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Pyrochlore magnets are candidates for what Harriset al. [Phys. Rev. Lett.79, 2554 (1997)] call
“spin-ice” behavior. We present theoretical simulations of relevance for the pyrochlore familyR2Ti2O7

(R � rare earth) supported by magnetothermal measurements on selected systems. By consider
long-ranged dipole-dipole as well as short-ranged superexchange interactions, we get three distin
behaviors: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transitio
to paramagnetism, and (iii) a partially ordered state with a sharp transition to paramagnetism. Close
corresponding behavior is seen in the real compounds.

PACS numbers: 75.10.Hk, 75.25.+z, 75.40.Mg, 75.50.Lk
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The pyrochlore rare earth titanates have attracted gr
attention recently because their unusual structure (
“pyrochlore lattice”) of corner-sharing tetrahedra can lea
to geometric frustration and interesting low-temperatu
properties [1]. Our interest in these particular titanates w
sparked by the observation that some of them are nea
ideal Ising systems [2–5]. Some intriguing experiment
data presented below can be explained only by assum
a competition between classical dipole-dipole interactio
and quantum superexchange. Depending on their rela
magnitudes, the ground states of the Ising-like systems
be “ice-like,” ordered, or partially ordered. “Ice models
get their name because real (water) ice [6] has a la
ground state degeneracy arising from local rules for t
ordering of protons in water ice. Several related mode
have been studied since, involving nearest-neighbor Is
interactions; as far as we know, this is the first examp
where two competing interactions have been included
an ice-like model, with the physics changing significant
depending on their relative strengths.

Pyrochlores of the formA2B2O7 have been extensively
studied, whereA are rare earth ions andB are transition
metal ions, each forming interpenetrating pyrochlore la
tices. BecauseA is trivalent andB is tetravalent, this
allows occupation by a wide variety of magnetic speci
[7–9]. The lattice is a 3D version of the kagomé lattic
(Fig. 1). We use a primitive unit cell with a tetrahedro
as the basis. The tetrahedra form a face centered cu
lattice, so the structure can be viewed as four interpen
trating fcc lattices; a nonprimitive cubical unit cell is often
used. Oppositely oriented tetrahedra are formed from
corners of these tetrahedra. The system can exhibit fr
tration, in both the isotropic Heisenberg antiferromagn
[8,10,11] and the Ising limit [2–5].

In our systems, the Ti41, like the O22 ions, are non-
magnetic. The rare earthA ion carries a large magnetic
moment (from its unfilledf-electron shells), so that the
0031-9007�99�83(9)�1854(4)$15.00
eat
the
d

re
as
rly
al
ing
ns
tive
can
”
rge
he
ls

ing
le
in

ly

t-

es
e
n
bic
e-

the
us-
et

dipolar interaction is as significant as the superexchan
Another important aspect is the single ion anisotropy i
posed by the crystal field (CF) interaction of D3d symmetry
at the rare earth site, since a strong easy-axis anisot
results in the Ising limit, even for isotropic exchange i
teractions. Previous investigations of the low-temperat
properties of these systems pointed out evidence fo
strong single-ion anisotropy along the�111� direction, i.e.,

FIG. 1. The basis of atomsA0 � �0, 0, 0�, A1 � �r, 0, 0�,
A2 � r�1�2,

p
3�2, 0�, A3 � r�1�2, 1��2

p
3 �,

p
2�3 �; translated

by the lattice vectorsa1 � �r,
p

3 r, 0�, a2 � �2r,
p

3 r, 0�, and
a3 � �0, 2r�

p
3, 22r

p
2�3 � to form tetrahedraB, C, and D;

repeated translation forms the whole lattice. In our syste
r � 3.53 Å. We can also choose a basis of “downwar
tetrahedra (dotted lines; atomsA2, B0, C1, D3). (inset bottom)
A single rare earth ion (center) surrounded by eight oxyg
ions. The top two are at the centers of the tetrahedra adja
to the rare earth ion, and the rest form a puckered hexag
ring around this axis. (inset top) The first few calculated ene
levels for Ho, in meV, with symmetry indicated. Ground sta
transitions are observed at 22, 26, 59, 71, and 77 meV (the
two not shown).
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along the line pointing from the center of the tetrahedron
to the corner where the rare earth is located [2]. Direct
evidence is provided by our detailed investigation of the
CF interaction in the Ho compound using inelastic neutron
scattering [12].

