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Product interval automata
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Abstract. We identify a subclass of timed automata called product interval
automata and develop its theory. These automata consist of a network of timed
agents with the key restriction being that there is just one clock for each agent and
the way the clocks are read and reset is determined by the distribution of shared
actions across the agents. We show that the resulting automata admit a clean theory
in both logical and language theoretic terms. We also show that product interval
automata are expressive enough to model the timed behaviour of asynchronous
digital circuits.
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1. Introduction

Timed automata as formulated by Alur & Dill (1994) have become a canonical model for
describing timed behaviours. It is well-known that these automata are very powerful in
language-theoretic terms. Their languages are closed under union and intersection but not
under complementation. Further, their language inclusion problem is undecidable and hence
cannot be reduced to the emptiness problem which is decidable. Consequently, the verifica-
tion problem which can be often phrased as whetherL(APr ) ⊆ L(Aspec) cannot be reduced
to whetherL(APr ∩ A¬spec) = ∅. HereAPr is the timed automaton modelling a real time
programPr andAspec is the automaton capturing the specification so thatA¬spec is the com-
plement ofAspec. To get around this, one must use deterministic timed automata for specifi-
cations (since they can be easily complemented) or one must work with a restricted class of
timed automata that possess the desired closure properties.

Here we follow the second route and propose a subclass of timed automata called product
interval automata (PI automata). Such an automaton consists of a network of timed agents
‖K

i=1 Ai where eachAi operates over an alphabet6i of events. Further, there is asingle
clockci associated with each agenti. The agents communicate by synchronising on the timed
executions of common events. Supposea is an event in which the agents{1, 3, 4} participate.
Then the timing constraint governing eacha-execution only involves the clocks{c1, c3, c4}.
Moreover, the set of clocks that is reset at the end of eacha-execution is{c1, c3, c4}. Thus
the distribution6̃ = {6i}Ki=1 of events over the agents canonically determines the usage of
clocks; so much so, we can avoid mentioning the clocks altogether once we fix6̃.

This method of structuring timed automata has a number of advantages. In particular, one
can provide naturally decomposed and succinct presentations of timed automata with large
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(control) state spaces. The technique of presenting a global timed automaton as a product
of component timed automata has been used by many authors starting from Alur & Dill
(1994). What is new here, as explained above, is that our decomposed presentation places a
corresponding restriction on the manner in which clocks are read and reset. A related class
of hybrid systems is mentioned in passing by Henzingeret al (1995) the timed versions of
which boil down to PI automata in which there isno communication between the agents.
Yet another piece of related work is by Yi & Jonsson (1994) in the framework of timed CSP.
Their model can be easily represented as PI automata. Their main result, in our terms, is
that the language inclusion problem for PI automata is decidable. But in their setting, timing
constraints are stated in terms of asingleinteger value whereas we use, as is usual,intervals
with rational bounds. We establish a variety of results concerning PI automata which subsume
the decidability of the language inclusion problem.

Structurally the underlying (symbolic) automata can of course be viewed as labelled Petri
nets and hence a PI automaton can also be interpreted as a kind of timed Petri net. The classical
timed Petri net model (Merlin & Faber 1976) however uses implicit clocks which record the
time since a transition was enabled. For modelling PI automata, one needs to attach clocks to
places or – due to the fact we are dealing with 1-safe Petri nets – attach clocks to the individual
tokens. The semantics we attach to our automata is strictly along the lines of the literature
on timed automata whereas the semantics one traditionally uses for timed Petri nets – with
earliest and latest firing times for the transitions – is somewhat different.

A final aspect of PI automata is that due to the disciplined use of clocks across components
partial order reduction techniques that are under development (Bengtssonet al 1998; Minea
1999) can be readily applied to our automata. See D’Souza (2000a) for further discussion on
this.

In pragmatic terms, PI automata – despite their severely restricted usage of clocks – still
seem to have a good deal of modelling power. To bring this out, we consider the networks of
timed automata that communicate through shared variables used by Maler & Pnueli (1995)
to model and analyse the timed behaviour of asynchronous circuits. We show here that PI
automata suffice for implementing this very useful modelling technique. Consequently the
logical framework accompanying PI automata (detailed below) can be applied to the study
of asynchronous circuits. We admit however that much more work needs to be done on the
experimental front to test the practical applicability of the models and techniques presented
here.

From a theoretical standpoint, PI automata are strictly less expressive than event clock
automata due to Aluret al (1994) and their state-based version (Raskin & Schobbens 1997)
which in turn are strictly less powerful than general timed automata. As a result, the logics
we develop here will also be strictly less expressive than the corresponding logics presented
by Henzingeret al (1998) for a generalisation of event clock automata called recursive event
clock automata. Nevertheless we feel that PI automata are of independent interest due to the
reasons sketched earlier. They also admit a smoother logical characterisation. In particular,
the monadic second order logic presented by Henzingeret al (1998) permits only restricted
(second-order) quantification. This is not the case for the logical characterisation we obtain.
(For basic information about timed automata and their logics see Alur & Henzinger (1992)
and Henzinger (1998) and references therein.)

In the next section we begin with some preliminary notions. In § 3 we examine interval
automata, which are essentially the components of PI automata. The properties of these
automata will play an important role in our study of PI automata in the subsequent section. In
§ 5 we first show that a monadic second order logic denoted TMSO⊗ captures the timed regular
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languages recognised by PI automata. We then formulate a linear time temporal logic denoted
TLTL⊗ and provide automata-theoretic solutions to the satisfiability and model checking
problems for TLTL⊗ in terms of PI automata. Section 8 contains a detailed description of
how we can model asynchronous circuits using PI automata, as well as some properties that
we can specify and verify in our logical framework.

It turns out that all our ideas can be extended smoothly to a larger setting in which the
underlying “symbolic” automata are asynchronous Büchi automata (Gastin & Petit 1992).
The resulting timed automata are calleddistributed interval automata. We also consider
the natural timed extension of “cellular” asynchronous automata, calledcellular interval
automata. These automata can be studied with the help of powerful results available in the
theory of Mazurkiewicz traces (Diekert & Rozenberg 1995). Due to space limitations we do
not present these extensions here. Details can be found in (D’Souza & Thiagarajan 1998;
D’Souza 2000a).

2. Preliminaries

We begin with some useful notions about timed words and timed automata.
As usual, for an alphabetA we will useA∗ andAω to denote the set of finite and infinite

words overA respectively. We will useA∞ to denote the setA∗ ∪ Aω.
It will be necessary for us to deal with both finite and infinite words, and in this regard it is

convenient to use prefixes to play the role of positions in a word. For a wordσ in A∞, prf (σ )

will be used to denote the set of finite prefixes ofσ . The strict and non-strict prefix relations
on finite words will be denoted by≺ and� respectively. We will use|σ | to denote the length
of a wordσ . The empty word will be denoted byε.

It will be helpful to recall the definition of B̈uchi automata. The reader is referred to Thomas
(1990) for a comprehensive treatment of this subject.

DEFINITION 1

Let A be a finite alphabet. A (mixed) B̈uchi automaton over the alphabetA is a structure
A = (Q, −→, Qin , F, G) where

• Q is a finite set of states,
• −→⊆ Q × A × Q is the transition relation,
• Qin ⊆ Q is a set of initial states, and
• F, G ⊆ Q are, respectively, the finitary and infinitary acceptance state sets.

Let σ ∈ A∞. A run of A overσ is a mapρ : prf (σ ) → Q which satisfies:

• ρ(ε) ∈ Qin .
• ρ(τ)

a−→ ρ(τa) for every τa ∈ prf (σ ). (q
a−→ q ′ is alternate notation for

(q, a, q ′) ∈−→).

We sayρ is anacceptingrun onσ iff either

• σ is finite andρ(σ) ∈ F , or,
• σ is infinite andρ(τ) ∈ G for infinitely manyτ ∈ prf (σ ).

The set of words accepted byA, denoted (for reasons that will soon be clear)Lsym(A), is
defined to be the set of words inA∞ on whichA has an accepting run. Following established
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convention, we term a subsetL of A∞ regular if L = Lsym(A) for some B̈uchi automaton
A overA.

The notion of atimed wordis central to this paper. In what follows we will useR>0 andR≥0

to denote the set of positive and non-negative reals respectively. The non-negative rationals
will be denoted byQ≥0.

DEFINITION 2

Let 6 be a finite alphabet of actions. Atimed wordover6 is a memberσ of (6 × R>0)∞
such that

(1) for all prefixesτ(a, t)(b, t ′) of σ we havet < t ′ (strict monotonicity).
(2) if σ is infinite, then for eacht ∈ R>0 there exists a prefixτ(a, t ′) of σ such thatt ′ > t

(progressiveness).

We useT6∗ andT6ω to denote the set of finite and infinite timed words over6, respectively,
and setT6∞ = T6∗ ∪ T6ω.

For a finite timed wordτ we will usetime(τ ) to denote the time of occurrence of the last
action inτ . Formally,time(ε) = 0, andtime(τ (a, t)) = t . Analogously, for a non-empty
finite timed wordτ we will useaction(τ ) to denote the last action inτ .

In what follows, we will use intervals with rational bounds to specify timing constraints
(and use∞ as the upper bound to capture unbounded intervals). These intervals will be of the
form (l, r), [l, r), (l, r], or [l, r], wherel, r ∈ Q≥0 ∪ {∞} with l ≤ r. For an interval of the
form (l, r] or [l, r] we requirer 6= ∞. Further, to avoid empty intervals, unless an interval
is of the form [l, r], we requirel < r. An interval will denote a non-empty, convex subset of
reals in the obvious way. For example the interval [1, ∞) denotes the set{t ∈ R | 1 ≤ t}. The
set of all intervals will be denoted byIR.

