

Greves & Wood

An Analysis of

Induction Motor Applications

Electrical Engineering

B. S. 1913

THE UNIVERSITY OF ILLINOIS LIBRARY 1913 G86

http://archive.org/details/analysisofinduct00grev

AN ANALYSIS OF INDUCTION MOTOR APPLICATIONS

 $\mathbf{B}\mathbf{Y}$

GEORGE LOWTHANE GREVES DANIEL CHARLES WOOD

THESIS

FOR

DEGREE OF BACHELOR OF SCIENCE

IN

ELECTRICAL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

· . · · ·

UNIVERSITY OF ILLINOIS

May 31 1913

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

George Lowthane Greves and Daniel Charles Wood

ENTITLED An Analysis of Induction Motor Applications

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Bachelor of Science in Electrical Engineering

APPROVED:

Emst

Instructor in Charge

HEAD OF DEPARTMENT OF Electrical Engineering

246480

TABLE OF CONTENTS.

I	Introduction		1
II	General Discussion		
	A	The Central Station and the Distributing System	2
	В	Types of Loads	4
	С	The Available Motors and their Characteristics	5
	D	The Functions of an Engineering Department	10
III	Met	hod of Tests	13
IV	Table of Tests and Discussions with Individual Conclusions		
	a.	Pumps	16
	Ъ.	Elevators	17
	с.	Cake and Cracker Machines	17
	d.	Air Compressors and Blowers	19
	e.	Spice Grinding Machinery	21
	f.	Machine Shops	21
	61 •	Grindstones	22
	h.	Miscellaneous	23
V	V General Conclusions		

_

AN ANALYSIS OF INDUCTION MOTOR APPLICATIONS.

Ι

INTRODUCTION.

The ever increasing demand in the commercial field for the electrically driven machine has necessitated the study of various types of motors in a dual operation. It is the purpose of this thesis to study the field of motor operation which is limited to the polyphase induction motor, to analyze this motor thoroughly, and to point out its merits and demerits from the consumers point of view as well as from the standpoint of the Central station. Furthermore, it is the purpose to show the efficiency of the system may be increased and the regulation of the line benefited by the proper choice of motors. It was with this aim in view that the data compiled in this thesis was taken by the engineering department of the Peoria Gas & Electric Co.

II

GENERAL DISCUSSION

A. THE CENTRAL STATION AND THE DISTRIBUTING SYSTEM.

Experience has proven that power may be produced more economically by one large station than by a number of small ones. It is for this reason and the additional fact that continuity of service is better assured, that the large central station has come into general use. On the other hand, the consumers are scattered over a large territory and this necessitates the transmission of power for long distances. To avoid excessive line losses the power should be transmitted at high voltages, and the ease with which alternating current may be handled makes it especially desirable. Three phase current is used because of the advantages of the polyphase motor and because of the economy of copper in the construction of line for transmitting polyphase current.

In the early history of the central station the power generated was used almost entirely for lighting purposes, this making the heavy load come for a short time during the evening, with practically no load during the remainder of the twenty-four hours. Therefore, the load factor was quite low for such a station carrying only a lighting load. However, by the introduction of the motor the load factor is raised. Since the power consumer will as a rule draw current from the line at a time when the lighting load is small and as the power and lighting loads overlap very little the same generators may be used for both purposes. Hence without the addition of new

machinery the kilowatt output of the plant may be greatly increased. The maximum economy of the station is for the machines working close to their rated capacity, and it is for this reason that many companies make it a policy to sell power used during the light load hours at a low rate.

B. TYPES OF LOADS.

4

Loads which motors are required to carry may be classified as follows:-

lst. Steady loads:- This is as the name indicates a load which requires a steady torque while running. For starting it may or may not require a high torque. In general those loads having heavy revolving parts require a large starting torque.

2nd. Pulsating loads: - Under this head may be put loads such as the reciprocating pump, or where a sudden increase of power is required at certain definite intervals of time.

3d. Intermittent loads:- When the machine is started and stopped very often or when the load is applied at irregular intervals the load is intermittent.

C. MOTORS AVAILABLE AND THEIR CHARACTERISTICS.

In the following discussion the direct current motor is not considered since the high voltage required for economical power distribution eliminates this type. Of the alternating current motors the synchronous motor is not convenient since it requires more care and knowledge to operate it than is possessed by the ordinary workman. Also the starting torque is very low so that it can not be started under load. Another objection is that it requires a direct current generator to supply field current, and that together with other features of the construction makes the synchronous motor more expensive than the induction type. It is very desirable load for a central station since it may be operated at unity or a leading power factor and thus used to improve the lagging power of the system.

The other motor available is the polyphase induction motor which may have the squirrel cage style of rotor or a variable resistance rotor. The two types have different characteristics although the equations are the same.

The efficiency of the motor is defined as <u>output</u>. The losses are core loss, windage and <u>output + losses</u> friction and I³R losses. The core loss increases with the volume of the iron used and with $^{he}_{\Lambda}$ l.6 power of the maximum flux density. If the motor is used with a higher impressed voltage the iron losses are increased. From the I^aR losses

it is seen that high resistance causes large IaR losses at full or over loads. As the core loss, windage and friction losses are very nearly constant for all loads the efficiency is low at light loads, and it is very important that the motor be of such size as to be used at not less than 25% load. Fig. 1 shows the variation of efficiency and power factor with percent load for a squirrel cage type of motor. The rotor resistance type has an efficiency 1% to 3% less due to losses at the slip ring contacts.

The power factor is $\frac{Kw \text{ input}}{KVA \text{ input}}$. The power factor is affected by the magnetizing current which is wattless, and by the reactance drop. In general if the reactance is low the magnetizing current will be large and visa versa. Hence for small magnetizing current the power factor is rather high for light loads and will increase only a small amount as the load increases. If the magnetizing current is relatively large and the reactance is low the power factor is low for light loads, but increase with the increase of load. In either case a high power factor is desirable and for this reason the motor should be well loaded. Fig. 1 shows the power factor for a squirrel cage motor. The power factor under running conditions is about the same for both types.

The starting torque is: Torque = $K \frac{E^2 r_3}{Z^2}$ in which K is a constant, E the impressed voltage, r_2 the resistance of the rotor and Z is the total impedance. $Z = \sqrt{(r_1 + r_2)^3 (x_1 + x_2)^2}$ and since r_2 is generally small in comparison with Z, the starting torque varies nearly directly with r_2 , and varies

directly with E^2 . Fig. 3 shows the variation of percent torque and current with percent of synchronous speed for primary and secondary control. It is interesting to note that using any one of the methods the results are the same for torque and current speed for the third point. This indicates that the rotor resistance is the same as that of the squirrel cage rotor. By cutting out the remaining resistance this particular motor will give 270% full load torque with a speed variation of 10% from synchronous speed. Figure 4 gives similar curves for 1-30 H.P. rotor resistance motors, and Fig. 5 curves for 3/4 - 7 1/2 H.P. squirrel cage type motors. Both are for General Electric Company machines. In the list of data tabulated later in this thesis are a number of tests of the Westinghouse Electric and Manufacturing Company Type H.F. motors. These have a rotor resistance with thirteen divisions. With this number of resistances the motor may be brought up to speed under full load torque without increase of current beyond that required for starting.

