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The phase diagram of halogen-bridged mixed-valent metal complexes (MX) has been studied
using a two-band extended Peierls-Hubbard model employing the recently developed Density Matrix
Renormalization Group method. We present the energies, charge and spin density distributions,
bond orders, charge-charge and spin-spin correlations, in the ground state for different parameters
of the model. The effect of bond alternation and site-diagonal distortion on the ground state
properties are considered in detail. We observe that the site-diagonal distortion plays a significant
role in deciding the nature of the ground state of the system. We find that while the CDW and
BOW phases can coexist, the CDW and SDW phases are exclusive in most of the cases. We
have also studied the doped MX chains both with and without bond alternation and site-diagonal
distortion in the CDW as well as SDW regimes. We find that the additional charge in the polarons
and bipolarons for hole doping are confined to a few sites, in the presence of bond alternation and
site-diagonal distortion. For electron doping, we find that the additional charge(s) is(are) smeared
over the entire chain length and although energetics imply a disproportionation of the negatively
charged bipolaron, the charge and spin density distributions do not reflect it. Positively charged
bipolaron disproportionates into two polarons in the SDW region. There is also bond order evidence
for compression of bond length for the positively charged polaronic and bipolaronic systems and an
elongation of the bonds for systems with negatively charged polarons and bipolarons.

PACS: 78.20.Bh, 71.15.-m, 71.28.+d, 71.10.Hf

I. INTRODUCTION

The halogen-bridged mixed-valent metal complexes
(HMMC) are quasi-one-dimensional chains that exhibit
both Peierls distortion and mixed valency. This is at-
tributed to the presence of strong electron-electron in-
teractions as well as strong electron-lattice interactions.
Besides, the degeneracy of the ground state of the HMMC
chains supports solitonic excitations as in polyacetylenes.
These aspects of HMMCs have resulted in considerable
theoretical and experimental focus in recent times [1–6].

The HMMCs are composed of transition metal (M)
ions which are bridged by halide (X) ions. Each
metal ion is surrounded by four monodentate ligand
molecules such as ethylamine (L), or two bidentate lig-
and molecules such as ethylenediamine, cyclohexanedi-
amine (L2), etc. Symbolically, HMMCs can be repre-
sented as [M3−ρL4][M

3+ρX2L4]Y4, where M can be Pt,
Pd or Ni and X can be Cl, Br or I; ρ denotes the de-
viation of the metal valency from the average value of
+3; and Y is a counter ion such as X− or ClO−

4 for
charge neutrality. The dz2 orbital on the metal-ion is
singly occupied when its oxidation state is +3. Along
the M − X backbone, the electrons are delocalized due
to the overlap of the dz2(M) and pz(X) orbitals. If
the electron-electron interactions are weak compared to
the electron-phonon interactions, the diagonal electron-

lattice interactions would dominate. This would result
in a Jahn-Teller distortion of opposite phases at succes-
sive metal-ion sites. The metal-ion site at which the dz2

orbital is stabilized would be doubly occupied while that
at the adjacent metal site would be empty leading to a
CDW state. In the opposite limit, the strong electron-
electron interactions force single occupancy of the metal
dz2 orbitals and the chain would be undistorted as there
is no electronic stabilization associated with the distor-
tion due to single occupancy of the metal orbitals. In
this limit, a SDW state would result. Platinum being
a 5d system, the d−orbitals are more diffused resulting
in weaker electron-electron interactions and indeed, the
broken symmetry state observed in the Pt complexes is
usually a CDW state. At the other end is the nickel sys-
tem with compact d−orbitals and one usually observes
SDW states in the Ni complexes. The amplitude of
these CDW or SDW distortions can be tuned contin-
uously by changing the metal ion, the halide ion, the
ligand, or the counter ions.

The CDW ground state in these systems has two de-
generate configurations and hence there is a possibility
of soliton-like excitations, besides polaronic excitations.
The solitonic states in the MX chains are more local-
ized and are believed to be longer lived than the soli-
tons in polyacetylene chains. In the halogen bridged
mixed-valent platinum complexes (HMPC) [5], evidence
for midgap absorption, associated with solitons, comes
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from the high pressure studies of the optical spectra,
wherein a band at half the charge-transfer excitation en-
ergy is found on application of pressure. The IR and Ra-
man studies of a series of HMMCs with decreasing metal-
metal distances have also been studied to simulate pres-
sure and determine several microscopic parameters essen-
tial for theoretical modelling of the PtCl chains [7]. The
electrical conductivity and electron spin resonance (esr)
studies [8] of halogen doped HMPC systems show that
for low-doping concentrations, polarons are formed which
lead to enhanced conductivity and the charge carriers
are found to have a spin. At increased dopant levels, the
esr intensity reduces although the conductivity increases.
Furthermore, optical absorption studies show the appear-
ance of peaks below the optical gap. Hence, these studies
suggest that two positively charged polarons yield either
two positively charged solitons or a bipolaron, both of
which do not have a spin. Photoinduced IR absorption
studies [9] on HMPC systems with weak interchain inter-
actions have shown evidence for photogenerated solitonic
states, besides polaronic states. For large interchain cou-
pling, the energy of formation of solitons is high and the
midgap absorption band in such systems was absent, al-
though the polaronic absorptions could be observed in
these systems.

