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riTTKODUCTION.
It has been aBsiuned in the construction of alternating current

generatdrs that the aim of the designer should be to produce- a

machine whose electromotive force is as nearly as possible a pure

sine wave, ^hile this is undoubtedly good practice where the gen-

erator is to supply power to a circuit composed mostj^y of motors

or other devices having considerable inductance or capacity, yet

where these are absent, there is no real need for a sine wave,

and it is the purpose of this paper to show how the inon losses

of transformers may be materially decreased by the use of non-

sine vvave forms, and to illustrate this by showing certain curves

and their characteristics and effects upon the losses.

It is proposed to develop the whole paper directly from the

fundamental principle of induced currents, namely that the mag-

nitude and direction of the induced electromotive force are giv-

en by the rate of change of the inducing flux, and the Steinmetz

formula, which saya that the hysteresis loss is proportional to

the 1.6 power of the maximum of the flux density. In the course of

the paper every eqmtion is derived from the two principles just

now stated, and all the necessary steps involved in obtaining

these equations are clearly shown, and diagrams and curves insert-

ed where thought desirable. The mathematical part of the work is

made as simple as possible, though the problem from its very nature

necessarily involves some rather intricate equations. Several

graphical solutions are offered to replace the tedious and often

difficult process of solving complicated trigonometrical equations.

It has also been the aim of the writer to limit the discussion to

those data which are of practical use to the engineer, rather than
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the mere theoretical manipulation of mathematical-physical concept

ions which do not directly aid the designer in his work.

Such, then, is the purpose of this paper. It is only a very

elemantary discussion of the subject, but yet, since it treats of

a branch of alternating current phenomena of which very little

has been written, and which is of interest to the engineer, the

writer feels justified in offering it to such as may chance to

read it, with his apologies,

C. A. Hellmann,

Washington, D. C. April 21, 1909,
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Discussion.
Let us aBsuine that we have a periodic electromotive force of any-

given wave form. Since the wave is periodic, it must pass cyclic-

ally through a definite given set of values and repeat this oyvle

indefinitely. Now let us denote the time in seconds, from a given

point in one cycle to the corresponding point in the following cy-

cle by 2T. Then let us call the quantityiT, just now defined, the

PERIOD of the emf , in question, and the reciprocal, the FRE-

QUEFCY of that emf,.

It is well known that any periodic qmntity can be represented

as made up of superposed sine curves of various amplitudes, and

in various phase relations to each other, and whose frequencies are

to each other as 1, 2, 3, 4, 5, ....etc.. We shall call the sine

curve whose frequency corresponds to 1, the FUlTDAlffiTAL,and all the

others the HARMONICS, the latter being ODD or EVEN according as the

frequency ratio corresponding to the given harmonic, stated above,

is an odd or an even number. Further, we shall use the letter m

to denote the ORDER of the harmonic, the order being the ratio of

the frequency of the harmonic to that of the fundamental.

Bow let us digress a little and consider the periodic flux, say

in the core of a transformer, which produces the emf. wave we have

assumed. We shall denote by S the cross-sectional area in square

centimeters of the core, and assume that the|flux is at every inst-

ant uniformly distributed over this area S, and shall denote its

density, or number of lines of force per square centimeter, at any

instant, by ^ and the number of turns in the transformer coil by

N, and time in seconds by t_. If then, we denote the induced emf.

by e, we shall have the following equation:
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e « - i^SN.lO"^ volts (1)
dt

This is derived directly from the definition of an induced emf

and if the quantities involved in the equation are given in C. G.

S. units as here asGumed, the equation necessarily gives the re-

sult in volts. Now, S and H are constants for any given apparatus,

hence for simplicity, we shall denote the expression -SN«10 by

the letter k, a constant, so that we may write:

We thus obtain, from (2),

kd^ = edt (5)

Now, since we have assumed that e is periodic, it necessarily

follows that e is some function of the time, t, which we shall

state mathematically thus:

e = F' (t) (4)

where F*(t) is a functional symbol, and denotes the first derived

fvinction of the function F(t) with respect to t. Obviously, this

places no restriction on the nature of F*(t), since any function

is the derived function of some other function, and this notation

is here used for convenience, as will appear later. Substitution

of this value of e in (3) gives:

kd^ = F»(t)dt (5)

and integration of this, for the interval t..to gives:

W =;^F'(t)dt = F(t) -F(to) (6)

Now let us denote the maximum value of i by the letter B and pro-

ceed to find the value of B, since the magnitude of the hysteresis

loss depends upor this quantity. The calculus tells us that when

a function of any variable attains a maximum or a minimum value,

its first derivative with respect to that variable must be zero.

This is readily seen by plotting the curves representing these two
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quantities. Also, since the derivative is the "rate of change" of

the flux, then obviously, when the flux is not changing, the in-

duced emf . will be zero, while the tangent to the flux curve at the

corresponding point will be parallel to the axis of abscissae, and

consequently the flux either a uiaxiriiuau or a ainiiauiu value,. Apply-

ing this criterion to the present case where, in (6) we have ex-

pressed ^ as a function of t, we see that:

''-tf=°
is a condition which must be fulfilled if ^ = B.

