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Abstract. We identify a subclass of timed automata called product interval
automata and develop its theory. These automata consist of a network of timed
agents with the key restriction being that there is just one clock for each agent and
the way the clocks are read and reset is determined by the distribution of shared
actions across the agents. We show that the resulting automata admit a clean theory
in both logical and language theoretic terms. We also show that product interval
automata are expressive enough to model the timed behaviour of asynchronous
digital circuits.
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1. Introduction

Timed automata as formulated by Alur & Dill (1994) have become a canonical model for
describing timed behaviours. It is well-known that these automata are very powerful in
language-theoretic terms. Their languages are closed under union and intersection but not
under complementation. Further, their language inclusion problem is undecidable and hence
cannot be reduced to the emptiness problem which is decidable. Consequently, the verifica-
tion problem which can be often phrased as whefhetp,) € L(A,,..) cannot be reduced

to whetherL(Ap, N A-ge.) = 0. Here Ap, is the timed automaton modelling a real time
programPr andAs,.. is the automaton capturing the specification so thaj,.. is the com-
plement ofA,,... To get around this, one must use deterministic timed automata for specifi-
cations (since they can be easily complemented) or one must work with a restricted class of
timed automata that possess the desired closure properties.

Here we follow the second route and propose a subclass of timed automata called product
interval automata (Pl automata). Such an automaton consists of a network of timed agents
IX, A; where eachA; operates over an alphabEt of events. Further, there issingle
clockc; associated with each agenThe agents communicate by synchronising on the timed
executions of common events. Suppass an event in which the agents, 3, 4} participate.

Then the timing constraint governing eactexecution only involves the clocKs;, cs, c4}.
Moreover, the set of clocks that is reset at the end of @aekecution is{ci, cs, c4}. Thus

the distributionE = {X;}X ; of events over the agents canonically determines the usage of
clocks; so much so, we can avoid mentioning the clocks altogether once We fix

This method of structuring timed automata has a number of advantages. In particular, one
can provide naturally decomposed and succinct presentations of timed automata with large
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(control) state spaces. The technique of presenting a global timed automaton as a product
of component timed automata has been used by many authors starting from Alur & Dill
(1994). What is new here, as explained above, is that our decomposed presentation places a
corresponding restriction on the manner in which clocks are read and reset. A related class
of hybrid systems is mentioned in passing by Henzirgjeal (1995) the timed versions of
which boil down to Pl automata in which thererie communication between the agents.

Yet another piece of related work is by Yi & Jonsson (1994) in the framework of timed CSP.
Their model can be easily represented as Pl automata. Their main result, in our terms, is
that the language inclusion problem for Pl automata is decidable. But in their setting, timing
constraints are stated in terms dfiagleinteger value whereas we use, as is usaérvals

with rational bounds. We establish a variety of results concerning Pl automata which subsume
the decidability of the language inclusion problem.

Structurally the underlying (symbolic) automata can of course be viewed as labelled Petri
nets and hence a Pl automaton can also be interpreted as a kind of timed Petri net. The classical
timed Petri net model (Merlin & Faber 1976) however uses implicit clocks which record the
time since a transition was enabled. For modelling Pl automata, one needs to attach clocks to
places or —due to the fact we are dealing with 1-safe Petri nets — attach clocks to the individual
tokens. The semantics we attach to our automata is strictly along the lines of the literature
on timed automata whereas the semantics one traditionally uses for timed Petri nets — with
earliest and latest firing times for the transitions — is somewhat different.

A final aspect of Pl automata is that due to the disciplined use of clocks across components
partial order reduction techniques that are under development (Bengitsak998; Minea
1999) can be readily applied to our automata. See D’Souza (2000a) for further discussion on
this.

In pragmatic terms, Pl automata — despite their severely restricted usage of clocks — still
seem to have a good deal of modelling power. To bring this out, we consider the networks of
timed automata that communicate through shared variables used by Maler & Pnueli (1995)
to model and analyse the timed behaviour of asynchronous circuits. We show here that Pl
automata suffice for implementing this very useful modelling technique. Consequently the
logical framework accompanying Pl automata (detailed below) can be applied to the study
of asynchronous circuits. We admit however that much more work needs to be done on the
experimental front to test the practical applicability of the models and techniques presented
here.

From a theoretical standpoint, Pl automata are strictly less expressive than event clock
automata due to Aluet al (1994) and their state-based version (Raskin & Schobbens 1997)
which in turn are strictly less powerful than general timed automata. As a result, the logics
we develop here will also be strictly less expressive than the corresponding logics presented
by Henzingeet al (1998) for a generalisation of event clock automata called recursive event
clock automata. Nevertheless we feel that Pl automata are of independent interest due to the
reasons sketched earlier. They also admit a smoother logical characterisation. In particular,
the monadic second order logic presented by Henziagal(1998) permits only restricted
(second-order) quantification. This is not the case for the logical characterisation we obtain.
(For basic information about timed automata and their logics see Alur & Henzinger (1992)
and Henzinger (1998) and references therein.)

In the next section we begin with some preliminary notions§ I3 we &amine interval
automata, which are essentially the components of Pl automata. The properties of these
automata will play an important role in our study of Pl automata in the subsequent section. In
§ 5 we first show that a monadic second order logic denoted TRSPtures the timed regular
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languages recognised by Pl automata. We then formulate a linear time temporal logic denoted
TLTL® and provide automata-theoretic solutions to the satisfiability and model checking
problems for TLTL® in terms of Pl automata. Section 8 contains a detailed description of
how we can model asynchronous circuits using Pl automata, as well as some properties that
we can specify and verify in our logical framework.

It turns out that all our ideas can be extended smoothly to a larger setting in which the
underlying “symbolic” automata are asynchronougBi automata (Gastin & Petit 1992).
The resulting timed automata are calldstributed interval automataWe also consider
the natural timed extension of “cellular” asynchronous automata, caéé#dlar interval
automata These automata can be studied with the help of powerful results available in the
theory of Mazurkiewicz traces (Diekert & Rozenberg 1995). Due to space limitations we do
not present these extensions here. Details can be found in (D’'Souza & Thiagarajan 1998;
D’Souza 2000a).

2. Preliminaries

We begin with some useful notions about timed words and timed automata.

As usual, for an alphabet we will use A* and A“ to denote the set of finite and infinite
words overA respectively. We will usel* to denote the set* U A“.

It will be necessary for us to deal with both finite and infinite words, and in this regard it is
convenient to use prefixes to play the role of positions in a word. For awardi >, prf (o)
will be used to denote the set of finite prefixes0fThe strict and non-strict prefix relations
on finite words will be denoted by and= respectively. We will us¢r | to denote the length
of awordo. The empty word will be denoted ey

Itwill be helpful to recall the definition of Bchi automata. The reader is referred to Thomas
(1990) for a comprehensive treatment of this subject.

DEFINITION 1

Let A be a finite alphabet. A (mixed)Bhi automaton over the alphahétis a structure
A=(0,—, OQ;n, F, G) where

Q is afinite set of states,

—C Q x A x Q is the transition relation,

Q.. C Q is a set of initial states, and

F, G C Q are, respectively, the finitary and infinitary acceptance state sets.

Leto € A®. Arun of A overo is amapp : prf (o) — Q which satisfies:

L /0(6) € Qin-
e p(t) -5 p(ta) for everyta € prf(o). (4 —> ¢ is alternate notation for
(q,a,q’) e—).

We sayp is anacceptingrun ono iff either

e o isfinite ando(o) € F, or,
e o isinfinite andp () € G for infinitely manyt € prf (o).

The set of words accepted by, denoted (for reasons that will soon be cle&y),, (A), is
defined to be the set of words At on which.4 has an accepting run. Following established
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convention, we term a subsetof A* regularif L = L,,,(A) for some Bichi automaton
A overA.
The notion of @imed wordis central to this paper. In what follows we will uR&® andR=°
to denote the set of positive and non-negative reals respectively. The non-negative rationals
will be denoted byQ=°.

DEFINITION 2

Let X be a finite alphabet of actions. thned wordover X is a membep of (X x R>0)®
such that

(1) for all prefixesr (a, t)(b, t') of o we haver < ¢’ (strict monotonicity).
(2) if o is infinite, then for each € R>0 there exists a prefix(a, ') of o such that’ > ¢
(progressiveness).

We useT ~* andT X to denote the set of finite and infinite timed words oXerespectively,
and setTX>® = TZ*U TX®.