DEFINITION 3

A (mixed) timed Büchi automaton, TBA for short, over an alphabet6 is a structureA =
(Q, −→, C, Qin , F, G) where:

• Q is a finite set of states,
• Qin ⊆ Q is a set of initial states,
• F, G ⊆ Q are sets of finitary and infinitary accepting states,
• C is a finite set of clocks, and
• −→, the transitions ofA, is a finite subset ofQ × 6 × 2C × GC × Q whereGC is the

set of clock constraints (guards) which are conjunctions of atomic guards of the form
(x ∈ I ), wherex ranges overC andI ranges overIR.

In what follows, a transition(q, a, X, g, q ′) will be written asq
a, g−→
X

q ′. The manner in

which the timed automaton accepts a timed word is defined in terms of clock valuations.
A C-valuation is a mapv : C → R≥0. WhereC is clear from the context we will say

valuation instead ofC-valuation. We letvalC stand for the set ofC-valuations. Letv be a
valuation andt ∈ R≥0. Thenv + t is the valuation given by:

(v + t)(x) = v(x) + t for everyx ∈ C.

Supposev is a valuation,t ∈ R≥0 andX ⊆ C. Then the valuationv[t/X] is given by:

v[t/X](y) =
{

t, if y ∈ X.

v(y), otherwise.
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Finally, 0 is the null-valuation given by:

0(x) = 0, for everyx ∈ C.

Next, the notion of a valuationv satisfying a clock constraintg is denoted byv |= g and
is defined via:

• v |= x ∈ I , iff v(x) ∈ I

• v |= ϕ ∧ ϕ′, iff v |= ϕ andv |= ϕ′.

Let σ ∈ T6∞. Then a run ofA overσ is a pair of maps(ρ, ν) whereρ : prf (σ ) → Q

andν : prf (σ ) → valC are such that the following conditions are satisfied:

• ρ(ε) ∈ Qin andν(ε) = 0
• For everyτ(a, t) ∈ prf (σ ), there exists a transitionρ(τ)

a, g−→
X

ρ(τ(a, t)) such that

ν(τ) + t |= g andν(τ(a, t)) = (ν(τ ) + t)[0/X].

The run(ρ, ν) is an accepting run iff either

(1) σ is finite andρ(σ) ∈ F , or,
(2) σ is infinite andρ(τ) ∈ G for infinitely many prefixesτ of σ .

L(A) ⊆ T6∞ the language of timed words accepted byA is then given by:

L(A) = {σ | ∃ an accepting run ofA overσ }.
For a timed wordσ ∈ T6∞ let untime(σ ) be the word̂σ ∈ 6∞ obtained by projecting

away the time-stamps fromσ . For a timed languageL ⊆ T6∞, untime(L) ⊆ 6∞ will
denote the set{untime(σ ) | σ ∈ L}.

Alur & Dill (1994) showed the following result:

Theorem 1. Given a timed automatonA over an alphabet6 one can effectively construct a
Büchi automatonA′ over6 such thatL(A′) = untime(L(A)).

Using the above construction, we can check if the timed language accepted by a TBAA is
empty in time

O(|Q| + |E|) · 2O(|C|) · |C|! ·
∏
x∈C

(cx + 1),

whereQ andE are the state and edge sets ofA respectively,C is the set of clocks used inA,
and for eachx ∈ C, cx is the largest normalised interval bound appearing inA in a guard of
the form(x ∈ I ).

Using standard convention we let|A| denote the size of the representation ofA, using
binary encoding for the numeric constants. Then the above expression can be seen to bounded
by 2(|A|2).

3. Interval automata

Product interval automata are essentially a network of very simple timed automata called
interval automata. It is convenient to first examine these automata and establish some results
about them which help us to study product interval automata.
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Interval automata are timed automata, with a single clock which must be reset along every
transition. Effectively, these automata can only measure the time elapsed since the last action
performed.

The notion of aninterval alphabetwill be useful in representing these timed languages
symbolically. Let6 be a finite alphabet. Then aninterval alphabetbased on6 is a finite
subset of6 × IR.

Given an interval alphabet0 over 6 and a word̂σ ∈ 0∞, σ̂ naturally induces a set of
timed words over6 which we denotetw (̂σ ). It is defined as follows. Letσ ∈ T6∞. Then
σ ∈ tw (̂σ ) iff

(1) |σ | = |̂σ |.
(2) For each prefixτ(a, t) of σ , and for each prefix̂τ(b, I ) of σ̂ such that|τ | = |̂τ |, we have

a = b andt − time(τ ) ∈ I .

ForL ⊆ 0∞ we set

tw(L) =
⋃
σ̂∈L

tw (̂σ ).

DEFINITION 4

An interval automatonover6 is simply a B̈uchi automaton over an interval alphabet based
on6.

Thus an interval automatonA over6 has edges of the formq
(a,I )−→ q ′, wherea is a6-action

andI is an interval. Viewed as a B̈uchi automaton over an interval alphabet0, A accepts
the symbolic languageLsym(A) ⊆ 0∞. What is more interesting to us however, is the timed
language accepted byA, denotedL(A), which we define as

L(A) = tw(Lsym(A)).

We will say a timed languageL ⊆ T6∞ is a regular interval languageif L = L(A) for
some interval automatonA over6.

Example1. Figure 1 shows an interval automatonA over the alphabet6 = {a, b}. Here
we haveA = ({q0, q1}, −→, {q0}, {q1}, {q1}). In the figure we use the convention that the
initial states are indicated with incoming double arrows, while final states are indicated by
two concentric circles. The automaton accepts all timed wordsσ ∈ T6∞ which begin with
a (possibly empty) sequence ofa actions, unit times apart, followed by ab action at some
time between 1 and 2 units from the last action, and finally a sequence ofa’s again, without
any time restrictions. 2

We can also define the notion of a run of an interval automaton directly over a timed word.
Let A = (Q, −→, Qin , F, G) be an interval automaton over6, and letσ ∈ T6∞. Then a
run ofA onσ is mapρ : prf (σ ) → Q such that

q0 q1
H⇒

(a, [1, 1]) (a, (0, ∞))

(b, [1, 2])
Figure 1. An interval automaton over{a, b}.
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(1) ρ(ε) ∈ Qin ,

(2) for eachτ(a, t) ∈ prf (σ ), there existsI , such thatρ(τ)
(a,I )−→ ρ(τ(a, t)) and (t −

time(τ )) ∈ I .

As usual, the runρ will be termed accepting if eitherσ is finite andρ(σ) ∈ F , or, σ is
infinite andρ(τ) ∈ G for infinitely manyτ ∈ prf (σ ).

It is not difficult to see that this is an equivalent way of defining the timed language ofA
– in the sense thatσ ∈ tw(Lsym(A)) iff there exists an accepting run ofA onσ , in the sense
defined above.

We now show that the class of regular interval languages is closed under boolean operations.
It is easy to see that this class is closed under union. For closure under complementation
the notion of aproper interval set proves useful. This notion also plays an important role in
subsequent sections.

We say a set of intervalsI ⊆ IR is proper if it forms a finite partition ofR≥0. Thus, ifI
is a proper interval set, then for eacht ∈ R≥0 there exists anI ∈ I such thatt ∈ I , and for
eachI, I ′ ∈ I, I ∩ I ′ 6= ∅ impliesI = I ′. An interval alphabet0 is termed proper if for each
a ∈ 6 the set0a = {I | (a, I ) ∈ 0} is a proper interval set. We say an interval setI covers
an interval setI ′ if every interval inI ′ is the union of some subset of intervals inI. Finally,
an interval alphabet0 covers the interval alphabet0′ if 0a covers0′

a for eacha ∈ 6.
Each interval alphabet0 induces, in a canonical way, a proper interval alphabet, denoted

prop(0), with the property that it covers0. It is given by

prop(0) = {(a, I ) | a ∈ 6, I ∈ prop(0a)}
where for eacha, the setprop(0a) is obtained from0a by the procedure outlined below.

LetI be a non-empty finite set of intervals (if it is empty, we simply setprop(I) = {[0, ∞)}).
Let V = {0, v1, v2, . . . , vn, ∞} where for 1 ≤ i ≤ n, vi ∈ V iff there existsI ∈ I
with vi as the left or right end ofI . Without loss of generality, we assume thatn ≥ 1 and
0 < v1 < v2 · · · < vn 6= ∞. Now defineprop(I) via:

prop(I) = {[vj , vj ], (vj , vj+1) | 0 ≤ j ≤ n}
where we setv0 = 0 andvn+1 = ∞. It is easy to verify thatprop(I) is a proper interval set
which coversI.

The following is an important property of proper interval alphabets.

Lemma1. Let 0 be a proper interval alphabet based on6. Then for eachσ ∈ T6∞ there
exists a unique word̂σ ∈ 0∞ such thatσ ∈ tw (̂σ ).

Proof. Let σ ∈ T6∞. Since0 is proper we know that for eacha ∈ 6 andt ∈ R>0 there
exists a uniqueI ∈ 0a such thatt ∈ I . Consider the word̂σ ∈ 0∞ given by its set of prefixes
which we define as follows. For each prefixτ of σ we define a corresponding prefix̂τ of σ̂ .
The prefix corresponding toε is ε itself. The prefix corresponding to the non-empty prefix
τ(a, t) of σ is τ̂ (a, I ) whereI is the unique interval in0a such that(t − time(τ )) ∈ I . It is
easy to verify thatσ ∈ tw (̂σ ).

For uniqueness of̂σ supposeσ ∈ tw (̂σ1) andσ ∈ tw (̂σ2) for someσ̂1, σ̂2 ∈ 0∞. If
σ̂1 6= σ̂2 then there must exist prefixeŝτ1(a, I ) of σ̂1 andτ̂2(a, I ′) of σ̂2, such that|̂τ1| = |̂τ2|
andI 6= I ′. Let τ(a, t) be a prefix ofσ such that|τ | = |̂τ1|. Then we know(t − time(τ ))

belongs to bothI andI ′. Since0a is proper, this would meanI = I ′ which contradicts our
assumption. Thus we must haveσ̂1 = σ̂2. 2
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Using properties of proper alphabets we can now show closure under complementation.
Let L be a regular interval language over6. It is not difficult to see that there exists a proper
interval alphabet0 based on6 and a regular subset̂L of 0∞ such thatL = tw(L̂). We now
claim thatT6∞ − L = tw(0∞ − L̂). We can prove this easily using lemma 1.

