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LEVEL AND WITT GROUPS OF REAL ENRIQUES
SURFACES

R. Sujatha and J. van Hamel

The Witt group of a real Enriques surface having real points
is computed purely in terms of the topology of the real part.
For a real Enriques surface without real points the level of
the function field is shown to be 2, and the Witt group is
computed in this case as well.

The Witt group of a real projective curve was computed by Knebusch
in [Kn]. In [S], there is a computation of the structure of the Witt group
of a smooth projective real algebraic surface in terms of certain birational
invariants of the surface. Let X be a smooth, projective, geometrically
integral surface over R, and let s be the number of connected components
(for the euclidean topology) of X(R). Then the Witt group W (X) of X
is isomorphic to a direct sum of Zs and a 2-primary torsion group that
depends on cohomological invariants of the scheme X (see §1 A). When X
is a real rational surface, by which we mean that XC = X ×R C is birational
to P2

C, the Witt group is completely determined by the number of connected
components of X(R). By [S, Th. 4.1] we then have that

W (X) ' Zs ⊕ (Z/2)s−1

whenever X(R) 6= ∅. If X has no real points, the natural map W (R) →
W (X) is surjective and W (X) ' Z/4. The latter result is based on a
computation of the level of the function field of X (see §1 A), which was
shown to be 2, in a joint work of Parimala and the first author [P-S].

In general, the situation is different. For example, let X be a smooth,
projective, geometrically irreducible surface over R with H1(X(C),Z) = 0.
The calculations of [N] imply that if X(R) has s > 0 connected components,
then

W (X) ' Zs ⊕ (Z/2)s−1+t,

where t is the dimension of the cokernel of the characteristic class mapping
from Pic(X)⊗Q into the subspaceH2(X(C),Q)− ofH2(X(C),Q) formed by
the classes that are anti-invariant under the Galois action. When X(R) = ∅,
the level of the function field is not always 2. For example, if X is a suf-
ficiently general smooth hypersurface of degree 2d ≥ 4 in P3

R, the Picard
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group of complex line bundles Pic(XC) is generated by the hyperplane sec-
tion, so Pic(X) = Pic(XC). This implies that if X(R) = ∅, the function field
of X has level 4. On the other hand, the function field of the hypersurface
given by the equation x2d

0 +x2d
1 +x2d

2 +x2d
3 = 0 has level 2, since it contains

the function field of the quadric without real points. See also Remark 3.4.
A real Enriques surface X is by definition a smooth, projective, geomet-

rically integral surface over R with irregularity q(X) = 0, and such that the
canonical line bundle KX is nontrivial, but K⊗2

X ' OX . As in the case of
rational surfaces, the geometric genus pg and the irregularity q(X) are both
zero for an Enriques surface X, but unlike the situation for rational surfaces,
we have that H1(X(C),Z/2) is isomorphic to Z/2. We will show that the
Witt group of a real Enriques surface X with X(R) 6= ∅ is completely de-
termined by the topology of X(R), as in the case of the Witt group of a real
rational surface. It does not, however, depend exclusively on the number
of connected components of the set of real points; a certain natural decom-
position of X(R) into two parts (see §1, C) comes into play, as well as the
orientability and the Euler characteristic of the connected components. The
full result is given by Theorem 2.6. For a real Enriques surface X without
real points we show that the level of the function field is 2, as in the case
of real rational surfaces, but now W (X) ' (Z/2)2 ⊕ Z/4 (see Theorems 3.2
and 3.3).

Let us mention the key ingredients in the computations. In addition to
the results of [S], they include a result of Krasnov [Kr] on separating the
real connected components of a surface by étale cohomology classes, some
results of Nikulin on equivariant cohomology from [N], a computation —
due to Mangolte and the second author [M-vH] — of the Brauer groups of
real Enriques surfaces, and arithmetic results concerning the Galois action
on the cohomology lattice, due to Nikulin (see [N-S]) and Degtyarev and
Kharlamov [D-K].

