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2..

Henri Pojnoare has pointed out that the fundamental concep-

tion of a group is evident in Euclid's work; in fact that the foun-

dation of Euclid's demonstrations is the group idea.^ 1
^ Poincare

establishes this assertion by showing that such operations as suc-

cessive superposition and rotation about a fixed axis presuppose the

displacements of a group- He shows that the axioms of Euclid which

are easily referred to the group concept are those omitted in Euclids

work, and that those axioms which may be referred to the group con-

cept with more difficulty, are the axioms explicitly enunciated*.

However much the fundamental group notions are dormant in the work of

early mathematicians, it was not until the latter part of the eight-

eenth century that these notions began to take life and develop . The

period of foundation of group theory as a distinct science extends

from Lagrange ( 1770) to Cauchy (18^1-6) a period of about seventy

five years. We find Lagrange considering the number of values a ra-

tional function can assume when the variables are permuted in every

possible way.. With this beginning the development may be traced

down through the contributions of Vandermonde, Ruffini, Abbati, Abel,

Galois, Bertrand, and Hermite to Cauchy' 3 period of active production

( lS'l'l-lff^) Group theory was at the beginning of the period a dis-

covery useful in the consideration of the theory of equations; at

the end it existed as' a distinct science, not yet, to be sure, en-

tirely freed from the restrictions of applications to other branches

but sufficiently so that this may be considered the close of the

foundation period.. In the first part of this paper we shall consid-

er briefly the contributions of the more important men from Lagrange

(l) The Monist 9 , 1898, pp. 1-^3.





to Cauchy, and in the second we shall attempt a more critical study

of the contributions of Cauchy; for his worK may be considered the

culmination of this formative period.





Lagrange.

The contributions of Lagrange are included in his memoir

binaisons" to the solution of algebraic equations.. This is practi-

cally the theory of substitutions, and he uses it to show wnerein the

efforts of his predecessors, Cardan, Ferrari, Descartes, Tschirnhaus,

Euler and Bezout fail in the case of equations of degree higher than

the fourth.. He studies the number of values that a function can as-

sume when the variables are permuted in every possible way* The

theorem that the order of a subgroup divides the order of the group

is implied but not explicitly proved » The theorem that the order of

a group of degree n divides n|is however explicitly stated. XJI La-

grange does not use at all the notation or terminology of group the-

ory but confines himself entirely to the direct applications to the

( 2 )

theory of equations. His symmetric group of order 2 , , if such

it may be called, he writes in the following form::

" Reflexions sur la resolution algebrique des equati ons" published in

the Memoires of the Academy of Science at Berlin in 1770-"" 771.

(

1
) Ir

this paper Lagrange first applies what he calls the "calcul des com-

n

f
L

n
x 1

)
(xii)

( Xiii) ( x iv

xi 11
) ( xii) ( xi) ( x iv

x1
)
(xiii)

( X ii) ( Xiv

]

]

J

J

]

]

]

f [(xiii) (xi)

f [(x11 ) (x^)

(1) Oeuvres La<;range, Vol. 3, pp
(2) Ibid, p. 391+

(3) Ibid, p. 372
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f [(xiii) (xiv ) (X1 )
(xii) J

f (jxi) (xiii) (xiv) (xii)]

f [(x1
)

(xii) (x iv) ( Xiii)j

f [(xlv )
(xii)

( Xi) (xiii)

J

f [(xi) (xiv )
(xii) (xiii)

J

f £(xiv) (xiii) (xi) (x ii }J

f r(xiU )
(xi) (xiv ) (xii)J

f L(x11 )
(xi) (x^) (xiu )J

f [(xii) (xiv)
( Xi) (xiii)J

f £(xiv) (x1
) (xn )

(xiii)J

The four group and the cyclic group of order four are both

given as subgroups of this symmetric group.

This is practically all that can "be said of the contributions

of Lagrange to the theory of substitution groups.. He was on the

right path but he hardly went far enough to gain for himself the

credit for the establishment of the theory of substitutions.

Ruff in i

.

his disciples. The first man who followed him and made any signal

additions was Paolo Ruffini, an Italian, who published in 1799 in his

Teoria generale delie equazioni
, a number of theorems important in

the theory of substitutions.. According to Burxhardt

^

1
^ , several

fundamental concepts are implied here, if not explicitly stated.

Ruf fini ' s "Permutation" corresponds to the later accepted term of

group and Cauchy's "System of Conjugate Substitutions". These "per-

mutations" he classifies first into "simple" and "complex". The

first are of two sorts, of one cycle or of more than one cycle. The

second are divided into three classes which correspond to the modern

notions (1) of intransitive, (2) of transitive imprirnit ive , and (3)

transitive primitive. Burxhardt says that Ruffini paved the way

(1) Der Anfange der Gruppentheor ie und Paolo Ruffini Zeitschrift fue
llatnematlS und Physik (1892) 37, p. 119.

What was begun by Lagrange was carried on and amplified by





for the concept of the invariant subgroup which wa3 first used by

Galois.. Ruffini used, the term degree for the order of his "permuta-

tion" or "grado di uguaglianjra 1
'

.

Ruffini confined himself to the group theory that arose in

connection with the theory of equations, and we do not yet see any

indications of a break between the two. He studied the number of

values a function can assume when the variables are permuted in ev-

ery possible way.. Some of his theorems are:

(1) If a substitution of n letters leaves the value of a ra-

tional function invariant, the result of applying this substitution

any number of times is that the function is left invariant.

(2) The order of a substitution is the least common multiple

of tne orders of the cycles.

(3) The order of a subgroup divides the order of the group.

This theorem, here stated again, was not completely proved

till 1802 when Abbati satisfactorily established it.

There is not necessarily a subgroup corresponding to ev-

ery arbitrary divisor of the order of a group.

This he established by showing that there is no eight,,

three or four valued function on five letters.

(5) A primitive group of degree five that contains no cycle

of degree five can not have its order divisible by five.

These theorems are the most important of those established

by Ruffini, and with the exception of the contributions of Abbati,

constitute the most important work that wa3 done down to the time of

Galois. To Abbati group theory owes the complete proof that the or-

der of the subgroup divides the order of the group. This he proved

by putting the substitut ions of the group in rectangular array. To





7.

A"bToat i is also due the proof that there is no three or four valued

function on n letters when n is greater than five.. While Cauchy

published one memoir during the long period of silence from Ruffini

to Galois, it was of less importance than his significant contribu-

tions of 181+1+-184-6, and we may leave its discussion until his work

as a whole is considered- While the work of Abel added practically

nothing to the theory of substitutions, still his name should not be

omitted from the list of founders for by his use of substitution

theory to pruve that it is impossible to solve algebraically equa-

tions of degree higher than the fourth, he called attention to the

instrument he used.. This brings us to the work of Galois, written

in 1831 and I832, but not made public until 18 !I6.

Galois

.