But the first member of (7) is seen from (2) to be equal to e,

hence equation (7) means that when the flux is a maximum, the emf.

must be zero. From (4) we have that e equals F*(t), hence from (2),

(4) and (7), we see that:

F'(t) = (8)

is a condition that ^ be a maximum. Equation (8) is an equation

of the m^" degree ifa sine and cosine of that is, when expanded

so as to be expressed in terms of the sine and cosine of the fund-

amental, hence it will in general, have m roots, and also in gen-

eral, if m be greater than 3 the roots can be only approximated.

Hence by far the simplest method is to get the oscillograph curve

for e and thus get the roots by means of a curve analyzer. Having

obtained these roots, and denoting one of them by t^,, the substitUf-

tion of ty in equation (6) gives:

U-r = F(tr) -F(to) (9)

Now let us see what the meaning of to is. In equation (6) we have

integrated]F' (t)dt between the limits t and t©, and ir^btaining (9)

we have put tj., one of the roots of (8), in place of t in equation

(6). Hence, the second member of (9) is the value of the integral

of F'(t)dt between the limits to and tj.. This integral represents
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the area under the curve e = F'(t) between the limits ty and t© ,

that is, the area under the emf. curve, and evidently is a maximum

only when the limits of the integral are both points at which e

IS equal to zero, that is, t^ and t^ must both be roots of (8),

This is evident from an inspection of the emf • curve shown in fig.

1 below, and is true for any periodic curve without restriction*

How let us assume that the emf, is such as would be given by any

well designed alternator, that is, that tjie portion of the curve

above the axis bears such a relation to that belo"w the axis that

any half-cycle, above the axis, when revolved from positive to neg-

ative position about the axis, and also shifted as a whole thro\igh

a distance equal to T , along the axis, will be exactly coincident

with the following half-cycle, below the axis. For brevity, let us

designate such a wave to be "symmetrical".. Having thus limited

the discussion to symmetrical waves, we thereby eliminate the har-

monics of even order, since such harmonics always produce non-

symmetrical waves, as will be evident from figures 2 and 3 , below:

ZT

Figure 1.

2 Second Harmonic, (in phase)
3 Resultant.
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Figure 3.

1 Fundamental.
2 Second Harmonic. (90 out of phase)
3 Resultant ..

Figures 2 and 3 show waves which are not "symmetrical".

With curves 7;hich are symmetrical, we have the aauitional relation

that the interval from tr to t^ is equal to T or in symbols:

to guide us in choosing the proper values of t to get the value of

B. This does not except in very sparcial cases, hold for curves

which contain the even harmonics, as will be at once apparent upon

drawing the diagram.

Figure 1 represents one cycle of a curve which is very much dis-

torted by harmonics, yet is symmetrical,, that is, it contains only

the fundamental and the odd harmonics. The loops 1, 2, 3, etc., are

seen to be alternately positive and negative, the complete cycle

comprising six loops, three positive, and three negative* Now this

curve is s±mply a specific one of the infinite niamber of forms the

general equation (4) may assume, that is, this curve represents

graphically one case of e = P*(t), Hence the area under the curve

between any two values of t represents the value of the integral

F(t), for the corresponding interval. Obviously, from the diagram,

this integral is greater between, for instance, t© and t^ than

between any other two of the values in the series, tQ, t', t",t]LJ

and t'", since it is at once apparent that the best values of t are

tr - to = T (10)
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those which give as much as possible of the positive area of the

loop and deduct the least possible by including negative parts of

the same. It will also be seen from the figure that since the posit-

ive loops during a complete cycle are exactly equal in area to the

negative loops, the value ofi the integral, starting from any point

whateTer, to the end of a complete cycle of values, is the same as

that at the starting point, and hence that the maximumValue of the

Integral will be obtained by choosing a half cycle so as to include

the largest positive loops, when it follows necessarily that the

sane interval will include the smallest negative loops, since these

are arranged in rotation, by the conditions of the problem, as will

be seen on inspection of any such symmetrical curve.

The AVERAGE ordinate of any curve may be obtained by finding the

area under the curve, that is the area enclosed between two ordin-

ates, the curve, and the axis of abscissae, and dividing this area

by the distance between the two ordinates* This amounts to saying

that the average ordinate is the distance that a straight line,

parallel to the axis, would be from the said axis in order that the

area between the line, the axis, and two ordinates the same distance

apart as those used above, equal the area of the given curve as above

found. Since we have limited this discussion to symmetrical curves,

it follows at once from the definition of such curves, as before

stated, that the area under the curve represented by equation (4)

will be zero if the distance between the two limiting ordinates is

equal to 2T or any multiple thereof, and as previously stated, wiia

be a maximian for one particular interval whose length is equal to

the period, T. Let us denote the abscissae corresponding to the two

ordinates of this interval, by t© and tg+I. i'hen, from equation

(6), putting these values as the limits of the integration, we





9

obtain:

^4ax. (=^^> = F(to+T) - F(to) (H)

thus showing that the maximuni flux density is a constant times the

maximun area of the curve* Now, from the definition of the average

ordinate of a curve stated before, we see that the average emf.,

E , is the second member of (11) divided by the conBtant, T, hence
a

we have shown that the value of B is directly proportional to the

average value of e, for a half cycle chosen as above, and in S3nn-

bols we have:
TEflr

B = = kl-Ea (12)

where is a constant.

