - Mathematische Annalen, Vol. 20 (1882) p. 521.
(4) - Burnside - Theory of Groups of Finite Order, 1897, p. 11.
(5) Pierpont - Annals of Mathematics, Ser. 2, Vol. 2 (1900-01) p. 47
(6) See E. V. Huntington - Transactions of the American Mathemati-

cal Society, Vol. 6 (1895) p. 181.
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This is often called an automorphism, the term automorphism "being

due to Frohenius. For example, let us take the elements of a group

G as

sl (=l)» s2» s3 ,
- - - - s

n
.

In general it is possihle to rearrange the operators in a different

way

sl >
s2> sn .

hut not affecting the multiplication tahle so that

sp Sq = sr

' i i

SP sq
= sr

taking any arbitrary values for p and q. Each such arrangement

represents an isomorphism. These isomorphisms are divided into two

classes: the cogredient or inner and the contragredient or outer.

It is called cogredient when the isomorphism is ohtained "by trans-

forming G "by an operator of G. All others are contragredient. All

isomorphisms of a group are ohtained "by permuting the elements,

and any one isomorphism may he regarded as an operation performed

on the elements of a group. That the total of these operations

form a group was explicitly stated "by Holder^ and Moore^.
(3)

Frohenius showed that all automorphisms of a group can "be ohtained

"by transforming it when it is written in the regular form. Each

automorphism may he represented as a substitution, and hence two

(1) Holder - Bildung zusammengesetzten Gruppen - Matheraatishe An-
na.len. Vol. 43 (1893) p. 301.

(2) Moore - American Mathematical Society "Proceedings, Vol. 1,
Ser. 2 (1894-5) p. 61.

(3) Frohenius - Situngsherichte der Akademie der Wissenschaften
zu Berlin, Vol. 1 (1896) p. 184.





successive automorphisms may "be represented as the product of two

substitutions. These substitutions must form a group.

Two years later Burnside^ gave a proof of this theorem.

He also showed that the cogredient isomorphisms are transformed

into themselves "by all other isomorphisms and hence form a sub-

group invariant under I where I represents the group of isomorphisms.

The importance of the groups of isomorphisms was first

(2)
"brought into prominence "by the early writings of Holder and

( z)
of Moore v

, who independently of each other discussed groups of

isomorphisms and some of their properties. The distinction "between

cogredient and contragredient isomorphisms had, however, "been dis-

cussed at an earlier time "by Klein^ 4 ^. It was "but a short time

after these two men had studied some of the properties of these

groups of isomorphisms that Burnside published his article in the

"Proceedings of the London Mathematical Society" which "brought out

new properties and immediately created more interest in this new

subj ect

.

We wish to mention one of these special properties. Us-

ing the general symbol

(s )

(s')

to define an isomorphism as

j

s
l >

s2> ""--""» sp> - - - - -sn )

(81, 82, ,
S
p

, Sn )

and supposing that s
p s^ =

(1) Burnside - Proceedings of London Math. Soc. , Vol .27(1895-96) ,p .354
(2) Holder - Mathematische Annalen, Vol. 43 (1893), p. 313.
(3) Moore, E.H. - Bulletin of the American Mathematical Society,

Ser. (2), Vol. 1 (1894-5), p. 61.
(4) Klein - "Vcrlesungen uber das Ikosaeder" (1884).





where G equals

si(=l), s2 , sn

we can take two operations in I as

( s ) ( s )

( -j ) and ( ..^ )

(s* s sp )
(s

q
s sq )

Multiplying these we have

( s ) ( s ) ( s ) ( s s^ )

( -1 ) ( -! ) = ( -i ) ( -i
P
-i

P
>

(s
p

s s
p )

(s
q

s s
q )

(s
p

S Sp) (Sp s
q

s s
q

Sp)

( s )

- ( -! )

(s
r

s sr ) .

This shows that the group of cogredient isomorphisms is isomorphic

with the original group G. when G contains no invariant operator

we see that

( s ) ( s )

( -1 ) ( -1 >

(Sp S Sp)
,

(sq s s
q

)

can he identical only when

In that case the group of cogredient isomorphisms is of

the same order as G. There is then said to he a holohedric isomor-

phism "between the two groups. If G contains invariant operators,

these operators will correspond to themselves or to each other in

every isomorphism. Suppose we have h invariant operators in G.

They form an invariant subgroup H, and all other operators are

transformed into themselves. The group of cogredient isomorphisms

is of order not greater than g/h and is said to he merihedrically

isomorphic with G.