Up to the time of Cauchy^ Galois was undoubtedly the man who

accomplished the most along the line of substitution theory. To

Galois is due the credit for broadening and strengthening the con-

nection between the theory of equations and the theory of substitu-

tions. Galois developed a number of fundamental notions in group

theory, but these were so inseparably connected with his theory of

equations that he can scarcely be considered the founder of the sci-

ence. His work is also important in the same sense in which Abel's

is. His use of substitution theory tended to call attention to the

subject

.

To Galois, first of all, credit is due for the conception f

the invariant subgroup, and had his contributions been nothing

other than this, his place as a pioneer in group theory would be per-

(1) Galois: Oeuvres, p. 26.
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manently established.. Although this powerful utensil in the study

of groups was neglected largely by his immediate successors, notably

by Cauchy, it is none the less important to note its presence here.

Other notions due to Galois are that of simple group and

the extension of the idea of prim it ivity. Galois first used the

term group in its present technical sense.

His definition of the group of an equation is as follows:

"Given an equation with roots a, b, c - - -. There will

be a group of permutations that have the properties:

(1) that all functions of the roots that are left invariant

by the substitutions of this group are rationally known; and

(2) that every function of the roots rationally determined

is left invariant by the group of substitutions."

Other theorems stated without proof by Galois :

The lowest possible composite order of a simple group

is 60 (D.

The substitutions common to two groups form a group

If the order of a group is divisible by p, a prime, the

group contains a substitution of order p

The substitutions of a group that omit a given letter

form a group ( 2 '
•

For subgroup Galois says "divisor" ^ for simple group,

an indecomposable group These include the more important

things to be mentioned in connection with Galois' s work* Although

to a large extent only the re3Ult3 are stated, still tnese results

(1) Oeuvres Mathema/tLques d' Elvariste Galois, p.. 26
(2) Manuscrits de Evariste Galois, p. 39
(3) Oeuvres P. 58

CO " ; p. 26.
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are of fundamental importance, and had he succeeded in making the

break between substitution theory and the theory of equations more

pronounced, his work instead of Cauchy's might now be considered the

corner stone of group theory.

Cauchy

.

In the present section our purpose is two-fold.. In the

first place, by indicating the main theorems and proofs presented by

Cauchy in his Exercises d' analyse et de physique mathemati que (
18*4-*+)

and in the series of articles published in the Paris compte3 rendus

des seances de 1' academie des sciences ( )
U), we shall at-

tempt to show to what an extent Cauchy deserves the credit for es-

tablishing the theory of groups as a distinct science „ The second

purpose is to call attention to such errors occurring in the above

mentioned articles as have not yet been noted. Before carrying out

these two purposes^ however., it might be well to consider rather brief-

ly the notation and terminology used by Cauchy, especially where

these differ from the notation and terms used by subsequent writers

on the subject and where the terms originated by Cauchy have won a

permanent place in modern group theory language.

In his earliest article on the subject of substitutions,

Cauchy uses the word substitution in the sense it now possesses and

( 2 )

defines it in that sense; but in the first of his articles pub-

lished in the Paris Comptes rendus, he defines permutation and sub-

stitution in the same way, as he does also in the Exercises t3) 1*0.

(1) Oeuvres de A. Cauchy , 1st serie IX, X
(2) Journal de 1' Ecole Poiytechnique 10, 1815, P» 3
(3) Oeuvres de A. Cauchy, 1st serie IX, p. 280
(h) Exercises d' analyse et de physique mathemat ique III, p. 152

it 1
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Throughout his work however he uses the term substitution more com-

monly. His notation, as he first denotes a substitution, is awk-

ward but after defining this notation, he leaves it for a simpler

and does not again return to it* The notation (J ?' V) means that x
x y z

is replaced by itself by the substitution, that y is replaced by z,

z by y, the lower letter by the one above.! He also use3 the nota-

tion (
y.

z " v w -*-) where each letter below is replaced by the one
x y — u v w

above it. But the much more commonly used notation is (x, y, z, u,

v), where each letter is replaced by the one which follows it and

( 1)
the last by the first.. He defines this as a cyclic substitution .

In the article written in 1815 ^ 2 ^ he defines the "degree" of a

substitution as the first power of the substitution that reduces to

identity, but later he also defines order in this way and uses

the word order rather than degree in his subsequent worlc. He uses

both of the terms "unity" and identical substitution^'. A trans-

position (5) is defined and the terms similar (6), regular (7), in-

verse (6) and permutabie substitutions are found with their pres-

ent significance. If we pass on from substitutions to groups^ we

find a group is a "system of conjugate substitutions", which may be

transitive or intransitive (9). a transitive imprimit ive group is

"transitive complex"^ 10
) . The order of a system of conjugate sub-

stitutions is the number of substitutions it contains.. The term

(ly J. EC polyt. 10, 1815, P. 13
(2

(3
[i
(5
(6
(7
(5
(9

Oeuvres IX, p. 285
Oeuvres IX, p. 283
J.Bc.polyt. 10, 1815, P. 13
Ibid, p. 18
Exercises, v. Ill, p. 165
Ibid, p. 162
Oeuvres IX, p. 283, p. 290
Ibid, p. 2911

(10) Ibid, p. 311
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"diviseur indicatif" is also found for the order of a group. Cauchy

frequently transfers his definition of order to the theory of equa-

tions and speaks of the number of equal values a function can assume

when the variables are permuted in every possible way.. The number

of distinct values of the function is the index t 1 ). A final word

may be said about the order of operation.. In the Journal de I 1

Ecole poiytechnique (10 p. 10 ) we find

^ Al \ _ / A2 \ /
A^

\ indicates that/
A
l

J
is the result of applying

i
A6/ 1

A
3 A A

5 / V A6 7

A \

first the substitution 2
, then the substitution /

Al
+

J
; but in

A3 J I
A5

all the later work we find that the order of operation is reversed

and the substitution P M P" 1 indicates operation from right to left.

As a whole Cauchy's notation is clear; but there are many places

where his meaning becomes very obscure due to piling up, all in the

same discussion, several different alphabets with an abundance of

subscripts and superscripts both needless and confusing.

We turn now to speak of the theorem proved and the concepts

originated by Gauchy upon which are based his claims as the founder

of group theory* In order to judge better .just what advances he

made^it might be well to state briefly what he had to build on, what

were the specific things included in the work of his predecessors

which he could use. Among these are the following:

(1) The order of a subgroup divides the order of the group.

(2) The concepts, not the terms, of primitivity and transi-

tivity.

(3) The notion of an invariant subgroup.

(k) The theorem, not the proof, that if the order of the

( 1) J. Ec polyt. 10, (181% p. 6
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group is divisible by P , a prime, there is at least one substitution

of order p.

These theorems and concepts are the ones which might have

toeen of great help to Cauchy. We find that he uses the work of the

earlier writers, tout that he seems almost in ignorance of what Galois

has done. In no place is explicit use made by Cauchy of the in-

variant subgroup. We might almost say implicit use too, for only

in a few places does he seem to be getting close to this subject and

then he seems to ignore entirely the immediate consequence of an in-

variant subgroup, the quotient group.. So it is safe to conclude

that Cauchy was almost absolutely uninfluenced by the work of Galois.

