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EXISTENCE OF UNIVERSAL CONNECTIONS.*

By M. S. NarasiMHAN and S. RAMANAN.

1. Introduction. The purpose of this paper is to prove the existence of
universal connections for principal bundles with a compact Lie group as
structure group. We prove (Theorem 2) that given a compact Lie group ¢
and a positive integer n, there exist a differentiable principal G-bundle £ and
a connection y, on E such that any connection on a differentiable principal
G-bundle P with base of dimension =7 can be obtained as the inverse image
of the connection y, by a differentiable bundle homomorphism of P into K.
As is well-known, the analogous problem for bundles without connections is
treated in the topology of fibre bundles [1].

Tt is also known that the Stiefel bundles play the role of universal bundles
for the unitary groups U (k). One can define in a natural way a connection
on every Stiefel bundle (§2). We prove that these connections themselves
are universal for connections in U (k)-bundles. A precise formulation is
found in Theorem 1.

In the unitary case the problem is first solved locally by explicit con-
struction, the crucial step being the lemma in §3. The local solutions are
then pieced up with the help of a special type of covering by coordinate cells.

In the general case, the compact Lie group G is identified with a closed
subgroup of a unitary group. Starting from a universal connection for this
unitary group, a universal connection for G is constructed by generalizing
the usual method of construction of an invariant connection in the principal
bundle associated with a Lie group and a closed subgroup ([3], p. 45).

A theorem of A. Weil ([1], p. 57) asserts that the cohomology classes
of the base of a principal G-bundle obtained by substitution of the curvature
form of a connection on P in the invariant polynomials of G are independent
of the connection. Our result seems to explain this invariance and in fact
furnishes an alternate proof in the case of compact Lie groups.

For definitions of the notions related to connections in principal bundles
we tefer to [1] and [3]. We use connections and connection forms inter-
changeably. By “ differentiable ” we always mean “indefinitely differentiable.”

* Received February 10, 1961.
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564 M. S. NARASIMHAN AND S. RAMANAN.

All manifolds, bundles, bundle homomorphisms and differential forms are
assumed to be differentiable. Also all manifolds that occur are paracompact.

We are thankful to Professor K. Chandrasekharan for his constant
encouragement and interest.

2. Canonical connections in Stiefel bundles. Let CV be the N-dimen-
sional complex number space with O as origin. The Stiefel manifold V (N, k)
(with N =k) of all unitary k-frames at O may then be identified with the
left coset space U(N)/I; X U(N-—Fk) where I is the unit (k, k) matrix.

N
To every frame (v, * -, ;) With v;= X b;se; where (e¢;) is the canonical
j=
base in C¥, we associate the (IV,k)-matrix 4 = (a;;) with a;;—b;;. Since

: N
(vs,* © -, vy) is orthonormal, we have X b;abya=20;; i.e. A satisfies the
=1

condition A*A = I}, where A* is the conjugate transpose of A. Thus V (N, k)
is identified with (XV, k) matrices A satisfying A*4 =1I;. The action of U (k)
(resp. U(N)) on V(N,k) to the right (resp. to the left) goes over under
the above identification into multiplication of (N, %) matrices by unitary
(k, k) matrices on the right (resp. by unitary (V,N) matrices on the left).
Under the action of U (k), V (N, %) becomes a principal U (k)-bundle (known
as the Stiefel bundle) with the Grassman manifold G(N,k) of k-subspaces
of CV as base. G(N,k) may again be identified with the left coset space
UWN)/U(E)XU(N—F).

Let § be the (N, k) matrix-valued function on V (N, %) which associates
to each frame (vy,- - -, ;) the matrix 4. Consider the (%, k) matrix-valued
differential form S*dS on V(N,k). Since S§*S=1I; for every frame, on
differentiation we obtain S*dS + (dS*)S =0, or again §*dS 4 (8*dS)* = 0.
Hence 8*dS has actually values in the Lie algebra u(k) (which is the vector
space of skew-Hermitian matrices) of U (k).