We might add here that the property that the group of

cogredient isomorphisms could not he cyclical was not discovered
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until 1899.
(l)

Hi FUNDAMENTAL THEOREMS.

A complete list of the substitution groups whose degree

(2)
does not exceed eight has "been given "by G. A. Miller . It is

our ohject in this paper to study the groups of isomorphisms of

thegroups of degree eight and of order less than forty-eight. I

wish here to express my thanks to Professor G. A. Miller, under

whose direction this paper was written, for the help he has given

me in preparing this paper. The groups of isomorphisms of the

(3)
groups of degree less than eight have already "been published

We wish to make use of several of the theorems given in the last

article which are frequently used.

(6)
Theorem I: If a group is generated "by two character-

(4)
istic subgroups, which have only the identity in common, its I is

(5)
the direct product of the I's of these two characteristic sub-

groups and its K is the direct product of their K's.

4
Corollary I: The I of a cyclic group of order p , p

geing an odd prime, is the cyclic group of order p (p - 1)

.

Corollary II: The I of a cyclic group of order 2 ,
e( > »

is the direct product of the group of order 2 and the cyclic group

of order 2°^~ 2
.

(1) Miller - Comptes Rendus, Vol. 128 (1899) p. 229.
(2) G. A. Miller - American Journal of Mathematics, Vol. 21(1899)p. 326
(3) G. A. Miller - Philosophical Magazine, Ser. 6, Vol .15 (1908)p . 223
(4) See Frohenius - Sitzungsherichte der Akademie der Wissen-

schaften zu Berlin, Vol. 1,(1895) p. 185.
(5) I is the symbol generally used to represent the group of iso-

morphisms and K to represent the holomorph.
(6) This theorem is also given in the Transactions of the American

Mathematical Society, Vol. 1 (1900) p. 396.





Theorem lis The symmetric group of degree n, n £ 2, or 6,

is simply isomorphic with its I, and the alternating of degree n,

n£3, has the same group of isomorphisms as the symmetric group, of

the same degree.

Let us assume it true for (n - 1) as the degree of the

symmetric group and prove it true for n. We know that the sym-

metric group has n conjugate suhgroups of degree (n - l). We will

show that if we fix the isomorphism "between any two of these sub-

groups, all the isomorphisms are fixed. Call these subgroups G
n-1 »

g' , t etc. We can make G.-_-. isomorphic with itself. How take

any transposition as ah where a is in Gn _-j_ hut h is not. We will

now prove that the operator corresponding to ah is ah itself. Let

i

us represent the isomorphic Gn_2 "by G
n-i an<* tlie operator corre-

sponding to ah hy (ah) ' . Now, when we transform Gn-1 "by ah, a

goes into h in every operator, hut the other letters remain fixed,

also, ah is transformed into itself. Since Gn- n is a symmetric

group of degree (n - 1), it has (n - l) symmetric conjugate sub-

groups of degree (n - 2). If we take this subgroup omitting hoth

a and h, we have Gn^2 commutative with ah. Therefore (ah) must he

commutative with G^.o* This immediately fixes (ah)
1

and if we take

as G^_2 tte SUDSrouP of Gn-1» omitting a, the transposition (ah)'

must he ah or it would not he commutative with G
1

. But we— n-2

assume that the total numher of isomorphisms of Gn-1 symmetric

are (n - 1)1 Since there are n subgroups of degree (n - 1) ,and a

Gn can have only n times the order of I of Gn.]_ for the order of

its I, this order is n(n - l)l = n! This proves it true for (n - l)

= 7 so that G is written on the letters

a, h, c, d, e, f, g
7 6 ' b ' 4 * 3 * 2 suhstitutions of the form ahcdef.

There are "H

—

'
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There are 6 substitutions of the form ag where £ is fixed. But

abcdef and ag generate the group and the I cannot he of order

greater than the number of ways that the generators may he chosen.

This is 7 J . There might, perhaps, he substitutions of the form

ahc.de corresponding to ahcdef since both are of the same order.

The second is transformed into itself only by its powers, the first

by its powers and also by substitutions in fg, hence they have a

different number of conjugates and so could not correspond.

This method of proof fails when n = 6 because there are

the n more subgroups of index n than the n symmetric subgroups of

degree (n - l)

.

Theorem III: If an abelian group G which involves

operators v/hose orders exceed 2 is extended by means of an operator

of order 2 which transforms each operator of G into its inverse,

then the I of this extended group is the K of G.