The paper consists of three sections. Section 1 lists various results that
are used in the subsequent sections. In Section 2, we consider the case of
a real Enriques surface with real points, and the case when there is no real
point is treated in Section 3.

We would like to thank V. Kharlamov for helpful discussions.

Note. This paper is based on our preprint with the same title that has
been circulating since the end of 1996. While it was under review we found
that, independently, Krasnov has obtained results very close to ours (see
[Kr2, Th. 0.7]) using similar methods. The main difference with our paper
is that he allows for some extra possibilities that do not actually occur (for
instance, the case of R(X) having level 4 when X(R) is empty). We are able
to exclude these possiblities using calculations by Nikulin and by Degtyarev
and Kharlamov.
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1. Preliminary results.

This section lists various results that will be used in later computations.

A: Witt groups of real algebraic surfaces. Let X be a smooth, pro-
jective, geometrically integral surface over a field k, of characteristic 6= 2.
Let H i(X) denote the étale cohomology groups H i

ét(X,µ2). Let Hq be the
Zariski sheaf associated to the presheaf U 7→ Hq(U). It follows from [B-O,
Th. 4.2] that the group Γ(X,Hn) of global sections of the sheaf Hn concides
with the unramified cohomology group of degree n with coefficients in µ2.
We have for every n a canonical mapping

εn : Hn(X) → Γ(X,Hn).

By [B-O, Th. 6.1, Th. 7.7] and the Kummer exact sequence, the mappings
εn induce isomorphisms Γ(X,H1) ' H1(X) and Γ(X,H2) ' 2Br(X), where
2 Br(X) denotes the 2-torsion in the Brauer group of X.

Let X be a smooth, projective, geometrically integral surface over R.
We follow the notation in [S]. We denote by Γt(X,Hi) the (−1)-torsion
subgroups [AEJ] i.e.,

Γt(X,Hi) = {α ∈ Γ(X,Hi) | α ∪ (−1)l = 0 for some l},
where (−1) is the nontrivial element of H1(R) = R∗/R∗2 ' Z/2. Let

N = Ker{Γt(X,H1)
∪(−1)→ Γt(X,H2)}

and let j, k, l (as in [S]) denote the Z/2- dimensions of Γt(X,H1), Γt(X,H2)
and N respectively. We have:

Theorem A ([S, Theorem 3.1]). Let X be a smooth projective, geometri-
cally integral real surface such that X(R) 6= ∅. Let s denote the number of
connected components of X(R) in the euclidean topology, and let j, k, l be as
above. Then

W (X) ' Zs ⊕ (Z/2)m ⊕ (Z/4)n,
where n = j − l and m = k + 2l − j.

Now suppose that X is a geometrically integral surface over R without
real points. Recall that the level of a field F is the smallest integer n such
that −1 is expressible as a sum of n squares. The level of a field F is finite if
and only if F has no real orderings, so X(R) = ∅ implies that the level of the
function field R(X) of X is finite. Moreover, by results of Pfister [Pf], the
level of R(X) is a power of 2 and is at most 4. Further, the groups Γ(X,Hi)
are purely (−1)-torsion, in other words, Γt(X,Hi) = Γ(X,Hi). Let j, k and
l be the dimensions of Γ(X,H1), Γ(X,H2) and N as before.

Theorem A1 ([S, Theorem 3.2]). Let X be a smooth, projective, geomet-
rically integral surface over R with X(R) = ∅. Let j, k, l be as above. Then

W (X) ' (Z/2)m1 ⊕ (Z/4)n1 ⊕ (Z/8)t1 ,
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where{
t1 = 0, n1 = j − l + 1, m1 = k + 2l − j − 1 if the level of R(X) is 2,
t1 = 1, n1 = j − l − 1, m1 = k + 2l − j if the level of R(X) is 4.