ProrostTioN 1. S*dS is a connection form on the Stiefel bundle V(N, k)
which is invariant under the action of U ().

In fact, if X¢ is a tangent vector at £€ V(N, k) and s€ U(k), we shall
denote by X¢s the image of X¢ under the differential of the map &— & of
V(N,k). Then we have

(8*dS) (Xgs) — 8*(&s) (Xegs) (9)
=s*8% (&) (XeS)s
=s51(8*dS) (X¢)s.
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On the other hand, if a € u(k), we identify ¢ with a tangent vector at ¢ and
denote by £a the image of a under the differential of the map s—és of G
into V(N, k). Then
(8*d8S) (éa) =8 (£)* (¢a) ()
=8(&)*8(H)a

=a,,

since S (¢)*S (&) =1I. Hence 8*dS is a connection form on the Stiefel bundle.
Moreover, if ¢ € U (N), the left translation of the differential form by ¢ yields
(t8)*d(tS) = S*t*tdS = S*dS.

Remark. This connection will hereafter be referred to as the canonical
connection and will be denoted by yo.
The horizontal subspace for this connection at the point & = (Ig) of

V (N, k) may be described as follows: The tangent space at & can be identified
P — Q*) .

0 0 where P is a

(k, k) skew Hermitian matrix and @ is a rectangular (N,N —Fk) matrix.

The horizontal vectors at & for the connection vy, are then given by matrices

with (N,N) skew Hermitian matrices of the type (

__O*
of the type (22 (? ) This description together with the invariance under

the action of U(N) characterises the connection y, completely.

Analogous statements are true for the real Stiefel manifold W (XN, k)
and the corresponding O (k)-bundle. In particular §’dS (where S’ is the
transpose of S) is a connection form on the Stiefel bundle, the corresponding

A
horizontal subspace at & being given by matrices of the type (3 _OQ ) This

is easily seen to be the orthogonal complement of the vertical subspace at &
with respect to the killing form tr(adz ady) on o (%), the Lie algebra of O (k).

3. The local problem.

Lemma. Let U be an open subset of R* and V a relatively compact
open subset whose closure is contained in U. For every differential form o
of degree 1 on U with values in u(k) (the space of skew-Hermitian matrices),
there exist differentiable functions i, - -, ¢m 1 V with values in the space
M (C) of (k, k) complex matrices such that

i) j_zl ¢pi*pi=1Ir, and
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'
i) > ¢yl —a,
]:
where m’ = (2n + 1) k2.
Proof. Let fi,- - -, fr2 be a set of positive definite matrices which form
a base for the complex Hermitian matrices over the reals, such that | f, | =1

for every 7 (|| || being the norm as a linear transformation). Since « has

n k2
values in 1u(k), we may write a/1 in U as X X A ofrde,, Where A, are real-
8=1r=1

valued functions and z, the coordinate functions in R*. If a,,=sup |Ass|,
we have A, =y s— vr,s Where 4

wrs=%{Ms+ars+1} and
Vr,s = %{ar,s "—')‘r,s + 1}

are both strictly positive differentiable functions. Hence we may write
trs = Prs® and vy ;= g Wwhere p,, and ¢, are positive differentiable func-

n

tions. Clearly one may assume that 3 (m.s+ vrs) is bounded by 1/2k* on
s=1

V for every r, by altering the coordinate functions ; by a constant multiple,

n
if necessary. The matrix valued function 1/k%I;— {3 (pr,s + vrs) }fr is then
positive. For, =

I35 (o o) | S 17200 | | < 1/

Let gr be the (unique) positive square-root of the positive matrix f, and h,
the differentiable positive matrix-valued function satisfying

B (@) = /BT — {3 ona (=) + wm0(@) }r

We now define M (C)-valued functions ¢;(1 =4 =(2n 4 1)k?) as follows.