The MX chains were modelled by using a half-filled
single-band Hubbard-Peierls model including nearest-
neighbour electron-electron interactions by many authors
[4,10–12]. Nasu, in the mean-field limit, obtained a
phase-diagram for the nature of the ground state, in the
parameter space of U , the on-site electron correlation
strength, V , the nearest neighbour electron-electron in-
teraction parameter and S, the strength of site-diagonal
electron-phonon coupling. The mean-field phase dia-
gram showed regions where, CDW and SDW ground
states exist as well as regions of coexistence of these two
phases. It was further shown, within the mean field the-
ory for electrons and an adiabatic approximation for the
phonons that the origin of the photoinduced absorption
was a distant hole-polaron or an electron-polaron pair in
the excited state of the MX chain. However, this model
apart from the approximation in which it was solved for,
was quite inadequate due to the neglect of the pz orbitals
on the halogen sites. Ichinose [13] mapped the model to
an anisotropic spin chain, in the limit of small on-site cor-
relations and adiabatic electron-phonon coupling to de-
scribe the topological excitations of the MX chain. On-
odera [14] considered the continuum limit of the Ichinose
model and showed that it leads to the Takayama-Lin-
Liu-Maki model, which is also the continuum limit of the
discrete Su-Schreiffer-Heeger (SSH) model. He showed
that the MX chains can support solitons as in polyacety-
lene. A model similar to the SSH model was studied by
Baeriswyl and Bishop [15] who showed the existence of
a charge-transfer state in the limit of strong electron-
phonon interactions. The intrinsic defect states such as

the polarons, bipolarons and solitons, in this limit, were
observed to be strongly localized.

Gammel et al first modelled the MX chains by em-
ploying a two-band U −V model (consisting of the metal

dz2 orbital and the halogen pz orbital) at 3
4

th
filling. This

model was studied by them in different approximations.
In the period 4 case, they observed that the BOW phase
exists only in a very small region near the site energies
of M and X being zero, unlike in the single-band model
where the BOW is found in a wide range of parameter
values. Moreover, they characterized the lowest state in
that region to be of mixed CDW/BOW character. They
also predicted long period charge density wave ground
states in the system, from an analysis of the model in
the localized limit. They studied the topological excita-
tions of the model treating the lattice in adiabatic ap-
proximation and the electron-electron interactions in the
Hartree-Fock (both restricted and unrestricted) approxi-
mation for various parameter values to characterize these
excitations in different systems. For small MX chains,
they went beyond the Hartree-Fock approximation and
studied the properties of the chain by employing exact
diagonalization methods. They also studied the model
including the phonon dynamics but treating the electron-
electron interactions in the mean field limit. For small
Hubbard interaction strengths, perturbation theory was
employed to study the model. Huang and Bishop [3]
studied the two-band model both in the mean-field and
random phase approximations to study the lattice- and
spin-polaronic defects in Ni complexes. They found rel-
ative lattice-distortion around the defect center besides
the charge or spin disproportionation. The effect of in-
terchain interactions on the nature of the ground state
and also on the energy gaps in the system were studied
by including them self-consistently in finite MX chain
calculations, within a two-band model [16]. The effect of
interchain interactions on the stability of nonlinear lat-
tice relaxation was considered by Mishima [17] in the
mean-field approximation within the one-band extended
Hubbard-Peierls model. Sun et al [18] employed a one-
band model and in the mean-field approximation showed
that the electron-electron interaction reduces the CDW
gap in MX complexes. There is also an all-electron local
density approximation calculation for MX chains which
focuses on the band-gap, dimerization and SDW insta-
bilities in these compounds [19].

All the studies so far carried out on the MX chain
systems suffer from the disadvantage that they treat
electron-electron interactions in the mean-field approx-
imation, except in the case of small chains where model
exact solutions are obtained. The exact studies on small
chains are often inconclusive due to finite size effects.
However, the recently developed Density Matrix Renor-
malization Group (DMRG) method has proved to be very
accurate for quasi-one-dimensional systems [20]. In this
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paper, we report results of our extensive investigations of
the MX chain systems employing the DMRG method.
We have studied the MX chains with upto 70 sites (35
MX units), employing the two-band extended Peierls-
Hubbard model. We have studied the neutral as well
as charged MX chains to understand the properties of
ground state as well as the photogenerated gap states for
many values of the model parameters. Besides energies,
we have studied the charge and spin correlations in the
system, charge and spin densities as well as bond orders
to properly characterize the ground states in different re-
gions of the parameter space. The paper is organized
as follows. In the next section we introduce the model
Hamiltonian and the DMRG method as applied to the
MX chains. In the third section, we discuss results for
the ground state of the neutral and doped systems.

II. MODEL HAMILTONIAN AND THE DMRG

METHOD

We have studied the HMMC systems employing the
U −V − δ model. The Hamiltonian of this model, Ĥ, for
the metal-halogen chain can be written as a sum of the
noninteracting term, Ĥ0, which includes the renormal-
ized static electron-lattice interactions and an electron-
electron interaction term, Ĥ1, given by

Ĥ = Ĥ0 + Ĥ1 (1)

Ĥ0 =

N∑

i=1

∑

σ

ti[a
†
X,iσaM,iσ + a†

M,iσaX,i+1σ + H.C.]

+

N∑

i=1

∑

σ

[ǫM,ia
†
M,iσaM,iσ + ǫX,ia

†
X,iσaX,iσ] (2)

Ĥ1 =

N∑

i=1

UM
n̂M,i(n̂M,i − 1)

2
+

N∑

i=1

UX
n̂X,i(n̂X,i − 1)

2

+

N∑

i=1

Vi[n̂M,in̂X,i+1 + n̂X,in̂M,i] (3)

where ti is t(1 − (−1)(i)δ). The summations run over all
the N MX pairs and the upper limit of the summation is
chosen to reflect open boundary condition corresponding
to a chain. a†

X,iσ (a†
M,iσ) creates an electron with spin σ

in the halogen (metal) orbital in the ith unit cell and aX,iσ

(aM,iσ) is the adjoint of the corresponding creation oper-
ator. The operators n̂X,i (n̂M,i) are the number operators
for the halogen (metal) orbital in the ith unit cell. ǫM,i

(ǫX,i) is the site energy of the metal (halogen) orbital in
the ith unit cell. UM (UX) is the on-site electron-electron
repulsion parameter for the metal (halogen) orbital. The
nearest neighbour electron-electron interaction terms Vis
are calculated using Ohno [21] interpolation scheme,

Vi = 14.397[28.794/(UM + UX)2 + r2]−1/2 (4)

where r is the distance between the nearest neighbours of
the MX chain. The distance r between the pairs depends
on the alternation parameter δ. All the parameters are
defined in units of the uniform transfer integral t.