Corollary I: The group of isomorphisms of the dihedral

group of order 2n, n > 2, is the holomorph of the cyclic group of

order n.

"The group of isomorphisms of this dihedral group may be

represented as a transitive substitution group of degree n, and it

involves an invariant cyclic subgroup of order n composed of all

its operators which are commutative with every operator of the

cyclic subgroup of order n."^

Theorem IV: If a complete group has only one subgroup

of index 2, the direct product formed with it and the group of

order 2 is simply isomorphic with its group of isomorphisms.

(1) Miller - Lecture Notes given in year (1910-1911).
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Corollary I: The direct product of the symmetric group

of order n, n / 6, and the group of order 2 is simply isomorphic

with its I.

Corollary II: The direct product of the metacyclic

group of order p(p - 1), p "being any odd prime, and the group

of order 2 is simply isomorphic with its I.

III. THE GROUPS WHOSE ORDER IS SIXTEEN OR LESS

.

We shall now consider the groups of isomorphisms of

some of these groups. In this article in the American Journal

^

all distinct groups are denoted "by Greek letter while the isomor-

phic groups are represented "by Roman letters. Since these have

the same I as the groups with, which they are isomorphic, we need

consider only the distinct groups. The groups of isomorphisms

(2)
of groups isomorphic with lower degree are known v

, all others

isomorphic with groups of degree eight have I's identical with

the distinct group of degree eight.

The I of the cyclic group of order eight is the four

group "by the theorem I, corollary II. The I of the quaternion

(3)
group is the symmetric group of order 24.

The group of order 15 is the direct product of two cyclic

groups of order 5 and 3. Their group of isomorphisms is the direct

product of the I»b of their factors and so is the product of a

group of order 2 and tyje cyclic group of order 4.

(1) Miller - American Journal, Vol. 21 (1899), p. 287.
2) Miller - Philosophical Magazine Ser. 6, Vol. 15 (1908), p. 223.
3) Miller - American Philosophical Society Proceedings, Vol. 37

(1898), p. 315.
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There are nine groups of order 16. The a'belian group

of type (1, 1, 1, 1,) has a group of order (2
4

- 1) (2
4

- 2)

(2
4 - 2) (2

4 - 2
3

) = 20160. These factors represent the number

of ways in which the generators may "be chosen. The I is isomor-

(l)
phic with the alternating group of degree 8 VA/

. The a'belian

group of type has a group of order 192 for its I. If we

select a set of generators from its operators of order 4, the first

generator may he chosen in 8 ways, the second in 6, and the third

in 4 ways. These three generate the group. The group of isomor-

phisms can he written on eight letters, each letter representing

one of the eight operators of order 4 in G. I has four systems of

imprimitivity "because the operators of order 4 in G come in pairs,

each operator with its inverse. These 4 systems of imprimitiyity

can at most he permuted according to the symmetric group on 4 let-

ters. This would give a group of order 384. lis therefore a

subgroup of this G
3g4 . We cannot have a transposition in I he-

cause the operators in our group are always permuted at least four

at a time. We can therefore choose only eight operators from our

head for I. Transforming these according to the symmetric group,

we have our Gi9£» These eight operators in the head were positive

and when transformed according to the alternating group gives

96 positive substitutions. The remaining operators of the sym-

metric group are negative and of order 2 or 4. The operators in

I formed hy transforming the head "by the alternating group are of

order greater than 2 and positive. We can, however, get an

(1) Eurnside - Theory of Groups (1897) p. 339.
Miller - American Journal of Mathematics, Vol. 20 (1898) p. 320.
E. E. Moore - Mathematische Annalen, Vol. 51 (1899) p. 417.





operator or order 2 "by multiplying thegroup of order 16 "by an op-

erator of order 2 not a square. We then get an operator of order

2 in I "but it is positive. We now have more than one-half of the

operators in I positive, hence all are positive and our I must "be

the subgroup of G334 containing all positive substitutions.

The I of the a"belian group of type (2, 2) is of order

96. The first generating operator can correspond in 12 ways and

the second can then correspond in only 8 ways. This I has three

systems of imprimitivity composed of the four groups, and these

can at most "be permuted according to the sunmetric group on 3

letters. But, again there can "be no transposition in I, so we

take only the positive substitutions from our head. It is also

impossible to transform the systems of imprimitivity according to

an operator of order 2. Hence our group must "be the positive

substitutions of a group of order 192 with three systems of imprimi

tivity composed of the four groups, where the systems are permuted

according to a cyclic group of order 3.