For 1=j=nk? ¢, shall be the nk? functions p,ce??-g, arranged in
some order.

For nk? 4 1 = j = 2nk?, ¢, shall be the nk? functions g, 6% g, arranged
in some order.

For 2nk? 4+ 1 = § = (2n + 1) k2, ¢; shall be the functions %, in some order.

We have to verify that the ¢; thus defined fulfil the conditions i) and ii)
of the lemma. In fact,
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,21@*4’1‘ = Prs’0% + 2 ¢r.°9° + 2 h?
j= s

8 r

= Zw,.sfr ‘|" Z-Vr,s]cr + Ik'—rzs(ﬂr,s + Vr,s)f”

8 758
= I;.
On the other hand,

.21¢f*d¢f = X pr,s67 % { pr 1687 (dws) + (dpr,s) € }g,°
i

7,8

+ 2 gr, 561 {— qrs - 1671 (dws) + (dgrs) €7i7°}g,*

7,8

+ > hedhr

= 2 i pr,szgrzdxs + 2 pr:sdp’:ngZ
7,8

T8

+ 2;. i(— ¢rs®) gr2ds + rZB r,s0qr,s9:> + = hrdhr
= 4 (pr,s—vrs) frdes + %E d(Z’n.«f + Qr,s)fr + ; hrdh,

8

=a+3 % d(pr,s + vrs) fr + ; hrdhy.

But since for any z,y € V, h,2(z) and h,2(y) commute, their positive square
roots h,(z) and h,.(y) also commute. It readily follows that h,dh, = dh, - h,.
Hence 1d(h,?) = h,dh,. Therefore, finally we have

g‘iqu*dfﬁi =a+ $d{ rzs(”“ + o) fr 4 ? 7))}

=aq,
since 3 (urs + vis) fr + 2 M2 =1, and the lemma is completely proved.
78 r
The problem is solved locally by the following

ProrostTioN 2. Let P be a principal U(k)-bundle over a manifold X of
dimension =n and y a connection form on P. For every relatively compact
open subset W of X with W contained in a coordinate neighborhood U of X
over which P is trivial, there exists a differentiable bundle map ® of p=*(W)
into V(m”,k) such that the inverse image of the canonical connection v,
by @ is y, where m” = (2n -+ 1)k® and p is the projection P— X.

Proof. Let o be a section of P over U and « the inverse image of y by o.
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By the lemma, we can find differentiable M, (C)-valued functions ¢1,- - -, pm
in W such that

1) _/;—21 ¢.’i*¢j = Ik, and

i) § ¢i*¥dp; =, where m’ = (2n 4 1) k2%
j=1

Define a map ® of P over W into the space of (m”, k)-matrices by setting for
$1(pé)
ECP, (¢ = -8 where s€ U(k) is determined by &= o(pé)s.

S (96)

& is easily seen to be a bundle homomorphism. We then have

BB (£) = s*( g (pi*s) (p€))s

= s*s, by (i)
= I, since s is unitary.

Hence ® maps P|p*(W) actually into V(m”,k). On the other hand, it is
obvious that the inverse image by ® of y, = 8*dQS is given by ®*d®. But the

v
inverse image by o of ®*d® is (®oo)*d(®oo) = X ¢i*ddi= o by construc-
=1

tion. Now y and ®*d® are two connections on P|p*(W) such that their
inverse image by the section o are the same. Hence y=®*d® on p=*(W).

4. Universal connection for the unitary group.

TuaeorEM 1. Let P be a principal U (k)-bundle over a manifold X of
dimension =n and y any connection form on P. Then there exists a differ-
entiable bundle homomorphism & of P into the Stiefel bundle V(m, k) such
that vy is the inverse tmage by ® of the canonical connection y, on V(m,k),
where m = (n-4+1) (2n + 1)k

Proof. We can find a covering of X by relatively compact open sets
{V;} such that i) each V; is contained in a coordinate cell, and ii) the Vs
can be divided into (n - 1) classes 4; in such a way that no two Vs of
the same class intersect ([2], p. 61). Let {W,} be a shrinking of this covering,
i.e., an open covering {W,} such that W; C V,. Let D; (j=1,- - -,n4+1)
be the union of the open sets p=*(W;) where W; C V; with V; belonging to &;.

