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We study the conductance of three or more semi-infinite wires which meet at a junction. The
electrons in the wires are taken to interact weakly with each other through a short-range density-
density interaction, and they encounter a general scattering matrix at the junction. We derive the
renormalization group equations satisfied by the S-matrix, and we identify its fixed points and their
stabilities. The conductance between any pair of wires is then studied as a function of physical
parameters such as temperature. We discuss the possibility of observing the effects of junctions
in present day experiments, such as the four-terminal conductance of a quantum wire and crossed
quantum wires.
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I. INTRODUCTION

Recent advances in the fabrication of semiconductor
heterostructures have made it possible to study electronic
transport in a variety of geometries. Recent studies of
ballistic transport through a quantum wire (QW) have
brought out the important role played by both scatter-
ing centers and the interactions between the electrons
inside the QW. Theoretical studies using a renormaliza-
tion group (RG) analysis show that repulsive interactions
between electrons tend to increase the effective strength
of the scattering as one goes to longer distance scales [1];
experimentally, this leads to a decrease in the conduc-
tance as the temperature is reduced or the wire length is
increased [2]. Considerable effort has also gone into un-
derstanding the effects of (Fermi) leads [3], multiple im-
purities [4] and also contacts [5]. Motivated by the under-
standing of the effects of scattering in a one-dimensional
problem, we are led to address the following question in
this work: what is the effect of interactions between elec-
trons on the conductance of more complicated geometri-
cal structures such as three or more QWs meeting at a
junction? This problem has been studied before in Ref.
[6]; as explained below, our model differs from theirs in
certain ways, and our results are quite different. We will
show that for the case of weak interactions, the effects of
a junction (characterized by an arbitrary scattering ma-
trix S) on the conductance can be understood in great
detail by using a RG technique introduced in Ref. [7].
We will also complement this with a study of the effects
of certain special kinds of junctions for arbitrary electron
interaction to gain a more complete picture.

The plan of the paper is as follows. In Sec. II, we will
define a junction in terms of a scattering matrix, and we
will provide a microscopic lattice model of a junction. In

Sec. III, we will discuss an interacting theory of spinless
fermions in the presence of an S-matrix at the junction,
and we will enumerate some of the special S-matrices for
which the theory can be bosonized. Sec. IV will contain a
derivation of the RG equations for the junction S-matrix
for the case of weak interactions in the wires. In Sec. V,
we will study the fixed points of the RG equations and
their stabilities for the case of three wires meeting at a
junction. Wherever possible, we will compare our weak
interaction results with the exact results available from
bosonization. In Sec. VI, the results of the previous sec-
tion will be used to study the conductance of a three-wire
system as a function of the temperature in the vicinity
of one of the fixed points. In Sec. VII, we will con-
sider the temperature dependence of the four-terminal
conductance of a quantum wire (which is often studied
experimentally). In Sec. VIII, we will study the fixed
points and stabilities of the RG equations of a four-wire
system, and its four-terminal conductance. In Sec. IX,
we will briefly discuss how to extend the previous anal-
ysis to the case of spinful fermions. We will make some
concluding remarks (including a comparison of our model
to that given in Ref. [6]) in Sec. X.

II. A MODEL FOR THE JUNCTION

To study the problem, we first need a model for the
junction. Let us assume that N semi-infinite wires meet
at a junction. The wires are parameterized by coordi-
nates xi, i = 1, 2, ..., N . The junction is the point where
all the xi are simultaneously equal to 0. We adopt the
convention that each xi increases from 0 as one goes out-
wards from the junction along wire i. Let us denote the
incoming and outgoing one-electron wave functions on

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291540637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/cond-mat/0206259v1


wire i by ψIi(xi) and ψOi(xi) respectively (we are ignor-
ing the spin label σ for the moment); see Fig. 1. For a
given wave number k > 0, these wave functions are pro-
portional to the plane waves exp(−ikxi) and exp(ikxi).

x

Outgoing

Incoming

x = 0

FIG. 1. Picture of a single wire showing the incoming and
outgoing directions and the junction at x = 0.

The coefficients of the plane waves are related to each
other by a N ×N scattering matrix called S. Denoting
the incoming and outgoing wave functions at the junction
by the columns ψI(0) and ψO(0), we have the relation

ψO(0) = S ψI(0) . (1)

Clearly, S must be unitary. (If we want the system to be
invariant under time reversal, S must also be symmetric).
The diagonal entries of S are the reflection amplitudes
rii, while the off-diagonal entries are the transmission
amplitudes tij to go from wire j to wire i.

It is useful, though not necessary, to have in mind a
microscopic model of a junction with an unitary and sym-
metric S-matrix. A simple lattice model for this is shown
in Fig. 2 for the case of three wires labeled by i = 1, 2, 3.
The junction is the site labeled as 0, while the sites on
the wires have labels going from 1 to ∞. The electrons
hop from site to site with a hopping constant which is
−1 on all bonds except the 3 bonds which join the sites
labeled as 1 with the junction; on those three bonds, we
take the hopping constants to be the real numbers −ui.
In addition, we have a chemical potential λ at the junc-
tion, while the chemical potential on all the other sites is
0. The momenta of the electrons go from −π to π (tak-
ing the lattice spacing to be 1); the dispersion relation is
given by E = −2 cosk. Since the chemical potential is
zero at all sites except one, the system is at half-filling,
and the Fermi points lie at ±kF where kF = π/2. For
incoming momenta k close to kF , we find that the entries
of the S-matrix are given by

rii =
2u2

i

D
− 1 ,

tij =
2uiuj

D
,

where D =
3

∑

k=1

u2
k + iλ . (2)

This matrix is both unitary and symmetric, although it
is not the most general possible matrix with those prop-
erties.

3 2 1 0

1

2

3

1

2

3

1

2

3

FIG. 2. Picture of the lattice model for three wires meeting
at a junction.

III. TOMONAGA-LUTTINGER LIQUIDS

WITHOUT SPIN

Let us now discuss the fermion fields in some more de-
tail. We will consider a single wire for the moment, so
that the label i can be dropped. Since all low-energy and
long-wavelength processes are dominated by modes near
the Fermi points ±kF , let us write the second-quantized
field Ψ(x) (which implicitly contains both fermion anni-
hilation operators and wave functions) as

Ψ(x) = ΨI(x) e
−ikF x + ΨO(x) eikF x . (3)

Note that the fields ΨI and ΨO defined in Eq. (3) vary
slowly on the scale of the inverse Fermi momentum k−1

F ,
since we have separated out the rapidly varying functions
exp(±ikFx). We will henceforth use the notation ΨI

and ΨO for these slowly varying second-quantized fields,
rather than the incoming and outgoing fields defined ear-
lier. For these fields, we will only be interested in Fourier
components with momenta k which satisfy |k| << kF .
We can then make a linear approximation for the dis-
persion relations which take the form E = ±h̄vFk for
the fields ΨO and ΨI respectively, where vF is the Fermi
velocity. (For instance, for the lattice model discussed
above, vF = 2 sinkF ). We will also assume that the en-
tries of the S-matrix do not vary with k in the limited
range of momenta that we are interested in.