We have employed the Density Matrix Renormaliza-
tion Group (DMRG) method to obtain the ground state
properties of the above Hamiltonian for large N(≥ 35)
where N is the number of MX pairs. In the DMRG
method for the MX chains, we start with two MX
units(4 sites) and obtain the ground state of this clus-

ter with six electrons corresponding to 3
4

th
filling by an

exact diagonalization procedure. We now imagine the
chain to be built up of two halves, namely the left-half
and the right-half. We construct the reduced many-body

density matrix of the left-half, ρ
(2)
0,L , in the basis of the

Fock space states of the left half of the chain from the
ground state eigenfunction by integrating over the Fock
space states on the right-half as,

(ρ̂
(2)
0,L)µν =

∑

µ′

Cµµ′Cνµ′ (5)

where |µ > and |ν > are the Fock space states of the left-
half chain and |µ′ > the Fock space states of the right-
half chain. Cµµ′ is the coefficient associated with direct
product functions |µ > and |µ′ > in the ground state
eigenfunction. The dimensionality of the Fock-space |µ >
for a system consisting of n units is l = 42n. The den-
sity matrix is simultaneously block diagonal in both the
particle-number sector and in the ML

s sector where ML
s

is the z-component of the total spin of the left-half block.
We take advantage of this while diagonalizing the density
matrix by diagonalizing each of the blocks independently.
This also allows us to label each density matrix eigenvec-
tors by the particle-number, pL besides ML

s . After di-
agonalization, the Fock space on the left is truncated by
retaining only m of the density matrix eigenstates corre-
sponding to the m highest density matrix eigenvalues. If
we had retained all the l density matrix eigenvectors to
serve as basis functions of the Fock space of the left-half,
we would have merely effected an unitary transforma-
tion of the basis functions. The l× l Hamiltonian matrix
ĤL(n) for the left part of the chain are obtained in the
basis of the Fock space states. This matrix ĤL(n) is
renormalized using the matrix ÔL(n) whose columns are
the m eigenvectors of the corresponding l× l density ma-
trix. Thus the transformation matrix ÔL(n) is a (m× l)
matrix. The renormalized Hamiltonian matrix H̃L(n) is
given by

H̃L(n) = Ô†
L(n)ĤL(n)ÔL(n) (6)

The renormalized left Hamiltonian matrix is now an
m×m matrix representation of the left half-Hamiltonain
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in the basis of the density matrix eigenvectors. The op-
erators a†

M,i and a†
X,i and n̂M,i and n̂X,i corresponding

to each site in the left part of the chain are also ob-
tained as matrices in the basis of the Fock space |µ >
and are later renormalized to obtain renormalized matri-
ces in the basis of the eigenvectors of the density matrix of
the corresponding half-chains, in a manner similar to the
construction of H̃L(n). The density matrix, the trans-
formation matrix ÔR(n), the renormalized Hamiltonian
matrix H̃R(n), for the right part as well as the renormal-
ized second-quantized site operators for the right part
are all obtained analogously. Unlike in the calculations
involving spin chains and Hubbard chains [22], the MX
chains do not have the reflection symmetry and all the
quantities should be calculated separately for the right
and the left halves of the chain. For this reason, we
also cannot iterate the DMRG procedure to obtain self-
consistent density matrices for fragments of different sizes
of the targetted MX chain, a method that is usually em-
ployed to obtain more accurate properties for a chain of
given length, in systems with reflection symmetry [20].

To get the Hamiltonian for the system with (n+1) unit
cells, a MX unit is added in the middle of the chain. The
Hilbert space of the new Hamiltonian matrix correspond-
ing to (n+1) unit cells is the direct product of m states,
|µ > from left block and |µ′ > from right block and 4
states, |c > or |c′ > (corresponding to |0 >, | ↓>, | ↑>,
and | ↑↓> configuration at the new site) from each of the
newly added unit cell, with the restriction that the total
Ms value for the full chain is equal to the desired value

and that the total system is 3
4

th
filled.

The Hamiltonian for (n + 1) unit cell system can be
written as

Ĥ(n + 1) = H̃L(n) + H̃R(n) + n̂cǫc + n̂c′ǫc′

+
Uc

2
n̂c(n̂c − 1) +

Uc′

2
n̂c′(n̂c′ − 1)

+tn[ã†
L(n)ac + h.c.] + tn+1[a

†
cac′ + h.c.]

+tn+1[a
†
c′ ãR(n) + h.c.] + VnñL(n)n̂c + Vn+1n̂cn̂c′

+Vn+1n̂c′ ñR(n) (7)

where the operators ã†
L(n), ã†

R(n) and their adjoints as
well as ñL(n) , ñR(n) are the renormalized operators ex-
pressed in the truncated density matrix eigenvector basis.
The operators, â†

c ( â†
c′) and their adjoints as well as n̂c

(n̂c′) are expressed as matrices in the Fock space basis.
The matrix representation of the Hamiltonian Ĥ(n + 1)
in the direct products basis is obtained as appropriate
direct product of the operators occuring in the Hamilto-
nian.

The eigenvalues and eigenvectors for this (n + 1) unit
cell are obtained and the reduced density matrices for the
left and right half of the chain, each with (n + 1) sites
are constructed from the ground state eigenfunction. In
the next iteration, the procedure is repeated by adding a

XM unit in the middle of the chain. Alternately we have
to add MX and XM units in the middle of the chain so
that the successive sites of the full chain at any iteration
is not occupied by like ions.