The effective value of an alternating current wave is defined as

the square root of the average square of the ordinate of the curve,

and is obtained by first finding the integral of the square of F*(t)

between the limits t^ and to"*-T, as was done in the case of finding

the area, with F'Ct) itself, then dividing the result by x, ana

taking the square root of the quotient, thus:

E = -y/ /o'^^^[F'm]^^t (15)

where F is the effective value of the emf. e.

The ratio of the effective value, E to the average value, Eq., is

the FORM-FACTOR, and will be denoted by the letter f, so that:

f = -~ (14)
^a

and from (12) and (14) we obtain that:

fB = k^^.E (15)

thus showing that the effective emf. is proportional to the product

of the form factor and the maximum of the flux density.

The IROIT-LOSSES of the transformer are of two kinds, those due

to EDDY-CURRENTS, and those due to PIYSTERESIS, so that we may write:
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W = Wg +• Wj^ (16)

where W denotes the total iron loss, and and Wj^ are the eddy

current loss and the hysteresis loss respectively.

Of these two losses, the eddy current losses are very easily

dealt with, and will be at once considered. Eddy currents are pro-

duced by the same flux which produces the emf • e,and, since they

flow in the iron itself, it may be assumed that the resistance and

the impedance of their paths remain constant, and hence that the

power lost is, by the well known principle, proportional to the

square of the effective value of the eddy current or the eddy emf.

to which this is proportional. Now, since the same flux produces

this and e, it follows at once that if E be kept constant, the eff-

ective eddy emf. will also remain the same, and hence the eddy cur-

rent loss for any emf. whose frequency and effective value remain

constant, will also remain constant, no matter what is the shape of

the wave.

The hysteresis losses depend upon the frequency and the maximum,

B, of the flux density. In curves of the type shown in figure 1,

there are several maxima, corresponding to the points tit ^x'

etc., and hence in curves which are so irregular as to have more

than one zero value of emf. per half cycle, it is necessary to

choose the greatest of the corresponding flux maxima. The usual

method of obtaining the loss is to assume the empirical relation

that the loss is proportional to the 1.6 power of the maximum flux

density, but of course this does not even pretend to take account

of the additional loss due to the intermediate maxima and minima

in the curve. But it is not worth our while to concern ourselves

much with curves which are ao irregular as to have several maxima

of the corresponding flux curves, since such emfs, contain an
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abnormal percentage of the harmonics and are not such as would be

often found in practice, and in case they were, the error resulting

from the application of the formula would be comparatively small,

as will be seen from the two figures below, figs. 4 and 5, which

show the emf • curve, and the corresponding flux curve and the hys-

teresis loop.

3
3

1

y X 1 \
Y \

Figure 4,

X
3

/
/ Cvsrrent Figure 4 shows the emf

,

Figure 5.

and the flux curves, and

Figure 5 shows the hysteresis

loop corresponding thereto.

Figure 4 shows an unusually irregular emf. curve, and the cor-

responding curve of flux. It will be observed that the flux irregul-

arities are not anywhere nearly so marked as the irregularities in

the emf. curve. This, as will be more fully explained later, is due

to the fact that the flux curve corresponding t6 the m"^^ harmonic

of the emf, curve has the relative amplitude of only - as compared
m

with the amplitude of the fundamental of the flux curve considered

as unity, instead of the corresponding ratio h of the emf, curve.

Hence it is seen that the additional loops ir: the hysteresis loop

shown in figure 5, produced by the small range of flux between B'

and B" will be of negligible area in comparison with the large loop
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and that their omission will introduce only a very small error.

Thus far we have considered the emf, merely as P'(t), and have

made little use of the fact that the may bo represented as a

composite sine function, as previously stated. Let us now take the

case where:

9 = A[3in.pt + hjSin.CSpt + 63) + h^sin.Cspt + 9g) + etc^.(l7)

In the above equation, A is the amplitude of the fundamental of the

emf,,£ is the angular velocity, hm is the ratio of the amplitude of

the m'^'J^ harmonic to that of the fundamental, and is the phase

angle of the m"^^ harmonic.

By substituting the value of e from (2) in (17) above, for e, and

then multipl3ring both members by pdt, we obtain:

pkd^ =: Ap[8in, (pt )dt + h3Sin,(3pt + 93)dt . . . , etc] •., (18)

Integration of equation (18) gives us:

(-pk^ =)-k'V = A[cos,(pt) + -^cos,(3pt + 9^) ,..9tcj (19)

Here the coefficient of the m"^^ harmonic of the flux curve is seen

to be
^ , that is, only one-m of that of the corresponding emf,

harmonic. On putting m = 3, and h = ,333, and 9 = 0, we obtain the

curves sho\7n in Figure 6, below:
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In figure 6, the full lines 1 and 2 represent the emf . and the

flux curves respectively, and the ——— lines show the fundamental,

3, and the triple harmonic, 3, of the emf., while the lines,

show the corresponding components, 4 and 5, of the flux • Here it

will be observed that while the curare 4 is represented as having the

same amplitude as the curve 3, the curve 5 on the same scale has only

Tone third the amplitude of its corresponding emf, curve, 3. It will

also be noticed that while the terms in equation (18) are all sines,

the corresponding terms in (19) are all cosines, hence the correspond:

ing points of emf, and flux are 90^ out of phase, as shown in the fig-

ure. Thus it is seen that in general , because of this phase difference

the flux curve corresponding to a flat top emf, will be peaked, and

vice versa. This results from the fact that a displacement of each

component through 90 of its degrees will change their phase relations

with'crespect to each other by 180°, hence the maxima will fall where

the minima were before, thus changing the nature of the result as

stated.