From the energies and intensities of the observed CF
transitions, we could unambiguously determine the CF
parameters and energy levels of Ho2Ti2O7 (top inset to
Fig. 1). Because the crystal structure varies very little on
replacing one rare earth ion by another, these CF parame-
ters will give good estimates of the splitting and single ion
anisotropy in the other compounds as well. So we find a
strong easy-axis anisotropy along the line joining the tetra-
hedra centers for Ho and Dy, but not for Yb, Er, or Tb.

Though it has been suggested earlier [3,13] that
Yb2Ti2O7 is also Ising-like, we find that it has an easy
plane, rather than an easy axis: J � 7�2, Jz � 61�2 for
the ground states, so the spin points mainly in the x-y
plane. The same seems to be true for Er, while Tb is Ising-
like at low temperatures (,10 K).

The nearest-neighbor Ising model on this lattice (con-
sidered in [2–4]) can behave in only two ways. If the in-
teraction is “antiferromagnetic,” the ground state is doubly
degenerate and each tetrahedron has either all spins point-
ing out or all spins pointing in, depending on the tetrahe-
dron’s orientation. If the interaction is “ ferromagnetic,”
the ground state of a tetrahedron is given by an “ ice rule”
where two spins point out and two into the tetrahedron,
and is sixfold degenerate. Any state with all tetrahedra
satisfying this is a ground state. It is highly degenerate
with a finite entropy per spin, which our simulations sug-
gest is around 0.22kB in agreement with Pauling’s predic-
tion [14]. In both cases, the specific heat vanishes at small
as well as large temperatures, with a peak in the middle.
Simulations show that in the ferromagnetic case (ice rule)
the peak is broad and occurs at the temperature scale of
the interaction, suggesting a typical broad crossover from
a glassy low-temperature phase with macroscopic entropy
to a paramagnetic phase. In the antiferromagnetic case, the
peak is very sharp and is at a temperature around 4 times
the interaction energy, suggesting a phase transition from
an ordered ground state to the paramagnetic phase. The
energy scale of the peak here may be higher because of
the higher energy cost of a single spin flip from the ground
state.

Experiments were done on polycrystalline samples of
these compounds which were synthesized from stoichio-
metric mixtures of the lanthanide oxides (99.99%) and
TiO2 (99.995%) heated at 1200 ±C in air for one week
with intermediate grindings. All materials were found to
be phase pure by conventional powder x-ray diffraction.
The specific heat was determined using a standard semi-
adiabatic technique and the susceptibility measured with
a commercial magnetometer. All susceptibility data were
taken at 0.1 T.

Specific heat measurements show very different kinds of
behavior for these compounds. Dy2Ti2O7 is the only one
whose behavior is akin to spin ice, as extensively discussed
elsewhere [5]: the nearest-neighbor assumption seems to
work well here. The possibility of ground state entropy
from local ordering rules in an Ising model was discussed
by Anderson as long ago as 1956 [15], but Dy2Ti2O7
supplies a concrete real-world example with quantitative
agreement with theory.

For Ho something entirely different happens: at around
0.6 K a transition seems to occur, below which the spins
seem to decouple thermally from the system and freeze out
into a low temperature metastable glassy phase. Moreover,
the data for Ho suggest a peak at substantially smaller ener-
gies than the dipolar interaction (2.3 K). This is consistent
neither with the ordinary spin ice nor with the antiferro-
magnet. To explain the difference in behavior between
Ho and Dy, we need to go beyond the nearest-neighbor
model, by (a) considering the long-ranged dipole-dipole
interaction between the spins and (b) including an antifer-
romagnetic superexchange to reduce the dipolar coupling.
It is not possible to account for the superexchange cleanly,
so we merely assume that the superexchange is nearest
neighbor only: this still gives us excellent agreement with
the observations and highlights why these compounds are
different from spin ice. We calculate the dipole-dipole in-
teraction, assume a nearest-neighbor superexchange which
we estimate from the experimental data, do a simulation
for the specific heat and susceptibility with these val-
ues, and compare with experiment. Our simulations are
on systems with 2048 spins (8 3 8 3 8 tetrahedra each
with four sites) and around 10 000 Monte Carlo steps per
spin. We use a long-ranged dipole-dipole interaction (up
to five nearest-neighbor distances, but the results do not
change significantly beyond the third neighbor). The con-
vergence is good despite the long range of the interac-
tion, probably because there is no global Ising axis and no
net magnetization, so beyond the third neighbor the large
numbers of spins in different directions tend to cancel one
another.