Since regular languages are closed under complement, we know that0∞ − L̂ is regular,
and henceT6∞ − L is a regular interval language. We now have:

Theorem 2. The class of regular interval languages over an alphabet6 is closed under the
boolean operations of union, intersection and complementation. 2

Next we introduce a monadic second-order logic interpreted over timed words, which
characterises the class of regular interval languages. This logic is called TMSO(6) and is
parameterised by the alphabet6.

Here and in the logics to follow, we assume a supply of individual variablesx, y, . . . , and
set-variablesX, Y, . . . . These variables range over prefixes (respectively sets of prefixes) of
the timed word in question. We make use of the predicatesQa(x) (one for eacha ∈ 6) and
1(x, I ), wherex is an individual variable andI is an element ofIR. The syntax of TMSO(6)

is given by:

ϕ ::= (x ∈ X) | (x < y) | Qa(x) | 1(x, I ) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ.

A structure for a formula of the logic is a pair(σ, I) whereσ ∈ T6∞ andI is an inter-
pretation which assigns to each individual variable a non-empty prefix ofσ , and to each set
variable a set of non-empty prefixes ofσ . We depart slightly from classical monadic logics by
using prefixes instead of natural numbers to play the role of positions in a word. Once again,
this is more convenient for us given that we are dealing with both finite and infinite words.
Correspondingly,< will be interpreted as the the strict prefix relation≺ on finite words.

The satisfaction relationσ |=I ϕ for atomic formulasϕ is given as follows:

σ |=I (x ∈ X), iff I(x) ∈ I(X),

σ |=I (x < y), iff I(x) ≺ I(y),

σ |=I Qa(x), iff action(I(x)) = a,

σ |=I 1(x, I ), iff I(x) is of the formτ(a, t) and(t − time(τ )) ∈ I.

The operators¬, ∨, and the existential quantifiers∃x and∃X are interpreted in the usual
manner: LetI be an interpretation for variables with respect toσ . Let τ be a prefix ofσ . We
use the notationI[τ/x] to denote the interpretation which mapsx to τ and agrees withI on all
other individual and set variables. Similarly, for a set of prefixesS of σ , the notationI[S/X]
denotes the interpretation which sendsX to S, and agrees withI on all other variables.

σ |=I ¬ϕ, iff σ 6|=I ϕ,

σ |=I (ϕ ∨ ϕ′), iff σ |=I ϕ or σ |=I ϕ′,
σ |=I ∃xϕ, iff there existsτ � σ such thatσ |=I[τ/x] ϕ,

σ |=I ∃Xϕ, iff there existsS ⊆ prf (σ ) such thatσ |=I[S/X] ϕ.

Given a sentenceϕ in TMSO(6) we defineL(ϕ) = {σ ∈ T6∞ | σ |= ϕ}.

Example2. Let6 = {a, b}. Then the following TMSO(6)-sentence describes the language
accepted by the automatonA in example 1.
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ϕ1 = ∃x(Qb(x) ∧ 1(x, [1, 2]) ∧
∀y((y < x) ⇒ (Qa(y) ∧ 1(y, [1, 1]))) ∧
∀y((x < y) ⇒ Qa(y))). 2

Theorem 3. Let L ⊆ T6∞. ThenL is a regular interval language iffL = L(ϕ) for some
sentenceϕ in TMSO(6).

To prove this theorem, we will use Büchi’s monadic second-order logic characterisation of
regular languages. We recall that for an alphabetA, the syntax of B̈uchi’s monadic second
order logic (denoted here by MSO(A)) is:

ϕ ::= (x ∈ X) | (x < y) | Qa(x) | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ.

A structure for this logic is a pair of the form(σ, I) whereσ ∈ A∞ andI assigns to individual
and set variables, non-empty prefixes and sets of non-empty prefixes ofσ respectively. The
semantics of the logic is given in a similar manner to that of TMSO(6). In particular, the
atomic formulaQa(x) – herea is required to be inA – is interpreted as follows:

σ |=I Qa(x) iff I(x) = τa for someτ � σ.

As usual, for a sentenceϕ in MSO(A) we setL(ϕ) = {σ ∈ A∞ | σ |= ϕ}. Büchi’s result
states that a languageL ⊆ A∞ is accepted by a B̈uchi automaton over the alphabetA iff
L = L(ϕ) for some sentenceϕ in MSO(A) (Büchi 1960; Thomas 1990).

Now, given a formulaϕ ∈ TMSO(6) we show how to translate it to a formulat-s(ϕ) ∈
MSO(0), for a suitably defined interval alphabet0. The translation will preserve – in a sense
to be made precise – the timed models ofϕ. (The namet-s is the acronym for “timed-to-
symbolic”.) Let0 be any proper interval alphabet over6 such that for eacha ∈ 6, 0a covers

voc(ϕ) = {I | ϕ has a subformula of the form1(x, I )}.
Note that6 × prop(voc(ϕ)) is at least one such0. Thent-s(ϕ) (w.r.t. 0) is obtained fromϕ

by replacing sub-formulas of the formQa(x) by the formula∨
(b,I )∈0, b=a

Q(b,I)(x),

and sub-formulas of the form1(x, I ) by the formula∨
(a,I ′)∈0, I ′⊆I

Q(a,I ′)(x).

Lemma2. Let ϕ ∈ TMSO(6) and let0 be a proper interval alphabet based on6 with the
property that for eacha ∈ 6, 0a coversvoc(ϕ). Let σ̂ ∈ 0∞ andσ ∈ T6∞ be such that
σ ∈ tw (̂σ ). Suppose further thatI is an interpretation for variables with respect toσ , and̂I

is the corresponding interpretation for variables w.r.t.σ̂ , given bŷI(x) = τ̂ whereτ̂ � σ̂ is
such that|̂τ | = |I(x)|, and̂I(X) = {̂I(x) | x ∈ X}. Then

(1) σ |=I ϕ iff σ̂ |=̂I t-s(ϕ).
(2) If ϕ is a sentence, thenL(ϕ) = tw(L(t-s(ϕ)).
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Proof. (1) We prove the statement by induction on the structure ofϕ. The interesting cases
areϕ = Qa(x) andϕ = 1(x, I ).

Caseϕ = Qa(x): We knowσ |=I Qa(x) iff action(I(x)) = a. But sinceσ ∈ tw (̂σ ), we
know that this holds iff̂I(x) = τ̂ (a, I ) for somêτ andI such that(a, I ) ∈ 0. This in turn
holds iff σ̂ |=̂I

∨
(b,I )∈0, b=a Q(b,I)(x).

Caseϕ = 1(x, I ): Let σ |=I 1(x, I ). Then we know thatI(x) = τ(a, t) for someτ , a,
t such that(t − time(τ )) ∈ I . Further, sinceσ ∈ tw (̂σ ), we know that̂I(x) = τ̂ (a, I ′) for
someI ′ such that(a, I ′) ∈ 0, and(t − time(τ )) ∈ I ′. Using the fact that0 is proper and
coversvoc(ϕ), and(t − time(τ )) ∈ I ∩ I ′, it must be the case thatI ′ ⊆ I . Hence

σ̂ |=̂I

∨
(a,I ′)∈0, I ′⊆I

Q(a,I ′)(x).

Conversely, let

σ̂ |=̂I

∨
(a,I ′)∈0, I ′⊆I

Q(a,I ′)(x).

Then̂I(x) = τ̂ (a, I ′) for some(a, I ′) ∈ 0 with I ′ ⊆ I . Sinceσ ∈ tw (̂σ ) it must be the case
thatI(x) = τ(a, t) such that(t − time(τ )) ∈ I ′. Thus(t − time(τ )) ∈ I , and it follows that
σ |=I 1(x, I ).

(2) This follows easily from (1) above. 2

We now show how we can associate a formulas-t(ϕ̂) ∈ TMSO(6) with a formulaϕ̂ ∈
MSO(0), such that the translated formula preserves timed models. The formulas-t(ϕ̂) is
obtained by replacing atomic sub-formulas inϕ̂ of the formQ(a,I)(x) by the formula

Qa(x) ∧ 1(x, I ).

Using arguments along the lines of the previous lemma, one can show that:

Lemma3. Let0 be a proper interval alphabet based on6 and letϕ̂ ∈ MSO(0). Letσ̂ ∈ 0∞
andσ ∈ T6∞ such thatσ ∈ tw (̂σ ). Suppose further that̂I is an interpretation for variables
w.r.t. σ̂ and letI be the corresponding interpretation w.r.t.σ . Then

(1) σ |=I s-t(ϕ̂) iff σ̂ |=̂I ϕ̂.
(2) If ϕ is a sentence, then we haveL(s-t(ϕ̂)) = tw(L(ϕ̂)). 2

We can now prove theorem 3. LetL be a regular interval language over6. We observe
again that there exists a proper interval alphabet0 based on6 and a regular subset̂L of 0∞
such thatL = tw(L̂). Büchi’s theorem tells us that there exists an MSO(0)-sentencêϕ such
thatL(ϕ̂) = L̂. HenceL = tw(L(ϕ̂)). Thus, by lemma 3, we have a TMSO(6)-sentence,
namelyϕ = s-t(ϕ̂), such thatL = L(ϕ).