We now introduce a model for interactions between
electrons. Let us consider a short-range density-density
interaction of the form

Hint =
1

2

∫ ∫

dxdy ρ(x) V (x− y) ρ(y) , (4)

where V (x) is a real and even function of x, and the
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density ρ is given in terms of the fermion field as ρ(x) =
Ψ†(x)Ψ(x). Using Eq. (3), we find that

ρ(x) = Ψ†
IΨI + Ψ†

OΨO

+ Ψ†
IΨO ei2kF x + Ψ†

OΨI e
−i2kF x . (5)

We can now rewrite the interaction in Eq. (4) in a sim-
ple way if V (x) is so short-ranged that the arguments
x and y of the two density fields can be set equal to
each other wherever possible. [In doing so, we will be ig-
noring terms which have scaling dimension greater than
2, and are therefore irrelevant in the RG sense. We note
that the assumption of a short-ranged interaction is often
made in the context of the Tomonaga-Luttinger liquid
description of systems of interacting fermions in one di-
mension.] Using the anticommutation relations between
different fermion fields, we obtain

Hint = g2

∫

dx Ψ†
IΨIΨ

†
OΨO , (6)

where g2 is related to the Fourier transform of V (x) as
g2 = Ṽ (0) − Ṽ (2kF ). [Note that g2 is zero if V (x) is a
δ-function; so V (x) should have a finite range in order to
have an effect.] Thus the interaction depends on a single
parameter g2 on each wire. Different wires may have
different values of this parameter which we will denote by
g2i. For later use, we define the dimensionless constants

αi =
g2i

2πh̄vF
, (7)

where we assume that the velocity vF is the same on all
wires.

For many problems involving a Tomonaga-Luttinger
liquid, it is useful to bosonize the theory [8,9]. For spin-
less fermions, the bosonic theory is characterized by two
quantities, namely, the velocity of the bosonic excitations
v, and a dimensionless parameter K which is a measure
of the interactions between the fermions. (Typically, K
governs the exponents which appear in the power-law
fall-offs of various correlation functions in the theory).
For a model defined on the entire real line with the in-
teraction parameter g2 or α defined above, we find that
[8]

v = vF (1 − α2)1/2 ,

K =
(1 − α

1 + α

)1/2
. (8)

Thus K = 1 for noninteracting fermions, while K < 1 for
short-range repulsive interactions. For weak interactions,
we see that v = vF while K = 1−α to first order in α. In
this work, we will be interested in the case in which the
interactions are weak and repulsive, i.e., the parameters
αi are all positive and small.

Although bosonization is a very powerful technique, it
is not always possible to bosonize a system of interacting

fermions with boundaries. In particular, for our system
of interest, i.e., three or more semi-infinite wires meeting
at a junction with some arbitrary S-matrix defined at
that point, bosonization is a difficult task in general. The
reason is that although one can always find linear combi-
nations of the incoming and outgoing fermion fields which
unitarily diagonalize the S-matrix, the four-fermion in-
teractions in the bulk of the wires are generally not di-
agonal in terms of the same linear combinations. Con-
versely, the interactions in the bulk of the wires can be
bosonized, but it is then generally not clear what bound-
ary conditions should be imposed on the bosonic fields
at the junction.

However, it is possible to bosonize the system easily
for some special forms of the S-matrix at the junction.
For the case of three wires, there seem to be only six such
forms. These are as follows.
(a) Case I: Here |r11| = |r22| = |r33| = 1, and all the
other entries of the S-matrix are zero. This can be real-
ized by the lattice model of Fig. 2 if we take the limit
λ → ∞. This case corresponds to the three wires be-
ing disconnected from each other. Each wire can then
be bosonized by an unfolding technique described in Ref.
[9].
(b) Cases II-IV: In case II, |r33| = |t12| = |t21| = 1, and
all the other entries of S are zero. This can be realized by
our lattice model if we set u3 = λ = 0 and u1 = u2 6= 0.
This corresponds to wire 3 being disconnected from wires
1 and 2; the latter two have perfect transmission into each
other. Wire 3 can be bosonized as in case I, while wires 2
and 3 can be bosonized as a single infinite wire. Similarly,
there are two other cases, called cases III and IV, which
are obtained from case II by cyclically permuting the
three wires. We note that cases I - IV are all invariant
under time reversal, if we choose all the entries of the
S-matrix to be real.
(c) Cases V-VI: In case V, |t21| = |t32| = |t13| = 1, and
all the other entries of S are zero. No matter how the
phases of the three non-zero entries of S are chosen, this is
not invariant under time reversal. (Therefore it cannot
be realized by our lattice model for any choice of the
parameters ui, λ and kF ). This can be thought of as three
infinite wires with chiral fields; for instance, one such
wire is the incoming field along wire 1 which transmits
perfectly into the outgoing field along wire 2. Finally, we
have case VI obtained by time reversing case V; namely,
|t12| = |t23| = |t31| = 1, and all the other entries of S are
zero. Cases V and VI can both be bosonized.

Before ending this section, we would like to make some
remarks about the physical applicability of cases V and
VI. If we think of the three wires as having finite widths,
with the incoming and outgoing waves running along two
different edges of each wire, then the forms of the S-
matrices in cases V and VI are very similar to those de-
scribing the edge states of a quantum Hall system. How-
ever, the value of K in a quantum Hall system is fixed by
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the filling fraction of the (two-dimensional) bulk of the
system, not by the interaction between the edge states.
(In fact, the interactions between the states at the op-
posite edges of a quantum Hall system are often ignored
because of their spatial separation). In contrast to this,
our model of the Tomonaga-Luttinger liquids in the wires
and our derivation of the RG equations for the S-matrix
given below both depend on the short-range interaction
between the incoming and outgoing modes on each wire.
Hence the results obtained by us may not be applicable
to quantum Hall systems.

