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Magnetic properties of a helical spin chain with alternating isotropic and

anisotropic spins: magnetization plateaus and finite entropy
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We study a model which could explain some of the unusual magnetic properties observed for the
one-dimensional helical spin system Co(hfac)2NITPhOMe. One of the properties observed is that
the magnetization shows plateaus near zero and near one-third of the saturation value if a magnetic
field is applied along the helical axis, but not if the field is applied in the plane perpendicular to
that axis. The system consists of a spin-1/2 chain in which cobalt ions (which are highly anisotropic
with an easy axis ei) and organic radicals (which are isotropic) alternate with each other. The
easy axis of the cobalts ei lie at an angle θi with respect to the helical axis, while the projection
of ei+1 − ei on the plane perpendicular to the helical axis is given by 2π/3. For temperatures and
magnetic fields which are much smaller than the coupling between the nearest-neighbor cobalts and
radicals, one can integrate out the radicals to obtain an Ising model for the cobalts; this enables one
to compute the thermodynamic properties of the system using the transfer matrix approach. We
consider a model in which the tilt angles θi are allowed to vary with i with period three; we find
that for certain patterns of θi, the system shows the magnetization plateaus mentioned above. At
the ends of the plateaus, the entropy is finite even at very low temperatures, while the magnetic
susceptibility and specific heat also show some interesting features.

PACS numbers: 75.10.Pq, 05.50.+q, 75.50.Xx

The last several years have witnessed extensive studies
of one-dimensional systems and molecular clusters with
a variety of interesting magnetic properties, both static
and dynamic [1]. Very recently, there have been some ex-
perimental studies of a one-dimensional molecular system
Co(hfac)2NITPhOMe (to be called CoPhOMe hence-
forth) which shows some unusual behavior in the presence
of a time-dependent magnetic field [2,3]. The system
has a helical structure, in which cobalt ions and organic
radicals (all carrying spin-1/2) alternate, with a repeat
period of three cobalts for every turn of the helix; this
is shown in Fig. 1. Below a certain temperature, the
time scale associated with the variation of the magne-
tization is found to become extremely long (leading to
a pronounced hysteresis) if the magnetic field is applied
along the helical axis (called the c axis), but not if the
field is in the plane perpendicular to that axis (called
the a − b plane). It is also found that the magnetization
shows some plateaus (which become more pronounced at
lower temperatures) if the magnetic field points along the
c axis, but not if it is in the a − b plane.

In this work, we will consider the second feature men-
tioned above, namely, the appearance of some plateaus
with non-trivial magnetizations when the magnetic field
is applied along the c axis. We will present a model
which can qualitatively explain this feature. Our model
is a variation of the one considered in the earlier stud-
ies of this system [2–4]; for reasons explained below, the
model presented in those papers is not able to explain
the magnetization plateaus.

We begin by presenting the model introduced for this
system in the earlier papers [2–4]. Both the cobalt ions
and the organic radicals carry spin-1/2. The cobalt ions
are highly anisotropic; they have an easy axis ei which is
tilted by an angle θi with respect to the c axis. Further,
the projection of ei+1 − ei on the a − b plane is given
by 2π/3. (We assume that ei is a unit vector). If we
identify the c axis with the z axis, the three components
of ei are given by (sin θi cos 2π(i − 1)/3, sin θi sin 2π(i −
1)/3, cosθi). Due to the anisotropy, the cobalt spins can
be described classically using Ising variables σi. The or-
ganic radicals are completely isotropic, and their spins
have to be treated quantum mechanically. The earlier
papers assumed the tilt angles θi to be the same for all
the cobalts. However, we will allow the θi to vary with i
(but with a period of three keeping the pitch of the helix
the same as in the earlier models); as we will see, this
variation seems to be necessary in order to reproduce the
observed magnetization plateaus.

In the ith cobalt-radical pair, let us denote the compo-
nent of the cobalt spin along its easy axis by σi (where
σi = ±1), and the spin operators of the radical by Ti

(these are given by half the Pauli matrices). In the pres-
ence of a magnetic field B, the Hamiltonian for this sys-
tem is given by

HCR =
∑

i

[
J

2
σiei · ( Ti + Ti−1 )

− µBB · ( 1

2
gCσiei + gRTi ) ] , (1)
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FIG. 1. The structure of the molecular chain CoPhOMe.
The cobalt spins are anisotropic with a local axis denoted by
ei which is tilted by an angle θi with respect to the helical
axis c. The angle between the projections of ei+1 and ei on
the a− b plane is equal to 2π/3. The organic radical spins are
isotropic.