Conversely, letϕ be a TMSO(6)-sentence. Then, using lemma 2, we know that there exists a
proper interval alphabet0 and a formulâϕ = t-s(ϕ) in MSO(0), such thatL(ϕ) = tw(L(ϕ̂)).
Using Büchi’s theorem once more, we are assured of an interval automatonA over0 such
thatLsym(A) = L(ϕ̂). ThusA is such that

L(A) = tw(Lsym(A)) = tw(L(ϕ̂)) = L(ϕ).
2
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4. Product interval automata

Product interval automata are essentially a network of interval automata. We have an alphabet
of actions which is distributed over locations. Each location runs an interval automaton over
its local alphabet. Communication takes place between these automata by enforcing that
locations synchronise on common actions.

We will need to set up some notation again. LetP = {1, 2, . . . , k} be a finite set of agents,
or locations. AP-distributed alphabet is a familỹ6 = {6i}i∈P where each6i is a finite set of
actions. We set6 = ⋃

i∈P 6i and call it the global alphabet induced bỹ6. The set of agents
that participate in each occurrence of the actiona will be denoted byloc(a) and is given by:
loc(a) = {i ∈ P | a ∈ 6i}.

Through the rest of this section we fix such a set of agentsP and aP-distributed alphabet̃6.
Since we will be considering timed languages in a distributed setting, the assumption that

action occurrences in a timed word are separated by a non-zero amount of time is no longer
valid. Towards this end we re-define the notion of a timed word over adistributedalphabet to
allow the simultaneous occurrence ofindependentactions. As the reader may guess, actions
a andb will be said to be independent ifloc(a) ∩ loc(b) = ∅.

DEFINITION 5

A timed wordσ over6̃ is an element of(6 × R>0)∞ such that:

(i) if τ(a, t)(b, t ′) is a prefix ofσ thent ≤ t ′ (non-decreasing).
(ii) if τ(a, t)τ ′(b, t ′) is a prefix ofσ with t = t ′, thenloc(a) ∩ loc(b) = ∅ (simultaneous

actions must be independent).
(iii) if σ is infinite, then for eacht ∈ R>0 there exists a prefixτ(a, t ′) of σ such thatt < t ′

(progressiveness).

We letT 6̃∗ andT 6̃ω denote the set of finite and infinite timed words over6̃ respectively,
and setT 6̃∞ = T 6̃∗ ∪ T 6̃ω.

Let σ ∈ T 6̃∞. Thenσ

↼

i is thei-projection ofσ . It is the timed word over6i obtained by
erasing fromσ all appearances of letters of the form(a, t) with a 6∈ 6i . It is easy to check
thatσ

↼

i does indeed belong toT6∞
i .

For a finite timed wordτ , we will usetime i (τ ) to denote the time of occurrence of the last
i-action inτ . More formally:

DEFINITION 6

Let τ ∈ T 6̃∗. Thentime i (τ ) is given inductively by:

• time i (ε) = 0.
• time i (τ (a, t)) = t if a ∈ 6i , and equalstime i (τ ) otherwise.

We are now ready to define product interval automata.

DEFINITION 7

A product interval automatonover6̃ is a structure({Ai}i∈P , Qin), where for eachi, Ai is a
structure(Qi, −→i , Fi, Gi) where

• Qi is a finite set of states
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• −→i is a finite subset ofQi × (6i × IR) × Qi

• Fi, Gi ⊆ Qi are, respectively, finitary and infinitary acceptance state sets.

Qin ⊆ Q = Q1 × · · · × Qk is a set of global initial states.
Let A = ({Ai}i∈P , Qin) be a product interval automaton over6̃ and letσ ∈ T 6̃∞. Then

a run ofA overσ is a mapρ : prf (σ ) → Q such that

(1) ρ(ε) ∈ Qin
(2) for each prefixτ(a, t) of σ we have

(a) for eachi ∈ loc(a), there exists a transitionρ(τ)[i]
(a,I )−→i ρ(τ (a, t))[i] with (t −

time i (τ )) ∈ I .
(b) for eachi 6∈ loc(a) we haveρ(τ)[i] = ρ(τ(a, t))[i].
A run ρ of A onσ is accepting iff for eachi ∈ P either

(i) σ

↼

i is finite andρ(τ)[i] ∈ Fi for any prefixτ of σ such thatτ
↼

i = σ

↼

i, or
(ii) σ

↼

i is infinite andρ(τ)[i] ∈ Gi for infinitely manyτ ∈ prf (σ ).

We setL(A) to be the set of words inT 6̃∞ accepted byA (i.e. those on whichA has an
accepting run).

Notice that the componentsAi of A are interval automata over6i , except that they have
no start states. The global initial states determine which combination of states the component
automata can start in. Thus, ifAi are interval automata over6i respectively, with eachAi =
(Qi, −→i , Q

i
in , Fi, Gi), andQin ⊆ Q1 × · · · × Qk, then we will often use({Ai}i∈P , Qin)

to denote the product interval automaton({Bi}i∈P , Qin), whereBi = (Qi, −→i , Fi, Gi).

Example3. Figure 2 shows a product interval automaton over the distributed alphabet6̃ =
({a, b}, {b}). The language accepted by the automaton is:

L(A) = {(b, t)(a, t ′)(b, t ′′) ∈ T6∞ | t ′′ − t > 1}.
It is not difficult to argue (see D’Souza 2000a) thatL cannot be accepted by an interval
automaton over the alphabet6 = {a, b}. 2

⇓⇓

(b, (0, ∞))

(a, (0, ∞))

(b, (0, ∞))

(b, (1, ∞))

(b, (0, ∞))

Figure 2. A product interval automaton over̃6 =
{{a, b}, {b}}.
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4.1 Checking emptiness

We show how to simulate a product interval automaton using a timed Büchi automaton. This
will then give us a way of checking emptiness for our automata, using the region construction
of Alur & Dill (1994).

Let Lnd(A) denote the language of non-decreasing timed words accepted by a timed
automatonA. The region construction can be modified easily to accept the untiming of
Lnd(A).

Now letA = ({Ai}i∈P , Qin) be a product interval automaton, with eachAi = (Qi, −→i

, Fi, Gi). As a first step we define a TBAB with the property thatLnd(B) ∩ T 6̃∞ = L(A).
Without loss of generality, we assume that each local finitary final state is “terminal” in the
sense that there are no outgoing edges from them. (This can be done by essentially making a
“terminal” copy of each finitary final state.) DefineB = (S, −→, Sin , C, F, G) where:

• the set of states isS = (
∏k

i=1 Qi) × {0, . . . , k};
• the set of clocks isC = {xi | i ∈ P};
• its transition relation is given as follows. We have(q, l)

a, g−→
X

(q ′, m) iff the following

conditions hold:

(1) X = {xi | i ∈ loc(a)},
(2) for each i ∈ loc(a) there exists transitionsq[i]

(a,Ii )−→i q ′[i] such thatg =∧
i∈loc(a)(xi ∈ Ii),

(3) for eachi 6∈ loc(a), q[i] = q ′[i],
(4) m = (l + 1) mod(k + 1) if q ′[l] ∈ Fl ∪ Gl or l = 0; otherwisem = l;

• the initial states are given bySin = Qin × {0};
• the finitary final statesF are given byF = (

∏k
i=1 Fi) × {0, . . . , k};

• the infinitary final states are given byG = {(q, l) ∈ S | l = 0}.
It is not difficult to argue thatLnd(B) ∩ T 6̃∞ = L(A).

Next we get rid of words inLnd(B) which arenot in T 6̃∞. To do this we intersectB with
a TBA B′ which accepts precisely the languageT 6̃∞. B′ will have a single clock, and its
set of states will be{0, 1}k. The clock is used to check whether an action is a zero-time one,
while the bits in the state keep track of the components which have already taken part in the
last stretch of zero-time actions.

Let B′′ be the TBA obtained by intersectingB andB′. ThenB′′ is the TBA promised above,
with Lnd(B′′) = L(A).

Using the check for emptiness of the language accepted by TBA’s outlined in § 2, we can
check ifL(A) is empty or not.

We now analyse the time complexity of checking the emptiness ofA via this route. The
number of states and edges inB′′ are at most 2O(k) times the number of global states and
edges ofA. Thus the number of states inB′′ is at most

2O(k) · |Q|,
and the number of edges is at most

2O(k) · |E|,
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where|Q| = ∏k
i=1 |Qi | and|E| = ∏k

i=1 |Ei |, with Qi , Ei being the state and edge set of the
i-th component ofA. Further, the constants used in the clock constraints are the same as in
A, and the number of clocks isk + 1.

Thus, using the time bound obtained in § 2, the emptiness check forA takes time

|6| · O(|Q| + |E|) · 2O(k) · k! ·
k∏

i=1

(ci + 1).

(The factor of|6| comes in as we need to examine the distribution of6 while generating the
global transition relation ofA.) A loose upper bound for the above expression can be seen to
be|6| · 2O(|A|2).

4.2 Product interval languages

We now give a characterisation of languages accepted by product interval automata in terms
of a timed version of the parallel composition operator⊗. For convenience, we will continue
to use the same symbol⊗ to denote the timed version also. This characterisation plays an
important role in the subsequent sections.

Let Li ⊆ T6∞
i for each i ∈ P. Then thedirect product of L1, . . . , Lk, written

⊗(L1, . . . , Lk), is defined as:

⊗(L1, . . . , Lk) = {σ ∈ T 6̃∞ | σ

↼

i ∈ Li for eachi ∈ P}.
L ⊆ T 6̃∞ is a regular direct product interval languageover6̃ if L = ⊗(L1, . . . , Lk) for
some regular interval languagesLi over6i . Finally, we sayL ⊆ T 6̃∞ is aregular product
interval languageover6̃ if L is the finite union of regular direct product interval languages
over6̃.

The main result of this section is:

Theorem 4. Let L ⊆ T 6̃∞. ThenL is a regular product interval language over̃6 iff L is
accepted by a product interval automaton over6̃.

We first prove a couple of intermediate results.