IV. RENORMALIZATION GROUP EQUATIONS

FOR THE S-MATRIX

Rather than employ bosonization to study the case of
an arbitrary S-matrix, we use an instructive and phys-
ically transparent method introduced in Ref. [7] to di-
rectly obtain RG equations for the entries of the S-matrix
in the presence of electron interactions (provided that the
interactions are weak). The basic idea of this method is
the following. In the presence of a non-zero reflection am-
plitude rii, the density of noninteracting fermions in wire
i has Friedel oscillations with wavenumber 2kF . When a
weak interaction is turned on, an electron scatters from
these oscillations by an amount proportional to the pa-
rameter αi. Yue et al use this idea to derive the RG
equations for an arbitrary S-matrix located at the junc-
tion of two semi-infinite wires. In the limits of both weak
scattering (r11 → 0) and strong scattering (|r11| → 1),
their results reduce to those known from bosonization
[1,9]. We will use the same idea for a junction of more
than two wires. Not surprisingly, we will find that the
results are much richer than those for two wires.

Let us briefly present the method of Yue et al. We
first derive the form of the density oscillations in one
particular wire given that there is a reflection coefficient
r for waves coming in along that wire. For a momentum
in the vicinity of kF , we can write the wave function in
the form

ψk(x) = e−i(k+kF )x + r ei(k+kF )x , (9)

where |k| << kF . In the ground state of the noninter-
acting system, the density is given by

< ρ(x) > =

∫ 0

−∞

dk

2π
ψ⋆

k(x)ψk(x) , (10)

where we have used the fact that only states with energy
less than EF (i.e., momenta less than kF ) are occupied,
and we have extended the lower limit to −∞ for con-
venience. (Alternatively, we can impose a cut-off at the
lower limit of the form exp(ǫk), and take the limit ǫ→ 0
at the end of the calculation). We then find that ρ has
a constant piece ρ0 (which can be eliminated by normal

ordering the density operator), and a x-dependent piece
given by

< ρ(x) > − ρ0 =
i

4πx
( r⋆ e−i2kF x − r ei2kF x ) .

(11)

Using the expression in (5), we see that the expectation

value < Ψ†
IΨI + Ψ†

OΨO > is a constant, while

< Ψ†
OΨI > =

ir⋆

4πx
,

< Ψ†
IΨO > = − ir

4πx
. (12)

Note that there is also a contribution to ρ(x) from the
waves transmitted from the other wires; however those
are independent of x and can be absorbed in ρ0. Thus
the Friedel oscillations Eq. (11) in a given wire only arise
from reflections within that wire.

Next we derive the reflection of the fermions from the
Friedel oscillations, using a Hartree-Fock decomposition
of the interaction in Eq. (6). The reflection is caused by
the following terms in the decomposition

Hint = − g2

∫ ∞

0

dx ( < Ψ†
OΨI > Ψ†

IΨO

+ < Ψ†
IΨO > Ψ†

OΨI ) ,

= − ig2
4π

∫ ∞

0

dx

x
(r⋆ Ψ†

IΨO − r Ψ†
OΨI) , (13)

where we have used (12) to write the second equation.
Now we can derive the amplitude to go from a given
incoming wave with momentum k to an outgoing wave
(or vice versa) under the action of exp(−iHintt). The
amplitude is given by

−i
∫

dk′

2π
2πδ(Ek − Ek′) |outgoing, k′ >

× < outgoing, k′| Hint |incoming, k >

= |outgoing, k >
ig2r

4πh̄vF

∫ ∞

0

dx

x
e−i2kx , (14)

where we have used Eq. (13), the dispersion relation
Ek = h̄vF k (so that δ(Ek − Ek′ ) = (1/h̄vF )δ(k − k′)),
and the wave functions exp(±ikx) of the outgoing and
incoming waves respectively. The integral over x in (14)
is divergent at the lower end; we therefore introduce a
short-distance cut-off d there. The amplitude in (14)
then reduces to

− αr

2
ln(kd) (15)

plus pieces which remain finite as kd → 0; we have used
Eq. (7) here. Similarly, the amplitude to go from an
outgoing wave to an incoming wave is given by

αr⋆

2
ln(kd) . (16)
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These reflections from the Friedel oscillations can then
be combined along with the S-matrix at the junction to
calculate the corrections to the S-matrix. For instance,
consider rii. To first order in the interaction parameters
αi, this gets corrections from the following processes. An
incoming wave on wire i can either (i) turn into an out-
going wire on the same wire with the amplitude in (15)
(with r replaced by rii in that expression), or (ii) get
reflected from the junction with amplitude rii thereby
turning into an outgoing wave, turn back into an incom-
ing wave according to (16), then get reflected again from
the junction, or (iii) transmit through the junction into
wire j (with j 6= i) with amplitude tji, turn from an out-
going wave to an incoming wave on wire j according to
(16) (with r replaced by rjj), then transmit back through
the junction to wire i with amplitude tij . The correction
to rii is therefore

drii = − Aiiln(kd) ,

where Aii = − 1

2
[ − αirii + αi|rii|2rii

+
∑

j 6=i

αjtijr
⋆
jjtji ] . (17)

Similarly, the transmission amplitude tji from wire i to
wire j can get corrections from the following processes.
The incoming wave on wire i can either (i) get reflected
from the junction with amplitude rii, turn back into an
incoming wave according to (16), and then transmit into
wire j with amplitude tji, or (ii) transmit into to wire
j first, turn into an incoming wave on wire j according
to (16), then get reflected from the junction with ampli-
tude rjj , or (iii) transmit into a wire k (with k 6= i, j),
turn into an incoming wave in wire k according to (16)
(with r replaced by rkk), then transmit into wire j with
amplitude tjk. Hence the correction to tji is

dtji = − Ajiln(kd) ,

where Aji = − 1

2
[ αitji|rii|2 + αj |rjj |2tji

+
∑

k 6=i,j

αktjkr
⋆
kktki ] . (18)

Yue et al then derive the RG equations for the S-matrix
which is now considered to be a function of a distance
scale L; they show that −ln(kd) in Eqs. (17-18) can
effectively be replaced by dl, where l = ln(L/d). The RG
equations therefore take the from

drii
dl

= Aii ,

dtij
dl

= Aij , (19)

where Aii and Aij are given above. We can write Eqs.
(19) in a simpler way. Given the matrix S and the pa-
rameters αi (which do not flow under RG), we can define
a diagonal matrix F whose entries are

Fii = − 1

2
αirii . (20)

Then the RG equations can be written in the matrix form

dS

dl
= SF †S − F . (21)

This is the central result of our work. One can verify
from (21) that S continues to remain unitary under the
RG flow; it also remains symmetric if it begins with a
symmetric form.

We note also that the form of (21) remains unchanged
if S is multiplied either from the left or from the right by
a diagonal unitary matrix with entries of the form

Uii = eiφi , (22)

where the real numbers φi are independent of the length
parameter l. The fixed points discussed below will there-
fore also remain unchanged under such phase transfor-
mations. We will generally not distinguish between S-
matrices which differ only by such transformations.