7

It is interesting at this time to note the effect of variation of voltage on the operation of the inductor motor. It will be noted by reference to Fig. 6 that at full rated output and 115% voltage the torque and efficiency are about the same, while the current and percent slip are less. The power factor is considerably less indicating that while less current is required a large proportion of it is magnetizing. It will be noted that the breakdown torque is increased by about 25% with this increase of voltage.

ъГ

DA

ьГ

The speed is synchronous speed minus the slip and for the usual range of operation the slip increases directly with the load and resistance, and inversely as the square of the voltage. From the preceeding equations it is seen that good speed regulation and high efficiency are obtained by decreasing the rotor resistance, at the expense of starting torque.

The starting current is $I = \frac{E}{Z}$. To keep the starting current down to a reasonable value, E may be decreased at the expense of the starting torque which varies with E^3 , or Z may be increased by adding resistance to either the rotor or primary circuit. The effect of adding resistance to the primary resistance is to reduce the voltage impressed on the motor.

The squirrel cage motors are in general designed to give at least full load torque at starting with from 25% to 400% of full load current. This is obtained by a definite choice of rotor resistance which is a compromise between starting and running conditions. Then due to this amount of resistance, the motor will give full load torque at from 80% to 90% of synchronous speed. The breakdown torque is from 200% to 450% full load torque.

The rotor resistance type motor has a variable resistance in the rotor circuit. By this means the maximum torque may be made to come at any desired speed up to about 90% of synchronism. By using a suitable resistance the motor may be started under full load torque with from 100% to 150% of full load current. The breakdown torque is from 200%

to 350% of full load torque.

.

D. THE FUNCTIONS OF AN ENGINEERING DEPARTMENT.

The interest of the consumer centers in the following points. The motor must be able to start and run under full load, and it must be able to stand up well under heavy overloads for a short time. It must be simple enough for the ordinary workman to operate and it must stand hard usage and abuse. Finally the motor must be efficient. The starting current is of interest to the consumer if his own lighting circuit is affected as evidenced by the flicker of the lights when the motor starts. Also if the motor accelerates slowly and a heavy starting current continues over a considerable interval of time, large wires are required. In some cases a given speed regulation is required, but for most industrial machines the regulation is satisfactory for any load that the motor may have to carry.

The central station engineer is responsible for the maintenance of satisfactory service for power and lighting loads, and at the same time is responsible to his employer for the economical operation of the system. To give proper service the generators must have a large enough Kva. capacity to carry the loads without heating. When the load is inductive as is the case when induction motors are used, the kilowatt output of the generator is decreased. Fig.7 shows the percent

A. D. MACLACHLAN, 502 BOYLSTON ST., BUSTON

of generator capacity available for various power factors of the load. Just as the generator kilowatt capacity is lowered by an inductive load, in the same way the transmission line and transformer capacity if affected. The transmission line and transformer capacity is affected by an inductive load in the same way as the generator capacity. It is seen by reference to Fig. 1 that the induction motor has a low power factor for light loads. The importance of this fact will be realized when it is known that many of the motors tested had a power factor of 50% to 60%. Not only does the inductive load decrease the capacity but it causes poorer voltage regulation than the same Kva of a non-inductive load. This effect on the lighting circuit must be decreased by the use of large transformers. The losses vary with the Kva of the load. Hence the percent loss is greater for inductive loads and the efficiency of the electrical equipment is lowered.

It is evident that the consumer is often ignorant of the proper motor installation to make, while the central station engineer does not have the opportunity of advising him. An engineering department maintained by the company at the service of the consumer can do much to correct mistakes in old installations and oversee new ones. Such an engineering department would be expected to accomplish some of the following changes and results:-

In most cases smaller motors may be used for driving loads with the result that the efficiency will be in-

creased and the cost of power to the consumer lowered. By this same means, the power factor of the motors is raised, more generator capacity is made avilable and the line drop is decreased.

For some conditions large squirrel cage motors have had to be installed to start the load. These may be changed for smaller motors having rotor resistances, or a friction clutch may be provided to throw the load on the squirrel cage motors after they come up to speed. Where possible the latter plan is better since the squirrel cage motor has higher efficiency. Thus a load requiring a high starting torque may be started without excessive flow of current. This is an improvement for both the consumer and central station engineer, A countershaft and pulley is not advised since the increased efficiency.

A third way in which this engineering department may help the consumer is by giving assistance in regrouping to the best advantage the machines that are to be run by one motor.

METHOD AND DESCRIPTION OF TESTS.

III

The tests used in this thesis were made by the engineering department of the Peoria Gas and Electric Co. The purpose of the test was not only to investigate the present conditions, but to collect data on all available types of machines, so that the sales department could sell the proper motors for new installations.

The motors were tested under every condition of loading possible to obtain, also for running light and starting. Since it is the normal running load and starting torque which determine the size and type of the motor necessary, only these tests will be given and discussed. The readings taken were; power by two wattmeter method, current, voltage and speed.

In making the tests it was often necessary to meter large currents. To avoid the use of ammeters of excessive range, split core current transformers were used. The compensating coils on the watt meters were not used. All instruments were calibrated with precision. meters, the property of the company. Curves were plotted from these calibrations and the reading taken in the tests were corrected from these curves.

Some of the instruments were not dead beat and in getting the starting current and power, the needles would swing considerably past their correct reading, due to the

sudden rush of current. To overcome this difficulty the readings were corrected from a curve plotted between true reading and first swing of instrument.

FIGURE 8

To avoid the necessity of carrying a large number of instruments long distances a board such as shown in Figure # ⁸ was used. The switch B is a large double throw double pole switch, the end connections of which are joined to the single throw knife switches A and A'. The connections are made from these connections to the line as shown in the diagram. In place of the two wattmeter method of measuring power all readings may be taken on one set of instruments by the proper manipulation of the three switches.

This method was used only where the load was steady. C and C' are double throw double pole switches for reversing the current through the pressure coil of the watt meters. This method of reversing the reading of the watt meter was used in preference to changing the current through the current coil because it could be done without in any way interfering with the continuity of service. Every precaution was used to give the consumer continuous service throughout the test with the exception of the interruption necessary to get starting data.

