61

tal Environment for Access to Learning and Scholarship Re

provio

Miller and Welch

Construction and Test

Of a Slip Meter

Electrical Engineering

B. S.

1908

UNIVERSITY
OF OF

UNIVERSITY OF ILLINOIS LIBRARY

 $\begin{matrix} \text{{\tiny Class}} & \text{{\tiny Book}} \\ \text{{\tiny \textsf{490}}}& \text{{\tiny \textsf{100}}}\end{matrix} & \text{{\tiny \textsf{100}}}\end{matrix} \qquad \qquad \begin{matrix} \text{{\tiny \textsf{100}}}\\ \text{{\tiny \textsf{100}}}\end{matrix}$

My 08-15M

 $\label{eq:2} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$

 $\mathcal{A}=\mathcal{A}=\mathcal{A}$.

 $\mathcal{A}^{\mathcal{A}}$, and the set of \mathcal{A}

 $\mathcal{L}^{\text{max}}_{\text{max}}$

CONSTRUCTION AND TEST

OF A

SLIP METER

SLIP METER

SLIP METER

BY

CLARENCE BENWELL MILLER AND GEORGE RICHARD WELCH

> \mathcal{L} TH ESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

 $\mathbf{I} \mathbf{N}$

ELECTRICAL ENGINEERING

COLLEGE OF ENGINEERING UNIVERSITY OF ILLINOIS $\bar{\lambda}$.

 $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right)$

Contract Contract State

Contract Contract Contract

PRESENTED JUNE, 1908

1108 $10M$ UNIVERSITY OF ILLINOIS June 1, 190 8 THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY CLARENCE BENTELL MILLER and GEORGE RICHARD TELCH ENTITLED CONSTRUCTION AND TESTS OF A SLIPMETER IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Science in Electrical Engineering Ellery Flaire
Instructor in Charge. APPROVED: HEAD OF DEPARTMENT OF Electrical Engineering -14000

Digitized by the Internet Archive in 2013

http://archive.org/details/constructiontest00mill

SLIP METERS

Induction metors depend upon a retating magnetic field for the movement of the revolving part or rotor. The speed of this rotor is always lower than that of the rotating field. This is necessary in order that the lines of force may cut the rotor conductors and develope with in them the currents which will produce torque tending to aid the rotation. The difference in speed between that of the rotating field and that of the rotor is called the slip of the motor. Slip is usually measured in per cent of the speed of the rotating field or synchronous speed. Thus if the speed of the rotor was 1140 revolutions per minute and the speed of the rotating field was 1200 revolutions per minute then the slip would be 1200 - 1140 = 5 per cent. The slip of a given induction motor depends on the load of the motor and is directly proportional to it over the working range of the motor. At no load the motor runs almost synchronously but as the load increases the slip also increases and the motor runs more slowly and the induced currents become greater. When the load exceeds a certain fixed limit the motor stops.A device for measuring the amount of slip is called a slipmeter. It is the purpose of this thesis to investigate different types of slipmeters and to construct a meter which will automatically record the slip.

There are several forms of slipmeters but they all may be grouped under two general heads, the strobosconic and commutator types of slipmeters.

Stroboscopic slipmeters are meters which depend upon the peculiar faculty of the eye to keep a continuous impression when the frequency of flickering of the light exceeds a certain limit. A very simple slipmeter of this style is called a sectored-disk

slipmeter.This motor consists of a pasteboard disk A with white noctors E.B.E, etc., painted on it and mounted on the shaft of the induc-

tion motor which is to bo tested. The number of these aectors equals the number of roles of the motor. Light is thrown upon the disk from an alternating current arc lamp which receives its current from the same source as the motor. If the motor was revolving synchronously the sectors would appear station-

ary but since it revolves at a few per cent below synchronism the sectors appear to be slowly rotating in a direction opposite to that in which the shaft is turning. This phenomenon is explained by the fact that the light from the lamp is actually extinguished once during each alternation. When the disk is rotating synchronously each sector has just enough time during one alternation to get into the position of the preceeding sector. Therefore when the lamp lights again the observer notices no change in the position of the sector. Now if the rotor runs at less than synchronous speed the sectors have not enough time to move through one division and hence when the lamp lights up the sector is seemingly in a new position. This lagging occurs continuously and consequently the sectors appear to the eye to be moving slowly backward, but in reality they are revolving in the same direction as the shaft, The greater the slip of the motor the faster do the sectors anpear to rotate, Prom the number of apparent revolutions of the sectors the slip ray be obtained. For example , suppose that 160 sectors appear to have nassed before the eye in one minute when the speed of the rotor was 1705 revolutions per minute. Suppose the motor to be a four pole, 60 cycle machine. Now the motor skirped 100 alternations of the supply. Since the motor

has four poles it took $100 = 25$ slip revolutions to skip these 100 4 al tornations. Therefore the synchronous speed of the motor uquals $1765 + 25 = 1790$ revolutions per minute. and the alip equals. 2.5 1.30 per cont,

This meter is more applicable to low frequency and light loads than it is for high frequency and heavy loads, otherwise the sectors appear to pass before the eyes to rapidly to count. This meter is also deficient in that it does not automatically record the slip.