V. FIXED POINTS AND STABILITY ANALYSIS

We will now study the RG flow in some detail. We will
consider the case of three wires for convenience, although
much of the discussion below can be generalized to more
than three wires. Let us first find the fixed points of Eq.
(21). The required condition is that SF † = FS†, i.e.,
that SF † is hermitian. It is easy to see that the six cases
I - VI considered above are all fixed points of the RG. In
addition, there is another fixed point which we will call
case VII. For the physically interesting situation in which
all the αi are positive, this case is described as follows.
We first define a quantity a as

a =
1

∑3
i=1 α−1

i

. (23)

Then the fixed point S-matrix has the entries

rii = − a

αi
for all i ,

tij =

√

(1 − a

αi
)(1 − a

αj
) for all i, j . (24)

It is possible to obtain a family of fixed points related
to the above by multiplying the various amplitudes by
some phases as discussed in Eq. (22). However, we will
mainly consider the above form of case VII for simplicity.
Note that for the case of equal interactions in the three
wires (i.e., all the αi equal to each other), and λ = 0,
the fixed point is a well-known S-matrix whose entries
are rii = −1/3 for all i, and tij = 2/3 for all i, j. This is
symmetric under all possible permutations of the three
wires, and has the maximum transmission (in all channels
simultaneously) allowed by unitarity.
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Having found the fixed points of the RG equations, we
can study their stabilities. Let us write a fixed point of
the S-matrix as S0, and a small deviation from this as the
matrix ǫS1, where ǫ is a small real parameter. Given S0,
we are interested in finding the various flow ‘directions’
S1 such that Eq. (21) takes the simple form

dǫ

dl
= µǫ , (25)

where µ is a real number. The solution of this equation is
ǫ(l) = ǫ(0) exp(µl), where ǫ(0) is given by the deviation
of the S-matrix from S0 at the microscopic (e.g., lattice)
scale. Thus µ < 0 indicates that S is stable against a
perturbation in the direction of the corresponding S1,
while µ > 0 indicates an instability in the direction of
the corresponding S1. We now consider the various fixed
points in turn. [All the fixed points have directions in
which µ = 0 corresponding to the phase rotations of the
S-matrix described in Eq. (22). We will ignore these
directions in the following discussion.]
(a) Case I: This turns out to be stable against pertur-
bations in all directions. There are three directions in
which µ takes the values −(α1 + α2)/2, −(α2 + α3)/2,
and −(α1 + α3)/2 respectively. These are negative since
we are assuming that the interactions in all the wires are
repulsive. Note that this result agrees, to first order in
the αi, with the exact results one obtains from bosoniza-
tion. The operator which tunnels a particle from wire 1
to wire 2 has the scaling dimension (K1 +K2)/(2K1K2).
For weak interactions, this is equal to 1 + (α1 + α2)/2.
Under a RG flow, therefore, the coefficient of the tunnel-
ing operator satisfies Eq. (25) with µ = −(α1 + α2)/2.
(b) Cases II-IV: Case II has two stable directions, both
with µ = −α3/2 (these correspond to tunneling from wire
3 to wire 1 or wire 2), and one unstable direction with
µ = (α1+α2)/2 corresponding to reflection between wires
1 and 2. These results also agree, to first order in the αi,
with those obtained from bosonization. For tunneling
from wire 3 to wire 1, the operator has the dimension
1/(2K3) + (K1 + 1/K1)/4; this is equal to 1 + α3/2 to
first order in the αi, and therefore gives µ = −α3/2. A
weak reflection between wires 1 and 2 has the dimension
(K1 + K2)/2 which is equal to 1 − (α1 + α2)/2 to first
order. This gives a flow with µ = (α1 +α2)/2 which goes
in the direction of case I. The RG flows in cases III and
IV can be worked out similarly.
(c) Cases V-VI: Case V has three unstable directions with
µ = α1/2, α2/2 and α3/2 respectively. The three direc-
tions give flows towards cases II, III and IV. However,
if we start out with an appropriate linear combination
of the three directions, we can flow directly to case I.
Similarly, one can work out the flows for case VI.
(d) Case VII: The stability of flows near this fixed point
appears to be difficult to study in general. However, the
case of equal interactions, α1 = α2 = α3 = α, can be
studied more easily. It has one unstable direction with

µ = α which flows in the direction of case I (this is dis-
cussed further in Eq. (35) below), and two unstable di-
rections with µ = 2α/3 which flow towards one of the
four cases I - IV depending on the precise choice of the
initial direction. Further, for appropriately chosen direc-
tions of the initial flow, one can go from cases V and VI
to case VII. Near case VII, these correspond to two stable
directions with µ = −α.

(0,1,0)
(1/9,1/9,1/9)

(0,0,1)

(0,0,0) (1,0,0)

(1,1,1)

FIG. 3. Schematic diagram of the various time-reversal in-
variant fixed points for the 3-wire junction problem. Cases
I-IV and VII are indicated as (1,1,1), (0,0,1), (0,1,0), (1,0,0)
and (1/9,1/9,1/9), where the sets of three numbers denote
the modulus squared of the diagonal entries of the respective
S-matrices. RG flows between the various fixed points are
indicated by the arrows.

Based on the above, we can state the flow diagram in
the space of all S-matrices as follows. In general, case I
is the most stable. Cases II, III and IV are only unstable
to a flow towards case I. Cases V and VI are unstable to
flows towards cases I - IV. Finally, for the case of equal in-
teractions αi, case VII is unstable to flow towards cases
I - IV, and cases V and VI are also unstable to a flow
towards case VII (if one starts out in the appropriate di-
rection). We have verified this flow diagram numerically
by starting from a number of S-matrices close to the vari-
ous fixed points and letting them evolve according to Eq.
(21).

We thus see that the flow diagram for the case of 3
wires (with repulsive interactions on all the wires) is
much richer than in the case of two wires. In the lat-
ter case, there are only two fixed points, a stable one at
|r11| = |r22| = 1 (two disconnected wires), and an un-
stable one at |t12| = |t21| = 1 (a perfectly transmitting
wire). The RG flow simply goes from the first point to
the second [1,9].
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VI. CONDUCTANCE OF A THREE-WIRE

SYSTEM

Having studied the S-matrix for a three-wire system
as a function of the RG distance scale l, we can now dis-
cuss the conductance of this system. We will assume that
the three wires, instead of being really semi-infinite, are
connected to three Fermi liquid leads (with the interac-
tion parameter being given by K = 1) at a large distance
from the junction. We will also assume that there is only
one transverse channel of spinless fermions in each wire;
in this band, there is a resistance of e2/h at the con-
tacts between the leads and the wires [10]. Although the
contacts can themselves scatter the fermions [5], we will
ignore such effects here.