Lemma4. Let A = ({Ai}i∈P , Qin) be a product interval automaton over̃6. Let Qin =
{q1, . . . , qm} for somem ≥ 1. For j ∈ {1, . . . , m} let Aj denote the product interval
automaton({Ai}i∈P , {qj }). Then

L(A) =
⋃

j∈{1,... ,m}
L(Aj ).

Proof. Follows easily from the definition of the language accepted by a product interval
automaton. 2

Lemma5. For eachi ∈ P let Ai = (Qi, −→i , Q
i
in , Fi, Gi) be an interval automaton over

6i . LetA be the product interval automaton

({Ai}i∈P , Q1
in × · · · × Qk

in).

Then

L(A) = ⊗(L(A1), . . . , L(Ak)).
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Proof. We first show thatL(A) ⊆ ⊗(L(A1), . . . , L(Ak)). Let σ ∈ L(A). Then we know
that there exists an accepting runρ of A on σ . We can useρ to define, for eachi ∈ P, a
runρi of the interval automatonAi onσ

↼

i. Further, eachρi is an accepting run ofAi onσ

↼

i.
This is again easy to verify given thatρ is accepting. Thusσ

↼

i ∈ L(Ai ) for eachi, and hence
σ ∈ ⊗(L(A1), . . . , L(Ak)).

Conversely, supposeσ ∈ ⊗(L(A1), . . . , L(Ak)). So there exist accepting runsρi of Ai

on σ

↼

i for eachi ∈ P. Using theseρi ’s we can piece together a runρ of A on σ , given
by: ρ(τ)[i] = ρi(τ

↼

i). Again, it is routine to check thatρ is indeed a run ofA on σ , and is
accepting. 2

Returning to the proof of theorem 4, suppose now thatL is a regular product interval
language over̃6. Then there existLj

i ⊆ T6∞
i for i ∈ P andj ∈ {1, . . . , m} (m ≥ 1) such

that eachLj

i is a regular interval language over6i and

L =
⋃

j∈{1,... ,m}
⊗(L

j

1, . . . , L
j

k).

Since eachLj

i is a regular interval language over6i , there exist interval automataAj

i over6i

such thatL(Aj

i ) = L
j

i . Let eachAj

i be of the form(Q
j

i , −→j

i , (Qin)
j

i , F
j

i , G
j

i ). Now letBi

denote the disjoint union of the automataA1
i , . . . , Am

i (viewed as labelled graphs). Let us use
(Bi , (Qin)

j

i ) to denote the interval automaton with the underlying structure ofBi and(Qin)
j

i

as the set of initial states. Then it is easy to see thatL(Bi , (Qin)
j

i ) = L(Aj

i ). Thus we have

L = ⋃
j∈{1,... ,m} ⊗(L

j

1, . . . , L
j

k)

= ⋃
j∈{1,... ,m} ⊗(L(B1, (Qin)

j

1), . . . , L(Bk, (Qin)
j

k))

= ⋃
j∈{1,... ,m} L({Bi}i∈P , (Qin)

j

1 × · · · × (Qin)
j

k) (using lemma 5)

= L({Bi}i∈P , Qin))

whereQin = ⋃
j∈{1,... ,m}(Qin)

j

1 × · · · × (Qin)
j

k . This last step follows from lemma 4. Thus
L is accepted by a product interval automaton.

The converse direction follows in a similar manner. 2

The fact that regular product interval languages are closed under union follows directly
from the definition of regular product interval languages. To show closure under intersection
and complementation, it is sufficient to show that these operations on regulardirect product
interval languages do not take us out of the class of regular product interval languages.

Let L = ⊗(L1, . . . , Lk) andM = ⊗(M1, . . . , Mk) with eachLi andMi regular interval
languages over6i , respectively. Then it is easy to verify thatL∩M = ⊗((L1∩M1), . . . , (Lk∩
Mk)). This is once again a regular direct product interval language since regular interval
languages are closed under intersection.

To show thatL = T 6̃∞ − L is a regular product interval language, note that we can write
L as

L =
⋃
j∈P

⊗(W
j

1 , . . . , W
j

k ),
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where for eachi, j ∈ P,

W
j

i =
{

T6∞
i − Li, if i = j,

T6∞
i , otherwise.

Since eachWj

i is a regular interval language,L is a regular product interval language.
Thus, we have

Theorem 5. The class of regular product interval languages over6̃ is closed under the
boolean operations of union, intersection, and complementation. 2

Our aim now is to formulate a theory of PI automata which mirrors the classical setting of
LTL and LTL⊗. This will help in setting up a verification theory/methodology in our setting.

5. A logical characterisation

The logic TMSO⊗(6̃) captures the class of regular product interval languages over6̃.
The formulas in this logic comprise boolean combinations of TMSO assertions (cf. § 3)

about individual components. They are interpreted over timed words over6̃. An assertion
about the actions of componenti is interpreted as a TMSO(6i) sentence over the projection
of the word to6i .

The formulas of TMSO⊗(6̃) are given by the following syntax:

ϕ ::= (α)(i) | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ)

where for each formula(α)(i) we requireα to be a sentence in TMSO(6i). The notation
(α)(i) is meant to indicate that the sentenceα comes from the logic TMSO(6i). We introduce
the operator∧ as a first class operator in the logic as a matter of convenience.

We note that the formulas in this logic are all sentences – i.e. they have no free variables.
A model for a TMSO⊗(6̃) sentence is a timed word inT 6̃∞. For a wordσ ∈ T 6̃∞ and

a sentenceϕ ∈ TMSO⊗(6̃), the satisfaction relationσ |= ϕ is given inductively as follows.

σ |= (α)(i), iff σ

↼

i |= α (as a TMSO(6i) formula),
σ |= ¬α, iff σ 6|= α,

σ |= (ϕ ∨ ϕ′), iff σ |= ϕ or σ |= ϕ′,
σ |= (ϕ ∧ ϕ′), iff σ |= ϕ andσ |= ϕ′.

For a sentenceϕ ∈ TMSO⊗(6̃) we setL(ϕ) = {σ ∈ T 6̃∞ | σ |= ϕ}.
Theorem 6. LetL ⊆ T 6̃∞. ThenL is a regular product interval language iffL = L(ϕ) for
some sentenceϕ ∈ TMSO⊗(6̃).

To prove this theorem we first observe a straightforward consequence of the semantics of
TMSO⊗(6̃).

PROPOSITION 1

For each i in P, let ϕi be a sentence inTMSO(6i). Consider theTMSO⊗(6̃) formula
((ϕ1)(1) ∧ · · · ∧ (ϕk)(k)). Then

L((ϕ1)(1) ∧ · · · ∧ (ϕk)(k)) = ⊗(L(ϕ1), . . . , L(ϕk)).

2
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Now given a regular direct product interval languageL = ⊗(L1, . . . , Lk) we know from
theorem 3 that there exist sentencesϕi ∈ TMSO(6i) such thatL(ϕi) = Li . Using proposi-
tion 1, we haveL((ϕ1)(1)∧· · ·∧(ϕk)(k)) = L. Thus regular direct product interval languages
can be captured in our logic. Regular product interval languages are finite unions of regular
direct product interval languages, and hence can be captured using the∨ operator in our logic.

Conversely, given a sentenceϕ in TMSO⊗(6̃), we can writeϕ in disjunctive normal form
by first driving in negation symbols (note that¬((α)(i)) ≡ (¬α)(i)) and then distributing∧
over∨:

ϕ ≡
m∨

j=1

(

lj∧
i=1

γ
j

i ).

Here eachγ j

i is of the form(α)(p), with α ∈ TMSO(6p) for somep ∈ P. Further, for
j = 1, . . . , m andp = 1, . . . , k, let X

j
p be the set of TMSO(6p) sentencesα such that

γ
j

i = (α)(p) for somei. Let βj
p be the conjunction of formulas inXj

p, with the convention
that

∧ ∅ = >. It is easy to verify that

ϕ ≡
m∨

j=1

(

k∧
p=1

(βj
p)(p)).

From the semantics of∨ it follows that

L(ϕ) =
m⋃

j=1

(L(

k∧
p=1

(βj
p)(p))).

Once again, using proposition 1 we have:

L(ϕ) =
m⋃

j=1

(⊗(L(β
j

1), · · · , L(β
j

k ))).

Since for eachp ∈ P, βj
p is a TMSO(6p) sentence, we know thatL(β

j
p) is a regular interval

language over6p. Thus, it follows thatL(ϕ) is a regular product interval language. 2

6. Timed product-LTL

In this section we formulate a timed version of LTL called timed product-LTL and denoted
TLTL⊗. An important motivation for studying this logic is that it is expressively complete
(cf. § 7), being expressively equivalent to the first-order fragment of the logic TMSO⊗.

TLTL⊗ formulas comprise boolean combinations of assertions over individual components
in a timed logic called TLTL. It will be convenient to first study the satisfiability problem
for this logic. We will make use of this later to solve the satisfiability and model checking
problems for the logic TLTL⊗.

6.1 TLTL over a single component

Let6 be an alphabet of actions. Then the formulas of TLTL(6) (parameterised by the alphabet
6) are given by:

ϕ ::= > | ¬ϕ | (ϕ ∨ ϕ) | 〈a, I 〉ϕ | Oϕ | (ϕUϕ ).
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Here we requirea ∈ 6 andI ∈ IR.
The formulas of TLTL(6) are interpreted over timed words over6. In what follows,

σ ∈ T6∞, andτ ∈ T6∗ with τ ∈ prf (σ ).

σ, τ |= >,

σ, τ |= ¬α, iff σ, τ 6|= α,

σ, τ |= α ∨ β, iff σ, τ |= α or σ, τ |= β,

σ, τ |= 〈a, I 〉α, iff ∃t : τ(a, t) � σ andt − time(τ ) ∈ I, andσ, τ(a, t) |= α,

σ, τ |= Oα, iff ∃τ(a, t) � σ with σ, τ(a, t) |= α,

σ, τ |= αUβ , iff ∃δ ∈ prf (σ ) with τ � δ, such thatσ, δ |= β, and
∀γ : τ � γ ≺ δ, σ, γ |= α.