For a finite timed word we will usetime(t) to denote the time of occurrence of the last
action inz. Formally, time(¢) = 0, andtime(z(a, t)) = t. Analogously, for a non-empty
finite timed wordzr we will useaction(t) to denote the last action in

In what follows, we will use intervals with rational bounds to specify timing constraints
(and usex as the upper bound to capture unbounded intervals). These intervals will be of the
form (1, r),[l,r), (,r], or [1, r], wherel, r € Q=% U {00} with [ < r. For an interval of the
form (1, ] or [I, r] we requirer # oo. Further, to avoid empty intervals, unless an interval
is of the form [, r], we requirel < r. An interval will denote a non-empty, convex subset of
reals in the obvious way. For example the intervaldid) denotesthe s¢t € R | 1 < ¢}. The
set of all intervals will be denoted [#R.

DEFINITION 3

A (mixed) timed Buchi automatqnlBA for short, over an alphabél is a structured =
(Q,—.C, Qin, F, G) where:

Q is afinite set of states,

0., C Q is a set of initial states,

F, G C Q are sets of finitary and infinitary accepting states,

C is afinite set of clocks, and

—, the transitions of4, is a finite subset 0 x ¥ x 2¢ x G¢ x Q whereGc is the

set of clock constraints (guards) which are conjunctions of atomic guards of the form
(x € I, wherex ranges oveC and/ ranges ovefZR.

In what follows, a transition(g, a, X, g, ¢") will be written asg % ¢’'. The manner in

which the timed automaton accepts a timed word is defined in terms of clock valuations.

A C-valuation is a map : C — R=0. Where( is clear from the context we will say
valuation instead o€ -valuation. We letval- stand for the set of -valuations. Letv be a
valuation and € R=°. Thenv + ¢ is the valuation given by:

(v+1)(x) = v(x) + ¢ for everyx € C.
Suppose is a valuations € R=% andX < C. Then the valuation[t/ X] is given by:

t, if yeX.

vt/ X](y) = { v(y), otherwise
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Finally, O is the null-valuation given by:
O(x) = 0, for everyx € C.

Next, the notion of a valuation satisfying a clock constrairgt is denoted by = g and
is defined via:

evkExel,iffvix) el
e vEpAy,iff vEgandv E¢.

Leto € TX*. Then arun ofd overo is a pair of mapsp, v) wherep : prf(c) —> Q
andv : prf (o) — walc are such that the following conditions are satisfied:

o p(e) € Q,, andv(e) =0
e For everyt(a,t) € prf(o), there exists a transitiop(t) % p(z(a,t)) such that
v(t) +t E gandv(t(a,t)) = (v(r) + [0/ X].

The run(p, v) is an accepting run iff either

(1) o isfinite andp(o) € F, or,
(2) o is infinite andp(7) € G for infinitely many prefixeg of o.

L(A) € T the language of timed words accepteddys then given by:
L(A) = {o | 3 an accepting run ofd overc}.

For a timed wordr € T let untime(o) be the words € £ obtained by projecting
away the time-stamps from. For a timed languagé C TX*, untime(L) € X will
denote the sdtuntime(o) | o € L}.

Alur & Dill (1994) showed the following result:

Theorem 1. Given a timed automatad over an alphabek one can effectively construct a
Blichi automaton4’ over T such thatL (A4") = untime(L(A)).

Using the above construction, we can check if the timed language accepted by.4 iEBA
empty in time

0101+ E]) - 220V 1)t TTeex + D,

xeC

whereQ andE are the state and edge setsdofespectively( is the set of clocks used A,
and for eachx € C, ¢, is the largest normalised interval bound appearing in a guard of
the form(x € I).
Using standard convention we Ietl| denote the size of the representationgfusing
binary encoding for the numeric constants. Then the above expression can be seen to bounded
by 2(|-A|2) .

3. Interval automata
Product interval automata are essentially a network of very simple timed automata called

interval automata. It is convenient to first examine these automata and establish some results
about them which help us to study product interval automata.
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Interval automata are timed automata, with a single clock which must be reset along every
transition. Effectively, these automata can only measure the time elapsed since the last action
performed.

The notion of aninterval alphabetwill be useful in representing these timed languages
symbolically. LetZ be a finite alphabet. Then anterval alphabetbased onx is a finite
subset ofE x ZR.

Given an interval alphabdt over © and a words € '™, & naturally induces a set of
timed words oveix which we denotew (o). It is defined as follows. Let € T2, Then
o € tw(o) iff

(1) lel =1l
(2) For each prefix(a, t) of o, and for each prefix(b, I) of o such thatr| = |7], we have
a = b andt — time(t) € 1.

ForL C I"'*° we set

tw(L) = U tw(3).

oelL
DEFINITION 4

An interval automatorover X is simply a Bichi automaton over an interval alphabet based
onx.

Thus an interval automato#ioverX has edges of the foren @l q',wherea is aX-action
and/ is an interval. Viewed as aiighi automaton over an interval alphaligt.A accepts
the symbolic languagg,,, (A) € I'*°. What is more interesting to us however, is the timed
language accepted by, denoted. (A4), which we define as

L (A) = tw (L sym (A)) .

We will say a timed language C TX is aregular interval languagéf L = L(A) for
some interval automatas overX.

Examplel. Figure 1 shows an interval automatgnover the alphabeE = {a, b}. Here

we haved = ({qo0, q1}, —>, {q0}, {91}, {g1})- In the figure we use the convention that the
initial states are indicated with incoming double arrows, while final states are indicated by
two concentric circles. The automaton accepts all timed werdsT X*° which begin with

a (possibly empty) sequence @factions, unit times apart, followed bybaaction at some

time between 1 and 2 units from the last action, and finally a sequence afain, without

any time restrictions. O

We can also define the notion of a run of an interval automaton directly over a timed word.
Let A = (Q, —, Qin, F, G) be an interval automaton ov&r, and letc € TX*°. Then a
run of A ono is mapp : prf(c) — Q such that

(a,[1,1]) (a, (0, 00))

(b,[1,2)
- O q0 © q1 Figure 1. An interval automaton ove, b}.
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(1) ,0(6) € Qiny

(2) for eacht(a,t) € prf(o), there existsl, such thatp(r) @l p(t(a,t)) and (¢ —
time(t)) € I.

As usual, the rurp will be termed accepting if either is finite andp (o) € F, or, o is
infinite andp (t) € G for infinitely manyt € prf (o).

It is not difficult to see that this is an equivalent way of defining the timed language of
—in the sense that € tw(L,,m,(A)) iff there exists an accepting run gfono, in the sense
defined above.

We now show that the class of regular interval languages is closed under boolean operations.
It is easy to see that this class is closed under union. For closure under complementation
the notion of goroperinterval set proves useful. This notion also plays an important role in
subsequent sections.

We say a set of intervalg € ZR is proper if it forms a finite partition ofR=°. Thus, ifZ
is a proper interval set, then for eaclke R=° there exists af € Z such that < I, and for
eachl, I' e Z,INI' # @implies! = I'. An interval alphaber is termed proper if for each
a € Xthesetl', ={I | (a, I) € T'}is a proper interval set. We say an interval Seovers
an interval sef’ if every interval inZ’ is the union of some subset of intervalszinFinally,
an interval alphabdt covers the interval alphabgt if ", coversI', for eacha € X.

Each interval alphabdt induces, in a canonical way, a proper interval alphabet, denoted
prop(T"), with the property that it coverB. It is given by

prop(l) ={(a, ) |a € X, I € prop(I'a)}

where for eacla, the setprop(T,) is obtained fronT", by the procedure outlined below.

LetZ be anon-empty finite set of intervals (ifitis empty, we simplyseb (Z) = {0, c0)}).
Let V. = {0, vy, vo,...,v,, 00} Where for 1< i < n,v; € V iff there exists] € T
with v; as the left or right end of. Without loss of generality, we assume that- 1 and
O<vi<uvy--- < v, # oco. Now defineprop(Z) via:

prop(Z) = {[v;, v;], (vj,v;41) |0 =< j <n}

where we sety = 0 andv, 11 = oo. It is easy to verify thaprop(Z) is a proper interval set
which coversZ.
The following is an important property of proper interval alphabets.

Lemmal. LetT be a proper interval alphabet based ah Then for eacly € TX* there
exists a unique woré@ € I'*° such thatv € tw(o).