The group obtained "by dimitiating the product of the

cyclic group of order 4 and the octic group has a group of order

32 for its I. The substitutions of G are

1 eg abcd.efgh abcd.ef.gh
eg.fh fh abcd.ehgf abed. eh. fg
ac.bd ac.bd.eg adcb.efgh adcb.ef.gh
ig.fh.ac.bd ac.bd. fh. adcb.ehgf adcb.eh.fg

The first generating operator can be made to correspond in 8 ways

and the second in four ways. These generate G. The commutator

is of order 2 and always corresponds to itself in every isomor-

phism and so the two systems of imprimitivity must be the four-

groups. These are permuted according to a group of order 2. Let-

tering the operators of order 4 by the letters A, B, C, L>, E, P,





G, H, respectively , the head of I is

1 1

AB. CD EF.GH
AC. BD EG. YE
AD. BC EH . FG

We find that an operator t = AE.BF. CE.DG. permutes the systems.

The group (H, t) is therefore of order 32, with 19 operators of

order 2, identity, and 12 operators of order 4 with three distinct

squares. It is the group numbered 11 of order 32 and degree 8 "by

G. A. Miller
(1)

.

A second dimitiation of the same two groups is the group

1 efgh abed. eg ahcd.ef.gh
ac.bd ac.bd.efgh adcb.eg adch.ef.gh
eg.fh ehgf ahcd.fh abed. eh. fg
ac.bd. eg. fh ac.bd. ehgf adcb.fh adcb.eh.fg

The I is a group of order 32 and degree 8. We have two subgroups

of order 4 in G which are invariant, the others are no-invariant,

and our I is written on letters representing these invariant oper-

ators. In selecting the generators the first msy chosen in 8

ways and the second in 4 ways. I has two systems of imprimitivity

the octic groups. They must be taken in a 2 : 2 isomorphism, since

the commutator is of order 2 while the operators of order 2, of

which the commutator is a subgroup, form an invariant subgroup and

so permutations in one system of imprimitivity must correspond to

identical permutations in the other system. These two systems can

be permuted cyclically among themselves by an operator of order 2.

The I is therefore number 12 as given by Miller^. These include

all of the intransitive groups. There are only four distinct

transitive groups of order 16 and degree 8 not isomorphic with

other groups.

(1) G. A. Miller - American Journal of Mathematics, Vol. 21 (1899)
p. 332.
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The group denoted "by

( )

( (abed) eye (efgh) eye) pos (ae.bf . cg.dh)

( )

has the following substitutions

:

1 abed. efgh ae.bf. cg.dh afch.bgde
ac.bd adcb.efgh agcd.bhdf ah. cf.be. dg
eg.fh abcd.ehgf ecga.fdhb af.hg.ch.de
ac.bd.eg.fh adch.ehgf ag.ee.hh.df ahcf.hedg

This has one invariant cyclic group of order 4 and an invariant

quaternion group. The I of the quaternion group is the symmetric

group of order 24. The two operators of order 4 in the invariant

cyclic group can correspond in two ways. Hence the I of the group

is a group of degree 8, the direct product of the symmetric group

of order 24 written on six letters and a group of order 2.

The group denoted by
( )

( (abed) eye (efgh) eye ) pos afbgchde
( )

has the substitutions:

1 abed. efgh afbgchde agdfcebh
ac.bd ad cb. efgh abdgcfbe aebfcgdh
eg.fh abcd.ehgf echbgafd agbhcedf
ac.bd.eg.fh adcb.ehgf ahbecfdg aedhegbf

This has a cyclic group of order 8 for a head and a tail where

each operator transforms the head into its fifth power. Again let-

tering the operators of order eight by A, E, C, D, E, ~F
,

G, H, we

see that I must have 4 systems of imprimitivity of order 2 as11 11
AB CD EF GH

where the square of A is the inverse of the square of B, and simi-

larly for the other three sets. We can have no transposition in

I, if, say, A is replaced by B, F must be replaced by E, as is

seen by noting the position of the squares of the operators of

order 8. We then see that an operator I permuting the systems is

AE.BF. CG.DH. This gives a group of order 16 with 11 operators of





order 2, and four of order 4 all having the same square. The I is

a two to two isomorphism of two octic groups written so

1 1

ah.ef cd.gh

afbe chdg
aehf cgdh

ah cd
ef gh

af.he ch.dg
ae.hf cg.dh

Of the two remaining transitive groups of order 16 formed

"by extending an isomorphism of two octic groups "by means of opera-

tors of order 8, the first is denoted "by

(ahcd. efgh)g
2

(aehfcgdh)