We sayσ |= ϕ iff σ, ε |= ϕ. DefineL(ϕ) = {σ ∈ T6∞ | σ |= ϕ}.
We mention here some of the standard abbreviations used in temporal logic. The formula

3α (read as “futureα” or “eventuallyα”) is defined as3α = >Uα . 2α (“globally α”) is
defined as2α = ¬3¬α.

In the next theorem we give a construction of an interval automaton which accepts the
set of models of a given TLTL(6) formula. The theorem is phrased so as to facilitate its
use in solving the satisfiability problem for TLTL⊗. The construction follows the classical
construction of Vardiet al (1983).

We note here that a simpler route to follow would be to translate a given formula of TLTL(6)

into an equivalent formula which mentions only intervals taken from aproper interval set.
We can then use the classical construction to associate an appropriate interval automaton with
the given formula. However, this method could lead to an exponential blow-up in the size of
the translated formula. This blow-up is avoided in the method we adopt below.

Theorem 7. Let X be a non-empty set of formulas ofTLTL (6). Then we can construct a
structureAX = (Q, −→, F, G) (an interval automaton without start states) such that for
each non-empty subsetY of X there exists(Qin)XY ⊆ Q such that

(1) L(
∧

Y ) = L(AX, (Qin)XY ), where by(AX, (Qin)XY ) we mean the interval automaton
(Q, −→, (Qin)XY , F, G). Thus, by suitably choosing start states forAX we can accept
exactly the models of the conjunction of a subset of formulas inX.

(2) The number of states inAX is at most2O(
∑

ϕ∈X |ϕ|).
(3) The largest bound mentioned inAX is at most the largest bound mentioned in the formulas

in X.

Proof. LetI be the set of intervals mentioned in the formulas inX. LetI ′ be a proper interval
set coveringI. Using a method similar to the one outlined in § 3 we canconstructI ′ such
that the size ofI ′ is at most 2· |I|, and the largest integer constant mentioned inI ′ is the
largest integer constant mentioned inI.

For a TLTL formulaϕ, let sfc(ϕ) denote the subformula closure ofϕ. For a set of formulas
X we writesfc(X) to denote the set

⋃
α∈X sfc(α).

DefineCL(X), the Fisher–Ladner closure of a set of formulasX, to be

CL(X) = S ∪ {¬α | α ∈ S}
whereS = sfc(X) ∪ {O(αUβ ) | αUβ ∈ sfc(X)}.

It is easy to verify that|CL(X)| is linear in the size of
∑

α∈X |α|.
An atom of X is a maximal “propositionally” consistent subset ofCL(X). Formally, a

subsetA of CL(X) is an atom ofX iff,
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(1) If > ∈ CL(X), then> ∈ A,
(2) ∀α ∈ CL(X), ¬α ∈ A, iff α 6∈ A (here we identify¬¬α with α),
(3) ∀(α ∨ β) ∈ CL(X), (α ∨ β) ∈ A, iff α ∈ A or β ∈ A,
(4) ∀(αUβ ) ∈ CL(X), (αUβ ) ∈ A, iff β ∈ A, or, bothα, O(αUβ ) ∈ A.

We can now define the automatonAX. Take the set of statesQ to be the set of atoms ofX.

The transition relation−→ is given by the following rule. We haveA
(a,I ′)−→ B, iff each of the

following is satisfied:

(1) I ′ ∈ I ′,
(2) if 〈b, I 〉α ∈ A then,

(i) b = a,
(ii) I ∩ I ′ 6= ∅,

(iii) α ∈ B,

(3) if 〈a, I 〉α ∈ CL(X) with I ∩ I ′ 6= ∅ andα ∈ B, then〈a, I 〉α ∈ A,
(4) for all Oα ∈ CL(X), Oα ∈ A iff α ∈ B.

The set of finitary final statesF consists of atoms which have no “next-state” formulas –
i.e. formulas of the form〈a, I 〉α or Oα.

For the infinitary final states it is convenient to make use of ageneralizedBüchi condition.
A generalised B̈uchi condition is a familyG = {G1, . . . , Gm} of subsets ofQ. A run ρ on
a wordσ is accepting according to this condition iff for everyi ∈ {1, . . . , m}, there exist
infinitely many prefixesτ of σ such thatρ(τ) ∈ Gi . Such a condition can easily be converted
to a Büchi condition by including a 0 tok counter in the states.

The generalized B̈uchi condition here is given byG = {G1, . . . , Gm} wherem ≥ 0
is the number of until formulas inCL(X), and theGi ’s are given as follows. Let
{α1Uβ1 , . . . , αmUβm } be the set of until formulas inCL(X). Then for eachi ∈ {1, . . . , m}
we defineGi = {A | αiUβi 6∈ A or βi ∈ A}.

Now let Y be a non-empty subset ofX, ϕ = ∧
Y , and(Qin)XY = {A | Y ⊆ A}. We will

show thatL(ϕ) = L((AX, (Qin)XY )).

We first show thatL(ϕ) ⊆ L((AX, (Qin)XY )). Letσ be a model forϕ. Letρ : prf (σ ) → Q

be given byρ(τ) = {α ∈ CL(X) | σ, τ |= α}. It is routine to verify thatρ is an accepting run
of (AX, (Qin)XY ) onσ .

Conversely, to argue thatL((AX, (Qin)XY )) ⊆ L(ϕ), we use the following claim.

Claim 1. Letσ ∈ T6∞ and letρ be an accepting run of(AX, (Qin)XY ) onσ . Letα ∈ CL(X).
Then for eachτ ∈ prf (σ ) we haveσ, τ |= α iff α ∈ ρ(τ).

This claim can be proved in the standard way by induction on the structure ofα. 2

Now given a timed wordσ in L(AX, (Qin)XY ), we know there is an accepting runρ of the
automaton onσ . By definition of the set of initial states,α ∈ ρ(ε) for eachα ∈ Y . By the
above claim, we have thatσ, ε |= α for eachα ∈ Y . Sinceϕ = ∧

Y , it follows thatσ, ε |= ϕ

andσ ∈ L(ϕ). 2

6.2 Product-TLTL

We now give the syntax and semantics of TLTL⊗. Let 6̃ = {6i} be a distributed alphabet.
The syntax of the logic TLTL⊗(6̃) is given by:

ϕ ::= (ϕ)(i) | ¬ϕ | (ϕ ∧ ϕ′) | (ϕ ∨ ϕ′),
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where, as in § 5, we require of(ϕ)(i) that i ∈ P andϕ ∈ TLTL (6i). Thus(ϕ)(i) is an
arbitraryi-type formulaϕ, tagged with the indexi. Once again we introduce∧ as a first class
operator in the logic for convenience in working out proofs. The expressiveness of the logic
is unaffected even if we drop the∧ operator from the syntax.

Models for TLTL⊗(6̃) formulas are timed words inT 6̃∞. Let ϕ ∈ TLTL ⊗(6̃) and let
σ ∈ T 6̃∞. The satisfaction relationσ |= ϕ is defined inductively as follows:

σ |= (ϕ)(i), iff σ

↼

i |= ϕ (as a TLTL(6i) formula),
σ |= ¬ϕ, iff σ 6|= ϕ,

σ |= (ϕ ∧ ϕ′), iff σ |= ϕ andσ |= ϕ′,
σ |= (ϕ ∨ ϕ′), iff σ |= ϕ or σ |= ϕ′.

Once again, we letL(ϕ) denote the set{σ ∈ T 6̃∞ | σ |= ϕ}.
Example4. The following formula over the distributed alphabet6̃ = ({a, b}, {b}) describes
the languageL of example 3.

(〈b, (0, ∞)〉〈a, (0, ∞)〉〈b, (0, ∞)〉>)(1) ∧ (〈b, (0, ∞)〉〈b, (1, ∞)〉>)(2).

From thesemantics of TLTL⊗(6̃) the following is immediate.

PROPOSITION 2

Letϕ1, . . . , ϕk be formulas inTLTL (61), . . . , TLTL (6k) respectively. Then,

L((ϕ1)(1) ∧ · · · ∧ (ϕk)(k)) = ⊗(L(ϕ1), . . . , L(ϕk)).

2

We now show how we can associate with a given TLTL⊗(6̃) formula a product interval
automaton which recognises exactly the models of the formula. Letϕ ∈ TLTL⊗(6̃). As done
for TMSO⊗(6̃) in theorem 6, we can writeϕ as

ϕ ≡
m∨

j=1

(

lj∧
i=1

α
j

i ).

with eachα
j

i being of the form(γ )(p) for somep ∈ P andγ ∈ TLTL (6p). Further, for
j = 1, . . . , mandp = 1, . . . , k, letXj

p be the set ofp-type formulasγ such thatαj

i = (γ )(p)

for somei. Let βj
p be the conjunction of formulas inXj

p, with the convention that
∧ ∅ = >.

Proceeding as in theorem 6 and making use of proposition 2, it follows that,

L(ϕ) =
m⋃

j=1

(⊗(L(β
j

1), · · · , L(β
j

k ))).

Now using theorem 7 we can construct for eachp = 1, . . . , k an interval automaton
AXp

(whereXp = ⋃m
j=1 X

j
p), such that for eachj = 1, . . . , m the interval automaton

(AXp
, (Qin)

Xp

X
j
p

) acceptsL(β
j
p). Using lemma 5 it follows that

L(ϕ) =
m⋃

j=1

L(({AXp
}kp=1, ((Qin)

X1

X
j

1

× · · · × (Qin)
Xk

X
j

k

))).
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Now note that the product interval automata

({AXp
}kp=1, ((Qin)

X1

X
j

1

× · · · × (Qin)
Xk

X
j

k

)) for j = 1, . . . , m

are the same except for the start states. It then follows easily that

L(ϕ) = L(Aϕ),

where

Aϕ = ({AXp
}kp=1,

m⋃
j=1

((Qin)
X1

X
j

1

× · · · × (Qin)
Xk

X
j

k

)).

