ROY

Analysis of a ioo-Foot Concrete Arch

Civil Engineering
B. S.

1905
$* * * *$

* * * *
* * * *
* * * * *

$* * * *$

* * * * * * *
* * * * * * * *

 * * * * * * $* * * * * * *$

* * * * * * * * * * * * * * * * * *

ANALYSIS

OF A

10O-F'I. CONCRETE ARCH

BY

HOWARD MEEK ROY

THESIS

FOR

DEGREE OF BACHELOR OF SCIENCE
 IN
 CIVIL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

This is to certify that the thesis prepared under the immediate supervision of Instructor L. A. Waterbury by HOWARD MEEK ROY
entitle a ANALYSIS OF A 100-FOOT CONCRETF ARCH
is approved by me as fulfilling this part of the requirements for the degree of Bachelor or science in Civil Engineering

Iraobaker

> Head of Department of Civil Engineering

OBJECT.

The object of this thesis is to determine analytically the stresstresses, due to live load, dead load and temperature changes, in the 100 ft . plain concrete arch in the west approach to the Thebes bridge, Thebes, Illinois.

DIUENSIONS OF ARCH.

The arch to be analysed is the largest in the west approach to the railroad bridge over the Mississippi river at Thebes, Illinois. The arch ring has a radial depth of $41 / 2$ feet at the crown and 11 feet at the haunches. The curve of the intrados has a radius of 50 feet; the curve of the extrados, a radius of 62 feet $15 / 8$ inches, from the crown to a point 40 degrees 1 minute from the vertical where it becomes a tangent. The clear span of the arch is 100 feet; the rise, 50 feet.

Fig. 1 shows the form and dimensions of the arch.

IOADING.

The arch was designed for a vertical live load of 6200 pounds per lineal foot of track. The earth filling was assumed to weigh 105 pounds per cubic foot, and concrete, 150 pounds per cubic foot. These loads and assumptions will be used in this analysis. METHOD OF ANALYSIS.

The analysis was made using the tables given in "Calculation of Stresses and Practical Design of Structures of steel Concrete" by Walter W. Colpitts, Assistant Chief Enginear, K. C. M. \& O. Ry. The tables are based upon the elastic theory of the parabolic arch as presented in the "Treatise On Arches" by M. A. Howe and in Johnson's "Modern Framed Structures". All equations quoted are taken from these treatiser.

Digitized by the Internet Archive in 2013

According to the theory of parabolic arches, if a vertical load, w, should be placed upon an arch at any point, three conditions will be satisfied, namely, -
(1) There will be no change of span.
(2) The algebraic sum of the changes of incination between the abutments will be zero.
(3) The algebraic sum of the deflections between the abutments will be zero.

These conditions will also be satisfied if any number of such loads were applied at the same time.

The position of the equilibrium polygon for this vertical load, W, or any combination of vertical loads, can be determined and the stresses produced thereby calculated, but this would necessitate the drawing of a number of such equilibrium nolygons for the various loadings.

If the effect of each load separately is determined and then the stresses caused by the different loads of any combination which prom duces a maximum at any particular point are summed up, the process is much simplified. It is for this simplification that Mr. Solpitts has arranged the tables given on pages $15-17$.

Referring to the parabola of fig. II,
if $k=r i s e$,
$c=1 / 2$ span,
$x=a b s c i s s a$ of any point, P, on the parabola,
$y=$ ordinate of any point, P, on the parabola,
then $y=k\left(1-\frac{\pi}{c}\right)$ by means of which the location of the point, P, can be determined.