We take the fermions in all the leads to have the same
Fermi energy EF , and the net current on all wires to
be zero in the absence of any applied voltage on the
leads. Now suppose that the voltage is changed by a
small amount Vi on lead i. Then the net current flowing
out of wire i will satisfy the linear relationship [11,10]

Ii =
e2

h

3
∑

j=1

TijVj , (26)

where the Tij (for i 6= j) define the various transmission
probabilities, and Tii + 1 denote the reflection probabil-
ities. These are related to the S-matrix at the junction
as follows

Tij = |tij |2 for i 6= j ,

and Tii = |rii|2 − 1 . (27)

Since the unitarity of the S-matrix implies that

|rii|2 +
∑

j 6=i

|tij |2 = 1 , (28)

we see from (26) that the currents Ij do not change if all
the voltages Vi are changed by the same amount. When
a small voltage Vi is applied on lead i in addition to
the Fermi energy, it increases the number of incoming
fermions on that lead by an amount given by eVi times
the density of states in energy per unit length. For nonin-
teracting spinless fermions in one dimension, the density
of states in a continuum theory is given by

ρ(EF ) =
1

2πh̄vF
, (29)

where vF is the Fermi velocity. We assume this expres-
sion for ρ(EF ) to be the same on all leads. In the absence
of any scattering from the contact i or from impurities
inside wire i, these fermions will travel ballistically to-
wards the junction where they will be either reflected
back or transmitted to one of the other two wires. Follow-
ing that, the fermions again travel ballistically till they

emerge from one of the three wires. The outgoing cur-
rents are therefore given by evF times the extra number
of electrons coming in on wire i times the appropriate
transmission coefficients on the other two wires and the
reflection coefficient (subtracted from the incoming cur-
rent) on wire i.

We can now compute the conductance by setting, say,
wire 3 to be the potential probe, i.e., I3 = 0 [11]. Then,
using the set of equations (26)-(28) given above, the cor-
responding three-terminal relations are found to be

G12,13 =
I1

V1 − V3
=
e2

h
(T12 + T13 +

T12T13

T32
) , (30)

G12,23 =
I1

V2 − V3
=
e2

h
(T12 + T32 +

T12T32

T13
) , (31)

where I1 = −I2, and the two-terminal conductance is
given by

G12,12 =
I1

V1 − V2
=
e2

h
(T12 +

T13T32

T13 + T32
) . (32)

In the above conductance expressions, we have employed
the standard convention for specifying the current (first
pair of indices) and voltage (second pair of indices) leads.
It is worth noting the incoherence introduced in G12,12

through the non-zero transmissions of carriers T13 and
T32 into the additional arm (here, wire 3). The conduc-
tances given in Eqs. (31) and (32) will flow under RG
following Eq. (21). Let us begin with some S-matrix at
a microscopic distance scale d (such as the spacing be-
tween the sites in a lattice model). The RG flow in (21)
is valid till the logarithmic length scale reaches a physi-
cal long-distance cut-off. The appropriate cut-off in this
problem is the smaller of the scales ln(Li/d) (where Li

is the length of wire i from the junction to its lead) and
ln(LT /d), where

LT =
h̄vF

kBT
, (33)

with T being the temperature [5]. For simplicity, let us
consider the case of high temperature where LT is smaller
than all the wire lengths Li, but larger than the micro-
scopic length d. Then the RG flow has to be stopped
at the scale lT = ln(LT /d) since there is no phase co-
herence at distance scales larger than this. Now let us
suppose that at the microscopic level, the S-matrix devi-
ates slightly from a fixed point S0 by an amount ǫ(0)S1,
where S1 is an unstable direction with µ > 0. Then at
the scale lT , the deviation is given by

dS(lT ) =
(LT

d

)µ
ǫ(0)S1 . (34)

We thus see that the deviations from S0 will grow as 1/T µ

as the temperature decreases. Of course, this is only true
as long as the deviation is not too large, since Eq. (25)
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is only valid to first order in ǫ. These power-law depen-
dences of the conductances on the temperature should be
observable experimentally if a three-wire system can be
fabricated.

As a specific example, consider case VII in which S0

has rii = −1/3 and tij = 2/3. If all the interactions are
equal, with αi = α, we saw above that this is unstable to
a perturbation towards case I (three disconnected wires)
with µ = α. The small deviation which takes case VII
towards case I is given by

dS =





i4ǫ− 3ǫ2 iǫ− 15ǫ2/2 iǫ− 15ǫ2/2
iǫ− 15ǫ2/2 i4ǫ− 3ǫ2 iǫ− 15ǫ2/2
iǫ− 15ǫ2/2 iǫ− 15ǫ2/2 i4ǫ− 3ǫ2



 (35)

to second order in the real parameter ǫ. We have gone
up to second order so as to calculate the correction to Tij

which only begins at that order. Namely, tij = 2/3+ iǫ−
15ǫ2/2, which gives Tij = 4/9 − 9ǫ2. Since µ = α, the
deviation of Tij from 4/9 will grow as ǫ2 ∼ 1/T 2α as the
temperature is reduced. For example, the two-terminal
conductance in this case will be

GV II
12,12 =

e2

h
(
2

3
− 27

2
c1T

−2α) , (36)

where c1 is some constant, while the three-terminal con-
ductances for this case are identical and are given by

GV II
12,13 =

e2

h
(
4

3
− 27c1T

−2α) ≃ 2GV II
12,12 (37)

Thus the power-law dependence on T can provide infor-
mation on the strength of the interaction α.

VII. FOUR-TERMINAL CONDUCTANCE OF A

QUANTUM WIRE

We consider here the case of the four-terminal con-
ductance of a quantum wire of finite length L mea-
sured at high temperatures such that the thermal length
LT (= h̄vF /kBT ) > l.

The quantum wire is connected to two reservoirs 1
and 2 which act as current probes. In addition, the
quantum wire is also weakly coupled to two voltage
probes 3 and 4 via identical barriers with tunneling am-
plitudes δ ≪ 1. We consider the current and voltage
probes to be semi-infinite, two-dimensional electron gas
(2DEG) Fermi liquid reservoirs; these can be modeled
as Tomonaga-Luttinger leads with interaction parame-
ter KL = 1, i.e., in our case of very weak interactions,
αL = 0. The quantum wire is itself modeled as a TLL
with weak repulsive interactions characterized by a pa-
rameter αW . We can now see that this case is akin to
that of a system of two 3-wire junctions with a common
arm (of finite length L and with L ≪ LT ). Further, one
arm in each of the two 3-wire junctions is coupled to the
other two through a weak tunneling amplitude; this case

1 2

43

L

δ δ

FIG. 4. Schematic diagram of a quantum wire of length L

(grey shaded region) connected to the two current probes (1
and 2) and two voltage probes (3 and 4). The voltage probes
are very weakly coupled to the quantum wire via tunneling
barriers of amplitude δ ≪ 1 (black shaded regions).

thus falls somewhere between the fixed point I and any
one of the fixed points II-IV discussed earlier.