Proof. Leto € TX*. Sincel is proper we know that for eache ¥ andr € R>° there
exists auniqué € I', such that € I. Consider the wor@ € '™ given by its set of prefixes
which we define as follows. For each pretixf o we define a corresponding prefof ¢
The prefix corresponding t©is ¢ itself. The prefix corresponding to the non-empty prefix
7(a,t) of o isT(a, I) wherel is the unique interval i, such thair — time(z)) € 1. Itis
easy to verify that € tw(o).

For uniqueness o supposer ¢ tw(o1) ando € tw(oy) for someoy, o € I'™. If
01 # 0, then there must exist prefix@€s(a, 1) of 51 andTx(a, I’) of o5, such thatt;| = |7,
and! # I'. Lett(a, t) be a prefix ofo such thaiz| = |71|. Then we know( — time(t))
belongs to both and!’. Sincerl’, is proper, this would meah = I’ which contradicts our
assumption. Thus we must have= o>. |
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Using properties of proper alphabets we can now show closure under complementation.
Let L be a regular interval language over It is not difficult to see that there exists a proper
interval alphaberl” based ork: and a regular subsétof I'** such thatl. = tw(L). We now
claimthat7Tx* — L = tw(I"* — L). We can prove this easily using lemma 1.

Since regular languages are closed under complement, we know°that L is regular,
and hencel'x* — L is a regular interval language. We now have:

Theorem 2. The class of regular interval languages over an alphabés closed under the
boolean operations of union, intersection and complementation. a

Next we introduce a monadic second-order logic interpreted over timed words, which
characterises the class of regular interval languages. This logic is called TMS@d is
parameterised by the alphab¥®t

Here and in the logics to follow, we assume a supply of individual variahles. . ., and
set-variablesX, Y, .... These variables range over prefixes (respectively sets of prefixes) of
the timed word in question. We make use of the predicé@gs) (one for eaclr € X) and
A(x, I), wherex is anindividual variable anflis an element afR. The syntax of TMSQZ)
is given by:

pri=@eX)[(x <y | Qux) AKX, D) [—¢|(¢Ve)|Ixe|IXe.

A structure for a formula of the logic is a pait, ) whereo € TX* andl is an inter-
pretation which assigns to each individual variable a non-empty pretix ahd to each set
variable a set of non-empty prefixesaafWe depart slightly from classical monadic logics by
using prefixes instead of natural numbers to play the role of positions in a word. Once again,
this is more convenient for us given that we are dealing with both finite and infinite words.
Correspondingly< will be interpreted as the the strict prefix relatiaron finite words.

The satisfaction relatios =; ¢ for atomic formulasy is given as follows:

o =1 (x € X), iff I(x) € I(X),

ok (x <y), iff I(x) <1(y),

o k=1 Qu.(x), iff action(I(x)) = a,

o k=1 Ax, I), iff I(x)is of the formz(a, r) and(r — time(t)) € I.

The operators-, v, and the existential quantifieBs: and3X are interpreted in the usual
manner: Lefl be an interpretation for variables with respecttd_et r be a prefix ob. We
use the notatiofi{ z /x] to denote the interpretation which map# r and agrees witlion all
other individual and set variables. Similarly, for a set of prefies o, the notatiorl[ S/ X]
denotes the interpretation which serid$o S, and agrees with on all other variables.

o =1 e, iff o 1o,

okEr(pVve), iff oErgoro =g,

o = xg, iff there existst < o such thav f=y;/y] @,

o =1 3Xe, iff there existsS C prf(o) such thav =s/x) @.

Given a sentencg in TMSO(X) we defineL(¢) ={o € TZ® | o | ¢}.

Example2. LetX = {a, b}. Then the following TMS@X)-sentence describes the language
accepted by the automatohin example 1.
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p1 = x(Qp(x) A A(x,[1,2]) A
Vy((y <x) = (Q.(y) AAQY,[1,1])) A
Vy((x <y) = Qa())). O

Theorem 3. Let L € TX. ThenL is a regular interval language ift. = L(¢) for some
sentence in TMSO(X).

To prove this theorem, we will uselBhi’s monadic second-order logic characterisation of
regular languages. We recall that for an alphabethe syntax of Bichi’s monadic second
order logic (denoted here by M$@)) is:

pri=@eX)[(x <y) | Qux) @[ (¢Ve)|Ixe|IXe.

A structure for this logic is a pair of the forta, I) whereo € A*° andl assigns to individual
and set variables, non-empty prefixes and sets of non-empty prefixesespectively. The
semantics of the logic is given in a similar manner to that of TMSBD In particular, the
atomic formulaQ, (x) — herea is required to be iM —is interpreted as follows:

o =1 Q. (x) iff I(x) = Ta for somer < o.

As usual, for a sentengein MSO(A) we setL(¢) = {0 € A* | o = ¢}. Blchi's result
states that a languade C A™ is accepted by a @8hi automaton over the alphabétiff
L = L(p) for some sentencg in MSO(A) (Biichi 1960; Thomas 1990).

Now, given a formulapy € TMSO(X) we show how to translate it to a formutes(¢) €
MSQO(I'), for a suitably defined interval alphaliét The translation will preserve —in a sense
to be made precise — the timed modelspof(The namé-s is the acronym for “timed-to-
symbolic”.) Letl” be any proper interval alphabet ov@isuch that for each € &, T', covers

voc(¢) = {I | ¢ has a subformula of the form (x, I)}.

Note thatE x prop(voc(g)) is at least one such. Thent-s(p) (w.r.t. T") is obtained fromp
by replacing sub-formulas of the for@, (x) by the formula

\V Qe

(b,1)el', b=a

and sub-formulas of the form (x, I) by the formula

V  Qun®.

(a,Iel, I'l

Lemma2. Lety € TMSO(X) and letI” be a proper interval alphabet based @hwith the

property that for eaclu € X, I', coversvoc(g). Letg € '™ ando € TX* be such that
o € tw(o). Suppose further thdtis an interpretation for variables with respectdq andl

is the corresponding interpretation for variables w.&t. given byl(x) = 7 wheret < o' is

such that7] = |I(x)|, andI(X) = {I(x) | x € X}. Then

(1) o E1 ¢ iff 0 =5 t-S(@).
(2) If ¢ is a sentence, theh(¢) = tw(Lt-S(p)).
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Proof. (1) We prove the statement by induction on the structure. dfhe interesting cases
arep = Q,(x) andy = A(x, I).

Casep = Q,(x): We knowo =1 Q,(x) iff action(I(x)) = a. But sinces € tw(o), we
know that this holds iffl(x) = T(a, I) for somet andI such that(a, I) € I". This in turn
holds iff o =5 /4, 1yer, b0 Qeo.0)(¥)-

Casep = A(x, I): Leto =1 A(x, I). Then we know thal(x) = t(a, t) for somer, a,

t such thatr — time(z)) € I. Further, sincer € tw(c), we know thafl(x) = T(a, I') for
somel’ such that(a, I') € T, and(r — time(t)) € I'. Using the fact thal" is proper and
coversvoc(¢), and(r — time(t)) € I N I', it must be the case that C 1. Hence

G \/ Qa1 (¥).

(a,Iel, I'l

Conversely, let

= \/ Qa,1)(x).

(a,I")el’, I'CI

Then’]f(x) =7(a, I') for some(a, I') € T with I’ C I. Sinces € tw(o) it must be the case
thatll(x) = t(a, t) such thait — time(z)) € I'. Thus(t — time(z)) € I, and it follows that
o |=]1 A(x, I).

(2) This follows easily from (1) above. O

We now show how we can associate a formstip) € TMSO(X) with a formulap €
MSQO(I'), such that the translated formula preserves timed models. The fos#t(fa is
obtained by replacing atomic sub-formulasginf the form Q. (x) by the formula

Qq(x) N Ax, I).
Using arguments along the lines of the previous lemma, one can show that:

Lemma3. LetI" be a proper interval alphabet based &nand letp € MSO(T"). Leto € I'*®
ando € T such thatr € tw(c). Suppose further thdtis an interpretation for variables
w.r.t. o and letl be the corresponding interpretation w.et. Then

(1) o E1st(p) iff o = @.
(2) If ¢ is a sentence, then we hakés-t(@)) = tw(L(()). a

We can now prove theorem 3. L&tbe a regular interval language ovEr We observe
again that there exists a proper interval alphdbbased ork: and a regular subsétof '™
such thatl = tw(L) Biichi’'s theorem tells us that there exists an MEPsentencé such
that L(¢) = L. Hencel = tw(L(9)). Thus, by lemma 3, we have a TM$D)-sentence,
namelyp = s-1(¢), such thatL. = L(¢).