On a previous page the statement is made that in order to produce

more than one maximum per cycle in t-he flux, the emf, curve must be

very irregular. Let us see how great an amplitude of the m"^^ har-

monic must be introduced into the emf. curve to produce such second-

ary maxima, Obviuosly, i will be a maximum only when e equals zero.

Hence if we take the value of e to be:

e = A Csin.pt ^ h2isin.(mpt 9^) ') (20)

we must obtain the values of t to make this equal to zero by equat-

ing the second member to zero and solving for t. However, as stated

before, this equation is of the m't^ degree in sine and cosine of pt,

and while in a few special cases the equation may be easily solved

algebraically, probably the simplest method is the following graph-
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ical solution. Let us first take the special case where % is I8OO.

The curves corresponding to this are shown in Figure 7, below:

In this figure, 1 is the fundamental,

whose amplitude is A, m is the m"''^ har-

monic, of amplitude Ah^, and T and

are the periods of the fundamental and

of the hamonic respectively.
Figure 7. '

If now, 1 and m represent the two components of the emf,, of the first

and m"^^ order, respectively, as shown, we shall obtain a certain re-

sultant e, and it will be zero when either of the following relations

is true:

PirBft, if the corresponding ordinates of 1 and m are simul-

taneously equal to zero.

Second, if the corresponding ordinates of 1 and m are equal

in length, but of opposite signs.

The first case gives what may be considered the normal zero of the

emf,, while the second gives the zero values corresponding to the

secondary maxima or minima, (if any) of the flux curve.

The slopes of the two components will be equal and opposite where

t is zero, if the two curves are similar, that is, if A is to Ahj^ as

T is to T^, But, T = mTja, hence it follows that in order that the tm

curves be similar, A and Ahj^ must also be in the same ratio, that is,

A = mAhnj. This gives us the condition that hj^ must equal ^, In case

this relation holds, the two curves will have equal and opposite

slopes at t = 0, and , since the slope of the harmonic at this point

is decreasing m times as rapidly as that of the fundamental, the re-

sultant will always have the same sign as the fundamental. Hence it

follows at once that if the value of h^j, be i or less there will be^ m
no secondary zero values in the emf. curve, but if h^^ exceed this
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limiiing value, the resultant will first fall below the axis due to

the larger ordinates of the harmonic, and then recross the axis as

the ordinates of the fundamental increase, thus introducing addition-

al rero values into the emf • curve. The above discussion shows that

where there is only one harmonic present, and it is 180^ out of phase

with the fijiidamental, its amplitude must be ^ or less, if there are

to be no secondary maxima in the flux curve.

Next we shall consider the case where the angle is equal to

zero. Substitution of this value of in equation (20) gives :

e = A(sin,pt -»• hui*sin,mpt) (21)

Now let us plot the curves representing this as done in figure 8:

This figure shows the fundamental,

1, and the m'''^ harmonic, the symbols

used being the same as those of Fig.

7, with the addition of n and n',

which represent corresponding ordin-

ates of the two component curves.

Now, if the ratio h^^ be so chosen that e is equal to zero at some

point inside the half-cycle, T, of the fundamental, shown, then at

that point the two component curves must have equal and opposite or-

dinates. Now revolve the harmonic from its present "positive" posi-

tion to the corresponding "negative" position, about the axis of abs-

cissae. Then the ordinate n' will fall upon the ordinate n, and if

this ordinate is to be that corresponding to the zero value of e, the

two ordinates will also be of the same length, and hence coincide ex-

actly. This is shown in figure 9, below: \

Figure 9.

m
Figure 10,
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Figure 9 shows the harmonic revolved as stated, and it will be seen

from the figure that there will in some cases be two crossing points

of the two curves, each of which corresponds tib a zero value of e.

If, now we decrease the amplitude of the harmonic, we finally arr-

ive at the state of affairs shown in figure 10, where the two cross-

ing points coincide, giving only one value (or, to be mathematically

exact, two coincident values) of t to make e equal to zero. Obviously

at this point the two curves have a common tangent, ss;j_, and also the

common ordinate, n. If now we should decrease h^^ still further, the

curves would no longer intersect, that is, there would then be no

secondary zero values in the emf • and hence no secondary maxima in

the corresponding flux curve. Hence we see that the value of hj^ that

makes the harmonic tangent to the fundamental when revolved as in

figure 10, is the limiting value, and if h^^ is equal to or less than

this value, there will be no secondary maxima in the flux curve..

From the above condition we may now derive the following relations

between the constants of the equations of the two components ox the

emf. curve:

First, The two ordinates in figure 10 are equal, hence

the corresponding two prdinates of the curves

before revolving the harmonic about the axis

must be equal but of opposite signs.