Its substitutions are

1 aehfcgdh
a"bcd.efgh afdechhg
ac.hd.eg.fh aghhcedf
adc" .Sngf ahdgcfbe
ac. ef.gh ag.ce.fh.hd
ah.cd.fh af.he. ch.dg
"bd.eh.fg hh.df.ea.eg
ad.hf.cf ah.de.hg.ef

and the commutator is

1
ahcd.efgh
ac.hd. eg.fh
adch. ehgf

The generators can he shosen in 8 x 4 ways. The I is a group of

order 32 and degree 8, representing the eight no-invariant opera-

tors of order 2. It has two systems of imprimitivity ,and from

the form of the commutator we see that they must he the four groups.

They are transformed according to an operator as AEDHCGBF. The

group is the dihedral group of order 16 and its I is the holomorph

of the cyclic group of order 8 according to the theorem.





Its substitutions are:

1 AEDHCGBE
AB. CD AF.BEPG. CH
AC.BD AGBHCEDE
AD. BC AHCE.DE.BG
EE.GH EA.FDHB.CC
AB . CDEFGH AFDGCHBE
AC. BD.EF.GH AGCE.BHDE
AD.BC. EF.GH AHBGCFDE
EG. EH EBECGDHA
AB. CD. EG. EH AECH.BE.DG
AC.BD. EG. FH AGDECEBH
AD.BC. EG. FH AH.DEBG.FC
EE.FG ECGA.HD.FB
AB. CD. EH. FG AFBECHDG
AC. BD. EH. FG AG.CE.BHDF
AD. BC. EH. FG AHDECFBG

The substitutions of the other group are:

1 afhgchde
atcd.efgh agdfcehh
ac.hd.eg.fh ahhecfdg
ad c"b . ehgf aedhcghf
ac. ef.gh ahcf.ehgd
ab.cd.fh agce.hfdh
"bd.eh.fg hedg.hafc
ad. "be. eg aecg.dfbh

This is a group with a cyclic group of order 8 for its

head and a tail which transforms the head into its third power.

In this group the I must he represented on eight letters including

the four operators of order 8 and either the 4 operators of order

4 or the 4 non- invariant operators of order 2. This group has

the same commutator subgroup as the preceding one. Taking the

cyclic group of order 8 as the head of G, we have the I of the

head as the four-group. The next four operators all transform

the head in the same way; hence the group of isomorphisms keeping

the head fixed is the cyclic group of order 4. The group of iso-

morphisms of the whole group is therefore the direct product of

the cyclic group of order 4 and the four-group.
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IV. THE GROUPS OF ORDER EIGHTEEN", TTOTTY POUR, AND THIRTY.

The only distinct abstract group of order IS is the

ahelian group of type (p, p, q) . It is the direct product of two

cyclic groups of order 3 and a group of order 2. It has therefore

two characteristic subgroups and its I is the product of the I's

of these subgroups. The I is the transitive group of degree 8

and order 48^ which has operators of order 8 which is the I of

the group of order 9 of type (1, 1).

The group of order 24 is the one often termed the non-

twelve G24 . It contains the quaternion group invariantly. Its

substitutions are:

1 ahc.def ach.dfe
ad.fc.eh.gh aecd'of.gh afdce.gh
afdc.eg"bh ad.fcgehh aeg.dhh
acdf.ehbg ceh.hgf ahgdeh.cf
ahde.fgch achdfg.he "bfg.ech
aedh.fhcg afh.dcg ad.efhhcg
agdh.fecb age.dhb agfdhc.he
ahdg.fbce ahedgh.cf ahf.dgc

This is a group with one Invariant operator of order 2,

hence we know that its group of cogredient isomorphisms is the

quotient group with respect to this invariant subgroup. This is

the alternating group of order 12. The group of isomorphisms of

the quat^rnian group is the symmetric group of order 24 and its

holomorph is a group of order 192, the direct product of the qua-

ternion group and its I. To every operator of order 3 in I cor-

responds a group of order 24 in K. These operators of order 3

are conjugate. Hence these groups of order 24 are conjugate.