Conversely, lep be aTMS@X)-sentence. Then, using lemma 2, we know that there exists a
proper interval alphabét and a formuld = t-s(¢) in MSO(I"), such that (¢) = tw(L(9)).
Using Biichi's theorem once more, we are assured of an interval autombatuer I such
thatL,,,(A) = L(). ThusA is such that

L(A) = tw(Lsym(A) = tw(L(@)) = L(gp).
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4. Product interval automata

Product interval automata are essentially a network of interval automata. We have an alphabet
of actions which is distributed over locations. Each location runs an interval automaton over
its local alphabet. Communication takes place between these automata by enforcing that
locations synchronise on common actions.

We will need to set up some notation again. Pet= {1, 2, ... , k} be afinite set of agents,
or locations. AP-distributed alphabetis a family = {%;};c» where eacty; is a finite set of
actions. We seE = ;. %; and call it the global alphabet induced By The set of agents
that participate in each occurrence of the actiomill be denoted byioc(a) and is given by:
locta) ={i e P|a € %;}. _

Through the rest of this section we fix such a set of ageraisd aP-distributed alphabex .

Since we will be considering timed languages in a distributed setting, the assumption that
action occurrences in a timed word are separated by a non-zero amount of time is no longer
valid. Towards this end we re-define the notion of a timed word odéstabutedalphabet to
allow the simultaneous occurrenceinflependenactions. As the reader may guess, actions
a andb will be said to be independentifc(a) N loc(b) = .

DEFINITION 5

A timed wordo over ¥, is an element of= x R>%> such that:

() if T(a,r)(b, 1) is a prefix ofe thent < ¢’ (non-decreasing).
(i) if t(a,t)t'(b, 1) is a prefix ofo with ¢+ = ¢/, thenloc(a) N loc(b) = ¥ (simultaneous
actions must be independent).
(iii) if o is infinite, then for each € R>° there exists a prefix(a, t') of o such that < ¢’
(progressiveness).

We let TS* and TS denote the set of finite and infinite timed words o¥erespectively,
and setl’ ¥ = T¥* U TE?.

Leto € TS*. Thenoli is thei-projection ofo. It is the timed word oveE; obtained by
erasing fromy all appearances of letters of the fokm ¢) with a ¢ %;. It is easy to check

thatoli does indeed belong 6.
For a finite timed word, we will usetime; (t) to denote the time of occurrence of the last
i-action int. More formally:

DEFINITION 6
Lett € TS*. Thentime; (7) is given inductively by:

o time;(e) = 0.
o time;(t(a, 1)) =t if a € ¥;, and equalgime; (t) otherwise.

We are now ready to define product interval automata.

DEFINITION 7

A product interval automatoovery. is a structurdg{A;};cr, Qin), Where for each, A4; is a
structure(Q;, —;, F;, G;) where

e (; is afinite set of states
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e —; isafinite subset 00; x (X; x IR) x Q;
o F;, G; C Q; are, respectively, finitary and infinitary acceptance state sets.

Qin € Q= Q1 x---x QO lis asetof global initial states. -
Let A = ({A;}ier, Qin) be a product interval automaton overand leto € TX*. Then
arun of A overo is a mapp : prf(c) — Q such that

(1) ple) € Qin
(2) for each prefix (a, t) of o we have

(a) for eachi € loc(a), there exists a transitiop(t)[i] (L’IQ,» o(t(a, )[i] with (¢ —
time; (1)) € I.

(b) for eachi & loc(a) we haveo (t)[i] = p(z(a, ))[i].

Arun p of A ono is accepting iff for each € P either

(i) oliis finite andp()[i] € F; for any prefixr of o such thatli = oli, or
(i) ol is infinite andp(1)[i] € G; for infinitely manyz € prf (o).

We setL(A) to be the set of words iff > accepted byA (i.e. those on whichd has an
accepting run).

Notice that the component4; of A are interval automata oveél;, except that they have
no start states. The global initial states determine which combination of states the component
automata can start in. Thus, A are interval automata ovél; respectively, with eacll; =
(Qi, —i, 0%,. Fi, G, andQ;, € Q1 x - -+ x Ok, then we will often us&{A;}icp, Qin)
to denote the product interval automat@fs; };cr, Q:n), WhereB; = (Q;, —>;, F;, G;).

Example3. Figure 2 shows a product interval automaton over the distributed alpﬁabet
({a, b}, {b}). The language accepted by the automaton is:

LA ={(b,D(a,t')b,t")ye TE® | " —1 > 1}.
It is not difficult to argue (see D’Souza 2000a) tHatcannot be accepted by an interval

automaton over the alphabBt= {a, b}. m]
4 4
O O

(b, (0, 00)) (b, (0, 00))
O O

(a, (0, 00)) (b, (1, 00))

O O

(b, (0,00))

© Figure 2. A product interval automaton ovar =
{{a, b}, {b}}.
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4.1 Checking emptiness

We show how to simulate a product interval automaton using a tintetiiBautomaton. This
will then give us a way of checking emptiness for our automata, using the region construction
of Alur & Dill (1994).
Let L,4(A) denote the language of non-decreasing timed words accepted by a timed
automatonA. The region construction can be modified easily to accept the untiming of
Now let A = ({A;}ier, Qi) b€ a product interval automaton, with eadh= (Q;, —;
, Fi, G;). As afirst step we define a TB& with the property thaL ,;(B) N T = L(A).
Without loss of generality, we assume that each local finitary final state is “terminal” in the
sense that there are no outgoing edges from them. (This can be done by essentially making a
“terminal” copy of each finitary final state.) Defilte= (S, —, S;,., C, F, G) where:

e the setof states i$ = ([]'_, 0;) x {0, ..., k};
o the setof clocks i€ = {x; | i € P};

e its transition relation is given as follows. We hagg ) % (¢’, m) iff the following
conditions hold:

(1) X ={x; i € loc(a)},

(2) for eachi € loc(a) there exists transitiong[i] ﬂi),- q'[i] such thatg =
/\ielac(a)(xi €I,

(3) for eachi & loc(a), q[i] = q'[i],

(4) m=(I+2Dmodk + 1) if g'[]] € F; UG, orl = 0; otherwisen = I;

o the initial states are given b§;,, = Q,, x {0};
« the finitary final state¢ are given byF = ([T, F;) x {0, ... , k};
o the infinitary final states are given 6y = {(¢,/) € S |/ = 0}.

Itis not difficult to argue thaL,,(8) N TT® = L(A). _

Next we get rid of words irL,,4(B) which arenotin 7X. To do this we intersedt with
a TBA B’ which accepts precisely the langua@&>. 5’ will have a single clock, and its
set of states will bg0, 1}*. The clock is used to check whether an action is a zero-time one,
while the bits in the state keep track of the components which have already taken part in the
last stretch of zero-time actions.

Let B” be the TBA obtained by intersectifjands’. ThenB” is the TBA promised above,
with L,,;(B") = L(A).

Using the check for emptiness of the language accepted by TBA's outlined in § 2, we can
check if L (A) is empty or not.

We now analyse the time complexity of checking the emptines4 wvia this route. The
number of states and edgessfi are at most 2% times the number of global states and
edges of4. Thus the number of states 8 is at most

290 101,
and the number of edges is at most

200 |E|,
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where|Q| = []5_, 10;| and|E| = []*_, |E:|, with Q;, E; being the state and edge set of the
i-th component ofd. Further, the constants used in the clock constraints are the same as in
A, and the number of clocks is+ 1.

Thus, using the time bound obtained in § 2, the emptiness check tiakes time

k
1Z1-0(QI+|E]) - 2°0 -kt - Tt + D.
i=1
(The factor off | comes in as we need to examine the distributioR evhile generating the

global transition relation ofl.) A loose upper bound for the above expression can be seen to
be|x| - 2004"),

4.2 Product interval languages

We now give a characterisation of languages accepted by product interval automata in terms
of atimed version of the parallel composition operagot-or convenience, we will continue
to use the same symba@l to denote the timed version also. This characterisation plays an
important role in the subsequent sections.

Let L; € TX* for eachi e P. Then thedirect productof L, ..., L, written
®(L4, ..., L), Iis defined as:

®(L1,...,Ly) ={o € TE® | oli € L, for eachi € P).