Referring to Fig. 3, the equilibrium polygon for a single ver-
tical load, w, is represented by the two straight lines, \ln and ne, intersecting at the point n in the vertical line through the center of gravity of w, y_{0}, y_{1}, and y_{i} are the ordinates from the springing lines which locate the equilibrium polygon.
If $b=$ horizontal distance from w to center of span, $a l s o=n c$,
$c=1 / 2$ span,
$k=r i s \theta$,
$\mathrm{n}=$ ratio of b to c ,
then $y_{0}=6 / 5$
$y_{1}=2 / 15 \frac{1+5 n \cdot k}{1+n}$
$y_{2}=2 / 15 \cdot \frac{1-5 n^{n}}{1-n} \cdot k$
y_{0} is independent of the span and therefore constant for all positions of w. The locus of yo is mno which is $6 / 5$ of the rise above and parallel to $A B$. The vertical components of the abutment reactions

$$
\begin{align*}
& P_{1}=\frac{(2-n)(1+n)^{2} \cdot w}{4} \cdot w \tag{4}\\
& P_{2}=\frac{(2+n)^{2}(1-n)^{2}}{4} \cdot W-= \tag{5}
\end{align*}
$$

The horizontal component
$H=15 / 32\left(1-n^{2}\right)^{2} c / k \cdot w$
Table 1 gives the values of $y_{0}, y_{1}, y_{2}, P_{1}, P_{2}$, and H for w in different positions. By means of this table the bending moment at any point, as at L,Fig. 3, with w in any position may be calculated thus;-
The ordinates, y_{0}, y_{1}, and y_{2}, may be taken from the table and the equilibrium polygon drawn. Then, by measuring the intercept, $L f=$ z, between the linear arch and the equilibrium polygon and multiplying it by H, the bending moment, $M=H z$, is obtained, being positive or negative according as the equilibrium polygon falls above or beIow L.

Referring to Fig. 4, the equilibrium polygon for a single hori-
\qquad
zontal load, H, is represented by the two straight lines, LG and GN, intersecting at the point G in the horizontal line thru the center of gravity of H .

If $x_{0}=a b s c i s s a$ of G from the center of span (G will always be on the side of the center opposite that to which H is applied).
x_{1} and $x_{2}=a b s c i s s a e$ from the springing line which locate the equilibrium polygon,
$b=$ horizontal distance from H to center of span, also $=n c$,
$c=1 / 2$ span,
$k=r i s \theta$,
$n=$ ratio of b to c ,
then $x_{0}=2 n^{3} c$

The vertical components of the abutment reactions

$$
\begin{equation*}
P_{1}=-P_{2}=3 / 8 H k / c\left(1-n^{2}\right)^{2} \tag{10}
\end{equation*}
$$

The horizontal components

$$
\begin{align*}
& H_{1}=H / 3\left(1+n^{3} / 2\left(5-3 n^{2}\right)\right) \tag{11}\\
& H_{2}=H-H_{1} \ldots
\end{align*}
$$

Table 2 gives the values of $x_{0}, x_{1}, x_{2}, P, H_{1}$ and H_{2} for H in different positions. By means of this table the bending moment at a any point, as at c, Fig. 4 with H in any position may be calculated thus;-
x_{0}, x_{1}, and x_{2} may be taken from the table and the equilibrium polygon drawn. Then, by measuring the intercept, $C D=r$, between the linear arch and the equilibrium polygon and multiplying it by P, the bending moment, $M=P r$, is obtained, being positive or negative according as the equilibrium falls to the right or left of c.

The discussion thus far has been for a single load. For any

combination of loads a simple extension is necessary.
The effect B of of each load separately are added.

Thus, to determine the stresses in an arch ring due to any particular combination of dead and live loads, the arch is divided into a certain number of equal panels and both horizontal and vertical loads are considered to be concentrated at the points of subdivision.

For an arch divided into ten equal panels Table 3 gives the coefficients which, when multiplied by $1 / 2$ span and by the vertical load, give the bending moment in inch-pounds at any panel point due to that load.

Table 4 gives the coefficients which, when multiplied by the rise and by the horizontal load, give the bending moment in inchpounds at any panel point due to that load.

No further explanation of these tables need here be given as the analysis to follow illustrates their use. W and H may represent either the live or dead loads at the point considered.

EQUATION OF CHITER LINE.