We have optimized the DMRG cut-off, m, by compar-
ing the ground state energy per MX unit for different
cut-offs for chain lengths ranging between 25 to 35 MX
units. We have presented these energies in table 1. We
find that a value of m = 80 is quite satisfactory. We
have used the DMRG cut-off, m = 80, in all our calcu-
lations. The dimensionality of the Hilbert space corre-
sponding to Ms = 0 (4n sites system) or 0.5 (4n+2 sites
system) and Ne = 3

2N varies in the range 6400 to 7000,
depending upon the model parameters, for this value of
m. The resulting Hamiltonian matrix is very sparse. The
total number of nonzero matrix elements are ≈ 350000.
We exploit the sparseness of the Hamiltonian matrix to
reduce the storage requirement as well as CPU require-
ment by avoiding doing arithmetic with zeroes. We have
used the Davidson algorithm for symmetric Hamiltonian
matrix to get the lowest few eigenvalues. Davidson algo-
rithm, which is a hybrid of coordinate relaxation method
and Lanczos method has been widely used in quantum
chemical computations and is known to be both robust
and rapidly convergent. The properties of the chain are
computed by using the renormalized matrices for the site
operators and product operators (for bond order calcu-
lations) after reaching the desired length of the chain.

We have compared the DMRG results with results from
exact diaganolization for small systems. The exact di-
agonalization of the model has been carried out using
the Diagrammatic Valence Bond (DVB) method. The
DVB method exploits the total spin conservation prop-
erty of the model Hamiltonians and employs a valence
bond (VB) basis in which the Hamiltonian is represented
as a matrix [23]. As the VB basis is nonorthogonal, the
resulting Hamiltonian matrix is nonsymmetric. We have
used Rettrup’s algorithm which is similar to Davidson’s
algorithm for symmetric matrices, to obtain the lowest
few eigenvalues and eigenvectors of the nonsymmetric
matrix [24]. This exact diagonalization calculation is
quite straightforward for chains of upto seven MX units.

Table 2 compares the exact ground state energies with
the DMRG ground state energies for two different pa-
rameter sets of the Hamiltonian. Also given for com-
parison are the dimensionalities of the Hilbert space for
Ms = 0 in the VB scheme (exact) with the Ms = 0 in
the DMRG scheme (with cut-off). The DMRG scheme
is found to reproduce accurately the ground state ener-
gies where such comparison is possible. We have also
compared the DMRG properties such as charge den-
sity, < n̂i >, spin density, < Sz

i > and bond order,

− 1
2 < a†

iαajα + a†
iβajβ + h.c. > with exact properties

(table 3 and 4). We find that the DMRG ground state
properties are in very good agreement with the exact
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properties.

III. RESULTS AND DISCUSSION

We have studied the ground state of the MX chains in
different regions of parameter space to study the phase
transformation from CDW phase to SDW phase. The
parameters UM , UX , and ǫM , ǫX characterize the metal
ion and the halide ion. The orbital energy of the halide
ion, ǫX , is specified relative to the orbital energy of the
corresponding metal ion of the uniform MX chain. ǫX is
always negative reflecting the larger electronegativity of
the halides compared to the metal ions. In the halide se-
ries, larger negative ǫX represents chloride while the least
negative ǫX represents iodide reflecting the electronega-
tivity variations in the halogen group. The on-site re-
pulsion parameter UX is positive and decreases as we go
down the series from Cl− to I−. The Hubbard param-
eter for the metal ion, UM , decreases as we go from the
I row transition elements to the III row transition ele-
ments. The parameters UM , UX and ǫX are varied from
UM = 2.5t, UX = t, ǫX = −2t to UM = 1.5t, UX = 0.5t,
ǫX = −t corresponding to the MX pairs NiCl to PtI
respectively. The ǫM values depend upon the strength
of the diagonal electron-lattice coupling and so does the
alternation δ in the transfer integrals. The coupling con-
stants for the diagonal and off-diagonal couplings are as-
sumed to be independent. Accordingly, we independently
vary the transfer integrals as well as the site energy at
the metal site, ǫM . This is one of the crucial differences
between a polyene chain and the MX chain. In the for-
mer, the site-diagonal electron-phonon coupling is taken
to be zero while in the MX chains it is nonzero by virtue
of the crystal-field environment provided by the halide
ions surrounding the metal ions. The dimerization pa-
rameter, δ, has been varied between 0.0 and 0.2. In what
follows, we first discuss the results of our study of MX

chains at 3
4

th
filling and then discuss our results for these

chains with one and two excess (fewer) electrons.

A. MX chains at 3

4

th
filling

In fig.1 we present the dependence of the ground state
energy per MX unit (ǫMX) of the MX chains for differ-
ent values of δ for one set of parameters. The convergence
to the infinite chain value is monotonic and from below.
We have defined ǫMX as half the total energy difference
between successive iterations which differ by two MX
units. This definition corresponds to the energy of an em-
bedded MX unit and is akin to the rings. It is well known
that the energy per site of Hubbard, extended Hubbard
as well as spin rings converges to the limiting value from
below [25]. In table 5, we have shown the dependence

of fractional stabilization of the MX chain on introduc-
ing alternation for several sets of parameters. We find
that the alternation lowers ǫMX in all the cases we have
studied but the extent of stabilization is rather small and
insensitive to variations in UM and ǫX when the diagonal
electron-phonon coupling is neglected. While from finite
chain studies it is not possible to reliably deduce whether
for a given set of parameters, the distortion of the chain
is unconditional (independent of the lattice stiffness), our
results indicate the dominant role of diagonal electron-
phonon interactions in determining the extent of bond
alternation. In fact, in systems where bond alternation
is indeed found, the magnitude of the alternation is very
large.