LC TE®is aregular direct product interval Ianguagm/eri if L =®(Ly,..., L) for
some regular interval languagés over X;. Finally, we sayL. € T'X* is aregular product
interval languageover X if L is the finite union of regular direct product interval languages
overx.

The main result of this section is:

Theorem 4. LetL € TS*. ThenL is a regular product interval language ovér iff L is
accepted by a product interval automaton ower

We first prove a couple of intermediate results.

Lemmad. Let A = ({A;}ier, Q:n) be a product interval automaton ovél. Let Qin =
{g1,...,qm} for somem > 1. For j € {1,...,m} let A/ denote the product interval
automaton({A4;}icp, {g;}). Then

L= [J L.

je{l,....m}

Proof. Follows easily from the definition of the language accepted by a product interval
automaton. 0

Lemmab. Foreachi € Plet A; = (Q;, —, ’;n, F;, G;) be an interval automaton over
%;. Let A be the product interval automaton

{Ai}iep, O} x -+ x Q* ).
Then
L(A) = ®(L(A1), ..., L(A).
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Proof. We first show thatl.(A4) € ®(L(A1), ..., L(Ay)). Leto € L(A). Then we know
that there exists an accepting rgrof A ono. We can use to define, for eachh € P, a
run p; of the interval automatog; on oli. Further, eacly; is an accepting run ofl; onali.
This is again easy to verify given thats accepting. Thus!i € L(A;) for eachi, and hence
o€ ®(L(Ap), ..., L(AY).

Conversely, suppose € Q(L(Az), ..., L(Ay)). So there exist accepting rups of A;
oncli for eachi € P. Using thesep;'s we can piece together a rynof A on o, given
by: p(1)[i] = p;(zli). Again, it is routine to check that is indeed a run ofd ono, and is
accepting. O

Returning to the proof of theorem 4, suppose now thas a regular product interval
language oveE. Then there exist! € TE™ fori e Pandj € {1,... ,m} (m > 1) such
that eachL/ is a regular interval language ovEf and

L= |J ewl...Lp.
je(l,....m}

Since eacI'L{ is a regular interval language ovEy, there exist interval automatzaa,’ overy;
such thatL.(4/) = L. Let eachA! be of the form(Q!, —7, (Q:n)!, F/, G!). Now let 5;
denote the disjoint union of the automat, . .. , A" (viewed as labelled graphs). Let us use
(Bi, (Q:n)]) to denote the interval automaton with the underlying structug ahd(Q,,,)!

as the set of initial states. Then it is easy to see Al{#}, (Qm){) = L(A{). Thus we have

L= U m®Li ... L]
= Uje.m ®LBL (i) - » LB, (Qin)])
= Ujeq...m LUBYier. (Qin)] x -+ x (Qn)}) (using lemma §
= L({Bi}ier, Qin))

whereQin = U e . my(Qin)1 X -+ X (Qin);- This last step follows from lemma 4. Thus
L is accepted by a product interval automaton.
The converse direction follows in a similar manner. a
The fact that regular product interval languages are closed under union follows directly
from the definition of regular product interval languages. To show closure under intersection
and complementation, it is sufficient to show that these operations on reliygletrproduct
interval languages do not take us out of the class of regular product interval languages.
LetL = ®(Ly, ..., Ly) andM = Q(M,, ..., M) with eachL; andM; regular interval
languages ovex;, respectively. Thenitis easyto verify thah M = Q((L1NM3), ..., (LN
My)). This is once again a regular direct product interval language since regular interval
languages are closed under intersection.
_ Toshow that, = 7>* — L is a regular product interval language, note that we can write
L as

L=Jow.....w).
JEP
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where for each, j € P,

Wi — TEX —L;, ifi=j,
P TR, otherwise

Since eactW/ is a regular interval language,is a regular product interval language.
Thus, we have

Theorem 5. The class of regular product interval languages o¥iis closed under the
boolean operations of union, intersection, and complementation. a

Our aim now is to formulate a theory of Pl automata which mirrors the classical setting of
LTL and LTL®. This will help in setting up a verification theory/methodology in our setting.

5. Alogical characterisation

The logic TMSCP(S) captures the class of regular product interval Ianguages%.ver

The formulas in this logic comprise boolean combinations of TMSO assertions (cf. § 3)
about individual components. They are interpreted over timed wordsXv&n assertion
about the actions of componenis interpreted as a TMSQ;) sentence over the projection
of the word toX;. _

The formulas of TMSG(X) are given by the following syntax:

= (@) |~ l(@Ve)l(pAne)
where for each formuléx) (i) we requirex to be a sentence in TMSQ@;). The notation
(a) (i) is meant to indicate that the sentemcsomes from the logic TMS(E; ). We introduce
the operaton as a first class operator in the logic as a matter of convenience.
We note that the formulas in this logic are all sentences — i.e. they have no free variables.
A model for a TMS@N(E) sentence is a timed word IAX*°. For awords € TX* and
a sentence € TMSO®(X), the satisfaction relation = ¢ is given inductively as follows.

o = (@)@), Iiff oli =« (asaTMSQE;) formula),
o E —a, iff oo,

olE(@Vve), iff okEgoreolEg,

ocE(@Ay), ff ockEgando ¢

For a sentence € TMSO®(S) we setL(p) = {0 € TE® | o E ¢}

Theorem 6. LetL C Tioo.:[henL is a regular product interval language iff = L(p) for
some sentengg € TMSO®(X).

To prove this theorem we first observe a straightforward consequence of the semantics of
TMSO?(X).

PROPOSITION 1

For eachi in P, let ¢; be a sentence iITMSO(Z;). Consider theTMSO®(§) formula
((p) (D) A -+ A (@) (k). Then

L(p) (D) A - A@i) (k) = Q(L(¢1), - .., Lgi)).
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Now given a regular direct product interval langudge- ® (L, ... , Ly) we know from
theorem 3 that there exist sentenges TMSO(X;) such thatL(¢;) = L;. Using proposi-
tion 1, we have. ((p1) (D) A- - -A(@r)(k)) = L. Thusregular direct product interval languages
can be captured in our logic. Regular product interval languages are finite unions of regular
direct product interval languages, and hence can be captured usngfiegator in our logic.
Conversely, given a sentengen TMSO® (%), we can writep in disjunctive normal form
by first driving in negation symbols (note that(«)(i)) = (—«)(i)) and then distributing\
overv:

m 1 )
0=\ (\r)
j=1i=1

Here eachyij is of the form(x)(p), with « € TMSO(X,) for somep € P. Further, for
j=1...,mandp = 1,... k, let X; be the set of TMSCX,) sentences such that

y/ = («)(p) for somei. Let g} be the conjunction of formulas ik}, with the convention
that\ @ = T. Itis easy to verify that

m k
\ A\ B @Y.
j=1 p=1

From the semantics of it follows that

4

m k
L(p) = | JLN\BHP).
j=1 p=1
Once again, using proposition 1 we have:

Lp) = J@Ww®B), -, LBH)).

m
j=1

Since for eaclp € P, ﬁ,/; isaTMSQX,) sentence, we know thal(ﬁ,/;) is a regular interval
language oveE,. Thus, it follows thatL(¢) is a regular product interval language. O

6. Timed product-LTL

In this section we formulate a timed version of LTL called timed product-LTL and denoted
TLTL®. An important motivation for studying this logic is that it is expressively complete
(cf. 8 7), being expressively equivalent to the first-order fragment of the logic TRISO

TLTL® formulas comprise boolean combinations of assertions over individual components
in a timed logic called TLTL. It will be convenient to first study the satisfiability problem
for this logic. We will make use of this later to solve the satisfiability and model checking
problems for the logic TLTE.

6.1 TLTL over a single component

LetX be analphabet of actions. Then the formulas of T(X ). (parameterised by the alphabet
3) are given by:

pi=T|=p|(@Vve)llalp]|Op|(pUgp).
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Here we require € ¥ and/ € ZR.
The formulas of TLTIX) are interpreted over timed words ovEr In what follows,
o € TX*®, andr € TX* with t € prf (o).

o,TET,

o, T E —a, iff 0,1t~ «,

o,T=avp, Iff ot =ao0ro, tESf,

0,7 = {a, Da, iff 3r:1t(a,t) <o andr — time(tr) € I, ando, 1(a, ) E «,

0,7 E Ouq, iff 3t(a,r) <o witho,1(a,t) =a,

o, 7T =aUB, iff 35 e prf(o) with t <8, such thav, § = 8, and
Vy:it <y <4, 0,y Ec.