			TOM	OR RA	TING	MACH	INE LO	ADED	MAC	HINE	DLE	1S	ARTIN	.5
		PUMPS	MAKE TYPE	H.P. VOLTS	R.P.M.	AMP	ERES DHASE	Ь.F.	AMPI	TS		AMPE	RES	н. Н. С.
	10	Centrifugal Beer Pump, Direct Connected,	G.E. Co	5 D	18 o o.R	2500	1550	926	120	-10	488	2800		Ľ.
of There Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>		Load - Raising 165 bbls. Water per. Hour 65'-	C ^X	220	1840.E	12.1	12.7	5.42	S	S	.95	16	14 4	
	0.	entrifugal Beer Pump, Direct Connected	G.E.Co.	20	1200 R	400	540	.968				1230	1100	14C.
		starts under no pressure.		5.1		3.	3.	1.26				57.7	59.5	3.92
	<u> </u>	Centrifugal Yeast Pump, Direct Connected.	G.F.Co	200	1200 R	540	30	.539	440	-55	604.	1470	2800	L18.
		15' thru 100' of 2" Hose.	ξυ	5.1	1210 L	2.9	2.8	.16	2.6	2,5	52	51	27.7	5.72
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Centrifugal Beer Pump. Same as # 27	GE.Co	500	1200 R	630	400	.932				860	290	158
			ξU	8.4 4.0		3.5	3.6	1.38				4 ۲	74	1.54
an mervales H_1 E_{10} I2.8 I3.71 Gen Page 93 26.9 10.0 20.1 20.0	-	Water Pump, Direct Connected, Runs	G.E.Co	1.5	900 R	880	3700	.684				5100	15000	.16
Centrivial Mater Pure, Pure, Loan, Westh., 54 Lead of the contrivial Mater Pure, Cur, westh., 54 Lead of the contrivial Mater Pure, Cur, westh., 50 Lead of the contrivial Mater Pure, Cur, westh., 50 Lead of the contrivial Mater Pure, Cur, westh., 50 Lead of the contrivial Mater Pure, Cur, westh., 51 Lead of the contrivial Mater Pure, Cur, westh., 52 Lead of the contrivial Mater Pure, Cur, westh., 52 Lead of the contrivial Mater Pure, Cur, westh, westh., 20 Lead of the contrivial Mater Pure,		at intervals \$13 of day. Pressure 65. Starts under Load.	۲۲	21.5		12.8	13.7	6.4				alG	93	26.9
metron, name in more introve prime, CCL GT 5.2 5.2 5.2 4.69 7 29.0 20.5 6.29 <th6.29< th=""></th6.29<>	_	Centrifugal Water Pump, Direct Con-	Westh.	5	1120 R	2000	1500	.968				3000	1700	106.
ELEVATORS FLEVATORS FLEVATOR FL	_	Necieo, raises waier 6 Thru 2 pipe	CCL	6.1		5.2	5.2	4.69				29.	28,5	62.2
Crain Elevator Load State Mediation State State <td>_</td> <td>FI FIVE CON</td> <td></td>	_	FI FIVE CON												
Gram Elevator Load 3 b. wheat Westing 5 1700 7 50 51 1302 500 51 14.5 Perr. min. Raised Bo Feet. Doss. 1812 4.5 5. 10.0 3.8 5. 61 560 57 14.5 Coal Elevator and Convergor. Motor E.C. 25 1200 700 361														
Pertumnic nature of relation for the context indication for the context indication for start under load. Coal Elevator and Conveyor. Mator (E.C. 25) 1200 R (200 R (-	Grain Elevator. Load .3 bu. wheat	Westing-	5	A OOLI	00	740	.50	-95	560	.332	1300	9500	,G14
Coal Elevator and Conveyor. Motor $E_{\rm LC}$ $Z_{\rm LO}$ </td <td></td> <td>Per. mill. Maises 00 reel.</td> <td>CCL</td> <td>12.1</td> <td>1812 1</td> <td>4.5</td> <td>5.</td> <td>1.0</td> <td>3.8</td> <td>5.</td> <td>.61</td> <td>58</td> <td>57</td> <td>14.5</td>		Per. mill. Maises 00 reel.	CCL	12.1	1812 1	4.5	5.	1.0	3.8	5.	.61	58	57	14.5
With the l start under last. L G_{C0} $I_{E10}CL$ 29 27 14.5 $2o$ $2o$ $1o$ 76 76 76 76 36.5 36.0 Freight Elevator for charging Westh. 5 $1120c$ $120c$ $122c$ $190c$ $551c$ $590c$ $236c$ $80c$ <td></td> <td>Coal Elevator and Conveyor. Motor</td> <td>G.E.Co</td> <td>2 S S</td> <td>1200 R</td> <td>6000</td> <td>4800</td> <td>282.</td> <td>5200</td> <td>2500</td> <td>.852</td> <td>18000</td> <td>9500</td> <td>.89</td>		Coal Elevator and Conveyor. Motor	G.E.Co	2 S S	1200 R	6000	4800	282.	5200	2500	.852	18000	9500	.89
		WILL NOT STAFT UNGET 1040.		с 65.	1210 E	29.	27.	14.5	20	20	10.3	76.	76.	36.8
Were defined and of the field of the f		Freight Elevator for charging	Westh.	s c o c	1120 R	1800	-1200	.122	2800	190	.551	5900	2360	.8.2
Load same as above Readings- Elevator Going up. -375 2480 :392 -800 2650 :282 2150 5710 786 Freight Elevator Going up. 15.9 14.4 282 13.3 13.3 15.3 15.0 27.0 28.0 10.0 26.0 Freight Elevator STon Capacity Load 250 ⁵ . Readings tarken 10ÅC 220 26.0 26.6 88.4 10.3 17.0 1700 28.0 24.4 28.0 18.3 15000 10000 26.6 34.4 28.0 10.3 27. 55.5 34.4 Same as above Readings tarken going up 10 24 24 -1.46 10 10 10 10 26.5 34.4 Same as above Readings tarken going up 16 24 -1.46 10.3 1100 11000 11000 1100 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000		Readings - Going Down.	No. 100	18.9		13.9	14.4	.8J	15.4	15.4	4.	40	42	11.1
redungs Levator Going Up 13.3 14.4 282 13.3 1.68 40 42 10.6 Freight Elevator 500 R 200 R 200 R 200 R 2660 .884 10.3 1.68 40 42 10.60 Freight Elevator 500 R 200 R 200 R 2660 .884 10.3 1.50 57. 55.5 34.4 Same as above 100 R 200 R 2660 .034 10.3 10 8000 1000 .966 Same as above 16 24 24 2.4 10.3 10 8000 .948 Freight Elevator 18 16 24 2.4 10.3 8000 1000 .966 Freight Elevator 16 2 24 2.46 10.3 57. 55. 33.5 Freight Elevator 25 7.76 10.3 10 10 57. 55. 33.5 Freight Elevator 25 180 <		Load Same as above.				-315	2480	392	- 800	2050	.282	2150	5770	.786
Freight Elevator: 5 Tou Capacity Othe Elevator: 15 900 R 5000 2660 884 0 15000 1000 366 Load 260 ⁺ . Readings tarken Freight Elevator: $\frac{500}{10 \text{ AC}}$ 42 24 24 10.3 0 870.0 85.5 34.4 Joing Down Jown $\frac{200}{10 \text{ AC}}$ 42 24 24 10.3 8000 17000 848 Same as above -3000 F -3000 2660 .034 0 8000 17000 .848 Same as above -3000 F -3000 2660 .034 0 8000 17000 .848 Same as above -3100 Capacity Northern 15 180 R -1180 2690 .119 57. 55. 35.5 Freight Elevator: 2-3 Ton Capacity Northern 15 183 13.5 1.22 0.19 525.0 105.00 1860 Feedings - elevator going up 5 168 L 18.3 13.5 1.22 115 12.5 55.0 55.0 55.0 55.0 55.0 55.0		Headings - Elevator Going of.				13.9	14.4	2,82	13.3	13.3	1.68	40	42	10.6
Load of coor Frequencies Style 42 24 24 10.3 9 57. 55.5 34.4 Same as above Same as above Same as above -3000 2660 .034 8000 8000 .848 Same as above I -3000 2660 .034 8000 .800 .848 Freight Elevator I 2 -46 24 -46 8000 .806 .866 Freight Elevator 2-3 119 2690 .119 8000 .866 .866 .866 Freight Elevator 15 lbs. Elec.lo 220 168.1 18.3 13.5 1.22 8000 .866 .88	_	Freight Elevator. 5 Ton Capacity.	Otis Elev Company	15	900 R	5000	2660	.884				15000	11000	.966
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Load ero. Headings Taken Boing Down	Style 10 AC	420		24	24	10.3			18	57.	55.5	34.4
Readings Tanen going UP. IG 24 46 IG 57 . 55 . 33.5 Freight Elevator. 2-3 Ton Capacity Northern 15 780 R -1780 2690 $.119$ 5250 10500 $.866$ Load about 175 lbs. Elector 220 748 L 18.3 13.5 1.22 66 $.866$ $.866$ Readings-elevator going up. 62 72 72.6 102 71.62 102 102 2550 10500 $.866$ Same as above 8000 -960 $.413$ 12500 5850 $.833$ Flevator going up. X 18.3 19 . 9.42 8900 $.942$ 8900 $.942$ 8900 $.942$ 8900 $.942$ 8900 $.942$ 8900 $.942$ 8900 $.942$ 8900 $.942$ 8900 $.942$ $.920$ $.833$ $.946$ $.942$ $.920$ $.920$ $.932$ $.946$ $.942$ $.92$ $.92$ $.92$ $.932$ $.946$ $.942$ <td< td=""><td></td><td>Same as above</td><td></td><td></td><td></td><td>-3000</td><td>2660</td><td>450.</td><td></td><td></td><td></td><td>8000</td><td>17000</td><td>.848</td></td<>		Same as above				-3000	2660	450.				8000	17000	.848
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Kegaings Jaken going up.				16	24	46				57.	55.	33.5
Readings-elevator going up.	-	Freight Elevator. 2-3 Ton Capacity.	Northern	15	180 R	-1780	2690	611.				5250	10500	.866
Same as above B000 -960 .413 12500 5850 .833 Elevator going up. X 18.3 19. 9.42 92 88 24.6		Readings - elevator going down	E 144.0	45	768 L	18.3	13.5	1.22				ee	88	21.1
X X 19, 9.42 92 88 24.6		Same as above Elevator soins up.	C			8000	- 960	.413				12500	5850	.83.3
	_		×			18.3	19.	9.42				92	88	24.6