B: Separation of real connected components. Let X be a smooth,
projective, geometrically integral variety over R of dimension d such that
X(R) has s > 0 connected components for the euclidean topology. Let
H0(X(R),Z/2) be the set of continuous maps from X(R) into Z/2. Clearly,
H0(X(R),Z/2) ' (Z/2)s. For every n ≥ 0 there is a map

hn : Γ(X,Hn) → H0(X(R),Z/2)

which is defined by specializing an element α ∈ Γ(X,Hn) at a real point
P to get an element αP ∈ Γ(Spec R,Hn) ' Hn(R) ' Z/2. For us, the
importance of hn lies in the well-known fact that

Γt(X,Hn) = Kerhn.

Colliot-Thélène and Parimala have shown that the map hn is an isomor-
phism if n ≥ d+ 1, where d is the dimension of X (see [CT-P, Th. 2.3.2]).
Moreover, they proved that if X is a smooth projective real surface with
H3(X(C),Z/2) = 0, the map h2 is surjective (see [CT-P, Prop. 3.2.1]) and
they raised the question of surjectivity of h2 for an arbitrary surface (see
[CT-P, Rem. 2.4.4]).

In [N] Nikulin applied topological methods in studying the mapping hn;
we will sketch his approach here. Consider the spaceX(C) equipped with the
euclidean topology and with the natural continuous action ofG = Gal(C/R).
The quotient map will be denoted by π : X(C) → X(C)/G. For any G-sheaf
A on X(C) we have the equivariant cohomology groups Hk(X(C);G,A), as
defined in [Gr, Ch. 5]. There is a well-known identification Hn(X) =
Hn
ét(X,Z/2) ' Hn(X(C);G,Z/2). Moreover, for every n ≥ 0 there is a

canonical isomorphism

Hn(X(R);G,Z/2) '
n⊕
i=0

H i(X(R),Z/2),

so the restriction from X(C) to X(R) induces a homomorphism en :
Hn(X(R);G,Z/2) → H0(X(R),Z/2). Nikulin observed ([N, Remark 1.8])
that the following diagram is commutative:

Hn(X) = Hn(X(C);G,Z/2)
εn ↓ en ↓

Γ(X,Hn) hn→ H0(X(R),Z/2).

It follows that hn is surjective if en is surjective. Using this fact, Nikulin
showed that h2 is surjective if X/R is a smooth projective geometrically
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integral surface with H3(X(C)/G,Z/2) = 0 (see [N, Th. 0.1]), a condition
that is satisfied by many, but not all Enriques surfaces.

It was Krasnov who proved in [Kr], that the map ed :Hd(X(C);G,Z/2) →
H0(X(R),Z/2) is surjective for any smooth projective variety of dimension
d. His result is a consequence of a much more general result (see [Kr,
Cor. 3.2], see also [vH, §2.3] for another proof). Again, the surjectivity of
ed implies the surjectivity of hd, so we obtain the following result.

Theorem B ([Kr]). Let X be a smooth projective geometrically integral
variety over R of dimension d. The map

hd : Γ(X,Hd) → H0(X(R),Z/2)

is surjective, so the elements of Γ(X,Hd) separate the real connected com-
ponents of X.

Corollary B1. Let X be a smooth projective geometrically integral sur-
face over R. We have

k = dim Γt(X,H2) = dim 2Br(X)− s.

C: Brauer groups of real Enriques surfaces. In view of Corollary B1,
we need to know the Brauer groups in order to be able to apply Theorems
A and A1. For real Enriques surfaces partial computations of the Brauer
groups were made in [N-S], and for a larger class of surfaces by Nikulin in
[N]. A complete solution for real Enriques surfaces is given in [Kr, Th. 4.5]
and, independently, in [M-vH, Th. 1.3]. In order to state this result we
need to introduce some more terminology concerning real Enriques surfaces.

Let X be a real Enriques surface. Then XC admits a double covering
Y → XC by a complex K3 surface Y . Since a K3 surface is simply connected,
Y (C) is the universal covering space of X(C). Let τ be the involution of the
covering. The complex conjugation onX can be lifted to an antiholomorphic
involution of the covering space Y (C) in two different ways, σ and τσ. Hence
Y can be given the structure of a real variety in two different ways, which
we denote by Y1 and Y2. We obtain a decomposition X(R) = X1 t X2,
where each Xi consists of the connected components of X(R) covered by
connected components of Yi(R). The subsets X1 and X2 are referred to as
the two halves [D-K, §1.3] of X(R). We can now describe the Brauer groups
of real Enriques surfaces.