Second, The slope of the tangent of the curves of figure

10 at the point in question is the aame in

both cx)mponents, hence the slopes of the two

curves before the revolving must be equal but

of opposite signs*

TTow, denote by pt^ the time from the end of the first period of the

harmonic to the time where e is zero, due to the state of affairs
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shown in figure 8. At this point the ordinate of the fundamental

T
will be Asin.(g + pt^), and that of the harmonic will be_,at the same

T
point. Ah sin.n(- + ptn), hence from the first of the two conditions

given above, we may write:

Asin.(- 1" pt^) = -Ahjj^sin.m(^ + pt]_) = -Ahj^sin. (T + mpt3_) ...... (22)

But remembering that T is 180°, that is, it , we may rewrite the above

eqimtion (22) as follows, since sin(x + tt) = -sin.x :

8in.(| +• pti) = hjj^8in.(mpti) (23)

Prom the second relation above, we may get another equation as follo^i

The slope of the fundamental at this point is the value of '^^^*^'^A,

dain.mpt
and that of the harmonic is the value of •

dt
Ah^^. When t is equal

to(tQ+^) these become Apcos.pt, = Apcos.(g pt^) andmS-phmCos. (T + mpt3_)

Now, these are to be equal and of opposite signs, hence, since T^ia

equal to Tt, and making use of the relation that cos.(x + tt) = -cos.x,

and substituting these values, we obtain:

cos.(- -h pt^) = mhcjCos. (mptn ) (24)
m

This gives us two independent equations in the two unknown quantities

and h^^, hence we may solve for these. Divide the members of (23)

3 in «

X

by the corresponding members of (24), and remembering that —^— is
C 06 .X

tan.x, we obtain:

tan.(g + ptj_) = itan.(mpt;j_) (25)

The solution of this gives us pt^, and then from (23) we obtain h^^

upon substitution of this value of pt^. Probably the most expeditiuus

way to solve equation (25) is by means of the diagram shown as figure

11, on the following page. It would, of course, be possible to ob-

tain an algebraic solution of this equation, but upon attempting to

solve such an equation where m is greater than 3, the expansion of

tan.(mpti)in terms of tan.lpt^) becomes very lengthyjknd of the

degree, hence the graphical solution is preferable.

m.th
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O 1^ F

Figure 11

•

Let OP be the unit of measure. Then OP = 1. ilow, lay off the

point M so that MP ia equal to Prom draw the line Or so that

the angle rOP is equal to and connect rM, r being the point in
m

which the line Or meets the perpendicular rP, to OP, Now if some

point q is taken on Pq, we see from the diagram and from the defini-

^Lion of a tangent that if q be connected to and M by the lines qO

and q_M, we obtain the relation that tan.qMP = and tan.qOP = qP,

(= ^1 = ^) But since OP is m times IvIP, it follows that inversely,

tan.qMP is m times tan.qOP, If now we choose q so that the angle

qllP iS' m times as large as the anglf^Or, we may let these angles re-

present mptj^ qnd pt^ respectively, since in that case from the dia-

gram we obtain the relation that:

tan(g pt^) = ^tan(mpti) (25>)

which is the same as equation (25) on the preceding page, hence we see

that the diagram is a true representation of equation (S5), and may

therefore be used in solving that equation graphically. A very close
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approximation to the root may be obtained as follows: Lay off the

line OP say ten inches in length, and draw the perpendicular at P.

Then lay off the angle as indicated on the diagram^ This can
m

easily be done by laying off Or equal to ten inches times the tangent

of - on qP, and then connecting Or. Next draw rM, M being laid ofZ

so that MP equals ten inches divided by m. Now divide the angle rMP

into m equal parts, and draw q'Or equal to one of these m parts, then

connect q'M, divide the angle q'Mr into m equal parts, add one of

these to the angle q'OP, giving us q", connect this to M, and repeat

the process as often as desired to obtain accuracy. As a rule, two

applications will be sufficient to get the angle mpt-j_ to within a few

minutes, (Note, tnat when m is 3, mpt-j_ will be 90°, hence in this c
-

case the construction is not very satisfactory, though none the less

true. Here the easier plan is the trying by inspection to see if mpt-j_

be 900, and this will easily be seen to be the case.) Now, having

the angle mpt^, its tangent is next found by dividing qP by MP, then

from trigonometrical tables, mpt^^ and pt^ are found, and by substitut-

ing these values in equation (23) we get a linear equation with hj^ as

the only unknown quantity, and can at once solve for this, the solu-

tion giving the limiting value for the amplitude of the harmonic to

avoid secondary maxima in the corresponding flux cur^e.

Having considered the above two spec4il cases, let us pass to the

general case where is not necessarily either zero or 130^, By the

same reasoning as was applied in the discussion of figpires 3,9, and

10, we find that in this case similar relations hold,as follows:

Assume that:

e = A[sin,pt + hjn3in,(mpt Qj^^ (20)

TThe slope of the fundamental , where pt is equal tp(0j^ m P'^'l^

AP0M.(9in+ ^ ^ -gt ) , and the slope of the m^^ harmonic at the same
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point is Amphv^cos.mCj + P^l), or, since T is equal to the last

expression maybe written: -Amphj^^cos . (mpt^) , Now, on equating these

slopes with the sign of one changed, as donB in the similar case for

9ni = 0, in equation (24), we obtain:

cos,(9jjj ^ P'ti) = mhj^cos. (mpt-j^) • (26)

as one of the conditions, and since the ordinates of the fundamental

and the harmonic at this point are Asin«(9m ^ pt^) and

Ahj^8in.m(pt2 + -) respectively, upon equating with the sign of one

changed, putting tt in place of T, and simplifying, exactly as wais done

in the preceding cass, we obtain the other condition that:

sin. (021 + 2 ^ pti) = hjaSin.(mpti) (27)

hence, dividing the members of (27) by the corresponding members of

(26), we obtain the equation:

tan,(9j^ + 2 + pt^) = |tan.(rapti) (28)

This equation may obviously be plotted similarly to equation (25),

by use of the diagram shown in figure 11,, by putting (J
+ e^^) in the

place of the angle ^ there plotted. Due regard must of course bo paid

to the sign of the angle G^^, which may be either positive or negative

so that the resulting value may be greater or lass than ^.