the state of a state of the

		MOTO	RA RA	LING	MACH	INE LO	ADED	MAC	HINE	DLE	STA	RTIN	5
	FLEVATORS	MAKE	d.H	R.P.M.	TAW	1 91	L.	TAW	15	LL LL	TA/AT	L S	LL LL
		TYPE	VOLTS AMP.		AMPE PHASE I	PHASE 2	I. D	PHASE	RES PHASE2	I.P.	PHASEL	RES PHASE 2	- H
001	Freight Elevator. Capacity 2 Ton.	Otis Elev.Co.	15.5	650 R	-680	2500	197				3000	12900	619
00	Elevator going up.	Style QX	640		21.5	22.	2.44				55	55	213
00.	Same as Above				-1200	3500	112.				3130	13650	.186
201	Elevator going down				21.3	20.8	3.08				545	55	22.4
	Freight Elevator. Capacity 2 Ton.	Otis Elev.Co.	15.5	650 R	4150	-260	458				14000	25700	.89
601	Elevator going up.	StyleQX	540		21.3	21.	6.01				56	58	39.8
	Same as above.				4000	-1030	.322				12500	4100	.186
601	Elevator going down.				21.5	20.	3.97				51.	SG.	23.
	CAKE AND CRACKER MACHINES.												
10	Motor Runs 5 Dough Mixing Machine	GE.Co.	3.6	1800 R	2200	1100	.885	990	0	.50	3300	310	18.
6 t	Load - 2 Machines.	ξU	18.5	1800 L	10.3	10.3	4.55	6:4	G.4	1.33	45	45	16.4
ū	Motor Runs 4 Mixing Machines	G.E.Co	1.5	1800 R	1300	3900	753				2200	1000	222
ō	Load - Machine Mixing Acavy dough	ξU	18.5	1 06L1	12.	12.	٦.				50.	56.	12.3
5	"Green" Mixer, Direct Connected.	G.E.Co	0 0 0	900 R	0101	2800	した.				1420	8600	1627
2	Load - MIXING Sort yough.	ξU	13.5		13.7	13.2	5.1				وه	57.5	13.4
20	"Green" Mixer Direct Connected	G.E.Co	010	900 R	200	2600	.558	- 96 0	1680	155	2700	9300	.124
2	LOAD - MIXING UTACKER DOUGH	- 7	28	320 E	1.51	14.6	5.58	12.2	13.7	ເອ.	88	69	16.1
a L	Spindle Mixer. Load - Spindles	GE.C.	15	200 R	6300	4200	.96	2000	-560	306.	15300	5400	269
2	Readings Unsteady	łΣ	38 38	1130	36	35.4	15.6	12.3	12.6	1.92	125	127	27.6
5	Cake and Cracker Cutting Machine.	GE.Co	7.5 200	900 R	400	2150	.643	-410	1500	-2.89	1000	3430	ει.
2		15	21.5		11.2	9.11	342	9.6	10.2	1.38	27	26.2	5.95
64	Cake Cutting Machine	でして、	200	200 R	-20	570	414	-50	570	435	100	3200	699.
		:)	65.7		3.17	3.2	41:	3.07	3.27	L.	27	28	6.
48	Cake and Cracker Cutter	6.E.C.	50	0000 1 1 1	510	1540	692	-100	1080	432	2950	11000	.707
2		U U	13.5	874 L	٦.	7.5	2.75	5.8	5.9	1.32	63.	63.	18,5
55	Bake Oven. Mator on Taler.	GE Co	220	9000 R	3300	1700	.874	660	-240	.26			
	Load 6 Seconds per Minute.	J	9.3	920 L	1.4.1	14.6	G.71	5.5	5.5	.56			
65	Bake Oven	G.E.Co	ma	300 R	1300	2200	808	-120	380	.352			
>	Motor On Edler:		9.3	915 E	10.3	11.3	3.36	5.5	5.5	.34			
												Ĩ	. 21