Before working out any stresses, the arch was investigated by means of drawings made to scale to see if the medial line of the arch rib is a parabola. This was found to be nearly enough true for the analysis.

The arch was further investigated to determine whether $A=E \theta$ $\cos \phi=$ constant; E being the coefficient of elasticity of concrete and thus constant for all sections, θ, the moment of inertia of any section and ϕ, the angle from the vertical through the crown to the section taken. Fig. 5 and table 5 show the location of the sections and the results deduced. It is to be noticed that the relation $A=$ $E \theta \cos \phi^{3.26 \pm .31}$ squares. It would seem that this power of cos ϕ is caused by the
excess of material in the arch.

DETAILS OF ANALYSIS.

Moments due to vertical live loads.

The arch was divided into ten equal panels of ten feet each. Since the loads were considered concentrated at the panel points each panel load $=7750$ pounds $=w, c=1 / 2$ span $=50$ feet. By use of table 3 the moments at the abutment were found as follows: Max. positive $M=+4.068 \times 50 \times 7750=+157630$ inch pounds. Max. negative $M=-3.864 \times 50 \times 7750=-149730$ inch pounds. The moments at each of the other panel points were determined in the same manner. The results are as follows:

Panel Point	10	9	8	7	6	5
	0	1	2	3	4	5
Max. positive M	+157630	+47890	+74540	+94860	+72540	+58590
Max. negative M	-149730	-39990	-58350	-87420	-64630	-50220

Table 3 and other tables show that the moments are the same for each half of the arch.
Moments due to vertical dead loads.
It was assumed that the vertical dead load was equal to the weight of the overlying material plus the weight of the portion of the arch considered and also that this load was concentrated at the panel points. The following are the dead loads used.

	9	8	7	6	5
Panel Point	1	2	3	4	5
Concrete	17760	10510	8260	7180	6860
Earth	21150	14130	9460	6860	6040
Total Load	38910	24640	17720	14040	12900

By the use of table 3 , for the abutment, for
W on $1, \mathrm{M}=-1.452 \times 38910 \times 50=-2724870$ inch pounds
n " $2, M=-1.536 \times 24640 \times 50=-1892350$

Similarly for each of the otner panel points the following resultant bending moments were found:-

| | 10 | 9 | 8 | 7 | 6 | 5 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | Resultant M $-1634960+2719620+1069080+367270-329620-704700$

Since the dead load is constantly applied the resultant moments will be the sum oi the positive and negative moments. Moments due to horizontal live loads.

The unit horizontal live load was assumed to be one third of the unit vertical live load. This load was considered to be distributed over a surface of the same depth as the vertical projection of the upper surface of the panel sections of the arch rib. The total horizontal load for each panel was considered tio be concentrated at the panel points as follows:-

Panel Point	9	8	7	6	5
Hor. Live Load	1770	1150	6	4	4

The horizontal loads were placed on the points which, when loaded with vertical live loads, produce a maximum positive or a maximum negative moment at the section considered and the bending moments due to these horizontal live loads were computed using table 4. For the

> abutment,
> H on $6, M=+1.57 \times 200 \times 50=+15500$ inch pounds
> " " $7, M=+1.58 \times 620 \times 50=+48670$ " "
> " " $8, M=+1.16 \times 1150 \times 50=+66550$
> " " $9, M=+0.48 \times 1770 \times 50=+42480$ " "

Total $=+173200$ inch pounds
H on $1, M=-2.71 \times 1770 \times 50=-239830$ inch pounds
" " $2, M=-2.83 \times 1150 \times 50=-162370$ "
" " $3, M=-2.21 \times 620 \times 50=-68510$ "
" " $4, M=-1.66 \times 200 \times 50=-16290$ "

Total $=-487000$ inch pounds

Similarly for each of the other panel points the following bending moments were found:-

	10	9	8	7	6	5
Panel Point	0	1	2	3	4	5
$(+)$	+173200	+137010	+191830	+130340	+25600	-3340
$M(-)$	-487000	-20890	-41500	-93960	-102910	-116620