Theorem C ([Kr, Theorem 4.5], [M-vH, Theorem 1.3]). Let X be a real
Enriques surface. Let s be the number of connected components of X(R). If
X(R) 6= ∅ is non-orientable, then

Br(X) ' (Z/2)2s−1.
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If X(R) 6= ∅ is orientable, then

Br(X) '

{
(Z/2)2s−2 ⊕ (Z/4) if both halves are non-empty,
(Z/2)2s if one half is empty.

If X(R) = ∅, then
Br(X) ' Z/2.

Later we will also need information about the natural mapping Br(X) →
Br(XC) ' Z/2. It can be checked using [M-vH, Lemmas 5.7, 5.8, 5.9] that
the image of this mapping is as follows:

Im{Br(X) → Br(XC)} '


Z/2 if both halves are non-empty or X(R)

has a connected component of odd Euler
characteristic,

0 otherwise.

2. Witt groups of real Enriques surfaces having real points.

As in (§1 A), let j, k, l denote respectively the Z/2-dimensions of Γt(X,H1),
Γt(X,H2) and N . We first compute the invariants j, k, l for a real Enriques
surface. Recall (§1 C) that the real part X(R) decomposes into two halves
X1 tX2.

Proposition 2.1. Let X be a real Enriques surface with X(R) 6= ∅. We
have

j = dim Γt(X,H1) =

{
0 if both halves of X(R) are non-empty,
1 if precisely one of the halves is empty.

Proof. There is an exact sequence

0 → H1(X(C)/G,Z/2) → H1(X(C),Z/2) h1→ H0(X(R),Z/2),

which is a special case of [Gr, (5.2.8)] (see also [N, §1]). Since Γt(X,H1) is
the kernel of h1, we deduce that j=dim Γt(X,H1)=dim H1(X(C)/G,Z/2).
By [N, Corollary 0.2] we have

H1(X(C)/G,Z/2) =

{
0 if both halves of X(R) are non-empty
Z/2 if precisely one of the halves is empty.

SinceX(C)/G is a topological manifold, the conclusion follows from Poincaré
duality. �

We will need the following three lemmas to compute in Proposition 2.5

the dimension of N , the kernel of the mapping Γt(X,H1)
∪(−1)→ Γt(X,H2).
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Lemma 2.2. Let X be a real Enriques surface with X(R) 6= ∅. Let N be as
above. There is a canonical isomorphism between N and the kernel of the
mapping

H1(G, 2PicXC) → H1(G,PicXC)
induced by the inclusion 2 PicXC ↪→ PicXC.

Proof. Since Γ(X,H1) ' H1(X), and Γ(X,H2) ' 2 Br(X), we have that N
is isomorphic to the kernel of the composite mapping

Γ(X,H1) ' H1(X)
∪(−1)→ H2(X)

↘ ↓ ε1
Γ(X,H2) ' 2Br(X).

Consider the following exact sequence of étale sheaves on X

0 → µ2 → π∗µ2 → µ2 → 0,

where π : XC → X is the natural map. The boundary map Hn(X) →
Hn+1(X) in the associated long exact sequence is cup-product with the class
of (−1). Hence, from the fact that H1(X) ' R∗/R∗2 ⊕ 2PicX ' Z/2⊕ Z/2
and H1(XC) ' Z/2, we deduce that cup-product with the class of (−1)
induces an isomorphism

H1(X) ∼→ Ker{H2(X) → H2(XC)}.
From the Hochschild-Serre spectral sequences for the sheaves µ2 and Gm,

we obtain the following commutative diagram with exact rows
(6)
0 → H2(R) → Ker{H2(X) → H2(XC)} → H1(G,H1(XC)) → 0

↓ i′ ↓ i′′ ↓ i′′′

0 → Br(R) → Ker{Br(X) → Br(XC)} → H1(G,Pic XC) → 0.