While Cauchy' s important work did not appear until 1844-6,

his article in the Journal de l» Ecole polytechnique , in 1815, con-

tains some things that might well be mentioned.. In this paper

Cauchy first defines his terms and notation, then shows briefly the

theorem already proved by Lagrange and Abbati^that the number of

equal values of a function, the "diviseur indicatif" as he calls it,

must divide nl. Then, after showing that it is always possible to

construct a one or two valued function on n variables, he enunciates

the theorem.. The number of distinct values of a non symmetric func-

tion can not be less than the largest prime that divides n, without

becoming equal to two* This theorem he then proves. This consti-

tutes the most important theorem in this early paper although there

are other things of interest.

If the degree of a function is a prime number, the num-

ber of distinct values can not be less than the degree. If the de-

(1) Journal de 1' Ecole Polytechnique, 1815, P. 19
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gree is six, the number of distinct values can not be less than six

when more than 2 (D. He definitely mentions the functions corre-

sponding to (1) the intransitive group of degree 6 and order 36; (2)

the intransitive group of degree 6 and order 48 (3) the transitive

imprimitive group of degree 6 and order 72; and the symmetric group

of degree 5, considered as an intransitive group of degree 6. The

( 2

)

functions he gives are as follows:'

( 1 ) ai a2 dLj, + 2a^ a
6

(2) ax a2 a3 a^ + a^ a$

( 3 ) a^ a2 a3 + aij. a^ a^

( 4 ) ax a2 a3 ai| a
5

+ a6

He then shows that a function on six letters can not have more than

six distinct values. This practically concludes the important

things in Cauchy's early paper. One slight error is all that has

been noted in this early article. Attention will be called to it

later.

Cauchy's Memoir published in 1844 in his Exercises d' Analyse

et de Physique Mathematique contains much more of value than did the

earlier article. The first of this memoir is taken up principally

with definitions which have been largely reproduced in the paragraph

on notation and terminology. The first theorem proved is, that ev-

ery substitution similar to a given substitution, P, is the product

of three factors, the extremes of which are the inverse of each oth-

er and the middle term of which is P. Conversely, every product of

three factors, the first and last of which are the inverse of each

other, is similar to the middle term P. ^3).

(1) Journal de 1" Ecoie Polytechnique
, 1815, p. 20

( 2 ) " " " " " " P • 23
(3) Exercises, Vol. 3, P. 169
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An important formula developed is for the number of substi-

tutions similar to a given substitution. This is the total number

of substitutions possible on n letters divided by the number of sub-

stitutions that transform the given substitution into itself^ 1 ).

Gauchy states the formula and proves it. If w is the number re-

quired, n the number of letters and P the given substitution, com-

posed of f cycles of order a, g cycles of order b, h cycles of order

c, - - etc. - -,and r the number of letters fixed in P, then

-
=

«J (2)

U ! ) (g!) (hp - - (r jj a
f
b

g c*

Then = nl and

it I) (g/j (h!) (r /) a
f S

Q
h

This last formula he leaves thus in the Exercises, but he

returns to it in a later memoir among those published in the Paris

Comptes rendu s and uses it in the development of some important form-

ulas in which is implied the theorem that the average number of let-

ters in the substitutions of a transitive group of degree n is n - 1.

A number of important theorems relative to substitutions are

developed^ which may be quoted as follows:

(1) The order of a substitution is equal to the least com-

(3)
mon multiple of the order of the cycles that compose it . This

theorem has been already referred to Ruffini.

(2) If P is a substitution of order i, h any number, and ©
ft if 1*)

the highest common factor of h and i, then P will be of order —
6

(1) Exercises, Vol. 3, p. 169
(2) '

, Vol. 3, P. 173
(3) "

,
" ", p. 202

(*0 " , ", p. 203
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(3) If P is a substitution of order i,the substitutions a-

mong the powers of P that are of order i, are the' powers of P whose

indices are prime to i- These substitutions are likewise similar

to P and so the number of substitutions similar to P among its powers

are in number equal to the number of numbers prime to i and less than

(H) Let P be any substitution, regular or irregular; let i

be its order, and p a prime factor of i.. Then a value for 1 can al-

ways be found such that P1 is a substitution of order p ( 2 K

(5) A substitution and its inverse are always similar

(6) The powers of a cycle constitute the totality of sub-

stitutions that transform the given cycle into itself

(7) if R, 3, - - are different substitutions that are

permutabi^ with P, then the product of two or more in any order la

permutabie with P (5).

(8) The inverse of P11 0* is Q
-Jc P~n (

6 ).

After defining a group, calling it a system of conjugate

substitutions, Cauchy states and proves a number of important theor-

ems .

(I) The order of a system of conjugate substitutions always

divides n }'
~?

While of course this theorem is not due to Cauchy, still

his statement of the proof is simple and clear*

(1) Exercises, Vol. 3, p. 203
(2) Ibid, Vol. 3, p. 209
(3) Ibid, Vol.. 3, p. 209
(^) Ibid, p. 221
(5) Ibid, " ", p. 22^
(6) Oeuvres, Vol. 9, p. 325
(7) Exercises, Vol.. 3, p. 18k
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(2) The order of a system of conjugate substitutions

is divisible by the order of each substitution,

( 2 )

(3) v ' This theorem may be enunciated in group theory

language as follows:

Two permutabie substitutions with no common power but

identity, together generate a group whose order is the product of

the orders of the substitution*

* The theorem is then extended to any number of substi-

tutions fulfilling the same conditions.. A special case is devel-

oped where the substitutions are all on different letters and so give

rise to an intransitive group.

There is developed here a unique way of building a

cyclic group J
. The general method he develops may be applied to

a specific case as follows:

Given a regular substitution P, say of degree 12, with

3 cycles of order i+,

P = abed • efgh • ijfcl. If then these three cycles be

written in three horizontal rows

abed

efgh

iJM.

the substitution Q, formed by talcing each vertical row as a cycle,

* In the future we shall confine ourselves to group theory language
except in so far a3 a clear statement of Cauchy's thought requires
us to follow his terminology also,

(1) Exercise? Vol. 3, p. 135
(2) Ibid, p. 189
(3) Ibid, p. 191
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q = aei .bf j .cgk'dhl, will be permutable with P and P and a will gen-

erate the cyclic group of order 12 » The products may be arranged

as follows:

q p P 2 p3 q P p2 p3

Q, PQ, P 2 P 3 or Q, QP Q,p
2 qp3

q
2 PQ 2 P2 Q2 P^Q 2 Q

2
q2P Q,

2P2 Q,
2p3

The substitutions then are:

1 : abcd»efgh«ijxl : aot>a-eg.fh»il>jl : adcb»ehgf • llicj

aei.bf j .cgK»dhl : afKdej chebgl : agriex • bhjdf1 : ahkbel cfidgj

aie-bjf .clcg»dlh : ajgdif clebxh : akecig • blfdjh : algbih cjedxf

(k) If 1 Pi P2 P
3

Pa_-L

1 Q-i 0.2 0-3 - - - ^b-i are tw0 SrouP s
>
one of order

a, the other of order b that are permutable, and have no common terms

other than the identity, then the group generated by these two groups

is of order ab * 1 '.