In fig.2 we present the charge densities at the metal
and halide sites in the alternating (δ = 0.1) MX chains
without diagonal distortions (ǫM = 0) for two extremal
values of UM and ǫX . We find that the charge densi-
ties at the metal sites are very nearly uniform in both
cases. For small values of ǫX and UM , the charge den-
sity in the metal orbital is larger at ≈ 1.2± 0.08 while it
is more uniform with values in the range ≈ 1.06 ± 0.04
for large UM and large ǫX . The charge densities at the
halide sites are uniform and closer to 2 electrons when
ǫX and UM are large. While the alternation in the trans-
fer integral along the chain seems to promote mixed va-
lency, large electron-electron repulsion at the metal site
and large site energy of the halogen orbital has the ef-
fect of suppressing mixed valency. This is in conformity
with experiments wherein mixed valency is found in MX
chains with heavier transition elements as well as heav-
ier halogen atoms. Increasing the alternation in transfer
integral does not change the picture significantly. There
is a slight increase in the amplitude of the charge den-
sity wave in the most favourable case we have studied,
corresponding to UM = 1.5t and ǫX = −t (fig.3).

In fig.4, we show the plot of charge density at metal
sites in the presence of diagonal distortion (ǫM 6= 0.0)
for alternation δ = 0.1 for the two extremal cases we
have studied, namely, large UM , large ǫX and small UM

and small ǫX for one particular value of ǫM . We see
a dramatic change in the charge density distribution in
both cases. In the favourable case, the disproportionation
of the metal ion in 3+ oxidation state into 2+ and 4+
oxidation states is almost complete. While even in our
least favourable case, the amplitude of the CDW is quite
significant. In the latter case increasing ǫM increases the
amplitude rapidly. This result underlines the importance
of diagonal distortion in producing a CDW ground state.

The variation in bond order along the MX chain is
plotted for several values of the parameters in fig.5 only
for the left half of the chain. The amplitude of the bond
order wave (BOW ) behaves similar to the amplitude of
the CDW . The diagonal distortion has a strong effect
on the BOW amplitude. Even in the most unfavourable
case of UM = 2.5t and ǫX = −2t, the BOW picks up
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sufficient amplitude for the site diagonal distortion we
have considered. The earlier prediction of Gammel et

al [1] that a BOW cannot exist for negative halide site
energy with site diagonal distortion lowering the metal-
ion site energy is not borne out by our calculations.

The spin density distribution (fig.6) shows a trend op-
posite to what is observed with CDW and BOW insta-
bilities. For large UM and large ǫX , in the uniform MX
chain, the SDW amplitude is fairly large. Introducing
off-diagonal alternation reduces the amplitude, although
the alternation in the spin density still exists. However,
on introducing diagonal distortion, all the metal sites
become completely nonmagnetic. This behaviour shows
that when the CDW/BOW amplitude is large the ampli-
tude of the SDW is small. Fig.7 brings out this trend by
comparing the charge and spin densities at metal sites for
different values of the site-diagonal distortion parameter
ǫM . It is also interesting to note that for one set of pa-
rameter values, the CDW and the SDW phases coexist
(fig.7 ii).

We have also characterized the ground state in various
regimes of the parameters by studying the spin-spin and
charge-charge correlation functions. Although these cor-
relation functions have been computed for open chains,
they can be Fourier transformed, if one assumes that the
correlations in the interior of the open chain are close to
what would be seen in a ring. This assumption was first
made by Affleck et al [26] to obtain the structure factors
from open chain DMRG calculations of spin systems. In
our calculations, we have discarded the last three unit
cells on either ends of the chain and have assumed the
correlations to have a reflection symmetry about the mid-
dle bond. This would enable us to Fourier transform the
correlation functions.

In fig.8, we show the spin-structure factor, S(q), for
various values of the model parameters. In the CDW
phase which corresponds to small UM , small ǫX and
nonzero site-diagonal distortion and alternation, we find
that S(q) is very small. However, for large UM , large
ǫX , zero site-diagonal distortion but with nonzero δ, the
structure-factor is large and peaks at q = π. This re-
sult reflects the spin ordering of the ground state. The
uniform structure factor in fig.8a and fig.8d confirms the
ground state to be in CDW phase. This result is also
consistent with the charge and spin density and the bond
order data discussed above. In fig.9 we show the struc-
ture factor corresponding to the charge-charge correla-
tion function. Here again, for large UM and large nega-
tive ǫX , the structure factor is almost uniform and does
not show any pronounced peaks. However, for small UM ,
small negative ǫX and nonzero site-diagonal distortion,
the structure factor peaks at π corresponding to the ex-
istence of a CDW phase. The importance of the diag-
onal distortion is underscored by the fact that even for
δ, small UM and small negative ǫX , the peak at π in the
strcuture factor though discernible, is not pronounced.

It is also interesting to note that ρ(q) shows small oscil-
lations away from the peak at π which could be due to
incipient long-wave length CDW distortions which could
have nonzero amplitude in the thermodynamic limit as
suggested by Gammel et al [1].

B. MX chains marginally away from 3

4

th
filling

The DMRG method for MX chains cannot access the
energy levels that have been studied by optical spectro-
scopies. The reason being, there are a large number of
low-lying excitations in long MX chains which intrude
while targetting excited states and absence of the sym-
metries in open chains rules out the possibility of avoid-
ing the intruder states. Hence, we have been unable to
study the optical properties of long MX chains by this
technique. However, there is considerable interest in the
photogenerated gap states which arise from the dissoci-
ation of the excitons produced in an optical experiment.
These states are typically, the positive and negative po-
larons and bipolarons and the charged and neutral soli-
tons of the system. The DMRG method can easily ac-
cess the polaronic and bipolaronic states. In what fol-
lows, we present results of the DMRG study of these
species at representative points in the parameter space,
namely UM = 1.5t, ǫX = −t and UM = 2.5t, ǫX = −2t
corresponding to the CDW and SDW regimes. These
parameters are taken together with ǫM = 0.0 or t and
δ = 0.1, UX = 0.5t to explore the importance of site-
diagonal distortion in the two regimes.