Observe that the exactness of the rows on the left and on the right follows
from the condition X(R) 6= ∅. It follows the remarks above that N is
isomorphic to the kernel of i′′. Since i′ is an isomorphism, the Snake Lemma
then implies that

N ' Ker i′′ ' Ker i′′′.
From the Kummer exact sequence we see that H1(XC) is isomorphic to the
2-torsion group 2PicXC, so the kernel of i′′′ is isomorphic to the kernel of
the natural mapping H1(G, 2PicXC) → H1(G,PicXC). �

Recall, that 2Pic XC is isomorphic to Z/2, and generated by the canonical
class. In particular, if X(R) 6= ∅, then l ≤ 1.

Lemma 2.3 (Degtyarev-Kharlamov). Let X be a real Enriques surface,
such that precisely one half of X(R) is empty. Let d ≥ 0 be the integer
such that

dimH∗(X(R),Z/2) = dimH∗(X(C),Z/2)− 2d = 16− 2d,
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let H2 = H2(X(C),Z)/Tors and let a = rank H2 − dim(H2/2H2)G. Then

d− a =



0 if X(R) has a connected component of
odd Euler characteristic,

2 if X(R) is non-orientable and all components have
even Euler characteristic,

4 if X(R) is orientable.

Proof. The first two cases are covered by [D-K1, Prop. 6.1] (since a =
dimD− in the notation of that paper). The case when X(R) is orientable
is also due to Degtyarev and Kharlamov (communicated by Kharlamov; to
appear in [DIK]). �

Lemma 2.4. With notations as above, we have

dim H1(G,PicXC)

=



2s− 3 if X(R) is non-orientable, precisely one half is empty
and there is a component of odd Euler characteristic,

2s− 2 if X(R) is non-orientable, precisely one half is empty
and all components have even Euler characteristic,

2s− 1 if X(R) is orientable and
precisely one half is empty.

Proof. Using the isomorphismH1(G,PicXC) ' H1(G,H2(X(C),Z(1))) this
is easily computed from the spectral sequence

Hp(G,Hq(X(C),Z(1))) =⇒ Hp+q(X(C);G,Z(1))

as determined in [M-vH, §5] (or [Kr, §4]), and the fact that H2k+1(X(C);
G,Z(1)) ' Z/22s when k is greater than the dimension of X. �

Proposition 2.5. Let X be a real Enriques surface and let l = dim N .
i) If both halves of X(R) are nonempty, then

l = 0.

ii) If precisely one half of X(R) is empty, then

l =


0 if X(R) contains a connected component

of odd Euler characteristic,
1 otherwise.

Proof. i) If both halves of X(R) are non-empty, then by Proposition 2.1 we
have j = 0, hence l = 0.

ii) This case will be proven using Lemma 2.2 and Lemma 2.3. In order to
determine the mapping

ψ : H1(G, 2 PicXC) → H1(G,PicXC)
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we will use the long exact sequence of Galois cohomology associated to the
following short exact sequence.

(7) 0 → 2 PicXC → PicXC → PicXC/Tors → 0.

We then compare the dimension of H1(G,PicXC), as given by Lemma 2.4,
with the dimension of H1(G,PicXC/Tors) which equals r − a, where r =
dimQH

2(X(C),Q)G and a as in Lemma 2.3.
Let χ(X(R)) be the Euler characteristic of X(R). Then

dimH∗(X(R),Z/2) + χ(X(R)) = 4s,

and we have the well-known relation

(8) χ(X(R)) = 2r − 8

(cf. [N-S, p. 124]). Hence with d as in Lemma 2.3, we get

r = 2s− 4 + d,

and the results of Degtyarev and Kharlamov then give

r − a =



2s− 4 if X(R) has a connected component of
odd Euler characteristic,

2s− 2 if X(R) is non-orientable and all components have
even Euler characteristic,

2s if X(R) is orientable.