These groups of order 24 are isomorphic with the non-twelve G24

which we are studying. The tetrahedral group written on 6 letters

(1) G. A. Miller - Philosophical Magazine, Series 6, Vol.15 (1908)
p . 228

.
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transfonns the quaternion group into itself "but the operators of

order 3 in G are not permuted. We wish to find an operator which

permutes these substitutions of order 3. We can write G isomor-

phic so and permute the operators of order 3 as shown.

1 1

ad.fc.eb.gh ad.fc.eb.gh
afdc.egbh acdf.ehbg
acdf . ehbg afdc . egbh
abde.fgch agdh.fecb
aedb.fhcg ahdg.fbce
agdh.fecb abde.fgch
ahdg . fbce aedb.fhcg

aeg.dfh bgf.ceh

This gives an operator of order 2, "but we see that it permutes

the operators of the quaternion group as well as the operators

of order 3. It must therefore "be an operator of the I of the

quaternion group. And since we saw that it was impossible to per-

mute the operators of order 3 in G without also permuting the .

operators of the quaternion group, we conclude that the I of G

must also he the symmetric group of degree 4.

The group of order 30 which is the direct product of the

cyclic group cf order d and the symmetric group of order 6 has

the direct product of the 1 1 s of these factors for its I. This is

the direct product of the symmetric group of order 6 and the cyclic

group of order 4 hecause of the theorems. In a cyclic group of

prime order p, the group of isomorphisms is the cyclic group of

order (p - l)^ 1 ^. The intransitive group which is the direct

product of the dihedral group of order 10 and a cyclic group of

order 3, has for its I the direct product of the holomorph of the

cyclic group of order 5 and a group of order 2. The last group

of order 30 is obtained "by dimitiating the dihedral group with

(1) Miller - Trans, of American Math. Soc. , Vol. IV (1903) p. 158.





the symmetric group of order 6. This group has 15 operators of

order 2 and its generators may he chosen at most in 120 ways.

Its I is written on 15 letters representing the 15 operators of

order 2. Holomorphisms of the group are easily found which fur-

nish the generating operators of I. One operator of order 15 is

AJJJBNT C GDKHEL

I

where the capital letters represent operators as shown:

1 he. cd. f

g

A
ahcde ae.hd.f

g

B
acehd ad.hc.fg C

adh e c ac.de. fg D
aedch ah.ce.fg E
fgfa he.cd.gh F
ahcde. fgh ae .hd. gh G
acehd. fgh ad.hc.gh H
adhec . fgh ac.de. gh I

aedch.fgh ah.ce.gh J
fhg he.cd.fh K
ahcde.fhg ae.hd.fh L
acehd. fhg ad. he. fh M
adh e c . fhg ac.de. fh N
aedch.fhg ah . ce . fh

An operator of order 10 is

ADBEC . FHTGOHKILJM

and an operator of order 4 is

BCED.GHIJ.LMNO

The cuhe of the operator of order 15 is the square of the opera-

tor of order 10. It must therefore have three systems of imprimi

tivity of degree 5, hecause the head of G is ahelian and the tail

transforms the head into its inverse; hence I is the holomorph

of the cyclic group according to the theorem.





V. THE GROUPS OF ORDER THIRTY TV/O klU) THIRTY SIX

There are 10 groups of order 32 not isomorphic with, each

other or with those of }.ower degrees. The group which is the

direct product of the octic group and the abelian group of type

(1,1) and order 4 has an abelian head, the direct product f the

cyclic group of order 4 and the four group. The operators of the

tail transforms the head into its inverse, hence by our theorem,

the I is the holomorph of our head. The I of the head is found
under the groups of order 16,
and is a positive group of order 192. Hence I is the direct produc

of this group of order 192 and the head of order 16.

If we multiply the octic group by the cyclic group of

order 4 instead of by the four group, we have a group with 20 oper-

ators of order 4. Three of the remaining operators of order 2

are invariant.

The substitutions are

1
ac.bd
eg.fh
ac.bd. eg.fh
ac
bd
ac . eg. f

h

bd. eg.fh
ab . cd
ad . be

.

ab. cd. eg.fh
ad.be. eg.fh
adeb
abed
adeb. eg. fh
abed. eg.fh

efgh
ac.bd. efgh
ehgf
ac.bd. ehgf
ac. efgh
bd.efgh
ac. ehgf
bd. ehgf
ab. cd. efgh
ad. be . efgh
ab. cd. ehgf
ad.be . ehgf
adeb. efgh
abed. efgh
adeb . ehgf
abed. ehgf

Four of the operators of order 4 are invariant, eight

are conjugate in sets of 4 each and eight are non invariant.