We first discuss the energetics of the polarons and bipo-
larons, for the chosen parameter set. In table 6 is given
the energy for doping of MX chains of 35 units with one
or two holes and one or two electrons. The magnitude
of doping energy increases with increase in strength of
electron correlations. The stabilization energy on doping
with one(two) hole(s) is(are) almost equal in magnitude
to the energy required for creating one(two) electron(s)
doped chains respectively. Neither the bond alternation
nor the site-diagonal distortion energy at the metal site
have any noticeable influence on the doping energetics.
However, the positively charged bipolaron and the neg-
atively charged bipolaron are not placed symmetrically
around the ground state in the energy scale. From the en-
ergetics, one can see that at larger correlation strengths,
the positively charged bipolaron is less stable than the
two positively charged polarons. This is also true for
negatively charged bipolaron irrespective of Hubbard U .
Thus, it appears from the energetics that both the posi-
tively and the negatively charged bipolarons should dis-
sociate into two polarons.

The definitive proof for the disproportionation of the
bipolarons comes from comparing the charge and spin
density distributions of the bipolarons with those of the
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polarons bearing charges of the same sign. The charge
densities at the metal site for the polarons and bipo-
larons are shown in fig.10. The polaron charge densities
for (I) UM = 1.5t, ǫM = 0.0, UX = 0.5t and ǫX = −t
are shown in fig.10a, and for (II) UM = 2.5t, ǫM = 0.0,
UX = 0.5t and ǫX = −2t are shown in fig.10c. The
data for bipolarons for the parameter set (I) are shown
in fig.10b and for the set (II) are shown in fig.10d. For the
parameter set I (fig.10a and b), the additional charge is
uniformly distributed over the entire chain for the (i) pos-
itively charged polaron/bipolaron, (ii) the neutral chain
and (iii) for the negatively charged polaron/bipolaron.
For the second set of parameters, i.e. at large UM , we
observe more localized charge distribution for both the
positively charged polarons and positively charged bipo-
larons. We also observe two broad peaks (fig.10d) in the
charge distribution of the positively charged bipolaron
which is indicative of disproportionation of the positively
charged bipolaron into two positively charged polarons.
However, in the case of the negatively charged polarons
and bipolarons, the Hubbard U prevents the localization
of charge. An earlier mean-field study [1] found the neg-
atively charged polaron and bipolaron to be more local-
ized than the positively charged polaron and bipolaron.
Our DMRG results correspond to an on-site halide re-
pulsion parameter UX , which is smaller than the metal
on-site repulsion parameter, UM and our study should
have enhanced this difference between the hole-defects
and the electron-defects predicted by the mean-field anal-
ysis. It appears, therefore, that the mean-field approxi-
mation gives wrong trends for charge distributions of the
defects. On physical grounds, one should expect that the
on-site repulsions spread out the excess negative charge
more than excess positive charge.

The evidence for the disproportionation of the posi-
tively charged bipolaron into two polarons is more pro-
nounced when alternation in the chain is introduced
(fig.11). The charge density distribution of the polaron
(fig.11a) shows a single hump while that for the bipo-
laron (fig.11b) shows two humps. The hole charge den-
sity is mostly confined to one sublattice of the metal ion,
the one in which the metal-halogen bond is shorter ac-
commodates the excess charge. The halogen charge den-
sity distribution is not affected significantly by doping.
The spin density distribution shows the disproportiona-
tion more clearly as seen from the two separate envelops
for the spin density in the bipolaron (fig.11d) compared
to a single envelop in the polaron spin density distribu-
tion (fig.11c). This break-up of the bipolaron is observed
only for hole doping.

The effect of site-diagonal distortion on the dispropor-
tionation is very dramatic. We compare the charge den-
sity distribution for the positively charged polarons and
bipolarons with (fig.12a) and without (fig.12b) site di-
agonal distortion. In both the cases, the localization of
excess charge is confined to only one sublattice. In the

system with site-diagonal distortion, the sublattice with
nonuniform charge density is on the metal site for which
the metal-halogen bond is long, corresponding to a neg-
ative ǫM while in the absence of site-diagonal distortion,
these metal-sites have uniform charge distribution. This
is seen as a change over in the charge density humps
from the upper envelop in fig.12a to the lower envelop in
fig.12b. The disproportionation of the positively charged
bipolaron is again found only for systems with large on-
site repulsions, UM .

The difference between MX chains at 3
4

th
filling and

MX chains with one- and two-hole dopings, can be seen
clearly, if the difference in charge density between corre-
sponding metal sites of the neutral and doped chains is
plotted as a function of site number. We show in fig.13
these difference plots for systems with site-diagonal dis-
tortion for weak and strong correlation cases. The en-
velop of the charge density distribution of the polaron
and the bipolaron show a single peak at small correlation
strengths, while the same for strong correlations exhibits
two distinct peaks for the bipolaron (fig.13a, iv). A simi-
lar behaviour is also found in the spin density distribution
(fig.13b, iv).

The negatively charged bipolaron does not dispropor-
tionate even upon introducing the site-diagonal distor-
tions. In fig.14, we show for small and large UM values,
the charge density (fig.14a) and spin density (fig.14b)
distributions at the metal sites. Apart from exhibiting
mixed valency, the charge and spin density distributions
are uniform on each sublattice for the negatively charged
bipolarons.

The bond order distributions in the negatively and pos-
itively charged bipolarons are almost similar to what is
found in neutral chains. These are shown in fig.15 only
for the left half of the chain. There is a tendency for
the negatively charged bipolarons towards the elonga-
tion of the bonds (as seen from smaller bond orders in
the middle of the chain), while the positively charged
bipolarons have an opposite tendency i.e., towards bond
length contraction. This agrees with an earlier study of
the lattice distortions of doped MX chains [3]. However,
these marginal differences in the bond order variations
are reduced on introducing site-diagonal distortions. The
essential difference between the positively and negatively
charged bipolaron lies in the disproportionation of the
former into positively charged polarons in the strong cor-
relation limit, in the presence of alternation and site di-
agonal distortion.