The bundle is trivial over the coordinate cells and hence, by Proposition 2,
one can find differentiable bundle homomorphisms ®; on p*(V;) into
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V((?n +1)k% k) inducing the connection y on p*(V;). Corresponding to
each D; there exists a {(2n 4 1)k® k}-matrix-valued differentiable function
¥ on P such that ¥ coincides with ®; on p*(W,) for V; in 4; Let then
¥,,- - -, ¥y, be the (n 4 1) functions thus constructed. Consider a differ-
entiable partition of unity with respect to the covering {D;} consisting of
non-negative differentiable functions ¢ invariant under the action of the
group U (k) such that the support of ¢ C D; and 3 ¢2=1.

Consider now the map ® on P defined by

&L(6) W (é)
®(¢) = ( ) for every £€ P.
£m+1(§) \II'YH'I (g)

We'have to prove that & is bundle map of P into V(m,%k) such that
®*dd —a. But

240(§) = S 6O (O ()
=2 4(E)2T*(6) T (),

the summation being over those ¢’s for which £€ D;. But on D;, ¥,*¥; =1
and we have (¥;*¥;) =1I for every ¢ over which the summation extends.
Hence ®%® (£) = X, ¢&i(€)2 =1, since X,¢2(§) =1. Moreover

&1 (€)1 () L(€)¥:(£)s
S A el
Enia (68) Wnss (€9) Enir (€) Tnia (£) s
&(6) W (8)
— : s
<£vn+1 (&) ¥nia(£) )
—®(¢) s
for every £€ P and s€ U(k).

Finally,
n+l
O¥d® = 3, L (AL + Lid¥s)
=1

n+l n+l
= > U W¢d; 4% e 70l I8

=1

As before, for a £€ P, the summation needs to be taken only over those i’s
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for which £€ D;. In every such D;, however, ¥*¥;—1I and ¥*d¥; = a.
Hence ®*d® — X &del + (X&) a=a since X §dl— $d (X ¢?) =0.

5. TUniversal connections for compact Lie groups. Let G, be a closed
subgroup of a Lie group G,, and g, and g, their Lie algebras. The group G,
acts on g, by the adjoint operations and g, is invariant under this represen-
tation. Suppose m is a subspace of g, invariant under the action of @, which
is supplementary to g.. (Such a space m exists if @, is compact or semi-
simple.) Let P be a principal bundle with group G; and e, a connection
on P. P is fibred by G, into a principal bundle with group G.,.

The direct sum decomposition g, @ m of g, gives rise to a projection =
of g; onto g, which commutes with the action of G, (i.e. woads—adsox
for every s€ (;). We define a differential form v, on P by setting w, — 7 © w;.
It is easy to see that v, is a connection on P for the fibration by G,. In fact,
(with the notations of §2),

w2 (Xgs) = (7 01) (Xegs)
=1r‘w1(XgS)
=" adSwl(Xg)
= ads- TW1 (Xg)
=slw, (Xg)s

for every vector X¢ at £€ P and s€ G,.
On the other hand, for every ¢€ P and a € g,, we have
0z (fa) = (7 01) ({a)

=0 (éa,)
=(a)

=a, since = is a projection.

THEOREM R. Let G be a compact Lie group and n a positive integer.
There exist a principal G-bundle B and o connection form vy, on B such that
for every principal G-bundle P with base of dimension =n and any con-
nection form y on P, one can find a bundle homomorphism f of P into B
such that the inverse image of vy, by f is v.