(5) If two groups l ¥ ± P
2

P^ - - - Pa-1

1 0-1 0.2 ^3 - - - Ob-l one °^ orcier a &nd

the other of order b, generate a third group of order ab, then the

two groups are permutable

The illustrative example which Cauchy gives is the group that

belongs to the function

jT± = (x - y) (x-z) (y-z) ( y-u) (z-u).

P = xy.zu ?2 = xz»yu P3 = xu^yz

gives the four group..

= yzu 2 = yuz gives the cyclic group of order

three. The product of the two groups is the alternating group of

degree four and order twelve..

(1) Exercises, Vol. 3, p. 229
(2) Ibid, p. 229.
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(6) If P and Q, are two substitutions, one of order a and

the other of order b, and if the two series

Q, PQ, P
2 ----- p^ 1

q,

q, Q,P QP2 - - - - Q, pa_1 are made up of the

same terms, in the same or different orders, then the cyclic group

generated by P is permutable with the cyclic group generated by 1
l

| .

(7J If 1 Px *2 - " - *a-l

1 0,2 ^2 ~ - - ^b-1 are two groups, of or-

ders a and b respectively, if n is not divisible by ab then at

least one P^ is similar to a Q ^

One of the most important theorems, if not the most so^

proved by Cauchy in the Exercises is that one usually called Cauchy's

theorem-

If M is the order of a group and p any prime that divides

M, then the group contains at least one substitution of order p (3).

Since this theorem is so fundamental, especially as it is

a big 3tep towards Sylow's theorem which appeared nearly thirty years

later, it may be considered as a most important element in the es-

tablishment of Cauchy' s claim as the founder of group theory*

Besides the theorems proved in the Exercises, there are

a number of specific groups mentioned. tfo enumeration of groups of

special degrees is attempted, but in several cases the substitutions

are written out. Those given are :

(1) The octic as an example of a group generated by the

( h

)

substitutions permutable with a given substitution y
.

(2) intransitive group of degree six and order 9, the

( 1) Exercises, Vol. 3, p. 229
(2) Exercises, p. 21+9, Vol. 3
(3) '

, P. 2 50, Vol. 3 Enunciated but not proved by Galois,

(k) ib£d?
r
?
V9

iq8
,Y Cauchy " Manuscrita de Evariste Galois, p. 39.
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direct product of two cyclic groups of order 3

(3) The intransitive group of order 16 and degree 6, with

f 2 )

the two systems of intransit ives , four and two K

( 7.)

(k) The hoiomorph of the cyclic group of order 5
w

.

( 5 ) Tne four group ( ^ )

.

In addition to these groups whose substitutions are given,

other specific groups mentioned are:

(1) the hoiomorph of order 4-2

( 6

)

(2) the group of degree 7 order 21

(3) the hoiomorph of the cyclic group of order 9^^.

There is also mentioned (6) a group of degree 9, of order 27,

generated by the two substitutions

P = Xq X3 X£ • Xl XI4. Xy . X2 X5 X
g;

Q, = xi x
2

XJ+ Xg x
5

• x3 x
6

Obviously this is impossible, but a little study of his

method reveals that the Q, should be Q, = x^ x2 x\± xg x-j x^ • X3 x^

and that in order to get the order of the group he has made a mis-

application of the theorems he has Just enunciated and which he is

illustrating; that the order of the group should be 18. The two.

theorems he is illustrating may be stated as follows:

(1)
' " If P is a substitution on n letters as P - x Ql x-j. x2

- - - x and if r is any number prime to n, and Q, is a substi-

tution derived from P by replacing each letter by another whose sub-

CD Exercises, Vol. 3, id. 199
(2) Ibid, p. 200
(3) Ibid, p.
(*0 Ibid, p. 239
(5) Ibid, p. 2^0
(6) Ibid, p. 235
(7) Ibid, p. 239
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script is r times its own, then for any values of h and k

q
k Ph s Pr

*n
qk ,

(2) If in the above theorem we take T any divisor of n

distinct from unity and let R be the substitution that replaces any

letter x by the letter with the exponent x£+r , then Q,
K

?P- generate

a group of order ri where i is the smallest value of k that satis-

fies rk = 1 mod n„

Gince r is 2 in the case at hand then i must be 6. The or-

der of the group then is ti = 3*6 = 18 whereas Cauchy seems to take

i = 9, and so derives the order of the group 3*9 = 27.

We turn now to Cauchy 1 s Memoirs published in the Paris Comp-

tes rendus ( 184-5-6 ).. Some of the material in these memoirs had al-

ready appeared in the Exercises but is more extensively treated in

the Memoirs. Much that is given, too, in the latter is not touched

upon in the former.. We 3hail omit here such things as have already

been mentioned in the paragraph on the Exercises except in so far as

their extension in the later Memoirs make a repetition profitable.

After fundamental definitions of the terms used, we find a

group defined as follows:

" I shall call derived substitutions all those that can a-

rise from the given substitutions by multiplying them one or more

times by each other or by themselves , and the given substitutions

together with all the derived substitutions form what I shall call

f 2

)

a system of conjugate substitutions . v
.

Then follow the general theorems:

(1) If i is the order of a substitution P and a, b, c,

(1) Exercises, p. 235, Vol. 3
(2) cauchy Oeuvres, Vol. 9, Ser. 1, p. 290
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are the prime factors of i, then the substitution P and its powers

form a group generated by the substitutions

i i i

P* ,
P"E> - (1)

(2) ^ If P, Q,, R, S - - - are the substitutions that

leave a given function jq- invariant, they form a group whose order

is the number of equal values of .

(3) The order of a transitive group of degree "n is n times

(3)
the order of the subgroup that leaves one letter fixed.

(4) If j^a is a transitive function on n letter, if m is the

index of the corresponding transitive group under the symmetric

group of degree n, then m will likewise be the index of the subgroup

that leaves one letter fixed under the symmetric group of degree

n - 1

.

The general subject Cauchy treats next is that of intransi-

f h)
tive groups v He implicitly divides intransitive groups into

two sorts.. The first are those where the systems are independent

as he says, in our terminology, where the systems are united by the

direct product.

The second sort are those where the systems are dependent,

or as we say, are united by some sort of an isomorphism- The con-

cept of isomorphism is however only implied * He states first that

an intransitive group is formed by the combinat ion, in some way of

transitive constituents. He then develops some interesting formu-

las for the orders of intransitive groups.. If the systems are "in-

dependent" then M, the order of the group, is the direct product of

(1) Oeuvres, Vol. 9, p. 292
(2) »

, Vol. 9, P. 336
(3) "

, " P. 295
(U) " " ", p. 296-303
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A, B, C - - -, the orders of the transitive constituents and the

index win be where a, to, c - - are the degrees of
A, B, C

the constituents* (i)

This same formula holds also when the systems are not in-

dependent if A, B, c - - - are defined in a special way.. They may

toe defined as follows:

Let A toe the order of the first transitive constituent;

Let B toe the nurntoer of substitutions involving letters of

the second system without involving any of the first;

Let G toe the number of substitutions involving letters of

the third system without involving any of the first or second.