Following the analysis of Ref. [11], we can write the
four-terminal conductance of this system as

G12,34 =
e2

h
T12

(T31 + T32)(T41 + T42)

T31T42 − T32T41
(38)

where Tij stands, as usual, for the transmission from lead
i to lead j. As transmission from lead 1 to lead 2 can
take place through paths which never cross any of the
two tunneling barriers, we can write (to lowest order in δ)

T12 = T
(0)
12 . Transmission from lead 3 to lead 1 can take

place, to lowest order in δ, through a path that crosses

one tunneling barrier; this gives T31 = δT
(1)
31 , where T

(1)
31

is a positive number of order 1. Similarly, even the sim-
plest path from lead 3 to lead 4 needs the crossing of two

barriers, giving T34 = δ2T
(2)
34 . Thus, keeping only terms

till order δ2, we can write G12,34 as

G12,34 =
e2

h
T

(0)
12

(T
(1)
31 + T

(1)
32 )(T

(1)
41 + T

(1)
42 )

T
(1)
31 T

(1)
42 − T

(1)
32 T

(1)
41

(39)

The four-terminal resistance R12,34 = 1/G12,34 lies in

the range −h/(e2 T (0)
12 ) ≤ R12,34 ≤ h/(e2 T

(0)
12 ). The RG

flow of the tunneling barriers δ will take place as given
earlier, but with a parameter µ which is dependent on
the interaction parameter of the quantum wire αW (note
that αL = 0 for all the four probes). Now, as we have
identical barriers connecting two identical voltage probes
3 and 4 to the quantum wire, the various wire-voltage

probe transmissions, such as T
(1)
31 , T

(1)
32 , T

(1)
41 and T

(1)
42 , will

have identical power-law dependences on the tempera-
ture. Thus, in the expression (39) given above, the only
temperature dependence of G12,34 will come from the RG

flow of the transmission T
(0)
12 , since all the temperature

dependences coming from the wire-voltage probe trans-
missions will cancel out. Further, as the two-terminal

conductance G12,12 ∼ (e2/h) T
(0)
12 to lowest order in δ,
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we can see that the temperature dependences of G12,12

and G12,34 are identical!
In a recent experiment [12], Picciotto et al. measured

both the two-terminal resistance R12,12 (= 1/G12,12) as
well as the four-terminal resistance R12,34 of a cleaved-
edge overgrowth quantum wire in a GaAs-AlGaAs het-
erojunction using two weakly coupled voltage probes.
They found that while R12,12 is quantized in integer
multiples of h/2e2, R12,34 fluctuated above and be-
low zero and finally vanished as the gate voltage was
made less negative. R12,34 fluctuates about zero be-
cause its value depends critically on the invasive na-
ture of the probes (i.e., on the precise values of the

transmissions T
(1)
31 , T

(1)
32 , T

(1)
41 and T

(1)
42 ), and the fact that

−h/(e2T (0)
12 ) ≤ R12,34 ≤ h/(e2T

(0)
12 ). The average value

of R12,34 vanishes due to the fact that the intrinsic resis-
tance of a quantum wire without any defects or impurities
comes from its connections to the 2DEG reservoirs, i.e.,
the so-called contact resistances [12]. Our prediction of
the identical power-law variations of G12,12 and G12,34

with temperature can also be tested in such an experi-
ment by taking measurements of the two conductances at
various temperatures but at a fixed value of the gate volt-
age (this holds the values of the various transmissions Tij

fixed at the microscopic level, and their observed values
will vary with the temperature through the RG equa-
tions).

VIII. ANALYSIS OF A FOUR-WIRE SYSTEM

We can carry out a similar analysis of the fixed points
and the conductance for a system of four wires meeting at
a junction. In this section, we will assume for simplicity
that the interaction parameters αi = α are equal on all
the wires.

Let us first consider the fixed points of the RG equa-
tions (21) for a four-wire system. To begin with, one
can readily identify 4! = 24 fixed points which are natu-
ral generalizations of the 3! = 6 fixed points (cases I-VI)
that we found above for the three-wire system. These
fixed points correspond to all the possible ways in which
each row (or column) of the S-matrix at the junction has
only one non-zero entry whose modulus is equal to 1. We
thus have the following possibilities.
(a) The simplest case is one in which all the four wires
are disconnected from each other. The S-matrix is then
diagonal, with all the diagonal entries having unit mod-
ulus.
(b) There are six cases in which two of the wires are
disconnected from all the others, while the remaining two
wires transmit perfectly into each other.
(c) There are three cases in which pairs of wires (say, 1,2
and 3,4) transmit perfectly into each other.
(d) There are eight cases in which one wire (say, wire 4) is
disconnected from the other three, while the other three

wires (1, 2 and 3) are connected to each other cyclically
as in Cases V and VI for the three-wire system.
(e) There are six cases in which the four wires transmit
perfectly into each other in a cyclical way, such as, 1 into
2, 2 into 3, 3 into 4, and 4 into 1.

We note that the 10 cases given in (a-c) are invariant
under time reversal if we choose all the entries of the S-
matrix to be real; these 10 cases allow bosonization to
be done. The 14 cases in (d-e) necessarily violate time-
reversal invariance; they can also be bosonized.

In addition to the 24 cases given above, there are 5
more fixed points of the RG equations. Four of these
correspond to situations in which one of the wires (say,
4) is disconnected from the other three, while the other
three wires (1, 2 and 3) have the completely symmetric
and maximally transmitting S-matrix of the form given
in Case VII above. The fifth case corresponds to the case
in which the four wires have a completely symmetric and
maximally transmitting S-matrix; the diagonal and off-
diagonal entires of this matrix are given by −1/2 and 1/2
respectively.

We thus have a total of 29 fixed points for a four-wire
system in contrast to 7 fixed points for the three-wire
system. In addition to these 29 cases, we will now see
that the four-wire system has some new classes of fixed
points which do not exist for systems with less than four
wires. Namely, there exist two-parameter families of fixed
points in the four-wire system. In contrast to these, the
fixed points of the two- and three-wire systems are all
isolated points, i.e., they have no variable parameters
(apart from some trivial phases).