Another form of the stroboscopic slipmeter is the vibrating reed meter, This instrument consists of an alternating current electro magnet connected to some source of current and provided with a steel rod or roed near one of its ends.As alternating current flows

through the magnet the reed is set in synchronous vibration .The natural period cf the reed is made to Adjusting Weight. correspond to that of the supply current by means of a weight near one of its ends. A disk with a slot in it is placed uron the motor shaft and the observer looks at the vibrating reed through this

slot. If the rotor was running at synchronous speed the vibrating reed would not appear to change position at all because the observer would always see the reed at the same part of its vibration. But since the rotor lags behind synchronous speed the reed appears to be slowly moving up and down. The number of strokes per minute is proportional to the slip, This meter does not record the slip automatically, the movement of the reed would be hard to count at high fre-

quencios and heavy loads and the instrument must bo callbrated to get a constant by which to multiply the number of atrokes in orderto find the number of alternations skipped a minute.

The commutator style of slinmeter maybe used where many induction motoro must be tested regularly and where the stroboscopic slipmuter would be inapplicable. This slipmeter consists of a commutator with as many segments as the motor has poles. This commutator

is attached to an ordinary speed counter and pressed against the rotor shaft, while at the same time it is connectod electrically, through a resistance to the source of current. The commutator is also connected electrically to an ammeter as shown in the sketch above. If the rotor revolves at synchronous speed the impulse sent through point of the Sam e the commutator into the ammeter would always come on the alternating voltage wave, and the ammeter would show no indication. As the rotor lags however , these impulses are of various values and the needle of the ammeter swings at a speed equal to the difference between the synchronous speed and the speed of the rotor. For low frequencies

and light loads the number of swings may be counted and the slip calculated. Sometimos a polarized bell is used instead of the ammotor and the number of strokes rer minute counted. This slip metor can only be used satisfactorily with low frequencies and light loads.

In all of those meters the slip can be found with fair accuracy for motors of low frequency and light loads but they will mot operate successfully for high frequencies and heavy loads .Neither will any of these meters record the slip automatically. Those difficulties are overcome by the use of the Bianchi slipmeter a description of which follows.

The Bianchi slipmeter is a meter of the commutator type and consists, as shown by the sketch, of a revolving commutator D, which produces impulses which instead of being counted by an observer as they must be in most slip meters, are sent through an electro magnet M which actuates ^a ratchet and pawl recording mechanism ^q through the permanent magnet C.

M consists of strips of sheet iron held closely together. The number of revolutions of slip is thus recorded on the dial Z. The recording mechanism is driven by a spring and controlled by an escapement controlled by the magnet C.At the time the slip is recorded the number of revolutions per minute of the rotor is also shown on the dial Z. which consists of an ordinary speed counter to which is attached the commutator D.The operation of this meter is entirely automatic. The speed counter is pressed against the shaft of the motor at r and is held there for, say, one winute. The reading on the dial Z gives the actual speed of the rotor and the reading on dial Z gives the slip in revolutions per minute. If the two are added together the synchronous speed of the motor is obtained.

If we know the numbor of roles on the motor the frequency of the surply current from the alternator may be found. The meter may be connected to the line either between K and K or K and K according to what voltage the motor is being run on. If very high line voltages are used a small transformer F may be used to reduce the voltage. The commutator or drum D is made with combinations of contacts so that the meter may be used with various number of coles. The adjustment of the brushes or rollers b and b, , is accomplished by means of the screw S.The scale U gives the number of poles for which the meter is applicable. For a six pole induction motor a three sector commutator is used. The circuit through the magnet coil N

will close at $1, 3, 5, \omega$: $2, 4, 6, \text{for one odd.}$. In this case the role of the magnet will remain of the same polarity throughout the end, and the armatur , ling a permanent magnet, will always be attracted in the same direction. During creation this hears ite around reset in one position because the alternations occur too quickly "outlook the escapement to move. The rotor sneed is proportional to the alternations or cycles in the rotor and when the closing of the circuit by the commutator eccurs on the axis, (roint of were velong on the curve) the escarement is released and rejisters one scale reading or records the slip of one pole. As an illustration of this action we will consider a six pole induction motor which slips one pole in ten revolutions or one pole pur 30 cycles. Surpose the commutator closes the circuit of naximum voltage, a, at the first contact. The

armature would be drawn into rosition and the escapement held. The next contact would occur at point 1, of less voltage, and so forth until at the fifteenth contact which would occur at a point of no voltage on the curve, the armature is released and the escarement allowed to turn one roint. At C the voltage will increase again to a maximum at D which, by assumtion occurs at the thirtieth contact.