With these definitions then the order of the intransitive

t-roup is M = A B c . By putting a»=^J b<=^T C'=^ABC
- - - and I 1 = — — then m, the index of the intransitive group

a / b / c /

under the symmetric group is given by the formula m = M 1 A' B'' GD
1 -

- where IT' is the coefficient of the product ra s
13

t
c - - - in

the expansion of the polynomial ( r + s + t - - -
)

n
.

After considering intransitive groups Cauchy turns to im-

primitive groups. Here he confines himself almost entirely to the

consideration of those imprimitive groups which are simply transi-

tive and which have for the subgroup that leaves one letter fixed

the direct product of the transitive constituents. In regard to

this particular type of imprimitive groups, he gives several theor-

ems which are of interest even though he does not touch upon the

broader and more general principles.

If we have a simply transitive group such that the 3ub-

(1) Oeuvres, Vol. 9, p. 29s
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group that leaves one letter fixed is an intransitive group formed

by the direct product of its transitive constituents, then the group

is imprimitive.. He considers the special cases when a, the number

of letters in the largest transitive constituent, is greater than ~
y

when n is the degree of the group, where a is less than ~ and when

a is equal to and in the second case illustrates his theorem by

a special example*

The only theorems which he enunciates that apply to im-

primitive groups in general are, (1) that the number of letters in

the systems of imprimit ivity must be a divisor of the degree, and

(2) that if A is the number of substitutions that permute the varia-

bles within the systems and K the number of ways the k systems can

be permuted then the order of the group will be K A .

An erroneous theorem in regard to imprimitive groups to

which attention has already been called, is as follows:

"If Ql is the subgroup which is composed of all the substi-

tutions which omit a given letter of a simply transitive group G^

then G is imprimitive unless all of the transitive constituents of

G-[_ are of the same degree".

There is an interesting theorem with regard to symmetric

groups which is worth quoting.

"If a transitive group of degree n has a symmetric sub-

group of degree a, where a y ~, then the group is symmetric on n

letters

(1) Oeuvres de Cauchy, Vol. 9, p. 1+ )+3^
The error is noted in "Historical sketch of the development of
the theory of groups of finite order" by G. A. Miller. Biblioth-
eca Mathematica (1910), Ser. 3, Vol. 10, p. 321.
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The corollaries added are:

(1) n >2, a transitive group of degree n is symmetric

if it contains a symmetric subgroup of order n - 1.

(2) n ? 3, a transitive group of degree n is symmetric

if it contains a symmetric subgroup of degree n - 2.. The special

case n - k is excepted here for the octic group "belonging to the

function = xy + z u is symmetric on two letters, yet is not sym-

metric on all four.

(3) n ) 'I, a transitive group of degree n is symmetric

if it contains a symmetric subgroup of degree n - 3. The case

where n = 6 is excluded here. A group requiring that this excep-

tion be made is the imprimitive group of degree 6 and order 72 which

contains the symmetric group of order 6*

(!+) n j 5, a transitive group 01" degree n is symmetric

if it contains a symmetric subgroup of degree n - h. If n = 6 or

n = 8, this does not hold. Cauchy gives as examples of the case

when n = 6, the imprimitive groups of degree 6, of orders 72 and

One of the most interesting parts of Cauchy* s work on

group theory is that in which he develops the formulas from which

can be deduced the theorem that the average number of letters in the

substitutions of a transitive group is n - 1. In general his meth-

od may be summed up thus:^ 1 ^

Consider a transitive group of degree n, that is intrans-

itive when I letters become fixed, that is, it is £~foid transitive.

Consider the number of substitutions in this group which are similar

to a given substitution P ; then the number of substitutions similar

to P in the subgroup that leaves £ letters fixed. As P assumes all

(1) Oeuvres, Vol. 9, PP. 38^-395
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possible forms, then the sum of all the substitutions similar to P

gives the order of the group . The number of substitutions similar

to P in the whole group is found in terms of i and the number of

omitted letters in P. Summing these numbers as the form of P is al-

lowed to vary, gives various expressions for the order of the group

and from these the theorems are deducible.

With this brief outline of the general method we can now go

more into detail.. For convenience in reference we shall for the

most part keep Cauchy's notation*

Given a group G of degree n and P a substitution in this

group of order i.

Let w be the number of substitutions similar to P possible

on n letters.

Let h be the number of such substitutions included in the

group.

Let K be the number of conjugates of G under the symmetric

group, that contain P.

Let M be the order of the group and m its index under the

symmetric group of degree n.

h it

Then — = — = i for hm = lew, since h is the number of sub-
w rn

stitutiorjs similar to P in the group which is a subgroup of the sym-

metric group. There are m conjugate subgroups of this sort so in

these m subgroups the number of substitutions, involving repetitions,

similar to P is hm .. There are w substitutions possible similar

to P in the symmetric group and each is repeated K times. so for

the total number of substitutions appearing in the m conjugate sub-

groups of the symmetric group involving repetitions we have £w. But

the two must .be the same so

hm = ]£w





fa J£

It is easily seen that tfae ratio r = ~ can not exceed one
w m

since tfae total number of substitutions similar to a given substitu-

tion in any group can not exceed tfae total number of sucfa substitu-

tions in tfae symmetric group involving this group as a subgroup.

2^ fa = M when the sum is taken over all the values of fa corre-

sponding to different forms of P.

Consider G ^-fold transitive^

Let fa' be tfae number of substitutions similar to P in tfae

subgroup that leaves 2 letters fixed, w the number of substitutions

that can be formed similar to P, on n - 1 letters, and M' the order

of tfae subgroup that leaves £ letters fixed.

Tfaen fam = kw becomes for this subgroup fa'm = lew', and ^ h

= M*.. Tfaen from fam = lew and fa'm = icw ' follows that

x = fam n-n^Mw'.

Tfaen if 9 = ]L
, fa = ~£ = fa'e , and fa' = ~ .

Let r be tfae number of letters omitted in P, tfaen

n(

and
/

g / itf if- - aS bh c^'- - r!

(n - £)/
ff
" 7t h' * ~~ ~ ag b" - (r - 1)1

wfaere P is a substitution containing g cycles of a letters, fa cycles

of fa letters, etc.

i

w (n - t)\ g ffa/x/-- ag bn c* - r/
Tnen

5
=
w

=
gift/fcf. _ y ~

c* \ T _£)t
x n

!