Although we have not studied all the two-parameter
families of fixed points in the four-wire system, we can
exhibit some of these families explicitly. Two examples
are given by

S =









0 x1 iy1 0
x2 0 0 iy2
iy2 0 0 x2

0 iy1 x1 0









, (40)

where xi and yi are four real numbers satisfying the con-
straints x2

1 + y2
1 = x2

2 + y2
2 = 1, and

S =









0 x −y −z
x 0 −z y
−y z 0 x
z y x 0









, (41)

where x, y and z are three real numbers satisfying the
constraint x2 + y2 + z2 = 1. [It is easy to see that these
are fixed points of Eq. (21) since the diagonal matrix
F is equal to zero for these families]. Note that these
two families have some members in common which are
obtained by setting x1 = x2 = x, y1 = y2 = y and
z = 0, and then performing some phase transformations.
Further, these families include some of the fixed points
given earlier as special cases.
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The two-parameter families are fixed points of the RG
equations (21) which are only valid to first order in the
interaction parameter α. Do they remain fixed points if
we go to higher orders in α? One way to answer this
question is to use the technique of bosonization. As re-
marked earlier, it does not seem possible to bosonize an
interacting fermionic theory for all possible S-matrices.
Fortunately, the two-parameter families described above
contain some special points at which bosonization can be
done. For instance, consider the S-matrix

S =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, (42)

which corresponds to wires 1,2 (and wires 3,4) transmit-
ting perfectly into each other. We can bosonize this sys-
tem; for equal interaction strengths on all the wires, the
bosonic theory will have the same parameter K for all
wires. We then turn on small perturbations correspond-
ing to either y1, y2 in the family given in (40), or y, z
in the family given in (41). These correspond to hop-
ping at the junction between wire 1 (or 2) and wire 3
(or 4). All these hopping operators have the scaling di-
mension (K + 1/K)/2 which is necessarily larger than 1;
hence they are irrelevant, and the perturbed S-matrices
will therefore flow back to Eq. (42) under RG. For weak
interactions with K = 1 − α, we see that the scaling
dimension differs from 1 only at order α2 and higher,
which explains why these small perturbations look like
fixed points at order α.

We therefore conclude that the two-parameter families
given above are generally not fixed points of the exact
(i.e., to all orders in the interaction strengths) RG equa-
tions. Although we have shown this only in the vicinity
of some bosonizable points, it is plausible that this state-
ment will also be true for most other members of the
families. However, this does not rule out the possibil-
ity that there may be non-trivial and isolated members
of these families which are fixed points of the exact RG
equations. Let us present a plausible example of such
a non-trivial fixed point. We consider a one-parameter
family of S-matrices of the form

S =









0 x iy 0
x 0 0 iy
iy 0 0 x
0 iy x 0









, (43)

where x2 + y2 = 1 and 0 ≤ x, y ≤ 1. The two end-
points of this family given by (x, y) = (1, 0) and (0, 1)
are bosonizable because they consist of pairs of perfectly
transmitting wires (1,2 and 3,4 at the first point, and
1,3 and 2,4 at the second point) which transmit perfectly
into each other. Within this one-parameter family, the
bosonization approach discussed above shows that both

the end-points are stable, since small perturbations from
them (corresponding to turning on y1 = y2 in Eq. (40))
are irrelevant. The simplest possibility therefore is that
there is one unstable fixed point which lies between the
two end-points; since the interaction strengths in all the
wires are equal, this fixed point is likely to be at the
half-way point given by x = y = 1/

√
2. However, we

are unable to directly verify that this is an unstable fixed
point of the exact RG equations since this point does not
seem to be bosonizable.

To summarize, we see that the pattern of fixed points
and RG flows for a four-wire system is immensely more
complicated than those of two- and three-wire systems.
We do not have a complete classification of the fixed
points for a four-wire system. Some families of S-
matrices which appear to be fixed points at first order in
the interaction strengths turn out not to be fixed points
at higher orders.

We now turn to a discussion of the temperature depen-
dences of the conductance corrections. Our arguments
will be very similar to those given for a three-wire sys-
tem at the end of Sec. VI. We consider the vicinity of one
particular fixed point of the four-wire system, namely,
the completely symmetric and maximally transmitting
S-matrix. Let us perturb this in a completely symmetric
way, so that the entries of the S-matrix are given by

rii = − 1

2
+ i3ǫ − 3ǫ2 ,

tij =
1

2
+ iǫ − 5ǫ2 , (44)

to second order in the small real number ǫ. [This pertur-
bation will eventually lead to the situation in which all
the four wires are disconnected from each other]. Using
Eqs. (21), we find that the perturbation initially grows
as in Eq. (34) with µ = α. The arguments presented in
Sec. VI therefore imply that at high temperature, the
transmission probabilities Tij = 1/4−4ǫ2 vary with tem-
perature as

Tij =
1

4
− c2 T

−2α , (45)

where c2 is some constant.
We can also compute the four-terminal conductances

of this system by following the arguments of Ref. [11]
and those given in Sections VI and VII. For a set of
four probes {m n k l} (which will be a permutation of
{1 2 3 4}), we can write the relation between the cur-
rents Im = −In = I1, Ik = −Il = I2 and the voltages
V1 = (µm − µn)/e, V2 = (µk − µl)/e (where µi denotes
the chemical potential of the ith probe) as

(

I1
I2

)

=
e2

h

(

α11 −α12

α21 α22

) (

V1

V2

)

, (46)

where
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α11 = [(1 − T11)P − (T14 + T12)(T41 + T21)]/P ,

α12 = (T12T34 − T14T32)/P ,

α21 = (T21T43 − T41T23)/P ,

α22 = [(1 − T22)P − (T21 + T23)(T32 + T12)]/P ,

P = T12 + T14 + T32 + T34 = T21 + T41 + T23 + T43 .

(47)

The general expression for the four-terminal resistance
Rmn,kl = 1/Gmn,kl (which has six permutations) can
then be written as

Rmn,kl =
h

e2
TkmTln − TknTlm

D
, (48)

where D = (α11α22 − α12α21)/P . From here, we can
easily work out the four-terminal resistances for the case
of the completely symmetric and maximally transmit-
ting S-matrix (using Eq. (44)). In this case however,
as α12 = α21 = 0, all four-terminal resistances will sim-
ply give Rmn,kl = 0. This result is interesting for the
following reason: while all the four-terminal resistances
Rmn,kl vanish if the system is exactly at the fully sym-
metric fixed point, the above suggests that they continue
to stay zero as long as interactions are weak and the RG
flows of the various elements of the S-matrix take place
in a symmetric fashion. This means that in this case,
the various Rmn,kl will continue to be zero even as the
temperature is varied.