In summary, we have studied the phase diagram of
MX chains within a two-band extended Peierls-Hubbard
model employing the density matrix renormalization
group method. We find that the site energy associated
with site-diagonal distortion is the single most impor-
tant parameter for the transition from a SDW phase
to a CDW phase in the ground state of the system.
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The variation of other parameters, such as, site energy of
the halide site, on-site Hubbard U of the halide ion and
bond alternations do not change the nature of the ground
state significantly. On the otherhand, for the doped MX
chains, both the bond alternation and site-diagonal dis-
tortion play a major role. For positively doped systems,
introduction of bond alternation leads to the localiza-
tion of charge and spin densities. In the presence of
site-diagonal distortion, we observe that the positively
charged bipolaron disproportionates into two positively
charged polarons in strong correlation limit. The nega-
tively charged bipolarons do not show evidence for dis-
proportionation even for the longest chain length and for
the parameters we have studied. We also find that there
is a contraction of bond length in the case of positively
charged polarons and bipolarons and elongation for the
corresponding negatively charged species.
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Tables

Table 1. Energy per MX unit for systems with different DMRG cut-offs, m, for the parameters set UM = 2.5t,
UX = 0.5t, ǫM = 1.5t, ǫX = −2t and δ = 0.1.

N of m = 70 m = 80 m = 90
MX units

25 1.413177 1.413175 1.413168
27 1.413158 1.413157 1.413156
29 1.413202 1.413177 1.413170
31 1.413159 1.413157 1.413156
33 1.413181 1.413173 1.413169
35 1.413159 1.413157 1.413156

Table 2. Comparison of dimensionality and energy per MX unit with exact calculation. p is the site number
and Pexact and PDMRG are the dimensionality in the exact and DMRG calculation (with DMRG cut-off m = 80).
UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.0. A in the table corresponds to UM = 1.5t and B to UM = 2.5t.

p A B
Pexact PDMRG Eexact EDMRG Pexact PDMRG Eexact EDMRG

6 90 90 4.3834 4.3834 90 90 13.4129 13.4129
8 784 784 7.2669 7.2669 784 784 20.0065 20.0065
10 5400 3873 10.4504 10.4505 5400 3930 26.7485 26.7485
12 48400 7482 13.4510 13.4527 48400 7687 33.4120 33.4130
14 364364 6277 16.6227 16.6229 364364 6356 40.1543 40.1544

Table 3. Comparison of charge densities and spin densities for 14 sites chain with exact calculation. p is the site
number. A and B correspond to the parameter values quoted in table 2.

p charge density spin density
A B A B

Exact DMRG Exact DMRG Exact DMRG Exact DMRG
1 1.9083 1.9082 1.8795 1.8794 0.0096 0.0095 0.0059 0.0059
2 1.7124 1.7123 1.7456 1.7455 0.0270 0.0269 0.0123 0.0123
3 0.9449 0.9447 0.7752 0.7752 0.0745 0.0744 0.0570 0.0569
4 1.7491 1.7491 1.8383 1.8383 -0.0045 -0.0045 -0.0025 -0.0025
5 1.1393 1.1392 1.0054 1.0054 0.0805 0.0806 0.1294 0.1295
6 1.7366 1.7365 1.8495 1.8495 0.0191 0.0191 0.0074 0.0074
7 1.1092 1.1091 1.0387 1.0387 -0.0297 -0.0299 -0.0854 -0.0856
8 1.7639 1.7639 1.8751 1.8752 0.0004 0.0004 0.0029 0.0029
9 1.1393 1.1394 1.0776 1.0777 0.1678 0.1680 0.2348 0.2351
10 1.7752 1.7753 1.8820 1.8819 0.0149 0.0150 0.0064 0.0064
11 1.1809 1.1812 1.1007 1.1010 -0.0771 -0.0773 -0.1229 -0.1232
12 1.7508 1.7507 1.8763 1.8763 0.0081 0.0080 0.0049 0.0049
13 1.1351 1.1353 1.0815 1.0814 0.1988 0.1991 0.2431 0.2433
14 1.9550 1.9550 1.9745 1.9745 0.0108 0.0108 0.0068 0.0068
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Table 4. Comparison of DMRG bond orders for the 14 sites MX chain with exact calculation. p refers to the (p,
p+1) bond and A and B correspond to parameter values in table 2.

p A B
Exact DMRG Exact DMRG

1 0.1594 0.1596 0.1700 0.1702
2 0.5438 0.5440 0.5468 0.5468
3 0.4452 0.4452 0.3772 0.3772
4 0.3662 0.3660 0.2926 0.2926
5 0.4068 0.4068 0.3198 0.3198

Table 5. Fractional stabilization of energy defined as (E(δ) − E(0))/E(0) of MX chains with respect to uniform
chain for different parameter sets. I: UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t; II: UM = 1.5t, UX = 0.5t, ǫM = 0,
ǫX = −2t; III: UM = 2.5t, UX = 0.5t, ǫM = 0, ǫX = −t; IV : UM = 2.5t, UX = 0.5t, ǫM = 0, ǫX = −2t and V :
UM = 2.5t, UX = 0.5t, ǫM = t, ǫX = −2t.

δ I II III IV V
0.10 -0.0043 -0.0127 -0.0007 -0.0017 -0.0560
0.15 -0.0109 -0.0319 -0.0026 -0.0055 -0.0990
0.20 -0.0210 -0.0598 -0.0054 -0.0104 -0.1489

Table 6. Energy (in units of t) for doped MX chains of 35 units with one and two holes as well as one and two
electrons, for various representative parameters of the Peierls-Hubbard model. I corresponds to UM = 1.5t, UX = 0.5t
and ǫX = −t and II to UM = 2.5t, UX = 0.5t and ǫX = −2t.