Now let t^ be the value of t at the starting point of a cycle as

previously defined. Then, since the average value of the emf . whose

equation is equation (17), is the integral of edt from to to t© + T

divided by T, we have that:

^a " [sin.ptdt +2 ^^msin, (mpt + ejji)dt] -i-TT (29)
'^o

which becomes on performing the integration as iddicated,

= ^[cos.(pto) tI-5-cos.(mpto + 9^^)] ^30;

where j irdicates the sum of all terms of the sane general form as

the term following this symbol, antd is to be so understood wherever

used in this paper.





The value of to may be found, when only one harmonic is present,

from equation (17), by substituting zero for e and t^ for t and solv-

ing the resulting equation £ot Iq, It is possible to obtiin a liter-

al solution of this general equation, but a simpler plan is to plot

the equation, and thus solve it graphically, which may be done as

follows. The equation is:

sin.pto hjjjSin. (mpto %) ~ (31)

Draw a circle of radius OP equal to the unit of length, and another

circle concentric "Ciierewith, whose radius is OQ, where OP t OQ = hj^.

(See figure 12.) Now, using as the origin and OP as the initial

line, of a system of polar coordinates, lay off the angle POS =

Next, lay off the points R and R' such that the angle SOR is m times

the angle POR* . If R and R' have been so chosen that sin.POR* is

equal to -hjj^sin.POR, the angle POR* will be the desired angle, pto»

Draw the lines M and M*, perpendicular to OP from R and R* respect-

ively; then M is the sine of POS + SOR, (POS being here a nagative

angle, as shown by the order in which its sides are designated) and

M* is the sine of the angle POR*', these relations following at once

from the definition of a sine, since the radius of the circle is

unity by construction. Here is positive, and M is negative, hence

if hjjjM is numerically equal to M*, we would have M' + hj^^M = 0, or,

sin, POR' hjj^sin,POR = 0. Now, if we produce R'O to L, on the outer

circle, and dacaw thence a parallel to OP, and this line passes

through then R and R' are the desired points. If we draw the per-

pendiculars LV and L*V*, we obtain the two similar triangles, LVO

and L'V'O, hence LV is to L»V' as LO is to L'O, that is, scb OQ is to

OP, which by the construction is as 1 is to But VL is equal to

M, anxi V'L' is equal to -M", hence, since V'L* = h^^VL, by substitu-

tion, we obtain that -M» » hj^^M, that is, sin.POR' = -h^^sin.POR, and
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if W9 call SOR, (mpt 0^^^), and consequently, POE', pt, then in the

particular case where R and R* are so chosen that the line connect-

ing L. and R is parallel to OP, we have the equation:

hjQSin,(mpt 4- Q^) + sin,pt = (31')

hence, here t must equal t^, giving the same equation as equatioji

.

(31), showing that the diagram is a true representation of (31), and

may be used in the solution of that equation. The method employed is

to take a set of values to locate R and R* , and see whether the line

LR corresponding thereto is parallel to OP, anxi then changing the

positions of R and R*' as may be required to make this line parallel

or nearly so, and repeating this as often as may be desired to find

a sufficiently accurate value of ptQ, Usually two trials, if some

judgment is used in regard to the probable location of these points,

will suffice to get the value of ptg to within a few minutes, and

this is sufficiently accurate in consideration of the practical con-

ditions of the problem. The diagram shwn as figure 13 shows the

lines actually used in sblving the case where m = 3, ©3 « -67°, and

hg = •667, The line OP should be ten inches or more in length, to

insure accuracy and ease in solving.

Figure 12. Figure 13.
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The angle is first laid off, by its sine if less than 45°, and

by its cosine if greater, Now take R* so that POR' equals, say, one-

fourth of 93, This will be found to give too large a value for t,

hence we decrease POR', repeat the construction, and continue until

the desired degree of accuracy is attained. In this case the second

trial gives 14°50* as the value of ptQ, It will be seen that this is

close enough for most purposes, for if this were the true value, than

from tr.e[eciuation, we should have : -sin.l^OoO' equal to .667 times

the sine of (3«14°50« - 67°) or sin, (-22°30' ) . These sines are found

to be -,256 and •»,382 respectively, and ,667 times -,382 is -.255,

hence the agreement is to within ,4 of one percent in this case.

Obviously, also, it is not at all necessary in practice to draw all

the lines shown in figitre 12, most of these being introduced there

only for use in proving that the diagram is a true representation of

the equation, A little consideration will show in any particular

case just which lines are needed, and the construction can thus be

made very simple.