We obtain the superexchange for Ho from the experi-
mental high temperature zero field susceptibility. The
high temperature expansion of the susceptibility is read-
ily obtained from statistical mechanics. To fix the nota-
tion: we use scalar Ising spins, Si � 61, with Si � 11
if it points out of an “upward” tetrahedron (or, equiva-
lently, into a “downward” tetrahedron) and Si � 21 oth-
erwise. We write the first two terms in the expansion as
x�T � � C1

T �1 1
C2
T � and try to evaluate these coefficients

using M � 1
N gsmB�

P
i Si cosui�, where gs is the Lande

factor, Si is the effective spin of rare earth atom i (� 6jJzj
for that atom), mB is the Bohr magneton, and u is the angle
made by the direction of the spin with the (arbitrarily
chosen) direction of the external magnetic field. Our re-
sults turn out to be independent of the direction, at least
to this order. The angle brackets denote the thermody-
namic average. From the fluctuation-dissipation theorem,
x�T � � 1

N b�gsmB�2
P

i,j Gij , where Gij � �Si cosuiSj 3

cosuj�H �0. Using standard methods (expanding to order
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b), we arrive at

x�T � �
N�gsmB�2

kBT
S2

3

2
666641 2

6S2

kBT
1
4

X
i

over one
tetrahedron

X
j

Jij cosui cosuj

3
77775 .
The sum over j is over all sites in the lattice excluding
i. If the nearest-neighbor dipolar interaction is JD , the
superexchange is JS , and we include long-ranged dipolar
interaction but only nearest-neighbor superexchange, we
can write all the non-nearest-neighbor Jij in terms of some
constants times JD . We get

x�T � �
N�gsmB�2

kBT
S2

3

∑
1 1

6S2

kBT
1
4

�2.18JD 1 2.67JS�
∏

and from here we can extract the coefficients C1 and C2.
This is valid for an ideal Ising model at sufficiently

high temperatures. When we plot the experimental xT
against 1�T (Fig. 2), we find a marked linear region at
low temperatures (2–10 K). This is the region we want:
if we pull out C2 from this region, we find it is much less
than 1 K, so things are consistent. At higher temperatures,
where the Ising approximation should fail, the graph is
no longer linear. Using C2 � �6S2�4� �2.18JD 1 2.67JS�
with JD known, and the calculated value of C1, we can
calculate JS; we get JD � 2.35 K (calculated) and JS �
21.92 K (measured). (Note that when we use scalar Ising
spins rather than fixed vector spins, the superexchange is
negative and the dipolar JD is positive—and the former
favors ordering, the latter frustration, as is usually the case
in Ising systems.)

We now simulate with these values of JD and JS . In
the case of Ho2Ti2O7 (Fig. 3), the simulated susceptibility
agrees well with the experimental data at all temperatures,
while the specific heat has a sharp peak at very nearly the

FIG. 2. xT plotted as a function of 1�T . The high tem-
perature expansion in the text is the markedly linear low
temperature region here (2–10 K, which is high compared to
C2). Note that the Yb compound has the opposite slope here
from Ho, suggesting that superexchange dominates here.
1856
point where the experimental Ho system falls out of ther-
mal equilibrium. Moreover, there is a large energy differ-
ence at this point, suggesting a first-order phase transition.

Contrary to earlier suggestions, the neutron data and
our simulations suggest that the Yb and Er compounds
are easy-plane (“XY models” ), not Ising. Earlier work
by Bramwell et al. [16] suggests that the XY Heisenberg
model on this lattice shows a first-order phase transition
from an ordered ground state; we believe that, as with
Ho2Ti2O7, it may be necessary to include a dipole-dipole
interaction, and preliminary simulation of a pure dipole
model correctly predicts the position and approximate
shape of the peak. More work on this is in progress.
Our specific heat measurements on Er and Yb agree with
previous data [13].

The remaining compound, Tb2Ti2O7, is probably Ising-
like at very low temperatures. It has been suggested that
it remains paramagnetic down to 0.07 K [17]. The gap to
the excited CF states is only a few kelvin. The data for
this and Er are shown in Fig. 4, but no simulations were
done for these.