We sayo = ¢ iff 0, € = ¢. DefineL(¢) = {c € TE® | 0 = ¢}.

We mention here some of the standard abbreviations used in temporal logic. The formula
Ca (read as “futurex” or “eventually«”) is defined asda = TU« . Oa (“globally «”) is
defined asla = =O—a.

In the next theorem we give a construction of an interval automaton which accepts the
set of models of a given TLT(X) formula. The theorem is phrased so as to facilitate its
use in solving the satisfiability problem for TLPL The construction follows the classical
construction of Vardet al (1983).

We note here that a simpler route to follow would be to translate a given formula of(BL)T L
into an equivalent formula which mentions only intervals taken fropnoger interval set.

We can then use the classical construction to associate an appropriate interval automaton with
the given formula. However, this method could lead to an exponential blow-up in the size of
the translated formula. This blow-up is avoided in the method we adopt below.

Theorem 7. Let X be a non-empty set of formulas BETL (X). Then we can construct a
structureAy = (Q, —, F, G) (an interval automaton without start states) such that for
each non-empty subsEtof X there existgQ,,)¥ € Q such that

(1) LINY) = L(Ax, (Qin)}), where by(Ay, (Q:,)y) we mean the interval automaton
(0, —, ()%, F, G). Thus, by suitably choosing start states féx we can accept
exactly the models of the conjunction of a subset of formulas in

(2) The number of states ifly is at mos?Xvex ¢D

(3) The largest bound mentioned.ity is at most the largest bound mentioned in the formulas
in X.

Proof. LetZ be the set of intervals mentioned in the formulaXin_etZ’ be a proper interval
set coveringZ. Using a method similar to the one outlined§ 3 we carconstructZ’ such
that the size off’ is at most 2 |Z|, and the largest integer constant mentioned’irs the
largest integer constant mentionedzin

For a TLTL formulag, let sfc(¢) denote the subformula closureg@fFor a set of formulas
X we write sfc(X) to denote the sétJ,,_ sfe(a).

Define CL(X), the Fisher—Ladner closure of a set of formulggo be

CL(X) = SU{=a | & € S}

wheresS = sfc(X) U{O(aUB) | aUB € sfe(X)}.

It is easy to verify thafCL(X)| is linear in the size o,y ||

An atomof X is a maximal “propositionally” consistent subset Gf.(X). Formally, a
subsetd of CL(X) is an atom ofX iff,
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(1) f T € CL(X), thenT € A,

(2) Ya € CL(X), —a € A, iff o ¢ A (here we identify-—a with «),

(3) V(e vV B) € CL(X), (@ Vv B) € A, iff . € AorB € A,

(4) Y(aUB) € CL(X), (@UB) € A, iff B € A, or, botha, O(«UB) € A.

We can now define the automatdly . Take the set of stata3 to be the set of atoms d&f.

The transition relation— is given by the following rule. We havg @ B, iff each of the
following is satisfied:

Q) rez,
(2) if (b, I'a € A then,

@) b=a,
@iy INnI #0,
(i) « € B,
) if {(a, Na € CL(X)with I NI' @ andx € B, then(a, Ila € A,
(4) forall Ox € CL(X), Ox € A iff @ € B.

The set of finitary final stateB consists of atoms which have no “next-state” formulas —
i.e. formulas of the forma, I')a or O«.

For the infinitary final states it is convenient to make usegéeralizedBiichi condition.
A generalised Bchi condition is a familyg = {G4, ... , G,,} of subsets ofD. A run p on
a wordo is accepting according to this condition iff for evarge {1, ..., m}, there exist
infinitely many prefixes of o such thap(t) € G;. Such a condition can easily be converted
to a Buchi condition by including a O té counter in the states.

The generalized &chi condition here is given by = {G1,...,G,} wherem > 0
is the number of until formulas INCL(X), and theG;’s are given as follows. Let
{arUB1, ..., a,UB, } be the set of until formulas i@'L(X). Then for each € {1, ... ,m}
we defineG; = {A | ;UB; & AorB; € A}

Now let Y be a non-empty subset af, ¢ = A Y, and(Q;,)¥ = {A | Y C A}. We will
show thatL (¢) = L((Ax, (Qin)}))-

We first show thaL(¢) € L((Ax, (Q:)%)). Leto be amodel fop. Letp : prf(o) — QO
be given byp(t) = {@ € CL(X) | 0, T = a}. Itis routine to verify thap is an accepting run
of (Ax, (Qin)y) ONo.

Conversely, to argue th@t((Ay, (Q:,)3)) S L(p), we use the following claim.

Claim1. Leto € T=> and letp be an accepting run ¢fix, (Q.,)y) ono. Leta € CL(X).
Then for each € prf(o) we haver, t =« iff o € p(1).

This claim can be proved in the standard way by induction on the structare of O

Now given a timed word in L(Ayx, (Q.,)y ), We know there is an accepting rrof the
automaton onr. By definition of the set of initial stateg, € p(¢) for eacha € Y. By the
above claim, we have that € |= « for eachx € Y. Sincep = /\ Y, it follows thato, € = ¢
ando € L(p). O

6.2 Product-TLTL

We now give the syntax and semantics of TETILet T = {=;} be a distributed alphabet.
The syntax of the logic TLTE(X) is given by:

pr=(@0) =@ @re) | (@Ve),
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where, as in 8 5, we require 0p)(i) thati € P andg € TLTL(X;). Thus(p)(i) is an
arbitraryi-type formulap, tagged with the indek Once again we introduce as a first class
operator in the logic for convenience in working out proofs. The expressiveness of the logic
is unaffected even if we drop theoperator from the syntax.

Models for TLTL®(E) formulas are timed words i £. Let ¢ € TLTL®(E) and let
o € TE*. The satisfaction relation = ¢ is defined inductively as follows:

o = (p)i), iff oli =¢ (asaTLTLE;) formula),
o E g, iff o [~ o,

ok (@ny), iff o Egpando =g,

olE@Vve), iff oEgporoE=g.

Once again, we lek (¢) denote the sdb e TE® | o = ¢}

Exampled. The following formula over the distributed aIphaﬁEt: ({a, b}, {b}) describes
the languagd. of example 3.

((b, (0, 00)){a, (0, 00))(b, (0, 00)) T)(1) A ((b, (0, 00))(b, (1, 00)) T)(2).
From the semantis of TLTL®(§) the following isimmediate.
PROPOSITION 2
Letes, ..., ¢ be formulas inTLTL (1), ..., TLTL (Z) respectively. Then,
L)@ A - A @) (k) = &(L(¢1), ..., L(gk)).
0

We now show how we can associate with a given TETE) formula a product interval
automaton which recognises exactly the models of the formulag keTLTL® (). As done
for TMSO®(Z) in theorem 6, we can writ@ as

o= \/(/\oﬂ)

j=1i=

with eacha’ being of the form(y)(p) for somep € P andy e TLTL(X,). Further, for
j=1... mandp =1,...,kletX] bethesetop- typeformulas/ suchthatx’ ) (p)

for somei. Let ﬂ,, be the conjunctlon of formulas ik, with the convention thaf\ # = T.
Proceeding as in theorem 6 and making use of proposition 2, it follows that,

L(p) = [ J@W®B]), -+ LB))).
j=1
Now using theorem 7 we can construct for egeh= 1,...,k an interval automaton

Ax, (whereX, = Ji_ 1 X5 ), such that for each = 1,...,m the interval automaton
(Ax,» (Qi")?;) acceptsL(ﬂp). Using lemma 5 it follows that

L(p) = | LA, Yomrs (Qin) i X -+ % (Qm)xk)))
j=1 !
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Now note that the product interval automata
X X .
{Ax, Vet (Qun) s X X (Qun)y) fOr j =1, om
are the same except for the start states. It then follows easily that
L(p) = L(Ay),

where
Ay = (Ax, Yoo, Qi) 3t x -+ X (Qin) 1)
=1 1 k

Thus the satisfiability problem for TLTE can be solved as follows. Given a formula
¢ € TLTL®(X) we can generate the product interval automatgnand then check the
emptiness of4, as outlined in § 4.1.

To analyse the time complexity of checking satisfiabilitygpfnote that each component
Ay, of A, can be generated in timé& 2= 1 using theorem 7. Further, it is not difficult to

see thaf],_, 20aex, 12D — 209D Using these values in the time bounds obtained in § 4.1
we see that the satisfiability ¢fcan be decided in time

|z - 200¢D  20(®) | k1.
As regards the space complexity of satisfiability we have the following result.