The slipmeter as constructed by the authors differs from the Bianchi slipmeter in that the slip must be counted instead of being recorded automatically. The Bianchi reter also has an adjustment whereby the meter can be used for various numbers of poles

while the motor numeric relationship in china to the chin how in, six role..

Demintion of "Unit.

The morn near the of in all the rain to ga connuite C attached to a speed ceinter e , an encaper ne revement l'ani premanent magnet N.

The electro magnet M consists of thin sheets of sheet iron firmly hald together by bolts. Around this gore is wound a coil of number 20 cotton covered wire. This coil is connected between two phases of the three phases supply line. This circuit also includes the rosistance for controlling the current, and the brushes which bear or the commutator C, which is slirped upon the shaft of an ordinary speed counter. The recording device consists of a permanent magnet N accuated by an escapement movement similar to that of a clock except that a weight is used instead of a spring it having

boun found that he woight tives a more accurato adjustment than the spring and the roum-rent manner is not it is not it is a set inly rainotized .hon a wolight is used as which a smaller accuat a the movement. The details of the different parts of the reter are shown by sketches and photographs on page 10 and 11.

In order to test the accuracy of the slipmeter as constructed the slip of an induction motor was measured by means of the slipmeter and also by comparison of actual generator and motor speeds. Tests were made at various leads on the motor, namely, no load, quarter load and three quarter load. The generator used had six poles and furnished three phases current for ^a ⁵ horse power induction motor upon which the tests were made, The tests were made one man taking the speed and time at the generator while the other counted the slip as registered by the slipmeter and at the same time noted the revolutions per minute of the rotor of the induction motor. The slip was counted by noting the number of times the permanent magnet N released during one minute. The slir might have also been taken by noting the number of times the spark on the commutator reached its maximum brilliancy , This number gives the number of alternations which divided by two gives the slip, This srarking does not injure the commutator because of the light current flowing. Several such sets of readings were taken at the various loads mentioned above. The table below gives the results of these tests.

It is seen from the table that at no load the difference between the slip as actually measured by a sheed counter and that registered by the slipmeter is about 20 per cent, at one quarter load about 9 per cent, at three quarter load about 8 per cent. These differences may be due to several causes. First, the two speed counters

may not have been started and storped at exactly the same time and this error alone might have cauced a difference of one revolution for a minute. Second, the moter is so constructed that for accurate work the test should be run over a period of several minutes. Third, the motor may be just on the point of slipping a pole when the test is started cr it may be only have way between the two noles. This introduces an error which is inherent in the machine and can only be eliminated by taking a reading covering several minutes. Fourth, the differences as shown for loads may be explained in part by the fact that it was not possible for one observer to count the slip and at the same time the speed of the rotor. Consequently, the speeds of the generator and the motor were taken at different times which

might introduce allegron lusto the called in intel of noter divines

 \sim \sim

 λ

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}_{\mathcal{A}}$

 $\mathcal{A}^{\mathcal{A}}$

 ~ 10

the generator.

Carl Carl \rightarrow y. $\frac{1}{2}$ * 来 $\ddot{\tau}$ $\Delta \mathbf{p}$ $+$ $+$ \bigstar