			0	1012	10414	I ALT			141	L	ł	HO	
	•	101	AN HO	5	MACH	INE LU	AVEN	ノイト	HINE IL	LE L	2	アニードイ	5
	CAKE AND CRACKER MACHINES	MAKE	VOLTS.	RP.M	AMPE	TTS	P.F.	AMP	SHA-	P.F.	AMPF	LTS P R S	H.H.
		FORM	AMP.		PHASE	PIASE2	H.P.	PHASE	PHASEZ	H.P.	PHASE	PINSEZ	HP
GP	Belt Conveyer for Crackers.	GECo.	200	900 R				1010	-280	12.	6230	1100	L18.
Y		ΞU	0.0	BBO E				5.2	4.7S	46.	24	24.3	9.25
7	Cracher Conveyer.	GECO.	al.	1200 R	500	- 20	.274				3250	800	69.
1		20	5.10	1215 L	3.12	3.2	.55				25.	25.	5.41
	Canvas Belt Conveyer	G.E.Co.	50	900 R	1040	-100	429				1200	1470	.658
4	Load - Maximum	-U	13.5		9	G.	1.26				56.	56.	11.6
R.	Cracker Conveyer	G.E.Co.	5	1200 R				990	00	.50	1450	0141	.652
5	Require very little additional P.	50	13.2	1224 E		T		6.8	<i>с</i> .	1.33	51.	51.	13.3
	AIR COMPRESSORS & BLOWERS												
	AIR COLINICATION & DEOWERS												
n	Air Compressor	G.E.Co.	000	900 R	2500	7500	15G	0	5000	50	-4300	48400	435
~	Cylinder a xe	12	150	916 E	41.	41.	13.4	24	21	6.7	400	395	59.1
XA	Air Compressor	Crocker	50	900 R	11000	13750	.982	11000	13500	486	62000	-11000	.374
5	Starting Voits 145.		121	810 L	14	51	33.1	Go	60	32.8	512	512	68.4
a	Air Compresser	GECo.	لم م م	1800 R	- 50	900	451	-230	150	612.	3560	11360	.741
20	No Starter	0	13		5.5	5,5	1.14	S.	S.	<i>L</i> .	68	15	20
101	Air Compresser	GE.Co	500	BOOR	2050	3140	.94						
~~	No Starter	20	13	19881	15.6	15.C	6.95						
511	Air Compresser - Pump 6"x6"	GECo	220	1000 H	190	1760	.583	440	880	261	3000	13500	110.
9	Unerice. Joyer and Ernery wheel running idle during test	20	13	1820 L	9.9	10.4	2.62	5,3	5.3	53	70.	72.	22.1
00	Blower, 4' Diameter.	GE.Co	50	1200 R	4830	300	.547	3200	- 180	358	33000	8000	.684
U	Mach. Idle - Line Shaft 150'	14	51	1260 L	22.2	22.7	6.76	19.7	19.7	4.18	232	248	55.
6	Direct Connected to Centrif-	GE.Co	1.5	1800 R	4430	3030	96.				11400	3150	669
5	ugal tan.	۲۲	19.	1155 L	21.5	22.8	10.				98.S	98.5	15.4
401	Blower, S.S' Diameter.	GECO	50	900R	5000	12000	.814				13100	21000	.92.5
		1	125	308 L	52.	sл.	22.8				115	113	45.6
130	Fan 41 Diameter. Used to	Western Elec.Co	W 4 000	450 R	oLI	810	.606				1000	1440	954
9	Direct Connected	CLEAB	3.75		41	41	16.1				8.8	8.8	3.27
1													
													15.

		MOT	OR R	ATING	MACH	INE LO	ADED	MACH	HINE ID	DLE	STA	ARTIN	5
	BLOWERS	MAKE	VOLTS AMP.	R.P.M.	AMPE PHASE I	TS PHVSE2	Р.F.	AMP PHASEI	TTS EPES PHASE2	P.F. H.P.	AMPE	FTS ERES PHASE2	P.F. H.P.
142	Ventilating Fan B'x4'11" 12 Point External Resistance	Westing-	15 440	870 R 551 (34)	1870 141 ^{5¢}	5000 venth Pa		0011	4750	.669 1	01.01	3950	505.
1	RUNNING.	Ļ		765 (101h)	3400	8000	619	2530	6750	661.			n 9
	Motor Direct Connected Used on 7th Point.		1	846 (121h)	EI.Twe	15th Poin	15,3	17.5 Il	rh Poin 17.1	12.4			
	SPICE GRINDING MACHINES												
t t	Fun 33 Grinders and	GE.Co.	50	900R	10000	2000	.654	0000	1500	627	18000	16150	.66
<u>0</u>	Shakers	15	124	912 L	51.	54.	16.1	42	44	14.1	550	SSO	126.
JU	Fun 24" Powdering mill	G.E.Co	35	1800 R	9500	13500	rse.				11400	50200	676
<u>و</u>		12	85		60	60	30.9				300.	290.	82.5
ac	Thuns 24" Powdering mill	G.E.Co	35	1800 R	12300	4500	err.						
2	Cimilar 10 - 10	L	682	J ELLI	49.5	48.5	22.G						
00	0	GE.Co	010	1800 R				190	1660	592	2330	15300	613
0	LIUNS CH FUIVENIZEN	10	242	1805 E				8.8	8.3	2.5	103.	103	24.4
a	р	Western	15	1800 R	3350	1490	.834	2600	920	าาย	12500	3000	684
0	NUNS CE FUIVERIZET	CSIIA	31.5	1806 E	14.6	14.6	18.1	12.3	11.8	4.72	104.	1 05.	20.B
Ja	t 1	G.E.C.o	15	1200 R				1010	4350	8L9.	00601	30000	919
Q O	huns 2-22 Fulverizers.	15	38.	1214 E				20.5	19.	7.18	207.	201	54.8
00	f	G.E.Co.	15	1800 R	3530	1290	LL.	3160	135	69.	19000	Booo	L18.
0	Run Fulverizer.	FU	35.5	1815 L	15.2	16.7	5.78	14.8	15.2	5.21	130	140	36.2
01	10401	G.E.Co	15	1200 R	1490	4180	121.	1110	4080	.662	4-00	23500	.57
2		17	38.	1240 L	21.5	21.	7.2	19,5	19.5	9.9	163	155	31.9
	MACHINE SHOP.												
		G.E.Co.	Ю	1800 R	0	650	r dis	(() ()	000	824	1800	5600	141
22	Drill Press and Lathe.	ΗY	220	1840 L	3.8	3.5	16.	3 4	3 4	40.	4	4.	9,93
0	Drill Press.	Westing-	5.0	1700 R	360	111	956	230	-21	432			
U U	Direct Belt Drive. No Starter.	CCL	1.8	LITET L	L'I	L'1	,63	١.	6,	.28	8.5	8. <i>5</i>	
4	Trip Hammer, Shears, 12" Emery	G.E.Co	ma	1800 R	1300	500	26 L	630	-50	.441	6650	1400	.612
L J	No Starter.	IZ	1.6	IBIB E	5,9	5.4	2.42	2.5	6.1	38	41.	41,	10.8
								•					154