Theorem 8. GivenS and a formulap € TLTL®(S), the problem of checking whetheris
satisfiable iPSPACEcomplete.

Proof. The satisfiability problem for LTL is known to be PSPACE-complete (Sistla & Clarke
1985). PSPACE-hardness for TL¥Ifollows easily by reducing the satisfiability problem for
LTL to the one-component case of TLPL

To show that the satisfiability check can be done in PSPACE, we argue equivalently that
it can be done non-deterministic PSPACE. Though the number of states in the region graph
R(A,) is exponential irjg| andk, it is an implicitly defined graph whose adjacency relation
can be checked in space polynomiglin+-| ] (see Alur & Dill 1994). Further, the emptiness
check boils down to a reachability check on _the region graph, which can be done non-
deterministically in space polynomial jp| and|Z|. O

Next suppose we consider a real-time progianmodelled by a product interval automaton
Ap,,and aformulg of TLTL®(X). ThenPris said to meet the specificationff L(Ap,) C
L(p). The model checking problem for TLFI(X) is to determine whethePr meets the
specificationp.

Theorem 9. The model checking problem fBtTL®(S) is PSPACEcomplete.

Proof. PSPACE-hardness follows from the fact that the satisfiability problem for FLTL
can be reduced to the model checking problem. This is because the question of whether
is satisfiable can be reduced to whetb&y,;, ¥~ —¢, where A, is a product interval
automaton which recognises the langudge™.

To see that the problem can be solved in PSPACE, we must check the emptiness of the
intersection of4 p, and.A-, in space polynomial ifdp, | + |¢|. This is a similar argument
to the one we have sketched for theorem 8 above. a
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7. Expressive completeness of TLTE

The aim of this section is to show that TL‘?@) is expressively equivalent to the first-order
fragment of TMS® (X). This is a standard way to measure the expressive power of a logic,
and the result we obtain here is along the lines of classical results concerning LTL (Kamp
1980; Gabbat al 1980; Henriksen & Thiagarajan 1997).

Let TFO(A) denote the first-order fragment of the logic TMS0. TFO(A) is obtained
from TMSO(A) by disallowing the use of quantification over set variables. The first-order
fragment of TMS® (%), denoted TFB(X) is obtained by taking boolean combinations of
the first-order fragment of TMSQ;) for eachi € P. Thus the syntax of TF&X) is given

by
=@ |-l (@Vel(@Ap)

where in each formuléx) (i), « is a sentence in TFCQ;).
We will first establish the result that TLTX) corresponds to TFCD).

Theorem 10. For any alphabe&, TLTL () is expressively equivalent T-O(%).

The method of proof will be to translate TLTL formulas into classical LTL over an appro-
priate interval alphabet. The method is similar to the proof of theorem 3 and we also make
use of the translation used there.

It is useful to first recall the result concerning the expressive completeness of LTA. Let
be an alphabet of actions. Let F&) denote the first-order fragment of the logic MGO.

As before, FQA) is obtained from the logic MSQ\) defined in 8§ 3, by disallowing the use
of set variables. Then a well known result due to the work of Kamp (1968), and Gabahy
(1980) is:

Theorem 11. LTL (A) is expressively equivalent EO(A).

Looking back at the syntax of TLT(X) formulas, we see that they are simply L{TD
formulas for some interval alphabEtbased onx. Of course, we must bear in mind that
TLTL (¥) formulas are interpreted ovémedwords overx. Thus, a formulay € LTL (T")
defines a languagg,,, (¢) € I'** when interpreted as an LTLC) formula, and it defines a
timed languagd. (¢) € T when interpreted as an TLTE) formula.

The following lemma describes the relationship between these two languages.

Lemma6. LetT" be a proper interval alphabet based @h Lety be a formula inLTL (T").
ThenL(‘P) = tw(Lsym(w))

Proof. The proof of this is very similar to our earlier arguments which make use of the
properties of proper interval sets. O

Returning now to the proof of theorem 10, {gte TLTL (¥). Then itis not difficult to see
that we can construct a proper interval alphdbbtaised ork such thal", coversvoc (¢g) for
eacha € X, and a formulap; € LTL (T") such thatl (¢g) = L(¢1). From lemma 6, we know
thatL(¢1) = tw(Lsym(¢1)). Now, by theorem 11, we know that there exists a sentepae
FO(T") such thatl (¢2) = Ly (¢1). Now consider the sentengg = s-t(¢,) w.r.t. the proper
interval alphaber" (cf. 8 3). The translations-t andt-s are such that if the given formula is
first-order, then so is the translated formula. Thuss a TFQ(X) sentence. Further, since



Product interval automata 203

is proper, by lemma 3 we know thét(gs) = tw(L(g,)). Thuses is the required TFCE)
sentence WithL (o) = L(¢3).

Conversely, lepg be a sentence in THQ). Then, once again, there exists a proper interval
alphabef™ based or such thaf", coversvoc(¢g) for eacha € . Consider the MSQ")
sentence; = t-s(pg) with respect to the interval alphaliét(cf. § 3). By lemma 2L (¢q) =
tw(L(¢1)). Further,¢; is a sentence in F@'). Now, again appealing to theorem 11, we
know that there exists an L) formulag, such that’,,,, (¢2) = L(¢1). By lemma 6, we
know thatL(¢2) = tw(Lsym(¢2)). Thusgs is the required formula in TLT{X) such that
L(¢2) = L(go). O

Using theorem 10 above, we can now prove:

Theorem 12. TLTL®(S) is expressively equivalent WO2 ().

Proof. Let ¢ € TLTL®(Z). We define a sentenden(e) in TMSO® () such thatL (¢) =

L(I-m(p)). The sentenckem(yp) is obtained by replacing each subformula of the f@ai)

in ¢ by the sentencé&’)(i) whered' is a sentence in TMS(;) which is equivalent to the

TLTL (¥;) formulacx. Note that the existence of sucha&ris guaranteed by Theorem 10. The

fact thatL(¢) = L(I-m(g)) now follows easily by inductive argument on the structure of
The converse direction is proved in a very similar way. O

8. Modelling asynchronous circuits

The aim of this section is to show that product interval automata are expressive enough
to model an important class of timed behaviours, namely that of asynchronous digital cir-
cuits. In Maler & Pnueli (1995) model the timing behaviour of circuits using a network of
timed automata that communicate via shared variables. Their model is based on the non-
deterministic inertial delay model for gates Brzozowski & Seger (1994). With this model as
our starting point, we describe the behaviour of a circuit using timed words (in contrast to the
signalsused by Maler & Pnueli 1995). We then show that for a given circuit, we can define a
product interval automaton which recognises the language of timed words generated by the
circuit.

8.1 The non-deterministic delay model

A k-wire circuit (see figure 3) is modelled as a tuple
x = (X, F, D, bo),

whereX = {x1,...,x} is a set of wiresF = {f1,..., fi} is a set of gates modelled as
functions from{0, 1}* to {0, 1}, andD = {(l1, u1), ... , (Ix, ux)} is a set of pairs of positive
integers {; could beco as a special case) with< u; for eachi. The pair(/;, u;) is meant to
model both thelelayand thelatencyof the gatef;. Delay and latency are often assumed to

be modelled by the same pair of values, and we follow the same assumption here. Roughly
speaking, a change in the input signal must hold for at lgasits of time for it to be reflected

in the output signal of the gate, and if a change holdsfamits of time, itmustbe reflected

in the output of the gate. This models the latency of the gate. Further, the amount of delay
for the gate to switch must again lie in the intervigl §;]. These notions will be formalised
below. The componeriy is an element of0, 1}*, and represents the initial values on the
wires of the circuit.
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1 S f3

[11, us] [[2, us] [/3, us]

Figure 3. A 3-wire circuit

Some simplifying assumptions have been made in this model. All gates are assumed to
be of fan-ink and all wires are fed into a gate as input. Further, inputs to the circuit need to
be modelled using the initial statg of the circuit, or asoT-gates within the circuit, with
suitable delay values.

Maler & Pnueli (1995) used infinitg0, 1}*-valued “signals” to describe the behaviour
of a circuit. In our framework, we use finite and infinite timed words over the alphabet

Y =

{0, 1}*. A signal with finitely many discontinuities can be represented as a finite timed

word (these are the so called “stable” signals). A signal with infinitely many discontinuities

can

be represented as an infinite timed word.