We now compare this information with the information on dimH1(G,
PicXC) given by Lemma 2.4. Using the fact that 2PicX ' Z/2, the short
exact sequence (7) gives the following long exact sequence in Galois coho-
mology

· · · → H1(G,Z/2)
ψ→ H1(G,PicXC)

→ H1(G,PicXC/Tors) → H2(G,Z/2) → · · · .

We see that the mapping ψ is injective if X(R) contains a connected com-
ponent of odd Euler characteristic, since then dimH1(G,PicXC) = 2s− 3,
and dimH1(G,PicXC/Tors) = 2s − 4. On the other hand, if X(R) is
orientable, the mapping ψ is zero since dimH1(G,PicXC) = 2s − 1, and
dimH1(G,PicXC/Tors) = 2s.

If X(R) is non-orientable, but does not have any connected components
of odd Euler characteristic, then dimH1(G,PicXC) = 2s− 2 = dimH1(G,
PicXC/Tors). Hence the long exact sequence alone is not sufficient to decide
whether the map ψ is injective. However, we know that the first Stiefel-
Whitney class of the real part of the canonical line bundle K coincides with
the first Stiefel-Whitney class w1(X(R)) ∈ H1(X(R),Z/2) of the tangent
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bundle of X(R). Since X(R) is non-orientable, the class w1(X(R)) is non-
trivial, so K does not map to zero under the canonical mapping

PicX → H1(X(R),Z/2).

This means that the class of K is not of the form (1 + θ)D for some D ∈
PicXC. Since the class of K generates the torsion in PicXC, this implies
thatH2(G,Z/2) → H2(G,PicXC) is injective. Thus the long exact sequence
splits, giving an exact sequence

· · · → H1(G,Z/2)
ψ→ H1(G,PicXC) → H1(G,PicXC/Tors) → 0.

Now the equality between dimH1(G,PicXC/Tors) and dimH1(G,PicXC)
implies that the mapping ψ is zero. �

Theorem 2.6. Let X/R be a real Enriques surface such that X(R) 6= ∅.
Let s denote the number of connected components of X(R). If both halves
are non-empty, then

W (X) ' Zs ⊕ (Z/2)s−1.

If one of the halves is empty, then

W (X) '



Zs ⊕ (Z/2)s−2 ⊕ Z/4 if X(R) has a connected component of
odd Euler characteristic,

Zs ⊕ (Z/2)s if X(R) is non-orientable and all com-
ponents have even Euler characteristic,

Zs ⊕ (Z/2)s+1 if X(R) is orientable.

Proof. We apply Theorem A. The invariant j has been computed in Propo-
sition 2.1, we have that

k =

{
s if X(R) is orientable and one half is empty,
s− 1 otherwise,

by Theorems B and C, and the invariant l has been computed in Proposi-
tion 2.5. �

3. Witt groups of real Enriques surfaces without real points.

We now consider the case when X(R) = ∅. We start by proving that
in this case the level of the function field is 2. In order to do this, we
study the Galois module structure of PicXC, and compute the dimension of
H1(G,PicXC). As before, let H2 denote the lattice H2(XC,Z)/Tors. We
will consider the triplet of invariants (r, a, δ) associated to the G-action on
H2 (see [N-S, §3.3]). In fact, r and a were already introduced in the previ-
ous section. The definition of the invariant δ will not be recalled here; since
X(R) = ∅ we have that δ = 0 (see [N-S, (3.3.5)]). Further, by Equation (8)
we have 2r = 8, so r = 4. Considering all the possibilities for the triplets
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(r, a, δ) of invariants of the G-action on the lattice H2 as listed in [N-S,
(3.3.10)], we see that (r, a, δ) = (4, 2, 0). This is crucial in the proof of the
following result.

Proposition 3.1. Let X be a real Enriques surface with X(R) = ∅. Then
H1(G,PicXC) ' Z/2, and the mapping H1(G, 2PicXC) → H1(G,PicXC)
is zero.