The ground states of nearest-neighbor ferromagnetic or
antiferromagnetic Ising pyrochlores are well known; we
now consider the more complicated case of Ho2Ti2O7.
In the nearest-neighbor ferromagnetic model any state in
which all tetrahedra satisfy the ice rule will be a ground
state. With long-ranged interactions (Ho2Ti2O7), the ice
rule remains but there are further restrictions on the al-
lowed ground states. The simulation suggests a partial or-
dering in the ground state. That is, the upward tetrahedra

FIG. 3. Specific heat and (inset) dc susceptibility for
Ho2Ti2O7 and Yb2Ti2O7. The Yb “simulation” here is for an
Ising model, which is probably inappropriate but gives fair
agreement.
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FIG. 4. The measured specific heat for Tb2Ti2O7 and
Er2Ti2O7, and (inset) a comparison of simulations for the
specific heat. Here the nearest-neighbor interaction is fixed and
the numbers indicate the relative strength of the next-nearest
interaction, relative to the pure dipole-dipole value. A pure
dipole-dipole interaction has a nearest-neighbor J1

D and a
next-neighbor J2

D , as well as further-neighbor interactions.
In the presence of nearest-neighbor superexchange JS , the
nearest-neighbor interaction is reduced to J1

D-JS . In this plot
we normalize to a fixed energy scale for the near neighbor,
so that the next-neighbor interaction is boosted by a factor
R � J1

D��J1
D 2 JS�. Thus, R � 1 is the pure long-ranged

dipole-dipole interaction (without superexchange), R � 0 is
nearest neighbor only, and R � 5.2 is what we used for
Ho2Ti2O7. For R � 0 the ground state entropy is 0.22R in
close agreement with Pauling. For R � 1 it decreases to
0.15R, for R � 2 it is 0.12R, and it further decreases as R in-
creases; for large values, in particular, the value corresponding
to Ho2Ti2O7, it vanishes. A latent heat emerges at large values
of R which must be accounted for in integrating these plots to
find the entropy.

could have one of two allowed configurations; the con-
figuration varies randomly along one lattice direction but
alternates perfectly along the other two. Evidence from
the simulations for this occurring is unambiguous. So the
number of ground states is large but not macroscopic (it is
exponential in L, the system length, rather than L3), and
the entropy per particle vanishes. Our calculation here ig-
nored long-ranged superexchange, which would be present
in the experimental system, but the experimental data for
Ho do suggest a vanishing entropy for the ground state (on
integrating C�T ). In the simulation, the system remains
in a disordered “paramagnetic” state till the transition tem-
perature, but below this temperature it freezes out rapidly
to such a partially ordered state. From then on further
cooling leaves it stuck in this state, with the other ground
states inaccessible. This seems to agree with the observa-
tion that the spins freeze in Ho2Ti2O7 below a temperature
of around 0.6 K. Below this temperature inability to es-
tablish thermal equilibrium leads to unreliable data, which
has not been plotted here.

We believe the unusual freezing of spins in Ho2Ti2O7
is because at the transition temperature (0.8 K) the single
spin flip energy is around 4 K, so the Boltzmann factor
for this is very small (around 0.006). This spin freezing
has been commented on by Harris et al. [2]. It seems the
next-neighbor interactions must be fairly strong for this.
In the absence of next-neighbor interactions there is a very
large number of ground states. As we turn on and increase
the next-neighbor interaction, the new constraints substan-
tially reduce the ground state entropy. For a long-ranged
dipole-dipole interaction without superexchange simula-
tions suggest that the new ground state entropy is reduced
by around 30% but still large, but with large superex-
change, as in Ho2Ti2O7, it actually vanishes: there are few
true ground states, and these are separated by large energy
barriers.

In summary, we perform simulations based on a theo-
retical calculation of dipole-dipole interactions and an esti-
mated superexchange obtained from the experimental data.
The relative strengths of these interactions have a drastic
effect on the ground state properties when compared to a
nearest-neighbor Ising model, and we observe three dif-
ferent kinds of ground states: highly disordered and ice-
like [5], partially ordered, or fully ordered, with broad
crossovers or sharp phase transitions to high temperature
phases. We use only one adjustable parameter, fitted from
the experimental data, as input for the simulations that
agree well with experiment. Thus these systems look like
excellent testing grounds to study the behavior of disor-
dered spin systems, glassy dynamics, and phase transitions,
with the opportunity to tune the interactions to some ex-
tent, and should richly repay future study.
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