Moments due to horizontal dead loads
The unit horizontal dead load was assumed to be one third of the unit vertical dead load, distributed over a surface of the sane depth as the vertical projection of the upper surface of the panel sections of the arch rib. The total horizontal dead loads were considered to be concentrated at the panel points as follows:-

	9	8	7	6	5
Panel Point	1	2	3	4	5
Hor. Dead Load	2400	1220	570	170	0

Then, since the dead load is constantly applied, by the use of table 4 , for the abutment for
H on $1, M=-2.71 \times 2400 \times 50=-325200$ inch-pounds
" " $2, M=-2.83 \times 1220 \times 50=-172630$

```
H on \(3, \mathrm{M}=-2.21 \mathrm{X} 570 \times 50=-62980\) inch-pounds
" " \(4, M=-1.66 \times 170 \times 50=-14110\) n \(\quad\) "
```



```
" " \(6, \mathrm{M}=+1.57 \times 170 \times 50=+13430\) " "
```



```
" " \(8, M=+1.16 \times 1220 \times 50=+70760\) " "
" " \(9, M=+0.48 \times 2400 \times 50=+57600\) " "
```

Totals $=-574920,+186530$ inchpounds Resultant $=-388390$ inchpounds

Similarly for each of the other panel points the following resultant berding moments were found:-

	10	9	8	7	6	
Panel Point	0	1	2	3	4	5
Resultant M	-388390	+154920	+170300	+34040	-89400	-134530

Temperature Stresses

The arch expands or contracts with a change in temperature thus causing a negative thrust and positive bending moment with a fall in temperature and a positive thrust and negative bending moment with a rise in temperature.

Temperature moments
The moments were figured for a fall in temperature from $70^{\circ} \mathrm{F}$ to $0^{\circ} \mathrm{F}$ or $70^{\circ} \mathrm{F}$ in all.

If $t=$ extreme temperature change $=70^{\circ} \mathrm{F}$. ,
$e=$ coefficient of expansion of concrete $=.0000055$ per $1^{\circ} \mathrm{F}$, $E=$ modulus of elasticity of poncrete $=3,000,0002 \mathrm{bs}$. sq. in., $I=$ moment of inertia of section of arch at crown in inches ${ }^{3}$, Ht $=$ horizontal thrust in pounds due to change of temperature, $M_{+}=$bending moment in inch pounds due to change of temperature, k = rise of arch in feet,
then $\mathrm{H} \dagger=\frac{45}{4} \frac{\mathrm{teEI}}{144 \mathrm{k}^{2}}$
(crown) $M+=\frac{15}{4} \frac{\text { teEI }}{12 \mathrm{~K}}$ -
(Springing line) $M+=\frac{15}{2} \frac{\text { teEI }}{12 k}=2 M+$ (crown)
Substituting: $-k=50 \mathrm{ft} ., \mathrm{t}=70^{\circ} \mathrm{F}, \mathrm{e}=.0000055, \mathrm{E}=3000000$, $I=\frac{b d^{3}}{12}=157464$ inches,
$M+($ crown $)=1136690$ inch pounds
M十 (Springing line) $=2273380$ inch pounds
$\mathrm{H} \dagger=-5680$ pounds.
Also the temperature bending moments at the aifferent panel points bear the following ratios to that at the crown and the respective bending moments are as follows:-

Panel Point	0	1	2	3	4	5
Ratio	2.00	0.92	0.08	0.52	0.88	1.00
$M+$	+2273380	+1045750	+90930	+591080	+1000290	+1136690

Temperature shear

The vertical shear due to a change of temperature may be considered as equal to that of a uniform load which produces the horizontal thrust $\mathrm{H}+$, the equilibrium polygon of which is a parabola and the shear diagram similar to that of a beam uniformly loaded. This shear is zero at the crown and increases to a maximum at each abutment.