To begin with we will need the following notions.

Lett € TX*. We defineaction(t) (W.r.t. x) to bea if T = 1/'(a, t) for somer” andz,
and we setiction(e) = bg. This is the analogue of thgme function used earlier in the
paper.

Lets € {0, 1}*. The “hidden” value vector of will be denoted by:(s) and is given by
h(s)(i) = f;(s). For each, h(s)(i) will represent the value computed by gatevhich
may or may not be propagated to the output of the gate.

Lets € {0, 1}*. Thenezcited(s) is a subset of1, ... , k} given byi € excited(s) iff
s(i) # h(s)(i). We will say thats is i-excited ifi € ezcited(s), and we will say that
s is excited ifexcited(s) # @, Finally, we will sayt € TX* is excited (-excited) if
action(t) is excited (-excited).

Lets, s’ € {0, 1}*. Then we define

switches(s,s') ={i € {1,... ,k} | s'(0) # s@i)}.

These are the gates which have switched in going fraons’.

Fors, s’ e {0, 1} we defineqtoe(s, s') € {1, ..., k} given byi e qtoe(s, s') iff s’ is
i-excited and is noti-excited.qtoe is a mnemonic for “quiescent to excited.”
Similarly, i € etoq(s, s') iff s isi-excited and’ is noti-excited.

Letr € TX* andi be such that isi-excited. Let’ be the smallest prefix af such that

(1) ' isi-excited, and,

(2) For eacht” such thatr” < 7 < t we have that” is i-excited and further that
action(t")(i) = action(t) ().

Then we definetime; (t) = time(t’). Thusetime; (t) is defined when gateis excited

in 7, and it is the time at which gatelast became excited, without having switched in

between.

We define when a finite timed wotde T'X* isvalid (w.r.t. x), inductively on the length of
t. The empty word is valid. A word of the forme (a, ¢) is valid iff the following conditions
hold. Letaction(r) = b. Then
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(1) = must be valid.
(2) Foreach € {1,... ,k}, if i € switches(b, a) then we must have € ezcited(b). Thus,
for a gate to switch, it must be in an excited state.
(3) For each € switches(b, a) we must haver — etime; (1)) € [I;, u;].
(4) Supposeé € ezcited(b) andi ¢ switches(b, a). Then
(@) ifi & excited(a) (i.e. gate becomes quiescent) then we must h@ve etime; (1)) <
u;.
(b) ifi € excited(a) (i.e. gate remains excited) then also we must héve etime; (1)) <
u;.

We say an infinite timed word i ¢ is valid, iff every finite prefix of it is valid.

We now definel (x), the behaviour of the circuijt. For a finite wordr in TX* we have
Tt € L(y) iff tisvalid w.r.t. x andt is not excited. For an infinite worel € TX®, we have
o € L(y) iffitis valid w.r.t. to .

8.2 Modelling a circuit as a PIA

We now show how we can model the circyitis a product interval automatet), over the dis-
tributed alphabef’ with ¥’ € ¥ x X. This automaton has the property tii&td, ) = L(x),
modulo a (geometric) projection applied to the alphabet. Thus we héye = ¢(L(A,))
whereg is a substitution which maps actions of the fogims’) to s’

We define our distributed alphabEt as follows. The set of actions’ is the set of all
(s,s") € ¥ x T which satisfy:

(1) switches(s, s’y # @,
(2) i € switches(s, s") impliesi € excited(s).

We havek + 1 locations and the distribution &f’ over the locations is given by:
loc((s, s")) = {k + 1} U switches(s, s") U etoq(s, s') U qtoe(s, s).

(Note that we have no independent actions here sl € loc(a) for all a € X'. Hence
TS = T72'™)

The componentst;, fori = 1, ..., k, corresponds to thih gate. Thegk + 1)-th compo-
nent, A, 1, is free of any timing constraints and keeps track of the current vector of output
values of the circuit.

We define4, = ({A[}f-‘ill, Qi) with eachA; = (Q;, —;, F;, G;) given as follows:

e Fori e {1,...,k}, we have:

- Qi ={e. q},

— —>; is given by:

5,87, [l ui . . . . .
* e ((Y unu D e providedi € switches(s, s’) andi € ezcited(s’),

5,8, i ui . . . . .
- unu b q providedi € switches(s, s’) andi & excited(s’),

,57),(0,u; . . . .
* e © S)—(>iu ) g providedi ¢ switches(s,s’) andi € etoq(s, s’),

5,57).(0, —
x g © i)ioo)) e provided:i € gtoe(s, s'),

- Fi ={q},
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- Gi = {ea CI},
e For A, 1 we have:

— Qi1 = {0, 1),
— —> 41 IS given by:

((t,1"),1) .
s —>iasiff s=1¢, 5=+, andl = (0, 00).

— Fiy1={s € Qg1 | excited(s) = @}.

= Gry1 = Okt1-
Finally, the set of initial state®,, is a singletong;,,} with ¢;,, = {(d4, ... , dk, bo)} where
foreachi € {1, ... ,k} d; = e, If by is i-excited, and; otherwise.

A couple of comments about the choice of components and their structure may be in order
here. The reader may ask why tftet+ 1)-th is required at all. The answer is that without this
component, each of the gate components would have to have access to the states of the other
components, and this would mean that they must take pawdryaction of the circuit. This
would destroy the role played by the clocks since they would all be reset with every action.
Once thgk + 1)-th component is there to take care of the valid consecution of actions in the
circuit, the gate components need only synchronise with the actions in which they switch, or
which affect their excited state. It is for this reason that we need the actions to be pairs which
tell us the state from which, and to which, the circuit switches.

Finally, one may wonder why the “excited” and “quiescent” states are needed for each gate
component. This is so that we can use the finitary accepting stategeject behaviours in
which a gate is excited continuously without ever switching.

It is not difficult to prove the correctness of the construction and the interested reader can
find the details in the work by D’Souza (2000a).

8.3 Properties expressed in TLPL

We list below some properties of circuits that we can specify in our logic TATL). Using
the model-checking algorithm of 8 6, one can automatically check whether a given circuit
satisfies these properties.

e The formulag below specifies that every possible behaviour of a circuit is eventually
stable.

o= \/ O, (0,00)T) (k+1.

excited(s')=0

e We can specify that gatealways switches withir/ time units of becoming excited.
This is specified by the formula

(Op1 = ¢2))(0),
if i & excited(bg), and by the formula
(Op1 = 92))(0) A (p3) (@),
if i € excited(bg), where
Y1 = \/ieezcited(s/)((sﬁ 5'),(0,00))T,
92 = Vyexla, (0,000 (Vcmitenesi.mn (@ 1), (0, d])T) (@),
93 = Vicswitchess.sn (5.5, 0,d])T.
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9. Conclusion

We have studied product interval automata, a subclass of timed automata which admit a clean
logical theory. Product interval automata are closed under boolean operations and admit a
logical characterisation via the monadic second order logic TRISO

We have also formulated a timed temporal logic called TETio reason about timed
behaviours captured by productinterval automata. We have solved the satisfiability and model-
checking problems by automata-theoretic means while establishing tight space complexity
bounds for these problems. This temporal logic turns out to be a natural one in the sense that
it is expressively complete; it has exactly the expressive power of the first order fragment
of TMSO®. These results parallel the results in the classical setting and lay the basis for a
similar verification methodology in a timed framework.

We have shown that despite their simple structure, product interval automata are expressive
enough to model animportant class of timed behaviours, namely that of asynchronous circuits.
Coupled with the fact that the simple distributed nature of product interval automata make
them amenable to efficient application of partial order methods for timed systems (Minea
1999), we expect that our methods will lead to efficient methods for analysing these circuits.

The expressive power of product interval automata can be increased by considering a
timed variant of asynchronous automata (Gastin & Petit 1992), called distributed interval
automata. A interesting fact is that the natural timed extension of “cellular” asynchronous
automata (Zielonka 1987) (which in the untimed setting are equal in expressive power to
asynchronous automata) are more powerful than distributed interval automata. In fact, cellular
interval automata are as expressive as the event recording automata @t Alui1994).

These results are detailed elsewhere (D’Souza & Thiagarajan 1999; D’Souza 2000a). Finally,
the techniques used here lead naturally to an unrestricted logical characterisation of event
recording automata (D’Souza 2000b).
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