w $+$ $+$ $\frac{1}{\alpha}$ ni. ۰ 羊 $+$ $+$ $\frac{1}{2}$ $\frac{1}{2}$ $\mathcal{A}_{\mathbf{c}}$ ٠ A $\frac{1}{2}$ $+$ the $\mathcal{A}_\mathbf{c}$ \leftarrow 大 $4/2$ $\frac{1}{2}$ \rightarrow $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{\sqrt{2}}\int_{\mathbb{R}^{3}}\frac{d^{2}f}{\left(1+\frac{f}{\sqrt{2}}\right) ^{2}}\frac{d^{2}f}{\left(1+\frac{f}{\sqrt{2}}\right) ^{2}}\frac{d^{2}f}{\left(1+\frac{f}{\sqrt{2}}\right) ^{2}}\frac{d^{2}f}{\left(1+\frac{f}{\sqrt{2}}\right) ^{2}}\frac{d^{2}f}{\left(1+\frac{f}{\sqrt{2}}\right) ^{2}}\frac{d^{2}f}{\left(1+\frac{f}{\sqrt{2}}\right) ^{2}}\frac{d^{2}f}{\left($ $\left| \right|$ $\frac{1}{\sqrt{2}}$ of the $\frac{1}{2}$ \mathbf{X} ы. \sim u. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Tak. $\frac{1}{\sqrt{2}}$ 44 ye- 44 \mathcal{A}_{μ} $\mathcal{A}_{\mathbf{X}}$ $\mathcal{A}_{\mathcal{A}}$ $\rightarrow \frac{d}{d\theta}$ $\frac{1}{2}$ \rightarrow $\frac{1}{2}$ the 来 \rightarrow $\left\vert \cdot \right\vert$ $\Delta\vec{p}$ $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n$ $\frac{1}{2}$ \mathbf{x} w $\frac{1}{2}$ $\frac{1}{2}$ $\frac{d}{d\omega}$ 峰 m. \mathcal{J}_z $\frac{1}{2}$ y. 46 $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{$ \div $+$ $\frac{1}{\sqrt{2\pi\sqrt{2}}}\left\vert \frac{\partial \phi}{\partial \phi}\right\vert ^{2}$ $\frac{1}{2}$ * $\frac{1}{2}$ $\mathcal{Z}_{\mathcal{L}}$ the the \rightarrow reference * $\frac{1}{2}$ x $-x$ $+$ \Rightarrow $\frac{1}{2} \sum_{i=1}^M \frac{1}{2} \sum_{i=$ $\frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=$ \rightarrow $rac{1}{2}$ \downarrow 善 $\mathbb{Z}_p^{\mathbb{Y}_q}$ 19. $\frac{1}{\sqrt{2}}$ in the $\frac{1}{2}$ * * $\frac{1}{2}$ Sept. $\frac{1}{2}$ $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{j} \sum_{j=1}^{n$ $\frac{1}{2}$ $\frac{1}{2} \frac{1}{\sqrt{2}} \frac{$ **Silver Strategy** $\frac{\partial f}{\partial x^2}$ $\frac{1}{2}$ \rightarrow $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n}$ $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right) ^{2}$ $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n}$ -1 李 \rightarrow $\frac{1}{\sqrt{2}}\frac{d^2\mathbf{r}}{d\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{r}}{\partial\mathbf{r}}\frac{\partial^2\mathbf{$ $\frac{1}{2}$ - alf $\frac{d\mathcal{L}}{d\mathcal{L}}=$ \rightarrow * * * \rightarrow $\frac{1}{\sqrt{2}}\int_{\mathbb{R}^{3}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right) ^{2}d\mu_{\infty}$ $\frac{1}{\sum_{i=1}^{N} \alpha_i}$ * the $\frac{1}{2}$ \rightarrow $\label{eq:4} \frac{1}{\sqrt{2}}\frac{d\mathbf{y}}{dt} = \frac{1}{\sqrt{2}}\frac{d\mathbf{y}}{dt}$ -1 $\frac{1}{2}$ \rightarrow \rightarrow $\frac{1}{2}$ for 美 $\begin{picture}(20,20) \put(0,0){\vector(1,0){10}} \put(15,0){\vector(1,0){10}} \put(15,0){\vector(1$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n}$ $\Rightarrow \partial_{\mu}$ - for $\frac{1}{2}$ $\frac{d}{dt}$ 永. * \rightarrow \rightarrow * * 一卷 $-\frac{1}{2}$ $rac{1}{2}$ $*$ $\frac{1}{2}$ × - mp $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}\int_{0}^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right) ^{2}d\mu d\nu$ \rightarrow * * and the $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n}$ ** $\frac{1}{2}$ $\Rightarrow \hspace{-1.5cm} \star$ $\frac{1}{2}$ ife -4 $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ ÷ $\frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{i=$ **Enfinies** 头 $\frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N}$ $\frac{1}{\sqrt{2}}\sum_{i=1}^{N}$ * * * $\frac{1}{\sqrt{2}}$ \rightarrow $\frac{1}{2}$ $\frac{1}{2}$ * wifter $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{\sqrt{2}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}\sum_{n=1}^{\infty}\frac{1}{n^{2n}}$ $\frac{1}{2}$ \rightarrow \overline{A} the . the \rightarrow $\frac{d^2\mathbf{y}}{d\mathbf{y}} = \frac{1}{\sqrt{2\pi}}\sum_{i=1}^N \frac{d^2\mathbf{y}}{d\mathbf{y}}$ 24 $\frac{1}{\sqrt{2}}$ of $\frac{1}{2}$ 冰 $\frac{1}{2}$ 米 $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\int_{\frac{1}{2}}^{2}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\int_{\frac{1}{2}}^{2}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\$ $\begin{picture}(20,5) \put(0,0){\vector(0,1){100}} \put(15,0){\vector(0,1){100}} \put$ * 案 $\frac{1}{2}$ \rightarrow 珠 半 米 $*$ 美 $\frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N} \frac{1}{\sqrt{2}}\sum_{i=1}^{N}$