The other interesting (and experimentally relevant)
case for which conductances can be computed is that of
two crossed, perfectly transmitting quantum wires which
are connected via the tunneling of electrons at one point.
This point is characterized by the S-matrix given earlier
in Eq. (42). We have already seen that the hopping be-
tween the two wires is an irrelevant process. Further, we
can treat any small reflection in either of the two per-
fectly transmitting wires perturbatively; from the work
of Kane and Fisher [1], it is known that such perturba-
tions are relevant and will grow so as to cut the wires
(i.e., they flow under RG towards the perfectly reflecting
stable fixed point characterized by an S-matrix equal to
unity). Thus, there is nothing new to be found in the
computation of the conductances in this case.

Finally, we would like to mention the work of Komnik
and Egger on crossed quantum wires [13]. In addition to
the hopping operators considered above, they study the
effects of a density-density interaction between the two
wires at the point where they cross; they show that such
an interaction can have a non-trivial effect if the interac-
tions in the wires are sufficiently strong. However, such
strong interactions are beyond the purview of our anal-
ysis; for the case of weak interactions considered here,
such interactions are irrelevant.

IX. TOMONAGA-LUTTINGER LIQUIDS WITH

SPIN

It is not difficult to extend all the results above to the
case of interacting fermions with spin. Let us first discuss
the form of the interactions. We again begin with a short-
range interaction as in Eq. (4) where the density is now
a sum of the form

ρ = Ψ†
↑Ψ↑ + Ψ†

↓Ψ↓ . (49)

The second-quantized fields Ψ↑ and Ψ↓ have expansions
near the Fermi points of the form given in Eq. (3). (We
assume that there is no magnetic field, so that spin-↑ and
spin-↓ electrons have the same Fermi energy). Following
the arguments leading up to Eq. (6), we can show that

Hint =
∫

dx
∑

σ,σ′=↑,↓

[g1Ψ
†
IσΨ†

Oσ′ΨIσ′ΨOσ + g2Ψ
†
IσΨ†

Oσ′ΨOσ′ΨIσ

+
1

2
g4(Ψ

†
IσΨ†

Iσ′ΨIσ′ΨIσ + Ψ†
OσΨ†

Oσ′ΨOσ′ΨOσ)],

(50)

where

g1 = Ṽ (2kF ) ,

and g2 = g4 = Ṽ (0) . (51)

Yue et al show that the backscattering interaction gov-
erned by g1 leads to a logarithmic renormalization of the
interaction parameters g1 and g2 [7]; we will ignore that
effect here since it plays no role to first order in the gi. We
can also ignore the effects of the g4 term; it renormalizes
the velocity, but it does not contribute to the reflection
from the Friedel oscillations which is what leads to the
RG flow of the S-matrix.

If there is a non-zero reflection amplitude r on wire i,
then there will again be Friedel oscillations given by Eqs.
(11-12) for both spin-↑ and spin-↓ electrons. Then the
interactions will lead to scattering of incoming electrons
to outgoing electrons (and vice versa); this is given by
the following Hartree-Fock decomposition of (50),

Hint =

− i(g2 − 2g1)

4π

∫ ∞

0

dx [ r⋆ (Ψ†
I↑ΨO↑ + Ψ†

I↓ΨO↓)

− r (Ψ†
O↑ΨI↑ + Ψ†

O↓ΨI↓) ] .

(52)

(This may be compared with Eq. (13) for spinless
fermions). We see from Eq. (52) that the spin-↑ and
spin-↓ electrons have decoupled from each other in this
approximation. Hence the RG analysis given above for
spinless fermions will go through similarly here. The only
difference is that the interaction parameter α is now given
by
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α =
Ṽ (0) − 2Ṽ (2kF )

2πh̄vF
, (53)

instead of α = [Ṽ (0) − Ṽ (2kF )]/(2πh̄vF ) in the spinless
case. We thus see that to first order in the interaction,
the analysis remains essentially the same for spinless and
spinful fermions. Finally, the conductances have factors
of 2e2/h for spinful fermions in place of e2/h for spin-
less fermions but have similar temperature power-laws
dependent on the interaction parameter α defined above.
In fact, it should be possible to detect such power-laws in
existing 3-arm and 4-arm quantum wire systems built by
the voltage-gate patterning on the 2DEG in GaAs het-
erojunctions [14,15]. While the early experiments with
such systems focussed on carrier transport in the presence
of an external magnetic field and the effects of geome-
try [14], measuring the two-terminal, three-terminal and
four-terminal conductances for fixed values of the vari-
ous gate voltages but at different temperatures should
again reveal identical power-law variations as discussed
earlier for spinless fermions. In fact, similar studies using
the technique developed by Shepard etal. [15] for directly
measuring the transmission matrix elements of such junc-
tions should be able to show the temperature power-law
variations of the various transmission probabilities.

X. CONCLUSION

In this work, we have derived the RG equations for
a general S-matrix at the junction of several quantum
wires, and we have discussed the consequences of these
equations for the conductances across the system. The
RG flows are a result of interactions in the wires; there
is no flow if the interaction parameters αi are all zero.
Our results differ considerably from those of Ref. [6] who
find RG flows even in the absence of interactions in the
wires. This difference seems to be due to their model
of the junction; they have a spin-1/2 degree of freedom
sitting there which interacts with the electrons on the
wires. This gives rise to a nontrivial interacting model of
the Kondo type even if there are no interactions in the
wires. Their flow diagram is therefore quite different from
ours. Further, they only consider the case where both
the S-matrix and the interactions are symmetric under
all possible permutations of the wires; however they are
able to use bosonization to study the case of an arbitrary
interaction strength.

Our work can clearly be generalized to the case of more
than four wires meeting at a junction. The RG flow dia-
gram will rapidly get more complicated as the number of
wires increases. Physically, we expect the cases of three
and four wires to be the easiest to study; these two cases
arise in the experiments discussed earlier [14,15] as well
as in the cases of Y-branched carbon nanotubes [16] and
crossed carbon nanotubes [17].

Besides the restriction to weak interactions in the
wires, our work has the limitation that we have as-
sumed linear relations between the incoming and outgo-
ing fermion fields. In principle, other interesting things
can happen at a junction. For instance, there may be
Andreev reflection in which a fermion striking the junc-
tion from one wire is reflected back as a hole while two
fermions are transmitted into some of the other wires
[6]. Even more complicated things may occur for the
case of spinful fermions. Some of these phenomena can
be expressed as boundary conditions at the junction in
the bosonic language, but not in the fermionic language.
We expect that such bosonic boundary conditions will re-
quire a method of analysis which is very different from the
one which we have used to study the fermion S-matrix
in this paper.

Finally, it remains a challenging problem to see if some
of the non-trivial fixed points that we have found (such
as case VII for the three-wire case) can be bosonized for
arbitrary interaction strengths. Bosonizing such points
would lead to a much more complete picture of the RG
flows besides increasing our understanding of conformal
field theories with boundaries.
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