.
r(r - 1) (r - 2) - - - (r - i + I )

n(n - l) (n - 2) - - - (a - 1 + t )

m' .(.')| m'= ii-1 " i5n7
L * = " = n( n-lkn-frl

XII i i



>
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Then/ — = M ' for h = £L . If we substitute in this sum, the

values of — and M ' just derived we nave
e

<^nr(r - 1) U - € + Q m
/. n(n - l) (n - € + / ) n(n-lMn-2)--(n--£ + /)"

Since the sum here effects only the h and r, this reduces to

^hr(r - 1) lr - i + / ) = M (1).

Let l, P, Q, - - - be the substitution of the group, and

Hn-r tne number of these substitutions involving n - r letters. The

values of h, corresponding to all the substitutions on n - r letters^

irrespective of the form, are multiplied by the same quantity in the

above summation (1) so that for ( 1 ) we may now write

^r(r-l) {r - i + / )Hn_r = M

.

where the summation applies to the various values of r.

This formula will hold then when the group is simply transi-

tive j doubly transitive — till it is 1-fold transitive. That is,

Jl may be taken equal too, l, 2, 3 i - / . If •£ =

/>n-r = M -

(1) M = H
n

+ Hn-1 + Hn_2 + - - - H2 + 1. H = 1 for this is sim-

ply the identity.

H

x = for this is the substitution that replaces

a single letter.

If I = 1. £ Hn_r = M.

(2) M = Hn_ x + 2Hn_2 + - - - (n - 2)H2 + n.

X = 3 / r(r - l) (Hn_r ) = M.

(3) M = 2.1 Hn_2 + 3:Hn_3 + - - (n - 2) (n - 3)H2 + (n - l)n.

JL = Z. ^r[r -1)
( r _£ + / ;Hn_r = M.

(*0 M = - - - l\ Hn_^
+ (n - I + / ) (n - l)n.

It is from these formulas that the theorem as to the aver-



J
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age number of letters in the substitutions of a transitive group a-

rises* Prom (1) no conclusion can be drawn as to transitive groups

for a group that is intransitive on n - £ letters, if £ - 0, is an

intransitive group.. Froia (2) however the theorem is evident* There

is no substitution involving n letters; the Hn_2 is multiplied by 2,

Hn-3 toy 3> Hn-+ ^> 30 tne avera& e number of letters is brought up

to n - l. The same conclusion can be drawn from the other equa-

tions. Although Cauchy was here very close to this important the-

orem, he did not enunciate it*

If fn designates the sum of the first n + 1 terms of the ex-

pansion of and £njr tne first r + 1 terni3 of the development

of ( 1 - l)
n

, then we have the following table, formed by multiplying

the equations (1), (2), (3), (4) above by l, -l, J V/ M
>

respectively, and taking the sum.. The reason for this process is

found in the theorem stated but not proved by Cauchy that

f 1 , 1 1 + 1 (l)
n

/ g/h(K/ - - aS ^ c
k ~ 2T- " 37 "V ~ " ~^~r~

where the g, h, k - - a, b, c, indicate a substitution of g cycles

of order a, h cycles of order b, k cycles of order c - - - and the

sum includes only such cycles as involve more than one letter.

M = Hn + Hn_ 1 + Hn_2 + Hn_3
+ Hn_^ - - - - + H2 + 1

-M = - Hn_ 1
- 2Hn_2 - 3Hn_3 - ^Hn_l+ - - - -(n-2)H2 - n

2 H , + 3l*L h +(n-3)U-2JH + n(n-i)
27 n~2 21 *n-3 2 / ^n-4 21

"2 2/
M
2

_M _ 3-2.1 'i-3-2 H -(n-+J(n-3)U-2)
Tr

_(n-2)fri-l):3- 3T-*n-3 3T" n" 4 3/ n2 37

LlLL. m = f-iJ^Hn-l - + f(-I) An -l + i) - - - (n-l)njr
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Di(l - 1 + \ - ~ - -) - Mg =

Hn + (l-DH^ + ( l-2+|/ )Hn_2 +
(
1-3+1=2 - )Hn_3

+ (l-*+2b|-

fS±>V* + - - - n-J+*£±l M-yfv - - +(-i>^

—j-, V^/ 1^ -27- ^7 +

(/+!)( A</-l)(/-2) _ - _ -H--M 2»1
hu_ (

/+1}

+ )
+ )(/+!) _ (/+2)(/-l)/

|
, (7+2 )(/+!) (/-I _ _ _

(-1)' (/+2 )(/+!) U)U-1) - ~ 2 >1 _ _ _ _ + fj.f n-P)+ (n-2)(n-3)

^/ £ ^/

_ +(-l/(n-2jcn-^) — (n-/+l)7 H + f n+
n(n-l) _ _ _

(-1) (n)(n-l) - - (n-Al)

All the terms from the first to the term involving Hn__/_2 van-

ish because of the ^-fold transitivity of the group and the formula

for the sum then reduces to

M = Hn n-^-lj^V^ +]f*]i
*a-JL* ~ ~ ~ &-2^H2 * fuj^ where

J^tiJ has the significance indicated above.

If instead of taking the sum of all the equations in the series

above (1) (2) (3) - - (4) the first had been suppressed and the sum

/
of the remaining J. -s after multiplying each by a term in the expan-

sion of t t
a formula would arise that would involve (5) and be more

general.

M = r/Hn_r * (r+l)(r) 2Hn-r-i + (r+2)(r+l) - - 3Hn_r _2 + - -

+ U+1)U) — (i-r+2)Hn_/_1 + U+2)U+1)U) (7-r+3)Hn^_2

+ (n-2) (n-r-l)Ho + n( n-l)( n-r+l)

.
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_M = -(r+l)(r) 1 Kn-r-l ~ (r+2)(r+l) - - .2 Hn_r_2

(-)(Al)(^0 - /-rnlH.i^ - (/+2)(^-i)M (Ar+2)Hn^.2

(n-2) ( n-r-2 )H2 - n( n-D(n-r)

.

M = +i' (r+2)(r+l) 1 Hn_r _2
+ i

n-/-2

+ J, ( n-2)— (n-r-3)H2 + n(n-l) (n-r-l).

+ c/+2)(/+i)(/) - - - - 3 Hn^/.2 + (-D

(n-2 f (n-/l) + r _! /n(n-l) (n-Al )

2Hn X

{/-T*l]j/-r)(/-T^lX (/-r+1) 2 (-i)W"r
) 7

rn. ?) _ _ . (^1)^1 - (n-r-2) » i--^--A) -

(n-r-2 )^~-^( n-/-l).
J
H. + Jn{n-l) (n-r+U^l-- (n-r)+

(n-r)( n-r-l) _ (
n-r U n-r-l) (n-r-2 ) ___ 1^-rJl^-l

)

>,

-( n-^3)

|7 3 J
Tn-r)/

Expressing tnis formula in the simpler form Py means of

£nj
r

already defined we have

Mq_r
= r

/
Hn_r + (Al) — {/-r+zfe-r+lj^j. Ha-/-i +
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(7-r+3)j^r+2^_r H
n_y_2 - - -M ~-(n-r-i)

ft_
r_g

H
2

+ n(n-l) (n-r+l|/~n-r/^_
r

.