Proof. First let us establish that H1(G,PicXC) is either Z/2 or zero. This
follows from the exact sequence

(9) 0 → PicX → (PicXC)G → Br(R) → Ker{Br(X)

→ Br(XC)} → H1(G,PicXC) → 0

obtained from the Hochschild-Serre spectral sequence for the étale sheaf Gm

on X. Using the long exact cohomology sequence associated to (7), and the
fact that dimH1(G,PicXC/Tors) = r−a = 2, we see that H1(G,PicXC) '
Z/2 and the image of H1(G, 2PicXC) in H1(G,PicXC) is zero. �

Theorem 3.2. Let X be a real Enriques surface such that X(R) = ∅. Then
the level of R(X) is 2.

Proof. By §1 C we have that Ker{Br(X) → Br(XC)} ' Z/2. Since H1(G,
PicXC) ' Z/2 as well, by Proposition 3.1, the exact sequence (9) gives a
short exact sequence

(10) 0 → PicX → (PicXC)G → Br(R) → 0.

This implies that the natural map Br(R) → Br(X) is zero. Since Br(X) ⊆
Br(R(X)), this is equivalent to saying that the quaternion algebra (−1,−1)
splits over R(X). Equivalently, the norm form 〈1, 1, 1, 1〉 is isotropic over
R(X) and hence −1 is a sum of two squares in R(X). �

Theorem 3.3. Let X be a real Enriques surface such that X(R) = ∅. Then

W (X) ' (Z/2)2 ⊕ Z/4.

Proof. We will determine the invariants j, k, l and apply Theorem A1. Since
Γ(X,H1) ' H1(X), the Kummer exact sequence gives that Γ(X,H1) '
R∗/R∗2 ⊕ 2PicX ' Z/2 ⊕ Z/2, so j = 2. By Theorem C we have that
Γ(X,H2) ' Z/2, so k = 1. Finally, we prove that l = 2 using the following
commutative diagram with exact rows, which is quite similar to diagram (6)
in the proof of Lemma 2.2.
(11)

0 → H2(R) → Ker{H2(X) → H2(XC)} → H1(G,H1(XC)) → 0
↓ i′ ↓ i′′ ↓ i′′′

PicXC → Br(R)
φ→ Ker{Br(X) → Br(XC)} → H1(G,Pic XC) → 0.
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Even though X(R) = ∅, the arguments in the proof of Lemma 2.2 used to
show that N is isomorphic to the kernel of the mapping i′′ are still valid. We
do need an extra argument in order to establish the exactness of the upper
row of diagram (6). Consider the following morphism of exact sequences,
derived from the Hochschild–Serre spectral sequence.

0 → H1(R) → H1(X) e→ H1(XC)G ∂→ H2(R)
↓ ∪(−1) ↓ ∪(−1) ↓ ∪(−1) ↓ ∪(−1)

H1(XC)G ∂→ H2(R) → Ker{H2(X) → H2(XC)} e′

→ H1(G,H1(XC)) ∂′

→ H3(R).

Since H1(X) ' Z/2⊕Z/2, we have that the mapping e is surjective, hence
∂ is zero. All vertical mappings in the above diagram are surjective (in fact,
even isomorphisms), which implies that ∂′ is zero as well, hence the upper
row of diagram (11) is exact.

In order to finish the computation of l, observe that the mapping φ is
zero by Theorem 3.2, so a diagram chase gives that

dim Ker i′′ = dim Ker i′′′ + 1.

It follows from Proposition 3.1 and the observation made at the end of the
proof of Lemma 2.2 that

Ker i′′′ ' H1(G, 2PicXC) ' Z/2.

As a result we obtain that l = dim Ker i′′ = 2. �

Remark 3.4. Let X be a (geometrically integral) K3 surface over R with
X(R) = ∅. By Pfister’s result, the level of R(X) is either 2 or 4. Since a
smooth projective hypersurface of degree 4 is a K3 surface, we know from the
introduction that both cases actually occur. Using the result on Enriques
surfaces we obtain new examples of K3 surfaces whose function field has
level 2. Indeed, it follows from Theorem 3.2 that, the function field of any
K3 surface covering a real Enriques surface without real points has level 2.
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