Proof. G can be identified with a closed subgroup of a unitary group
U(k). Let y, be a universal connection for U(k) (for the dimension n)
on a principal U (k)-bundle B, whose existence has been proved in Theorem 1.
G acts on B and makes of it a principal G-bundle. One can define a
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connection y; on this bundle by setting y; =m0y, where = is a projection of
1 (k) onto the Lie algebra g of @, as explained above. For any principal G-
bundle P, with base of dimension = n, let P’ be the corresponding principal
U (k)-bundle obtained by enlarging the group . Then there is a natural
inclusion ¢: P— P’ such that ¢(&s) =1(&) (s) for £€ P and s€ G.

Moreover, if y is a connection form on P, one can define a natural
connection 4" on P’ such that the inverse image of 4/ by 7 is y ([3], p. 35).
Let ® be a bundle map of P into B such that the inverse image of y, by @
is y. We define a bundle map f of P into B fibred by G by setting f =& - 1.
The inverse image of y, by f==&-¢ is obviously y. But since y has values
in g and « is identity on g, we have =y =1y and hence the inverse image of
y1 by [ is y.

6. Remarks.

i) We show how A. Weil’s theorem on connections can be deduced from
our results, at least when G is compact. Let w;, w; be two connections on a
principal G-bundle P with base X of dimension =n-—1. Consider the
bundle P X I’— X X I’ where I’ is the open interval (—e,1-4¢€), €> 0.
Let @, @, be inverse images of w;, w, respectively under the projection
PXI'->P. The differential form «=ta; + (1 —1¢)a, where ¢ is the pro-
jection P X I’— I, is easily seen to be a connection on P X I’. Let B be a
principal G-bundle over a manifold M and vy, a universal connection on B
for dimension =n. It follows that there exists a differentiable family 7,
of differentiable bundle maps of P into B such that the inverse image of y,
by F; is to; 4 (1—1%)ws. If f; are the corresponding maps of X into M,
then f, and f, are obviously homotopic. On the other hand, if K, and K,
are the curvature forms of v, v, respectively, the ‘substitution’ of K,, K,
in each polynomial over g invariant under the adjoint representation of G
yields closed differential forms By, 8, on X. Then 8, and B, are the inverse
images under f, and f, of the form on M obtained by substituting the curvature
form K of the universal connection in the same polynomial. Since f, and f,
are homotopic, it follows that 8, and 8, define the same cohmology class on
the base, a characteristic class of the bundle.

ii) Our method gives a universal connection for the orthogonal group
O (k) in particular. But the connection was defined in the complex Stiefel
manifold fibred by O (k) instead of the more usual real Stiefel bundle. We
have already remarked (§?) that if the points of the real Stiefel manifold
W (N, k) are represented by (XN, k)-matrices A satisfying A’A — I, (4’ being
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the transpose of 4), a connection can be defined in a canonical way on the
real Stiefel bundle with the corresponding connection form A’dA. On the
other hand, the complex Stiefel manifold V' (¥, %) may be imbedded into the
real Stiefel manifold W (2N, %) by associating to each (N, %) matrix 4, the
(2N, k) real matrix 4 — (?}L‘Z
parts of 4. It is easy to see that if 4*4 = I, we have A’A =1I;. Moreover,
for every s€ O(k) C U (k)

) where R1 4, Im 4 are the real and imaginary

B

8.

~ Rl (4s Rl4)s ~
(4s) = <Im((As))) = (EImA))s) =

Hence the map 4— A4 is a bundle map of the complex Stiefel manifold
V(N,k) fibred by O(k), into the real Stiefel bundle. The connection form
on V(N,k) induced by this map is A’dA, but this is the same as the real
part of A*dA. If we take for the projection = of §4, the map of u(k) onto
the Lie algebra o(k) of O(k) defined as the assignment of the real part to
each skew Hermitian matrix, then the corresponding connection y, is the
same as the real part of A*dA. In other words, the canonical connection in
the real Stiefel bundle is universal for O (k)-bundles.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY.
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