Transposing and dividing by factorial r we have

(Y+2) y-r+3)£/_T+2J{ T Hn_/2
(n-2)(n-l)

(n-2)(n-i) — (n-r-l) fn-v-zjy „ H2 -n(n-l) — (n-r+1)
^T-r ^ F7

n-r^_r .

All the teriri3 following the first are integral for a succes-

sion of r integers is always divisible by r /.. The first term is

also integral as Oauchy shows by simple means*

Let r, the number of letters omitted in a given substitution

be equal to ^%
then the formula for Hn_r becomes

H 0= J£ - 6^*1) — ? 2Hn /i - (
/^f2 )

— 3. h /o

(n-2 ) (n-/l) H- - n(n-l) (n-7+1)
,

Then if the number of letters omitted is r =^-1, Hn_r becomes

( 1) nn_/+1 = (/+i^
=I
-/-? W-i

+ ^-^7 jt 2 H-/-2 -

+ (n-2) - - - (n-/) (n -/-2 ) h2^(
n-i ]l^n-X)

(

Then if the group is simply transitive and^= l

(2) Hn = Hn_2 + nn_3
- - - + (n-3) H2-Kn-l).

From (1) we see that since all the terras are positive, it

must follow that





32.

- y
a ri(n-i)(n-2) — ( n-V?2 ) / n /Hn-/+l ; U ^*

Prom (2) follows, when the group is 3impiy transitive

H
=

n-1.
n 7

These results are included in the theorems ::

(1) If G is anV^-foid transitive group of degree n, the

number of substitutions involving n-*/+l letters is equal to or great-

er than n(n-l) -- (iwfr2)
( n-^.

(2) If G is a simply transitive group of degree n, the num-

ber of substitutions involving n letters is equal or greater than

n-l.

Thus far, with the exception of one or two incorrect signs,

the formulas and theorems are correct but a serious error follows im-

mediately* We find the assertion that if in an /f-tol<l transitive

group, {, + 1 letters are left fixed, all are fixed. That this is

false may be demonstrated by considering the imprimitive group of

order 72 and degree six. It is simply transitive and sosf= 1, but

A* 1 2 letters' may be left fixed without all becoming so„

Upon the basis of this assertion Cauchy says that formula

(6) reduces to

Hn_r
= JL E/-r - n(n-i) (n-r+l^_r

.

He then, by putting in definite values for^f, 0, 1, 2

, derives the formulas,

H„ = ME/ -[njx
Hn_! = ME^_

1
- 5 fn-l^_ 1
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u a .¥ _ f n(n-l) —- (nV+2) ,

/

ir _M__ j;
n( n-l) -— (n-/+l) r //

Let us apply these formulas to this same imprimitive group

of degree 6 and order 72

H6 = ME^ -(!-£) = n-1. y-/

There are 40 substitutions in this group involving all the

letters?.

H,- = M E q - nT n-lj = 72 - 6 = 66.

There are 12 substitutions in this group of degree 5„

Cauchy then applies this theorem to the special case of the

symmetric group Here n-1 and the following formulas arise.

Hn = n /Sn

Hn-1
= n /En-1

Hn-2 ~ En-2

3 ( n-3 )/ 3

n 1

H 2 = ' - E2*
( n-2 ) /

*

Suppose that n = 5.

Hn-3
=

f',
B
3 = 2/

= 20 '

Hence the formula applies to the symmetric group.

The alternating group is n-1 times transitive; then = n-<
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and

Hn = ^En_2
- (n-1)

Hn_! = En_3
- (-l) n~l n(n-2)

H
n-2 " V- En-* " ^^ n"2 (n~3)

HH
3
= ?J- J** - (-1) 3 A(n-l) Ji 2

J 2 ( n-3 )/ ut-3 ) /

Ho = B Q
(
_ 1} 2 n(n-l) — 3

2 ^7 (n-2)/
1 iJ

(n-2H
'

The last two reduce to

w _ n( n-1) (n-2)H
3 ?

H
2

= 0.

This snows that the alternating group contains n ( n~,1.2Lll~^Ll.

cyclic substitutions of order 3 and no transposition.

So while these latter formulas hold for the special cases of

the alternating and symmetric groups they do not hold in general.

However, the assumption upon which these formulas are based are true

of the alternating and symmetric groups; that is, the symmetric group

is intransitive when the number of letters left fixed is n-1; so

since here n-1, then /+1 - n and all the letters are left fixed as

the assumption requires.. If the alternating group be considered

„

j[ = n-2; i+i = n-1 and if n-1 letters of the alternating group are

left fixed, certainly all are.

Another theorem stated correctly by Cauchy but containing er

rors in the proof is the following*

Given two groups of degree n

1, P, q, R,

and 1 P^ Q
/

, one of order M, the

other of .order M
1

. Then if E is the number of substitutions that
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transform one group into the other, n and E are congruent, mod, M.m1

The proof is as follows."

Suppose the group 1, P, Q, R - - - is tho group belonging to

a function . Let U be such that U-1PU = P and u-1 jr^u =

Then (Pu)-!-»PU = -a and

(up)~ttf4ip = -A'

Hence p'-ltl-l-flUP = .

u= so P
LJ2 p = X2 .

Then the substitutions that do not change are

u, up, uq, ur
;

This statement is evidently false for by hypothesis ajl

transforms 1Z. into X2. . if it transformed -a. into itself, its in-

verse would also, but the inverse would have to transform xx into jol.

and so and JX would be identical-
r

The remainder of the proof is correct. U and UP transform

into ^2 so U
-1

and (UP) -1 = 'p -1 U -1 transform _a into . Then

UP u -1 transforms -C\ into itself and so evidently belongs to the

group 1, P, Q,, R .

Then the number E, of substitutions that satisfy the equa-

tion,.

?«• = u.p'is the product of M by the number of functions

Icl ' - - not changed by one or more substitutions of the

group 1 P % R - - - and the theorem follows..

The theorem that the hoiomorph of a cyclic group is the

product of the cyclic group and its group of isomorphisms is found

implicitly in Cauchy . The theorems he gives may be stated as

follows

:

1. Let P = (x xi x2 - - - xn ) be a substitution of
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order n. Let r be a primitive root of the modulus n and I the

smallest of the indices of unity corresponding to the base r.. Then

let Q, "be a substitution that replaces x by xr . The order of Q,

will be I and the order of the group generated by P and Q, will be n .

This I is nothing else than the order of the group of isomor-

phisms of the cyclic group and so this group of order nj is the holo-

morph of the cyclic group. If n is a power of a prime then I =

n( 1 - — ) where p is the prime. When n is a prime I = n-1.
3?

2. With the same hypothesis as in (1) Pa and Q,
13

, where a

and b are divisors of n and I respectively, generate a group of or-

der £i .

a b

Cauchy was the first to attempt an enumeration of the possi-

ble orders of groups. Thi3 he did with a fair degree of accuracy

up to and including the sixth degree.. The enumerations including

degree five are correct and complete but several errors occur in

his enumerations of the possible orders of groups of degree six.