		MOTO	R RAT	LING.	MACH	INE LO	ADED	MAC	HINE	DLE	STA	RTING	
	MACHINE SHOP	MAKE	I.	R.P.M.	AW .	115	Li.	TAW	15	P.F.	TAW	TS.	P.F.
		FORM	AMP.		PHASE 1	PHASE 2	H.P.	PHASE	PHASE 2	H.P.	PHASEI	PHASE 2	H.P.
1	Drill Tress ; Punch - max 1"x 4.5"	G.E.Co.	15	1200R	5400	4450	98.	2800	200	.554	3000	1000	756
0	hole; Flange Funch; Shear; Holl: er: Blower.	١Ľ	38	1225 A	28.1	30,	13.2	14.5	15.	4,02	133.	132.	5.36
0	Lathes, Milling machine, Emery	GE.Co.	S.	1800 R	540	1480	646	0	315	.50	3670	16200	675
0	wheels; etc. No starter.	FU	220	1 1921	7.5	7.5	11.5	5.5	و.	1,23	14	LL	26.6
	Ten Drill-presses, emery	G.E.Co.	25	1200R	1540	4000	804	390	3260	.594	7800	25800	129
5	WAZEL Crimper, Diower.	12	63.	1223 E	21,5	21.5	1.31	1.5	7.5	4,89	323.	324.	45.
R CI	Drill-presses; Shears; Iron	G.E.Co	220	ROOR	410	1380	191				42.00	9500	.83
2	No Starter.	J	13	1816 L	6.2	6.4	2.34				86.	87.	18.4
	GRIND STONES												
001	Surface Grinder, Grind on flat side	Westing-	7.5	1120 R	4610	13490	.164	40	1640	.52	600	12280	,553
	Test B'x 28" Load Intermittent	CCL	10.2	1170 E	30.	32.	24,3	S.	S.	2.25	39	37	11.3
n Ci	Automatic Surface Grinder, Grind	Fairbanks	30	1200 R	14080	B100	.904	5600	- 800	685.	12000	10400	66.
202	on Flat Side. Stone 3.5 tole x40. Steady Load	.V.A	100	1148 L	40.4	45.4	29.7	18.5	18.2	G.43	55.	55	30.
	Grind Stone.	- Guing -	-5	810 R	9800	8400	9966.	5300	2800	188.	6430	4880	572.
24	Load on only a few seconds.	H.F.	600	868 E	23.7	23.7	24.2	8.3	6.4	10.9	19.8	19.8	15.2
	Grind Stone.	Fairbants	30	720 R	16570	8650	LLB.	4510	1200	969.	12440	9800	.982
22	UIZE 13 X 8 Logd Intermittent.	P. V.	38	730 E	40.3	42.3	23.8	15.3	15.3	7.74	38.	39.	29.8
100	(Frind Stone Size 12" (Diam	Westing-	200	690R	7600	4150	69.	3800	-2200	.15	06211	5380	.851
1		H.F.	28.7	118 L	17.2	12.3	15.7	11.1	17.5	2.14	24.	24.	22.3
LCI	Stone G"x28".	Westing-	1,5	NIZO R	6350	2770	.822	2000	901	469	6400	270	.532
1		CCL	10.1		14,8	15.8	12.2	5.	S.	2.55	40	A W	6.94
ac	Grind Stone Plades	Westing-	7 0 7 - 7	850 R	10250	4660	836	1500	-200	165.	OOLL	600	.559
C L L	some indeal function	CCL	440	868 E	30.	30.	2 o.	<i>د.ع</i>	2.1	1.74	35.	5o.	11.1
130	Grind Stone, 13" x46" Diam.	Westing-	15	BTO R	4930	9400	619,	1100	3800	123	2800	4600	196.
2		H.F.	20	848 L	24.	26.1	19.2	6'6	9,1	G.56	13.3	13.5	9.9
181		Westing-	15	BTO R	7850	5750	.965	1800	-160	413	5374	3160	.913
101	CLINE CONC, SIZE 12 X 18.	H.F.	20	824 L	22.1	22.1	18.2	6.9	1.4	2.2	13.5	13.5	11.4
CEI	Grind Stone, Size 8"x30'	Westing-	200	850 R	8200	9000	9966.	2000	2400	.986	4900	1300	946
1		CC L	26	305 E	25.3	25.8	23.	9.6	7.4	5.3	73.	71.5	16.3
													150