These eight non invariant operators generate half of the group.

In selecting the generators the first may be chosen in 8 ways and





and the second in four ways. The I of this head is a group found

in our groups of order 16 ana degree 8 which was the second dimin-

ition of the octic group and the cyclic group. As the remaining

generators we take one of the conjugate operators of order 4 not

included in this herd. This generating operator may be chosen in

4 ways, and in every isomorphism, with the head fixed, can "be per-

muted according to the four group. Hence I of the group is an in-

transitive group on 12 letters the direct product of a four group

and a group of order 32, the I of the he d.

Three groups are formed "by dimitiating two octic groups.

The substitutions are given by Cayleyfl). The group

1 1
ac eg
bd fh
ac. bd eg.fh

abed ef.gh
adeb ehgf
abed efgh
ad. be eh.fg

has 12 operators of order 4 and 19 of order 2, of these three are
squares of operators of order 4 and are invariant. The generating
operators can be chosen in 12 x 8 x 4 584 ways. I is a group of

degree 12 and order 384. The operators of order 4 have three dis-

tinct squares, hence I may have 3 systems of imprimitivity and

these are the octic groups. These systems are not independent

however. If the operators of one system are permuted some opera-

tors of the other system are also permuted. The I is therefore an

isomorphism betv/een 3 octic groups of which the letters are respec-

tively abed, efgh, ijkl. These three systems are permuted accord-

ing to the substitutions

41 ) Gayley - Quarterly Journal of Mathematics Vol 25 41890-91 )pl37





ajh.fbk.cig.dle
af .bh.ce. dg
af .bh. ce. dg. il. jk

The head of the group of isomorphisms is

The group

1 1 1
ac.bd eg.fh ik. jl
ah. cd f .gh ij.kl
ad. he

.

eh.fg il. «jk

ahcd efgh ijkl
adch ehgf ilkj
ac eg ik
"bd fh

1 1
ahcd efgh
ac.hd eg.fh
adch ehgf

ah.cd ef.gh
bd fh
ad. he eh.fg
ac eg

has the holomorph of the head as is I for the head is ahelian and

the tail transforms the head into its inverse. The I of the head

we found to he a group of order 96 hence K is the product of this

group of order 96 and our head of order 16.

The group which remains has the substitutions

1 1
abed ef.gh
ac. bd eg.fh
adeb eh.fg

ac eg
ab.cd efgh
bd fh
ad. be ehgf

The 16 operators of order 4 form 2 sets which are not

permutable in any isomorphism. One set consists of two invariants

subgroups of order 4 and two conjugate groups of order 4. The

second set has 4 conjugate subgroups. Keeping the second set

fixed the I of the first set is the product of octic group and the
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symmetric group of order 24. TThen this set is fi>-ed the tail can

"be chosen in 8 ways. Hence the I is of order 1536 the direct pro-

duct of the octic group, the Bymmetrie group of order 24 and the

regular abelian group of order 8 and type (1,1,1).

These include all the intransitive groups of this order.

The first transitive group is the direct product of two cycles

groups of order 4 and an operator of order 2 which permutes the cyc-

les cyclically. This group includes 8 operators of the order 8 and

the commutator subgroup is the group

1
abcd.ehgf
ac.bd. eg.fh
efgh.adcb

where G is
1 abed aebd adcb

abcd.ehgf acbd.ehgf adcb.ehgf ehgf
ac.bd. eg.fh adcb. eg.fh eg.fh abed. eg.fh
efgh.adcb efgh abcd.efgh ac.bd.efgh
afbgchde afch.bgde afdechbg af.bg.ch.de
agbhcedf agce.bhdf agdfcebh ag.bh.ee. df
ahbecfdg ahcf.bcdg ahdgcfbe ah.be. cf.dg
ebfegdha ecga.bfdh edhcgbfa ae.bf.cg.dh

The generators of this group are an operator of order 8

and an operator of order 4 whose square is not in the cyclic group

generated by the operator of order 8. These generators can be

chosen in 8 x 8 or 64 ways. The I is a group of order 64 and

degree 8, with two systems of impriraitivity the octic groups and

these are transformed according to an operator of order 2 which

permutes. the systems cyclically. 77e cannot have a transposition

in the head hence v/e take the positive substitutions of this group

as I.

The remaining groups are a set of six transitive groups

formed by making a 2:2 isomorphism between two octic groups and

then extending this head by an operator permuting the systems.