Having thus found pt^, we can at once find the value of the aver-

age emf,, E^, by substituting this value of ptQ in equation (30),

It will be observed that as varies from to *tt, the value of pt^

will vary also, from zero to its maximum, and back to zero, being

zero at both extremes, and a maximum somev/here between these. If

2A
is equal to zero, the average emf, is: E^^ = — (1 + '^), and if

is equal to ± tt , the average emf. is: Eg^ r -^(1 - and for inter-

mediate values of 9^^ tke value of the average eiiii. will also be in-

termediate these two extremes.

To get the effective value of the emf,, we take the general equa-

tion, (17), which expresses e in terms of the sum of a series of sine

functions, and square both members of that equation, thus:
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©2 = A*^[sin?pt + Ih^sin?(mpt -t- Qj^) + Slh^h^sin. (apt ^ e^)sin. (bpt-»-e^

(52)

This is the square of e, henco the mean square, will be the average

of the above value of e^, and this mean square ift found by integrat-

ing e*^dt from zero to rr , and dividing the result by n, the length of

the interval. That is,

whence we obtain:

S = y|-Vl * Z4 C34)

The above equations result because each of the terms of the form

h^sin,( X) dt gives upon integration between the limits, the value

"Thm, while all those consisting of the products of two sines will

cancel, and give zero as their integral,. The angle does not ap-

pear in equation (54) above, thus showing that the effective emf , is

independent of the phase relations of the various components of the

emf .

,

We have shown before that fB = ^ijJPi, that is, that the form fact-

or times the maxim\jm of the flux is a constant times the effective

emf,, hence this will enable us to derive the conditions that give

the best wave form when we have at our disposai a fundamental and

various harmomics of odd ordars. Let us take the case where we have

only one harmonic, and determine the best working conditions. It has

been shown previously that B is proportional to the average emf,,

hence it follows that the smaller we can make the average emf., with-

out introducing secondary flijix maxima, and without decreasing the

effective emf,, the smaller will be tht? resultant value of B, and

consequently of the hysteresis lossss. We have also shown that there

are certain limiting values for h^ depending upon the values of m
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and of Bjj,. Now consider the case where 0^ is equal to I8O0, and h^^^

is equal to its limiting value for that casep namely, ^. Here E^^ is

P A ^T~l 1
equal to -^(1 - which becomes, upon the substitution of - for

The effective emf, is: E

m
* Vl hg , and this

becomes on substitution, E - ^^Vm^ + 1, and hence the form factor

which is the quotient nf these two values, is:

TT mVi?" + 1

- 1^a

The constant coefficient of the last member of this equation is the

well known value, 1,1107, which is the form factor of a pure sine

curve, and consequently the remaining factor of the last member re-

presents the ratio of the form factor of the given emf, to that in

the case of a sine wave, and hence its reciprocal is the factor by

which we must multiply E, and consequently E^^, to reduce the curve

to one whose amplitudes are such that the effective emf. is the same

as that of the sine wave. Hence, if we call the maximiJim of the fliox

in the sine wave case B^, and the maximum in the other case B, these,

will be to each other)in the same ratio as the two values of Ea, thaJ

is, the above reciprocal. Hence we have changed B in the ratio giver^

(m^ - 1)namely, ' "b . The numerator of the ratio is always less than m^
mym^ 1

while the denominator is on the contrary, always greater than m^, but

as m increases, it is evident that the limiting ratio of the two very

rapidly/ approaches unity. This shows that for the lower harmonics

the change in B will be appreciable, but that it becomes negligible

for the higher harmonics, and the ratio also shows that in all cases

the change in B is a decrease. (That is, where 9^ is 180^ and there

are no secondary maxima in the flux.) Assuming, now that the hys-

teresis loss varies as the 1,6 power of the value of B, and calcul-

ating the values of the ratio of B to Bq from the expression given

above, then the 1,6 power of that ratio, which thus represents the
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corresponding hysteresis loss ratio, and tabulating these, we obtain

the follwing table:

Table #!.( « I8OO
)

m 'p decrease
in loRH.

3 .844 .761 25.9

5 .942 ,.912 8.8

7 .970 .955 4,5

9 .982 ,970 3,0

11 .988 .982 1.8

13' .993 .837 1.3

15 .996 .990 1.0

From the above table we see, first, that if m be greater than 5,

the decrease in the hysteresis loss is too small to offset the dis-

advantages incident to having harmonics in the emf . wave where the

circuits contain any inductive or capacity loads, and where resonance

is likely to result, so as to greatly augment one of the harmonics

and thus abnormally distort the wave; and second, that if the tfeird

or the fifth harmonic be introduced, at Qjj^
= 180°, and hi^ equal to

one-third or one-fifth, respectively, the hysteresis loss may be

reduced considerably. It must be remembered however that the eddy

current loss remains the same, hence the actml percent decrease in

the iron loss is not as great as would appear at first sight from

the above table. Suppose, for example, that in the case of a sine

wave the two kinds of loss were equal; then, taking the first set of

values in the table, where the hyeteresis is decreased about 245'o, the

eddy current loss would still remain the same as before, hence here

the actual decrease in the total iron loss is only one-half of 24^o,
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that is, IZfo,

Passing now to the case where is equal to zero, we have again,

pt^ = 0, hence the value of Eg^ is, from equation (30), ^(l •• ^),
A 2 ^

the value of E being .j^(l + hjj^)f, as before.. Here h^^ cannot be

readily expressed as a simple function of m, hence we have no gener^

al expression as before, and must consider each case separately, for

the harmonics, say, from the third to the fifteenth, assuming that in

each case we have the maximum permissible value of the ratio h^, and

thoste data are tabulated in the following table.:

Table #3. ( = 0° )

m ^m ^o
Decrease in.