To find the panel load, W, which produces this value of H for an arch of ten panels, the sum of the coefficients for H, table 1 , for loads on all panel points $=2.4997$. Then
$W=\frac{H+k}{2.4997 c}=2270$ pounds
Thus the shear diagram may be drawn

	10	9	8	7	6	5

Shear	10220	7940	5680	3400	1135	-1135

Horizontal thruste.

The stresses at any point produced by both thrust and bending moment are usually the greatest when due to the naximum bending moment at the point and the total horizontal thrust from the loads which have produced that maximum bending moment.

Thus, referring to table 1 , for vertical live loads, the horizontal thrust at the abutment
$H_{L}=(0.4320+0.3308+0.1920+0.0607) 7750=7840$ pounds. Similarly, for each of the other panel points the following horizontal thrusts were found:-

	10	9	8	7	6	
Panel qoint	0	1	2	3	4	5
$(+)$	+7840	+8340	+4520	+8640	+11030	+10340
$H_{L}(-)$	+7840	+11030	+14850	+11500	+8340	+9040

Similarly for vertical dead loads the follcwing horizontal thrusts were found:-

	10	9	8	7	6	
Panel Point	0	1	2	3	4	5
H_{D}	+44080	+44080	+44080	+44080	+44080	+44080

Referring to table 2, for horizontal live loads, the horizontal thrust at the abutment, for
H on $6, H_{L}=+0.490 \times 200=+100$ pounds
" $n 7, H_{L}=+0.428 \times 620=+200$ "
" " $8, H_{L}=+0.289 \times 1150=+330$ "
" " $9, H_{L}=+0.106 \times 1770=+190$ "

$$
\text { Total }=+880 \text { pounds }
$$

H on $1, H_{L}=-0.894 \times 1770=-1580$ pounds
" $n 2, H_{L}=-0.711 \times 1150=-820$ n
" " 3, $H_{L}=-0.572 \times 620=-350$ "
H on $4, H_{L}=-0.510 \times 200=-100$ pounds

$$
\text { Total }=-2850 \text { pounds. }
$$

Similarly for each of the other panel points the following horizontal thrusts wore found:-

	10	9	8	7	6	
Panel Point	0	1	2	3	4	5
$(+)$	+880	+1070	+160	+680	+690	+190
$H_{(-)}$	-2850	-1270	+780	+680	+1070	+1560

Similarly also for horizontal dead loads the following horizontal thrusts were found:-

	10	9	8	7	6	
Panel Point	0	1	2	3	4	5
Resultant H_{D}	-2520	-120	+1100	+1670	+1840	+1840

The horizontal thrust due to temperature as found on page 10
$=-5680$ pounds.

Results

Collecting the difforent bending moments and horizontal thrusts found above and reducing them to unit stresses by the formula $S=$ Mc/I for bending moments and the formula $S=P / A$ for horizontal thrusts, the following results were obtained:-

Panel Point	10	9 1	8	7 3	6 4	5
Vert.dead l'd	-1634960	+2719620	+1069080	$+367270$	-329620	-704700
Hor. live $\mathrm{I}^{\prime} \mathrm{d}(+)$	$+173200$	+137010	+191830	+130340	+25600	-3340
	-487000	-20890	-41500	-93960	-102910	-116620
Hor. dead I'd	-388390	+154920	+170300	+34040	-89400	-134530
Temperature	+2273380	$+1045750$	+90930	+591080	+1000290	+1136690
Total Horizontal Thrusts Due To						
	10	9	8	7	6	
Panel Point	0	1	2	3	4	5
Vert.live $\mathrm{l}^{\prime} \mathrm{d}(\mathrm{t})$	+7840	+8340	$+4520$	+8640	+11030	$+10340$
$(-)$	+7840	+11030	+14850	$+11500$	+8340	+9040
Vert.dead 1'd	$+44080$	+44080	+44080	+44080	+44080	+44080
Hor.live I'd (t)	+880	+1070	+160	+680	$+690$	+190
(-)	-2850	-1270	$+780$	+880	+1070	+1560
Hor.dead I'd	-2520	-120	$+1100$	+1670	+1840	+1840
Temperature	-5680	- 5680	-5680	-5680	-5680	-5680