		MOTOM	R RA	TING	MACH	INF LO	ADED	MAC	HINE	DIE	STA	NITA	6
	C.PIND STONES	MAKE	0	NO	TA/AT	10	LL D	TA/AT	TC	ŭ		110	u
		TYPE	VOLTS		PHASE	RES PHASE 2	A.H	AMPE	RES PHASE 2	H.P.	AMP	PHASE 2	H.P.
221		Westing-	2	IIZOR	190	650	689	140	620	676	460	4000	109.
221	Urind JTONE; DIZE 4 XIB No starter	CCL	283		1.5	S.	1.13	1.5	ما	1.02	115,1	14.8	5.38
1		Westing-	15	GOOR	5600	4300	She.	4800	2000	.814	7000	6330	Lee.
10	Gring Stone.	H.F.	21.0	1016	13.4	14.2	13.3	6,3	B.G	9.11	23.3	24.3	6.61
	MISCELLANEOUS												
	I'TI SUE ELANEOUS												
	Bottle Washing Machine ; Mach.	G.E.Co.	5	1200R	0401	-300	303				2000	1300	956.
20 Z	empty at Test. Machine is the heaviest part of load.	EU	13.2	1230 L	6.5	۲	1.				60.	GR.	4.42
ć		G.E.Co	500	600 R	1650	-845	181.	1450	-960	.116	8600	800	.569
บิ	barrel Washing Machine.	10	13.		12.2	12.7	1.08	12.4	12,4	.66	62.5	63.	12.6
0	Loeb Manitor Beer Pasteurizer	G.E.Co	010	900 R	2290	-20	404				6500	1200	647
2	Heated by Steam. Machine makes one Rev. Per. hour.	45	290	930 A 900 L	13.8	14.2	3.04				80	61	10.3
0	Buffer Direct Connected	GE.Co	ۍ م	3600R	2250	3250	954	-215	1050	.358	2700	16100	629
	Loaded 20 sec. per. minute.	Ēυ	13,6	3512 L	1.4.1	1.5.1	1.38	6 6	1.3	1.12	100.	8G.	25.6
	Runs 9 Machines for making tin	GE.Co.	- 15. 0 0 0	1200 R	4150	410	.586	3350	016-	515.	38500	6600	,636
0	cans; ico' of 2" line shatt.	łΣ	32.	1212 L	24.3	24.2	6,2	23.3	23.3	3.13	011	178	60.5
0	Runs 30 Presses to stamp out	GE.Co	000	1200 R	6850	4450	938.	3200	081-	.358	33000	8000	.684
V	beited direct to line shaft.	45	510	1119 L	38.	38.	14.2	19.7	haft Only 19.7	3.92	232.	248	59.
00	Planer; Shaper and G Cir-	G.E.C.o	So	900 R	0	9300	.50	-3000	6500	.208	8100	6 5000	.532
001	loaded and with Line shaft.	12	124	915 L	17.	82,5	12.5	41.	41.	1.4	SSS	532	98.
10	Run sand cutting machine.	GE.Co	2.50	1800 R	2050	690	.825	518	-145	585.	9800	11900	,665
901	For use in tounary.	EU	18.5		1.4	6.5	3.86	4.5	4	86.	70.	72.	16.
												-	
													150

	REPULSION.	Single Phase RT.			Single Phase Type AR										159
MOTORS.	EXTERNAL RESIS.	Type I Form M			Type HF	Type MW	Type F #100	Type BV.		Style 10 AC	Style QX	Type O Form X			
NAMES OF	INTERNAL RESIS.	Type I Form L	Type I Form LM												
TRADE	SQUIRREL CAGE	Type I Form K	Type I Form C	Type KT Form C	Type MS	Type CCL		Type B	CL9AB				Gize 350	Type BP. Model 19T	
TABLE OF	NAME OF MAKER.	G.E. Co.	G.E.Co.	G.E.Co.	Westinghouse Elec.& Mfg. Co	Westinghouse Elec. & Mfg. Co	Westinghouse Elec. & Mfg. Co.	Fairbanks Morse Co.	Western Electric Co.	Otis Elevator Co.	Otis Elevator Co.	Northern Electric Co.	Crocker Wheeler Co.	Wagner Electric Co.	

TABLES OF TEST DATA AND DISCUSSIONS WITH INDIVIDUAL CONCLUSIONS.

In the discussions of the following groups of machines one object is to show the proper size of motor to use in order to obtain high efficiency for the running conditions. A few examples are given of the saving that may be expected by the proposed changes. The other object is to provide for the starting of the load without excessive flow of current or power.

The following is a key to the speed notation of the tabulations of data:- A = motor alone; E = machine empty; L = machine loaded; R = rated speed.

a. PUMPS.

For all the tests of this group the starting current is from four to ten times the rating of the motor. The power input is 150% to 300% of the motor rating. In all cases a smaller motor could be used for running and for the small size of these motors the comparatively large starting currents would not be objectionable to the central station. For large pumping sets rotor resistance motors should be used but where automatic float starters are used, it is almost necessary to use a squirrel cage motor.

In this group Motor No. 26 is the only one of the right size for the work done. It ran at nearly full load, had good power factor and speed regulation. Motors Nos.27 and 28

IV

.

.

· · ·

· ·

.

should each be replaced by a 1 H.P. motor.

b. ELEVATORS.

It is different to make recommendations for this group since at no time was it possible to get full load on the elevator. Except for the first two, all motors have an external rotor resistance; but in starting this resistance is generally cut out before the motor has much more than started. The data for No. 19 is interesting because the power is negative for the motor going up. This indicated that the counterweights are extra heavy for the light load on the motor.

Motor No. 19 should be replaced by a 1 H.P. motor and a countershaft provided to allow the motor to come up to speed before throwing on the load. Motor No. 35 could be replaced by at least a 20 H.P. and if a friction clutch were provided it could probably start the elevator and conveyer when full of coal. At present both the elevator and conveyer must be empty or the motor will not start.

C. CAKE AND CRACKER MACHINERY.

The size of motor required for the mixing machines cannot always be decided from the data taken since the consistency of the dough varies. No. 56 and No. 58 are always used for the same purpose and the data there is reliable. No. 56 should be replaced by a 5 H.P. motor. While this would result in a saving of power it would not be very great since the motor is used only a few hours per day.

- ·

The maximum load is given for No. 58 and that load is applied for only a few seconds. The normal power input is 11 H.P. Therefore it would pay to use a 10 H.P. motor which would easily carry the overload for the few seconds required. For starting, the spindles are revolving free and a high starting torque is not required. Hence the starting voltage of 125 volts could be reduced, cutting down the starting current. A rotor resistance motor is not recommended for this machine because its efficiency is less than for the squirrel cage type, and the starting conditions do not demand it.

Motor No. 45 is installed large anough to run three small mixers and two larger ones. The three small ones are seldom used. The data is taken for the two large mixers and the line shaft. A more economical arrangement would be to use the three small mixers in one group with a motor of proper size, and to use the other two in another group. Then by reducing the length of the line shaft a 3 H.P. could be used.

The power taken by the cake and cracker conveyers loaded isonly a little more than that taken to run them empty. Motor No. 46 should be replaced by a 1 H.P., No. 44 by a 1/2 H.P. and No. 42 by a 1 H.P. No. 53 could be replaced by a smaller motor but a test should be made with the conveyer loaded before deciding definitely.
The cake and cracker cutting machines include endless belt conveyers to carry the pans under the cutter, and sometimes a device for rolling out the dough. Consequently the power required to cut the crackers or cakes is negligible. As is seen from the data for Motors No.48, 49, and 50, a smaller size of motor should be used in each case.

The two momentary loads on Motors No.52 and No.59 could be lightened by using a fly wheel on the idler with the motor. While the present conditions are not serious for these small motors they would become so with large installations.

d. AIR COMPRESSERS.