I II
doping ǫM = 0.0 ǫM = t ǫM = 0.0 ǫM = t

δ = 0.0 δ = 0.1 δ = 0.0 δ = 0.1 δ = 0.0 δ = 0.1 δ = 0.0 δ = 0.1
2 holes -9.6308 -9.7157 -9.3790 -9.1630 -12.2875 -12.3646 -13.5137 -13.4442
1 hole -4.8361 -4.8944 -4.6590 -4.5038 -6.1595 -6.2060 -6.8225 -6.7591

1 electron 4.9375 4.9451 5.2900 5.3242 6.1935 6.2158 6.8850 6.9995
2 electrons 10.3529 10.3245 10.7410 10.8901 13.9677 13.9482 13.9909 14.0724
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Figure Captions

1. Plot of energy per MX unit vs 1/N for different values of δ for UM = 1.5t, UX = 0.5t, ǫM = 0.0 and ǫX = −t.
(i) δ = 0.0 (square) (ii) δ = 0.1 (circle) (iii) δ = 0.15 (triangle) (iv) δ = 0.2 (diamond).

2. Charge density of M and X vs unit cell index. Open and filled symbols are for M and X charge densities,
respectively. Squares represent the charge density for UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.1 and
cirlces for UM = 2.5t, UX = 0.5t, ǫM = 0, ǫX = −2t and δ = 0.1.

3. Charge density of M vs unit cell index for different values of δ, for UM = 1.5t, UX = 0.5t, ǫM = 0 and ǫX = −t.
(i) δ = 0.0 (square) (ii) δ = 0.1 (circle) (iii) δ = 0.15 (triangle) (iv) δ = 0.2 (diamond).

4. Charge density of M vs unit cell index in the presence of site-diagonal distortion. (i) UM = 1.5t, UX = 0.5t,
ǫM = t, ǫX = −t and δ = 0.1 (square). (ii) UM = 2.5t, UX = 0.5t, ǫM = t, ǫX = −2t and δ = 0.1 (circle).

5. Bond order vs bond index. (i) UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.1 (square). (ii) UM = 1.5t,
UX = 0.5t, ǫM = t, ǫX = −t and δ = 0.1 (circle). (iii) UM = 2.5t, UX = 0.5t, ǫM = 0, ǫX = −2t and δ = 0.1
(triangle). (iv) UM = 2.5t, UX = 0.5t, ǫM = t, ǫX = −2t and δ = 0.1 (diamond).

6. Spin density of M vs unit cell index in different parameter regions. (i) UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t
and δ = 0.0 (square). (ii) UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.1 (circle). (iii) UM = 2.5t,
UX = 0.5t, ǫM = 0, ǫX = −2t and δ = 0.1 (triangle). (iv) UM = 2.5t, UX = 0.5t, ǫM = t, ǫX = −2t and δ = 0.1
(diamond). Zeroth line is shown by dots.

7. Variation of (a) charge densities and (b) spin densities with site-diagonal distortion, ǫM , vs unit cell index for
UM = 2.5t, UX = 0.5t, ǫX = −2t and δ = 0.1. (i) ǫM = 0.0 (open square) (ii) ǫM = 1.0 (open circle) (iii)
ǫM = 2.0 (filled square) (iv) ǫM = 3.0 (filled circle).

8. Spin structure factor vs momentum, q (in degrees) for (a) UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.0.
(b) UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.2. (c) UM = 2.5t, UX = 0.5t, ǫM = 0, ǫX = −2t and
δ = 0.2. (d) UM = 2.5t, UX = 0.5t, ǫM = t, ǫX = −2t and δ = 0.1.

9. Charge structure factor vs q (in degrees) for (a) UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.0. (b)
UM = 1.5t, UX = 0.5t, ǫM = 0, ǫX = −t and δ = 0.2. (c) UM = 2.5t, UX = 0.5t, ǫM = 0, ǫX = −2t and δ = 0.2.
(d) UM = 1.5t, UX = 0.5t, ǫM = t, ǫX = −t and δ = 0.1.

10. Charge density of metal site vs unit cell index for a uniform MX chain. (a) polaron and (b) bipolaron for
UM = 1.5t, UX = 0.5t, ǫM = 0 and ǫX = −t. (c) and (d) for polaron and bipolaron respectively, for UM = 2.5t,
UX = 0.5t, ǫM = 0 and ǫX = −2t. (i) positively charged (square), (ii) neutral (circle) and (iii) negatively
charged (triangle) systems, in all the figures (a)-(d).

11. Charge density and spin density of metal site for positively doped MX chain for UM = 1.5t, UX = 0.5t, ǫM = 0
and ǫX = −2t. Charge density for (a) polaron and (b) bipolaron. Spin density for (c) polaron and (d) bipolaron.
In all the figures (a)-(d), (i) δ = 0.0 (square), (ii) δ = 0.1 (circle) and (iii) δ = 0.2 (triangle).

12. Charge density of metal site for positively charged polaron (squares) and bipolaron (circles) for UX = 0.5t and
δ = 0.1. Open symbols for UM = 1.5t and ǫX = −t and filled symbols are for UM = 2.5t and ǫX = −2t, (a) for
ǫM = 0.0 and (b) for ǫM = t.

13. Difference in (a) charge density and (b) spin density of metal sites with respect to neutral system for positively
charged polaron and bipolaron for the same set of parameters as in fig.12 with the single ǫM = t.

14. Charge and spin density of metal sites with respect to neutral system for negatively charged (i) polaron and (ii)
bipolaron in the presence of site-diagonal distortion. (a) and (c) for UM = 1.5t, UX = 0.5t, ǫM = t, ǫX = −t
and δ = 0.1 for charge and spin density respectively. Similarly (b) and (d) for UM = 2.5t, UX = 0.5t, ǫM = t,
ǫX = −2t and δ = 0.1 for charge and spin density respectively.

15. Bond order vs bond index for bipolaron. (i) positively charged (squares), (ii) neutral (triangles) and (iii)
negatively charged (circles) systems. For UM = 1.5t, UX = 0.5t, ǫX = −t and δ = 0.1 and (a) for ǫM = 0 and
(b) for ǫM = t. For UM = 2.5t, UX = 0.5t, ǫX = −2t and δ = 0.1 and (c) for ǫM = 0 and (d) for ǫM = t.
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