The group

1 1
ac . bd eg. fh

a"bcd efgh
adc"b ehgf

ac eg
bd fh

ab . cd ef ,gh
ad. "be eh.fg

ae . bf

.

eg. dh

has the group (1, ac.bd. eg.fh) foir its oomrautator subgroup. The

group contains two conjugate quaternion groups and since all the

operators of order 4 are contained in these the I can be v/ritten

on 12 letters composed of two groups of order 24 isomprphic with

symmetric group on 4 letters, and an operator permuting the cycles.

cyclically.

The group

1 1

ac.bd eg.fh

abed eg
adeb fh

ac ehgf
bd efgh

ab. cd ef .gh
ad.be eh.fg

aebf . cgdh

has 20 operators of order 4. The commutator is a group of order 8

composed only of operators of order 2, and is isomorphic with the

abelian group of order and type (1,1,1).

The operators of order 4 are divided into three sets. One

set of four operators have as a square an invariant operator of





order 2. Eight operators of order 4 have two conjugate squares of

degree 4 and eight have another set of two conjugate squares of

degree 8. One of these sets of 8 operators of order 4 generate a

group. V/e can have no automorphism "between the operators of one

set and those of another set. Hence our generating operators may

be selected in 8 x 4 - 32 ways. The I has two and also 4 systems

of iraprimitivity. If taken in two systems they must be the four-

group. These systems may be interchanged cyclically, hence we

have our group of order 32.

Of the remaining groups the one having operators of order

8 is

1 1
ac.bd eg.fh

abed efgh
adeb ehgf

ac eh.fg
bd ef.gh

aebfcgdh

Its commutator is a cyclic group of order 4 as

1
abed. efgh
ac.bd. eg.fh
adeb . ehgf

G has eight operators of order 8. Two operators of

order 8 and an operator of order 4 which is not contained in the

cyclic groups generated by the operators of order 8 generate the

group. The first operator of order 8 may be chosen in eight ways,

the second in 4. The remaining generator can be selected in four

ways. The I is therefore an intransitive group. The I of the

head of G is a group of order 32 and degree 8 is the direct pro-

duct of two four-groups and an operator permuting the systems
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cyclically. The I of G is the direct product of this group of order

32 and another four group.

The last group of order 32 is the group

1 1
ac. bd eg.fh

abed ef.gh
adeb eh.gf

ac eg
bd fh

ab. cd efgh
ad. be ehgf

ae.bf .cg.dh

This has 20 operators of order 4 and degree 8 as

1 ac.eg
ac. bd bd.eg
eg.fh ac.fh
ac.bd. eg.fh bd.fh

Of these 20 operators of order 4, 4 have an invariant

operator of order 2 for its square and so cannot correspond to any

of the others in any automorphism. The eight operators of order 4

in the head generate half of the group. The I of this head which

is isomorphic with the first dimitiation of the octic group of

order 32. The X of G is therefore the direct product of this group

of order 32 and a four-group representing the possible permutations

of the four operators whose squares are invariant. These last four

are also generators of our group.

T7e have two groups of order 36 and degree 8. The first

is the product of the group of order 2 and the positive substitu-

tions of the direct product of two symmetric groups of order 6.

This has 8 operators of order 6, 8 of order 3, and 19 or order 2.

Writing the group so





1 an
abc aoc . an
acb ac d • an
elg e i g • an
abc. ef

g

abc. eig. an
acb. ef

g

acb. efg.dh
egf egf . dh
abc . egf abc . egi . an
acb . egf ac d . egi • an

ab . ef ab . ei . dn
ab.fg • lg. CU1»

ab. eg ao . eg. an
be . ei Dc . ei . dn
DC . Ig "hr» -Per Viuui i g. an
Vi /» en1 "he* p d* Vi

ac. ef ac . ef . dh
ac.fg ac.fg.dh
ac . eg ac. eg. dh

we see that the I of the head is the group of order 48 which is the

I of the group of order 9 of type (1,1). TThen the head is fixed

the generating operator of the tail may "be chosen in 18 ways, hence

the order of I is 48 x 18 or 856. It is written on 18 letters re-

presenting the noninvariant operators of order 2. The other group

is written

1 1
abc def
acb dfe

ad. he. cf

The I of G is the product of the I's of the characteristic

subgroups. The I of the head is a group of order 48 with 2 systems

of imprimitivity transformed according to the symmetric group of

order 6. The operator gh is invariant and characteristic, hence

the I of G is the I of the head.
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articles.
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