Thus the satisfiability problem for TLTL⊗ can be solved as follows. Given a formula
ϕ ∈ TLTL⊗(6̃) we can generate the product interval automatonAϕ and then check the
emptiness ofAϕ as outlined in § 4.1.

To analyse the time complexity of checking satisfiability ofϕ, note that each component
AXp

of Aϕ can be generated in time 2O(
∑

α∈Xp
|α|) using theorem 7. Further, it is not difficult to

see that
∏k

p=1 2O(
∑

α∈Xp
|α|) = 2O(|ϕ|). Using these values in the time bounds obtained in § 4.1

we see that the satisfiability ofϕ can be decided in time

|6| · 2O(|ϕ|) · 2O(k) · k!.

As regards the space complexity of satisfiability we have the following result.

Theorem 8. Given6̃ and a formulaϕ ∈ TLTL⊗(6̃), the problem of checking whetherϕ is
satisfiable isPSPACE-complete.

Proof. The satisfiability problem for LTL is known to be PSPACE-complete (Sistla & Clarke
1985). PSPACE-hardness for TLTL⊗ follows easily by reducing the satisfiability problem for
LTL to the one-component case of TLTL⊗.

To show that the satisfiability check can be done in PSPACE, we argue equivalently that
it can be done non-deterministic PSPACE. Though the number of states in the region graph
R(Aϕ) is exponential in|ϕ| andk, it is an implicitly defined graph whose adjacency relation
can be checked in space polynomial in|ϕ|+|6̃| (see Alur & Dill 1994). Further, the emptiness
check boils down to a reachability check on the region graph, which can be done non-
deterministically in space polynomial in|ϕ| and|6̃|. 2

Next suppose we consider a real-time programPr modelled by a product interval automaton
APr , and a formulaϕ of TLTL⊗(6̃). ThenPr is said to meet the specificationϕ iff L(APr ) ⊆
L(ϕ). The model checking problem for TLTL⊗(6̃) is to determine whetherPr meets the
specificationϕ.

Theorem 9. The model checking problem forTLTL⊗(6̃) is PSPACE-complete.

Proof. PSPACE-hardness follows from the fact that the satisfiability problem for TLTL⊗

can be reduced to the model checking problem. This is because the question of whetherϕ

is satisfiable can be reduced to whetherAuniv 6|= ¬ϕ, whereAuniv is a product interval
automaton which recognises the languageT 6̃∞.

To see that the problem can be solved in PSPACE, we must check the emptiness of the
intersection ofAPr andA¬ϕ in space polynomial in|APr | + |ϕ|. This is a similar argument
to the one we have sketched for theorem 8 above. 2
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7. Expressive completeness of TLTL⊗

The aim of this section is to show that TLTL⊗(6̃) is expressively equivalent to the first-order
fragment of TMSO⊗(6̃). This is a standard way to measure the expressive power of a logic,
and the result we obtain here is along the lines of classical results concerning LTL (Kamp
1980; Gabbayet al1980; Henriksen & Thiagarajan 1997).

Let TFO(A) denote the first-order fragment of the logic TMSO(A). TFO(A) is obtained
from TMSO(A) by disallowing the use of quantification over set variables. The first-order
fragment of TMSO⊗(6̃), denoted TFO⊗(6̃) is obtained by taking boolean combinations of
the first-order fragment of TMSO(6i) for eachi ∈ P. Thus the syntax of TFO⊗(6̃) is given
by

ϕ ::= (α)(i) | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ)

where in each formula(α)(i), α is a sentence in TFO(6i).
We will first establish the result that TLTL(6) corresponds to TFO(6).

Theorem 10. For any alphabet6, TLTL (6) is expressively equivalent toTFO(6).

The method of proof will be to translate TLTL formulas into classical LTL over an appro-
priate interval alphabet. The method is similar to the proof of theorem 3 and we also make
use of the translation used there.

It is useful to first recall the result concerning the expressive completeness of LTL. LetA

be an alphabet of actions. Let FO(A) denote the first-order fragment of the logic MSO(A).
As before, FO(A) is obtained from the logic MSO(A) defined in § 3, by disallowing the use
of set variables. Then a well known result due to the work of Kamp (1968), and Gabbayet al
(1980) is:

Theorem 11. LTL (A) is expressively equivalent toFO(A).

Looking back at the syntax of TLTL(6) formulas, we see that they are simply LTL(0)

formulas for some interval alphabet0 based on6. Of course, we must bear in mind that
TLTL (6) formulas are interpreted overtimedwords over6. Thus, a formulaϕ ∈ LTL (0)

defines a languageLsym(ϕ) ⊆ 0∞ when interpreted as an LTL(0) formula, and it defines a
timed languageL(ϕ) ⊆ T6∞ when interpreted as an TLTL(6) formula.

The following lemma describes the relationship between these two languages.

Lemma6. Let 0 be a proper interval alphabet based on6. Letϕ be a formula inLTL (0).
ThenL(ϕ) = tw(Lsym(ϕ)).

Proof. The proof of this is very similar to our earlier arguments which make use of the
properties of proper interval sets. 2

Returning now to the proof of theorem 10, letϕ0 ∈ TLTL (6). Then it is not difficult to see
that we can construct a proper interval alphabet0 based on6 such that0a coversvoc(ϕ0) for
eacha ∈ 6, and a formulaϕ1 ∈ LTL (0) such thatL(ϕ0) = L(ϕ1). From lemma 6, we know
thatL(ϕ1) = tw(Lsym(ϕ1)). Now, by theorem 11, we know that there exists a sentenceϕ2 in
FO(0) such thatL(ϕ2) = Lsym(ϕ1). Now consider the sentenceϕ3 = s-t(ϕ2) w.r.t. the proper
interval alphabet0 (cf. § 3). The translationss-t andt-s are such that if the given formula is
first-order, then so is the translated formula. Thusϕ3 is a TFO(6) sentence. Further, since0
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is proper, by lemma 3 we know thatL(ϕ3) = tw(L(ϕ2)). Thusϕ3 is the required TFO(6)

sentence withL(ϕ0) = L(ϕ3).
Conversely, letϕ0 be a sentence in TFO(6). Then, once again, there exists a proper interval

alphabet0 based on6 such that0a coversvoc(ϕ0) for eacha ∈ 6. Consider the MSO(0)

sentenceϕ1 = t-s(ϕ0) with respect to the interval alphabet0 (cf. § 3). By lemma 2,L(ϕ0) =
tw(L(ϕ1)). Further,ϕ1 is a sentence in FO(0). Now, again appealing to theorem 11, we
know that there exists an LTL(0) formulaϕ2 such thatLsym(ϕ2) = L(ϕ1). By lemma 6, we
know thatL(ϕ2) = tw(Lsym(ϕ2)). Thusϕ2 is the required formula in TLTL(6) such that
L(ϕ2) = L(ϕ0). 2

Using theorem 10 above, we can now prove:

Theorem 12. TLTL⊗(6̃) is expressively equivalent toTFO⊗(6̃).

Proof. Let ϕ ∈ TLTL⊗(6̃). We define a sentencel-m(ϕ) in TMSO⊗(6̃) such thatL(ϕ) =
L(l-m(ϕ)). The sentencel-m(ϕ) is obtained by replacing each subformula of the form(α)(i)

in ϕ by the sentence(α′)(i) whereα′ is a sentence in TMSO(6i) which is equivalent to the
TLTL (6i) formulaα. Note that the existence of such anα′ is guaranteed by Theorem 10. The
fact thatL(ϕ) = L(l-m(ϕ)) now follows easily by inductive argument on the structure ofϕ.

The converse direction is proved in a very similar way. 2

8. Modelling asynchronous circuits

The aim of this section is to show that product interval automata are expressive enough
to model an important class of timed behaviours, namely that of asynchronous digital cir-
cuits. In Maler & Pnueli (1995) model the timing behaviour of circuits using a network of
timed automata that communicate via shared variables. Their model is based on the non-
deterministic inertial delay model for gates Brzozowski & Seger (1994). With this model as
our starting point, we describe the behaviour of a circuit using timed words (in contrast to the
signalsused by Maler & Pnueli 1995). We then show that for a given circuit, we can define a
product interval automaton which recognises the language of timed words generated by the
circuit.

8.1 The non-deterministic delay model

A k-wire circuit (see figure 3) is modelled as a tuple

χ = (X, F, D, b0),

whereX = {x1, . . . , xk} is a set of wires,F = {f1, . . . , fk} is a set of gates modelled as
functions from{0, 1}k to {0, 1}, andD = {(l1, u1), . . . , (lk, uk)} is a set of pairs of positive
integers (ui could be∞ as a special case) withli ≤ ui for eachi. The pair(li, ui) is meant to
model both thedelayand thelatencyof the gatefi . Delay and latency are often assumed to
be modelled by the same pair of values, and we follow the same assumption here. Roughly
speaking, a change in the input signal must hold for at leastli units of time for it to be reflected
in the output signal of the gate, and if a change holds forui units of time, itmustbe reflected
in the output of the gate. This models the latency of the gate. Further, the amount of delay
for the gate to switch must again lie in the interval [li , ui ]. These notions will be formalised
below. The componentb0 is an element of{0, 1}k, and represents the initial values on the
wires of the circuit.
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f1 f2 f3

[l1, u1] [ l2, u2] [ l3, u3]
Figure 3. A 3-wire circuit

Some simplifying assumptions have been made in this model. All gates are assumed to
be of fan-ink and all wires are fed into a gate as input. Further, inputs to the circuit need to
be modelled using the initial stateb0 of the circuit, or asnot-gates within the circuit, with
suitable delay values.