Hyst. ill 5^.

3 1.000 1.333 1.414 .943 .911 8.9

5 ..800 1.160 1.380 .907 .852 14,8

7 ,.613 1.088 1.175 • 925 • 883. 11.7

9 .490 1.055 1.112 .950 • 930 8..0

11 .407 1.037 1.031 .959 .935 6.5

13 .347 1.027 1.058 • 973 »955 4..5

15 ..303 1.030 1.045 .976 .963 3*.8

In thou-©' cases the emf .. waves are all such that there are second-

ary zero values intermediate the "normal" zero points, hence in gea-

eral, these curves where is zero are not desirable, since the de-

crease in the hysteresis loss is not of sufficient importance to

offset the abnormality of the wave form, and since^ we can obtain a

more regular wave by using the data given in table #1, where 9^^ is

180°. Figures 14, 15, and 16, below, show the general shape of the

first three cases given in the above table, ( #2 ) and serve to ill-

ustrate the secondary zero points referred to above:





Figure 16.

e = A(8in,pt + .SlSain.Tpt)
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Having shown that the best results may usually be derived by the

use of the third harmonic, we shall therefore plot a few curves show-

ing the waves corresponding to the limiting values of h^^ for the

third harmonic when Qj^ varies from zero to 180°, and finding the prop

er value^ of A to use in each case so that the resulting scalue of E

is the same in every one* Since the value of E is proportional to

the expression (1 + h^)'^, than if we make A eq^ual to the reciprocal

of this, obviously the value of E will be the same in every case*

Then, for a pure sine wave, that is, h^ = 0, we see that A will be

unity from the above condition, while in all other cases the value of

A will be ^ v^ '

i • Then in the sine wave the value of E will
Cl + h£)^

be, from eqoiation (34), A divided by the square root of 2, which is

^/l,414> 0.707, and this is also the value of E in all the cases,

since we have so chosen A in each case as to make E thr same*

The value of E^^, however, will vary for the various cases., and is

found for each case from the general equation (30) ». For the sine

2A
wave Eg^ will be or 0*636, thy ratio of B to this being the nor-

mal form factor, 1*11 as found previously for the sine wave. We

shall plot the curves with 300 intervals in the values' of Qm, and the

following table give« the preliminary data and also some values ob-

tained from the curves, and shows the value of the average emf * j the

value of pto J the ratio of the average emf to that of the pure sine

curve; and the ratio of the hysteresis loss to that of a sine curve,

this being the 1.6 power of the ratio of the average emf. to the sine

wave average emf*, 0.636, since B is proportional to E^^, Figures 17'

to 24 inclusive show the curves plotted from the data in table #3,

these being all drawn to the same scale, so that they show the rel-

ative shape and size of the various waves correctly and thus permit

of an accurate representation of the results of various combinations.





Table #3. ( Third harmonic, Qjr^ varied*)

P\ir9
sins no XOU'-' 1 pr>o

(n)

A 1.000 .707 .714 .733 .760 .808 .86? ..950

Ea .636 .600 .601 ,593 .572 .555 .568 .537

5a/
'.636 1.000 .943 .944 ,.930 • 900 .873 »893 ..845

( It « ) 1 ,

6

1.000 .911 .913 .890 .842 .807 .830 .761

OO 0° --7. 5° »150 -220 -270 -300 00
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COITCLUSIOITS.
From the prQceding curves abd discussion, we may derive the follow-

ing conclusions: While there are some oases where it is essential

that the emf, wave be as nearly as possible a pure sine wave, yet in

many cases it will be found desirable to introduce a certain small

amount of the third or the fifth harmonic into the wave, preferably

at the phase angle 180^ with the fundamental, so as to get the great-

est possible decrease, in the hysteresis loss, and at the same time

produce the least possible distortion consistent therewith,. When the

amplitude of the harmonic is within the limits stated in the discuss-

ion, it has been shown that the hysteresis loss is proportional to tie

1.6 power of the^ reciprocal gf the form factor of the wave, the eff-

ective emf • being assumed the sane, hence if we can, by any means

whatever, obtain the wave form of a given emf. it is necessary only

to determine the form factor in orddr to find the relative loss.

The curves shown on the three preceding pages give the maximum

values of the emfs. , since these may bo of interest in the case of

extremely high voltages, where it may be desirable to keep the njax-

imum as low as possible.

In three phase circuits it is necessary to avoid the use of the

third harmonic, since it would in the case of a Y connected circuit,

not appear in the line voltage, while in the delta connected armatu»e|

the phase relations are such that a large short circuit circulating I

current may result in the armature, thus wasting power. Here the

fifth harmonic might be used advantageously*

The foregoing discussion it is thought, is sufficient to cover the

essential features of the problem, and to enable the designer of

alternating current apparatus to use the formulas advantageously.