Unit Stresses Due To Bending Moments Due To

Panel Point	10	9	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	5
Vert.live $\mathrm{I}^{\prime} \mathrm{d}(+)$	+3.30	$+3.45$	+8.02	+13.38	+12.46	$+10.04$
(-)	-3.13	-2.88	-7.36	-12.04	-10.60	-8.61
Vert.dead 1'd	-34.22	$+196.06$	$+115.06$	$+50.60$	-54.08	-120.84
Hor.live l'd (+)	+3.62	+9.88	+20.64	+17.96	+4.20	-0.57
(-)	-10.19	-1.51	-4.46	-12.94	-16.88	-19.99
Hor.dead I'd	-8.12	$+11.16$	+18.32	+4.69	-15.01	-23.06
Temperature	$+47.58$	+75.39	+9.78	+81.44	+164.14	+195.32

Unit Stresses Due To Horizontal Thrusts Due To

	10	9	8	7	6	5
Panel Point	0	1	2	3	4	5
Vert.live 1'd(+)	+4.23	+8.35	+5.52	+11.94	+16.65	+15.96

Panel Point	10	9	8 2	7 3	6 4	$5^{14 .}$
(-)	+4.23	+11.04	+18.15	+15.91	+12.59	$+13.95$
Vert.dead l'd	$+23.77$	+44.11	$+53.89$	$+60.97$	$+66.55$	+68.02
Hor.live l'd (t)	+0.47	+1.07	+0.19	+0.94	+1.04	+0.29
$(-)$	-1.54	-1.27	+0.95	+1.22	$+1.62$	+2.41
Hor.dead I'd	-1.36	-0.01	+1.17	+2.31	+2.78	+2.84
Temperature	-3.06	-5.68	-6.94	-7.85	-8.58	-8.77
Total unit $(+)$	$+39.27$	+343.78	+225.65	$+236.38$	+200.25	$+139.23$
Stresses (-)	$+15.32$	+326.41	+198.56	$+184.31$	+142.53	$+101.27$
CONCLUSION.						

These stresses are within the allowable limits usually given;
Therefore it would seem that the arch is well designed.

Table 1.

Table 2.

Table 3
Bending Moments Due to Vertical Loads.

	Abut. Crown							
	0	1	2	3	4	5		
W on	+0.264	+0.072	-0.060	-0.144	-0.156	-0.120	times c	cW
W on 8	+0.768	+0.192	-0.204	-0.420	-0.444	-0.288	times c	cW
W on 7	+1.140	+2.228	-0.372	-0.648	-0.600	-0.240	times	cWT
W on 6	+1.152	+0.132	-0.480	-0.672	-0.444	+0.192	times c	cW
W on 5	+0.744	-0.072	-0.444	-0.372	+0.144	+1.128	times c	cW
W on 4	0.	-0.312	-0.204	+0.312	+1.248	+0.192	times c	cW
W on 3-	-0.876	-0.432	+0.336	+1.428	+0.432	-0.240	times	cW
W on 2	-1.536	-0.216	+1.284	+0.576	+0.048	-0.288	times	cW
Sum-	-3.864	-1.032	-1.764	-2.256	-1.668	-1.296	times c	cV
Sum--------	+4.068	+1.236	+1.956	+2.448	+1.872	+1.512	times c	cW