In this group Motor No. 105 is of the proper size while all the others are too large for the work done. In all of the squirrel cage motors the starting current and power is excessive as compared with that to carry the load. Motor No. 33 could well be changed to a 10 or 15 H.P. rotor resistance motor, with a consequent saving of from 2 1/2 to 3 H.P. in losses.

Motor No. 68 was installed as a 5 H.P. in order to carry a small additional load which is used only a few times per year. The air compresser is used continuously. A considerable saving of power could be made by using a 1 H.P. motor starting on a counter shaft for the air compresser, and a similar one for the other additional load.

Motor No. 104 is of the proper type but should be a 20 H.P. This motor is used ten hours per day about 300 days

per year. The efficiency of the 50 H.P. motor is about 85% at 22 H.P. input and the loss is 3.3.H.P. If a 20 H.P. motor is used the efficiency is 88% and the power lost if 2.64 H.P. The net saving is 2/3 H.P. which at \$.05 per Kw.Hour is \$74.00 per year.

Motor No. 91 is an example of a motor run at about 1 H.P. overload, apparently with no bad effects. However, the efficiency is about 1% lower than at from 60% to 100% load.

The results for No. 14% are interesting. The fan is direct connected to an eight pole motor of 900 R.P.M. at synchronous speed, so that the speed reduction to 670 R.P.M desired could not be obtained by use of belt and pulleys. The company chose to use a rotor resistance motor and run continuously for ten hours per day at 75% synchronous speed. The efficiency at that speed is about 66% while if a ten pole motor at 720 R.P.M. synchronous speed were used the efficiency would be increased to about 87%. For the first case the. loss is 4.1 H.P. For the second case with a 10 H.P. motor the loss is .91 H.P. and the saving is 3.19 H.P. At \$.05 per Kw. Hour, ten hours per day and 300 days per year, this would amount to \$478.50 . Since the fan is used for during noon hour part of the time it is probable that over \$500 per year could be saved.

In concluding the discussion of this group it is recommended that the large size motors be replaced by smaller ones and that they have rotor resistance for starting purposes. In general large fans require a high starting torque thus

making the use of the rotor resistance type of motor advisable.

e. SPICE GRINDING MACHINERY.

All the motors of this group are much too large. In fact as a result of these tests the company has made many changes in the sizes of the motors used. In the test No. 75 it was found that a large percentage of the power was used in the line shafting and belts. It would be advantageous to put the machines seldom used in one group with a motor of proper size to run them, and to have a similar group for the other machines. From the data given it is plain that smaller motors should be used and that they should be squirrel cage type with friction clutches or that rotor resistances should be used.

f. MACHINE SHOPS.

In most machine shops it would be possible to use a friction clutch with the line shaft. Then even if the shaft is long and has a number of machines belted to it the more economical squirrel cage motor can be used. In general the long shafts with a number of pulley and belts require a high

starting torque.

The data taken for Motor No. 24 under "Machine Loaded" was taken for the maximum indication of the instrument needle when the trip hammer was used. A heavy fly wheel could be put on the trip hammer countershaft and the 3 H.P. motor replaced by a 1 H.P.

A very large saving may be made by replacing Motor No. 101 with a 7.5 H.P. motor. The present efficiency is 76% and the loss is 1.75 H.P. Using a 7.5 H.P. motor and the same output of 56 H.P. the percent load is 74.5 %, and the efficiency is 88%. For these conditions the loss is .75 H.P. or a net saving of 1 H.P. At \$.05 per Kw.Hour, ten hours per day and 300 days per year, the saving is \$111.90.

g. GRINDSTONES.

As all large grindstones have large inertia and require a high starting torque a rotor resistance type of motor should be used. In many of these tests the data given is for "Machine Loaded" is the maximum power input and occurs for only a few seconds, since the load is applied for a few seconds. Some of the grindstones are of small size and this maximum power input is excessive, indicating that the inertia is low. Under these conditions the central station man would want inertia to be provided artifically as by the addition of a heavy fly wheel. The customer should be willing to provide the fly wheel because the heavy currents otherwise resulting cause extra heating and strain on the motor.

The test for Motor No. 122 shows that with the

· · ·

· ·

· • · ·

·

squirrel cage motor heavy starting current and power of about 350% and 300%, respectively is required. For ordinary running conditions 2.85 H.P. is required, and momentarily 24.3 H.P. input. A 5 H.P. motor with rotor resistance would cost less than a squirrel cage type with compensator , and better starting torque would be obtained. The addition of a heavy fly wheel would very largely reduce the momentary heavy rush of current. Motor No. 123 is well adapted for its work. For both starting and running the current and power are very satisfactory. Motor No. 128 should be replaced by a 5 H.P. motor or perhaps a still smaller one, and a fly wheel should be added to give up its energy during the few seconds that the load is applied. The present starting power is comparatively low for a squirrel cage motor with a compensator, showing that the inertia of the rotating parts is low.

h. MISCELLANEOUS.

Motor No. 72 is noticeable for its inadaptability to start the heavy load. The machines all have heavy fly wheels and are all belted directly to the line shaft. When the motor is started a number of men have to help by pulling on the belt. It required thirty seconds to a minute for the motor to reach any speed. After the motor was running it was found that the power taken for the machines working or idle was very nearly the same, due to the heavy fly wheels. A 15 H.P. rotor resistance motor should start the load and carry is satisfactorily. It would probably be a little more economical to use a

squirrel cage motor and a friction clutch in the line shaft. Motor No. 70 has about the same conditions of operation as No. 72 and the same changes could be made.

Motor No. 100 is another example of a poor choice of motor. To cut down the losses the line shaft is run in ball bearings but any gain this way is offset by the low efficiency of the motor installed. A 15 H.P. rotor resistance motor would start and carry the maximum load.

Motor No. 51 is of interest since it is the only two pole motor tested. The buffer is direct connected to the motor shaft and not much additional power is required to run it idle. Then for "Machine Idle" the power input is nearly all to run the motor. That power is about 20% compared with the usual power of about 10%.

GENERAL CONCLUSIONS.

V

As a result of this investigation it was found that in almost every case the motor was larger than required for the work to be done. In some cases this was due to ignorance of the actual needs and in other cases due to the wrong idea that for the same load it would cost no more to run the large motor than the small one. Again in a few cases where a high starting torque was required, large squirrel cage motors were installed when a small motor and friction clutch should have been used. In other cases a smaller rotor resistance motor should have been used. Very few of the consumers realize that there is any relation between efficiency and percent load on the motor. None seemedto understand that for the same efficiency the large motor has larger losses.

If the changes suggested are made it will result in higher economy of operation and a saving to both the consumers and the central station, and the company will obtain the good will and confidence of the consumers to an extent that could not be obtained by any other means.