Maler & Pnueli (1995) used infinite,{0, 1}k-valued “signals” to describe the behaviour
of a circuit. In our framework, we use finite and infinite timed words over the alphabet
6 = {0, 1}k. A signal with finitely many discontinuities can be represented as a finite timed
word (these are the so called “stable” signals). A signal with infinitely many discontinuities
can be represented as an infinite timed word.

To begin with we will need the following notions.

• Let τ ∈ T6∗. We defineaction(τ ) (w.r.t. χ ) to bea if τ = τ ′(a, t) for someτ ′ andt ,
and we setaction(ε) = b0. This is the analogue of thetime function used earlier in the
paper.

• Let s ∈ {0, 1}k. The “hidden” value vector ofs will be denoted byh(s) and is given by
h(s)(i) = fi(s). For eachi, h(s)(i) will represent the value computed by gatei, which
may or may not be propagated to the output of the gate.

• Let s ∈ {0, 1}k. Thenexcited(s) is a subset of{1, . . . , k} given byi ∈ excited(s) iff
s(i) 6= h(s)(i). We will say thats is i-excited if i ∈ excited(s), and we will say that
s is excited ifexcited(s) 6= ∅, Finally, we will sayτ ∈ T6∗ is excited (i-excited) if
action(τ ) is excited (i-excited).

• Let s, s ′ ∈ {0, 1}k. Then we define

switches(s, s ′) = {i ∈ {1, . . . , k} | s ′(i) 6= s(i)}.
These are the gates which have switched in going froms to s ′.

• For s, s ′ ∈ {0, 1}k we defineqtoe(s, s ′) ⊆ {1, . . . , k} given byi ∈ qtoe(s, s ′) iff s ′ is
i-excited ands is noti-excited.qtoe is a mnemonic for “quiescent to excited.”
Similarly, i ∈ etoq(s, s ′) iff s is i-excited ands ′ is noti-excited.

• Let τ ∈ T6∗ andi be such thatτ is i-excited. Letτ ′ be the smallest prefix ofτ such that

(1) τ ′ is i-excited, and,
(2) For eachτ ′′ such thatτ ′ � τ ′′ � τ we have thatτ ′′ is i-excited and further that

action(τ ′′)(i) = action(τ )(i).
Then we defineetime i (τ ) = time(τ ′). Thusetime i (τ ) is defined when gate-i is excited
in τ , and it is the time at which gate-i last became excited, without having switched in
between.

We define when a finite timed wordτ ∈ T6∗ isvalid (w.r.t.χ ), inductively on the length of
τ . The empty wordε is valid. A word of the formτ(a, t) is valid iff the following conditions
hold. Letaction(τ ) = b. Then
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(1) τ must be valid.
(2) For eachi ∈ {1, . . . , k}, if i ∈ switches(b, a) then we must havei ∈ excited(b). Thus,

for a gate to switch, it must be in an excited state.
(3) For eachi ∈ switches(b, a) we must have(t − etime i (τ )) ∈ [li , ui ].
(4) Supposei ∈ excited(b) andi 6∈ switches(b, a). Then

(a) if i 6∈ excited(a) (i.e. gatei becomes quiescent) then we must have(t − etime i (τ )) <

ui .
(b) if i ∈ excited(a) (i.e. gatei remains excited) then also we must have(t −etime i (τ )) <

ui .

We say an infinite timed word inT6ω is valid, iff every finite prefix of it is valid.
We now defineL(χ), the behaviour of the circuitχ . For a finite wordτ in T6∗ we have

τ ∈ L(χ) iff τ is valid w.r.t.χ andτ is not excited. For an infinite wordσ ∈ T6ω, we have
σ ∈ L(χ) iff it is valid w.r.t. to χ .

8.2 Modelling a circuit as a PIA

We now show how we can model the circuitχ as a product interval automatonAχ over the dis-
tributed alphabet̃6′ with 6′ ⊆ 6 ×6. This automaton has the property thatL(Aχ ) = L(χ),
modulo a (geometric) projection applied to the alphabet. Thus we haveL(χ) = ς(L(Aχ ))

whereς is a substitution which maps actions of the form(s, s ′) to s ′.
We define our distributed alphabet̃6′ as follows. The set of actions6′ is the set of all

(s, s ′) ∈ 6 × 6 which satisfy:

(1) switches(s, s ′) 6= ∅,
(2) i ∈ switches(s, s ′) impliesi ∈ excited(s).

We havek + 1 locations and the distribution of6′ over the locations is given by:

loc((s, s ′)) = {k + 1} ∪ switches(s, s ′) ∪ etoq(s, s ′) ∪ qtoe(s, s ′).

(Note that we have no independent actions here ask + 1 ∈ loc(a) for all a ∈ 6′. Hence
T 6̃′∞ = T6′∞.)

The componentsAi , for i = 1, . . . , k, corresponds to theith gate. The(k + 1)-th compo-
nent,Ak+1, is free of any timing constraints and keeps track of the current vector of output
values of the circuit.

We defineAχ = ({Ai}k+1
i=1 , Qin) with eachAi = (Qi, −→i , Fi, Gi) given as follows:

• For i ∈ {1, . . . , k}, we have:

– Qi = {e, q},
– −→i is given by:

∗ e
((s,s ′),[li ,ui ])−→i e providedi ∈ switches(s, s ′) andi ∈ excited(s ′),

∗ e
((s,s ′),[li ,ui ])−→i q providedi ∈ switches(s, s ′) andi 6∈ excited(s ′),

∗ e
((s,s ′),(0,ui ))−→i q providedi 6∈ switches(s, s ′) andi ∈ etoq(s, s ′),

∗ q
((s,s ′),(0,∞))−→i e providedi ∈ qtoe(s, s ′),

– Fi = {q},
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– Gi = {e, q},
• ForAk+1 we have:

– Qk+1 = {0, 1}k,
– −→k+1 is given by:

s
((t,t ′),I )−→k+1 s ′ iff s = t, s ′ = t ′, andI = (0, ∞).

– Fk+1 = {s ∈ Qk+1 | excited(s) = ∅}.
– Gk+1 = Qk+1.

Finally, the set of initial statesQin is a singleton{qin} with qin = {(d1, . . . , dk, b0)} where
for eachi ∈ {1, . . . , k} di = e, if b0 is i-excited, andq otherwise.

A couple of comments about the choice of components and their structure may be in order
here. The reader may ask why the(k + 1)-th is required at all. The answer is that without this
component, each of the gate components would have to have access to the states of the other
components, and this would mean that they must take part ineveryaction of the circuit. This
would destroy the role played by the clocks since they would all be reset with every action.
Once the(k + 1)-th component is there to take care of the valid consecution of actions in the
circuit, the gate components need only synchronise with the actions in which they switch, or
which affect their excited state. It is for this reason that we need the actions to be pairs which
tell us the state from which, and to which, the circuit switches.

Finally, one may wonder why the “excited” and “quiescent” states are needed for each gate
component. This is so that we can use the finitary accepting statesFi to reject behaviours in
which a gate is excited continuously without ever switching.

It is not difficult to prove the correctness of the construction and the interested reader can
find the details in the work by D’Souza (2000a).

8.3 Properties expressed in TLTL⊗

We list below some properties of circuits that we can specify in our logic TLTL⊗(6̃′). Using
the model-checking algorithm of § 6, one can automatically check whether a given circuit
satisfies these properties.

• The formulaϕ below specifies that every possible behaviour of a circuit is eventually
stable.

ϕ = (
∨

excited(s ′)=∅
3〈(s, s ′), (0, ∞)〉>) (k + 1).

• We can specify that gatei always switches withind time units of becoming excited.
This is specified by the formula

(2(ϕ1 ⇒ ϕ2))(i),

if i 6∈ excited(b0), and by the formula

(2(ϕ1 ⇒ ϕ2))(i) ∧ (ϕ3)(i),

if i ∈ excited(b0), where

ϕ1 = ∨
i∈excited(s ′)〈(s, s ′), (0, ∞)〉>,

ϕ2 = ∨
a∈6′ 〈a, (0, ∞)〉(∨i∈switches(t,t ′)〈(t, t ′), (0, d]〉>) (i),

ϕ3 = ∨
i∈switches(s,s ′)〈(s, s ′), (0, d]〉>.
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9. Conclusion

We have studied product interval automata, a subclass of timed automata which admit a clean
logical theory. Product interval automata are closed under boolean operations and admit a
logical characterisation via the monadic second order logic TMSO⊗.

We have also formulated a timed temporal logic called TLTL⊗ to reason about timed
behaviours captured by product interval automata. We have solved the satisfiability and model-
checking problems by automata-theoretic means while establishing tight space complexity
bounds for these problems. This temporal logic turns out to be a natural one in the sense that
it is expressively complete; it has exactly the expressive power of the first order fragment
of TMSO⊗. These results parallel the results in the classical setting and lay the basis for a
similar verification methodology in a timed framework.

We have shown that despite their simple structure, product interval automata are expressive
enough to model an important class of timed behaviours, namely that of asynchronous circuits.
Coupled with the fact that the simple distributed nature of product interval automata make
them amenable to efficient application of partial order methods for timed systems (Minea
1999), we expect that our methods will lead to efficient methods for analysing these circuits.

The expressive power of product interval automata can be increased by considering a
timed variant of asynchronous automata (Gastin & Petit 1992), called distributed interval
automata. A interesting fact is that the natural timed extension of “cellular” asynchronous
automata (Zielonka 1987) (which in the untimed setting are equal in expressive power to
asynchronous automata) are more powerful than distributed interval automata. In fact, cellular
interval automata are as expressive as the event recording automata of Aluret al (1994).
These results are detailed elsewhere (D’Souza & Thiagarajan 1999; D’Souza 2000a). Finally,
the techniques used here lead naturally to an unrestricted logical characterisation of event
recording automata (D’Souza 2000b).
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