	Abut.					
	6	7	8	9	10	
V on 9	-0.024	+0.132	$\div 0.336$	+0.612	-1.452	times cW
W on 8-	+0.048	+0.576	+1.284	-0.216	-1.536	times cW
WV on 7	+0.432	+1.428	+0.336	-0.432	-0.876	times cW
w on 6-----	+1.248	+0.312	-0.204	-0.312	0.	times cW
W on 5-	+0.144	-0.372	-0.444	-0.072	+0.744	times cW
W on 4--..-	-0.444	-0.672	-0.480	+0.132	+1.152	times cW
W on 3-	-0.600	-0.648	-0.372	+0.228	+1.140	times cW
W on 2--.-	-0.444	-0.420	-0.204	+0.192	+0.768	times cW
W on 1	-0.156	-0.144	-0.060	+0.072	+0.264	times cW
Sum-	-1.668	-2.256	-1.764	-1.032	-3.864	times cW
	+1.872	+2.448	+1.956	+1.236	+4.068	times cw

Bending Moments Duo To Horizontal Loads
(Coefficients are to be multiplied by kH)

	Abut.		Crown							Abut.	
on	0	1	2	3	4	5	6	7	8	9	10
9	+0.48	+0.13	-0.11	-0.25	-0.29	-0.22	-0.05	+0.22	$+0.60$	+1.08	-2.71
8	+1.16	+0.29	-0.31	-0.63	-0.68	-0.45	$+0.06$	+0.85	+1.91	-0.12	-2.83
7	$+1.57$	+0.34	-0.47	-0.87	-0.85	-0.42	$+0.43$	+1.69	+0.94	-0.36	-2.21
6	+1.58	+0.28	-0.54	-0.89	-0.76	-0.17	$+0.90$	$+0.99$	$+0.60$	-0.29	-1.66
5	The b	nding	moment	t	ch po	nt is	neutra		by	s app	ied
	to b	h t	richt	,	f	the	own	which	is	1	man-
	ner	whi	they	can	cur.						
4	-1.66	-0.29	$+0.60$	+0.99	+0.90	-0.17	-0.76	-0.89	-0.54	+0.28	+1.5
3	-2.21	-0.36	+0.94	+1.69	$+0.43$	-0.42	-0.85	-0.87	-0.47	+0.34	$+1.57$
2	-2.83	-0.12	+1.91	+0.85	+0.06	-0.45	-0.68	-0.63	-0.31	+0.29	$+1.16$
1	-2.71	+1.08	$+0.60$	$+0.22$	-0.05	-0.22	-0.29	-0.25	-0.21	$+0.13$	+0.48

Table 5. (see fig.5)
$A=E \operatorname{Cos}^{n=1} \phi d^{3}$ Not Constant. n For $A=E \operatorname{Cos} \phi^{n} d^{3} \operatorname{const}$.

Join	t cot.	ϕ	d	d^{3}	$\operatorname{Cos} \phi$ 。	$\cos \phi d^{3}$	n	a	a^{2}
1	6.608	8036'1/4	4.55	94.20	0.998	94.01		0.66	
2	3.181	$17^{\circ} 27^{\prime}$	4.80	110.59	0.954	105.50			
3	2.599	$21^{\circ} 02^{\prime 1 / 2}$	4.90	117.65	0.933	109.77	2.78	0.56	0.3136
3	2.599		4.90	117.65			3.92	0.27	0.0729
4	2.191	24031'1/2	5.07	130.32	0.909	118.46		0.24	0.0576
5	1.887	2705 ${ }^{\circ}$	5.25	144.70	0.883	127.77	3	0.33	0.1089
6	1.663	$31^{\circ} 01$	5.45	161.88	0.857	138.73			
\bigcirc	1.663	31					3.02	0.75	0.5625
7	1.456	$34^{\circ} 29^{\circ}$	5.67	182.28	0.824	150.20	2.93	0.47	0.2209
8	1.259	$38^{\circ} 27$	5.96	211.71	0.783	165.77			
							2.51	0.09	0.0081
9	1.035	$44^{\circ} \mathrm{O} 1^{\prime}$	6.40	262.14	0.719	188.48	2.79	0.24	0.0576
10	0.849	$49^{\circ} 40^{\prime}$	7.06	351.90	0.647	227.68	3.35	0.30	0.0900

Table 5. (see fig. 5)

$$
A=k=\text { constant }
$$

14

4
1

4

Fig. 2

Fig. 4