For instance *
; 150 is given as the index of a group of degree six

under the symmetric group when 6 I is not a multiple of 1^0.

Cauchy goes ,bacK to his original distinction between im-

primitive groups with heads direct products and those with heads

formed by isomorphisms. He gives as the possible orders of

groups of degree 6 with heads direct products of the transitive con-

stituents 72, >+8, 24, 18, 16, 8. The ia3t two numbers are clearly

impossible for there is no transitive group even of degree 6 and

order 8 or 16.

(1) Oeuvres, Vol. 9, p. 333
(2) ,

" ", p. W
(}) " ' P. *+95
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The ord?rs of the groups possible when the head, is formed

by isomorphisms are given as 6 , 12, J+ while there is no imprimitive

group of order k and degree 6. According to his classification too

there should also be included in this last enumeration 2H and 18.

A complete omission occurs In imprimitive groups since the groups

of order 36 with two systems of impr imit ivity are entirely omitted

»

Otherwise the enumeration through degree six is correct and complete.

In conclusion then we may say that the foundation period in

the history of group theory includes the time from Lagrange through

Cauchy; that at the beginning of the period group theory was a means

to an end and not as end in itself. Lagrange and Ruffini thought

of substitution groups only in so far as they lead to practical re-

sults in the theory of equations. Galois, while broadening and

deepening the application to the theory of equations, st ill showed a

slight break, developing his theory of substitutions, then applying

it.. In this respect he may be considered as taking an initial step

toward abstract group theory. In Cauchy a group is still. spoken of

as the substitutions that leave a given function invariant; the order

of a group is still the number of equal values the function assumes

when the variables are permuted in every possible manner' but quite

as often the group is "a system of conjugate substitutions" and its

relation t'o a function is entirely ignored. It is due largely to

this fact that Cauchy may be considered the founder-
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Errors in Cauchy's Work on Group Theory..

The errors in Cauchy's work relating to group theory may be

divided into two classes of varying importance; first, those which

arise in the subject matter itself, and false statements about mat-

ters of fundamental importance; second, a large number of minor mis-

takes where the thought is evidently correct and the error arises

only through careless statements. The errors of the first class

have been included in the discussion of the theorems to which they

apply. Among the minor errors we note the following:

I. Journal de 1« Scole poiytechnique, 184-5, p.19, 3rd par., line

2 4-, "at least thirteen values" should read "at least eleven val-

ues"

.

II. Exercises, Vol. 3.

( 1 ) Page 205, line 15.

P a (x, y, z)(u, v, w) is called a substitution of order

two

.

(2) Page 218, (27) and (28).

From © _ a _ b _ n
hk

ab
n

is derived the relation
k h

should be O = ab
hk

(3) Page 21+0 (22).

0, =s x1 x2 xi| x& x^*Xz x:^ is called a substitution of order

6. From the derivation of Q it is evident that it should

be of order six and its form

Q, = xx x
2
xK xg x

?
x5 . X3 X6 ,

Page 2 4i, 3rd line.

3 9 is given as the order of a subgroup of the nolo-
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morph of degree nine, when 3 * 6 = 18 should he the order

given.

(5) Page 178, Problem 2 should read, "Being given two suhstitu

tions P and R - - - "

.

As a whole the Exercises are free from error. it is

in the memoirs published in the Pari3 Comptes rendus that they are

frequently found.

Oeuvres de Cauchy, Vol. 9„

(1) Page 303. The last line of the first paragraph reads,

"n = n if the sets formed in this way reduce to two,

the first of n-1 letters, the second of n only". Clear

ly n letters can not be divided into sets of n-1 and n

letters and the n of the second set should be one.

(2) Page 315,., Theorem II. "Let <</3 y
f
\ m be

two sets of n letters", should be "let^y- - -, A \v

- - - be two sets of a letters"-

(3) Page 322, line 1, reads "If the number a reduces to un-

ity, it signifies that, the variable n becoming fixed

„

all the others become fixed al3o".. Evidently n should

be x, for n is not a variable.

page 327, (13).

p, pq, p 2 q, - - - Pa_1 Q, should be Q,, pq, P2 q - -

- Pa~l Q,

( 5) Page 376, 1st line.

M - tc should read m - K .

(6) Page 382, Theorem VI . The hypothesis should read:

Let A te a function of several independent variables;

let - - be the distinct values of this function
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and ra their number - - instead of m the number of

equal values of the function.

(7)Page 390, Formula (11). The fourth line should read

( n-2 ) (n-r-1 ) r _ -7 _
* * —- u jn-r-2

jy_r
H2> Cauchy U3es the

correct form and not the form as printed, to develop his

later formulas..

(8) Page 392, Formula U*). For U-l
) ( n-£^--_JnI1t)_ ^^

in the second line , we 3hould have

-(/^)7^ U-/-2) h
2 .

(9) Page 397, last line. U
-1 = PIT" 1 should be IT1 = PU

~1
.

(10) Page 399, line 16. Table (5) should be Table (9)

(11) Page '+0*+, line 18. The inverse of p'u is given as uV" 1

and should be U_1 p
7-1

*

(12) Page 406. In the memoir on Bertrand's memoir, there is

the statement that a function on six letters can not as-

sume more than six values, when it should be that it can

not assume less..

(13) Page 1+22. The last two lines should be

(xyz) (u) (v) (yzx) (u) (v) (z xy) (u) (v)

(x y z) (v) (u) (y z x) (v) (u) (z x y) (v) (u)

(1*0 Page '+29, Problem II This should read". Given two sub-

stitutions P and R find Q,..

tt

(35) Page 1+31+, (9). P - U * * /3/3 ft - - If <f ^ )

should be P «= c(* A A A*' / / / )

(16) Page i+M-8. The last line of coronary II should read,

two irregular substitutions of the sixth order instead of

the fourth.
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(17) Page %Jk. In the table

P = P
n-1

= P 2(n-1)
---=-?

the second line should be

?! - ?n = p2n-l - - - = p'p p'"1

instead of = - - - .

(18) Page 4-91, line 14. We can form a transitive function

of three letters that offers only three or six distinct

values, should read we can form a transitive function

of four letters instead.

(19) Page 50 1+, line lk, for "twenty distinct values arid six

equal values", there should he twenty equal values and

six distinct.

Errors in Vol. 10 Oeuvres,

Fage 8, line 5.

w
1

should he W)
(

.

Page 10, line 14.

Formula (l 1!) should he formula (16). The same correction

should he made in line 20.

Page 12, (22). p« p = p» p should be P P' = P" P.

Page 20, line 12. For three distinct values there should be twelve

distinct values.

Page 23, line 12..

T = Q, S Q-l 3 Q, T = S Q" 1
(1 3 QT 1 should be

t = q s or 1 g q t = Q,

-1
3 q s or

1
.

Page 32, line 20. Put (J for v.