where gC and gR denote the gyromagnetic ratios of the
cobalt and radical spins respectively, and µB = eh̄/(2mc)
is the Bohr magneton (we note that µB/kB = 0.672
K/Tesla). Fits to the magnetization data at different
temperatures seem to lead to somewhat different val-
ues of the various parameters. One set of parameters
which has been quoted in some of the papers is as follows:
J/kB ∼ 400 K (antiferromagnetic in sign), gC = 9, and
gR = 2, and the tilt angle θ is in the vicinity of the magic
angle θ0 = cos−1(1/

√
3) ≃ 54.74o [3,4]. (Large values of

the effective g factor given by gJJ are known to arise
in high spin systems when a strong uniaxial anisotropy
restricts the accessible spin states Jz to ±J at low tem-
peratures [5,6]).

The data which indicates magnetization plateaus lies
at a temperature of about 2 K and a magnetic field of
up to 3 Tesla. Since these temperatures and magnetic

fields are much smaller than the value of J/kB and J/µB

respectively, we will make the approximation from that
each radical spin is aligned in a direction which is entirely
dictated by the directions of its two neighboring cobalt
spins. Namely, we assume that the expectation value of
Ti is given by

〈Ti〉 = − 1

2

σiei + σi+1ei+1√
2 + 2σiσi+1 ei · ei+1

. (2)

Upon substituting this in Eq. (1), we obtain an effective
Hamiltonian defined purely in terms of the cobalt Ising
variables σi,

H1C =
∑

i

[ − J

4

√

2 + 2σiσi+1 ei · ei+1

−µB

2
B · ei σi ( gC − gR√

2 + 2σiσi+1 ei · ei+1

− gR√
2 + 2σiσi−1 ei · ei−1

) ] .

(3)

As mentioned above, the experimental data indicates
that the tilt angles θi are close to the magic angle θ0. If all
the θi were exactly equal to θ0, we would have ei·ei+1 = 0.
Then the Hamiltonian in Eq. (3) would have no interac-
tions between neighboring cobalts, and the (subtracted)
two-spin correlations, 〈(σi − 〈σi〉)(σj − 〈σj〉)〉, would be
strictly zero for i 6= j at any temperature. [This is called
a disorder point; it corresponds to the smaller eigenvalue
of the transfer matrix (discussed below) being equal to
zero [4,7]].

Motivated by the ranges of the various experimental
parameters, let us assume that δθi ≡ θi − θ0 are small
numbers (in radians), so that

ei · ei+1 ≃ − 1√
2

( δθi + δθi+1 ) (4)

is much less than 1 in magnitude. We also assume that
J(δθi + δθi+1) is of the same order as (or larger than)
than the magnitude of µB|B|. Then Eq. (3) can be
approximately written, up to a constant, as

H2C =
∑

i

[ Ji,i+1 σiσi+1 − µB

2
geff B · e0

i σi ] ,

Ji,i+1 =
J

8
( δθi + δθi+1 ) ,

geff = gC −
√

2 gR , (5)

and

e0
1 = (

√

2/3 , 0 , 1/
√

3 ) ,

e0
2 = ( − 1/

√
6 , 1/

√
2 , 1/

√
3 ) ,

e0
3 = ( − 1/

√
6 , − 1/

√
2 , 1/

√
3 ) . (6)

The effective nearest neighbor Ising interaction Ji,i+1 in
Eq. (5) is ferromagnetic or antiferromagnetic depending
on whether δθi + δθi+1 is negative or positive.
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In the earlier papers [2–4], θi had been assumed to
take the same value θ for all i. Then the effective Ising
interaction is given by

Ji,i+1 =
J

4
δθ . (7)

The thermodynamic properties of this system model can
be calculated easily using the transfer matrix method. If
geff > 0, and the magnetic field is large compared to Jδθ
(but much smaller than J), then Eq. (5) implies that the
magnetization per cobalt-radical pair will take a value
given by

MS =
µB

6
geff

3
∑

i=1

| B̂ · e0
i | ,

B̂ =
B

|B| . (8)

We will henceforth refer to MS as the saturation magne-
tization. [If the magnetic field becomes much larger than
J/µB, i.e., about 600 Tesla, then the original Hamilto-
nian in Eq. (1) implies that the magnetization will reach
the final saturation value of (µB/6)(gC

∑

i |B̂ ·e0
i |+3gR).

But this kind of field strength is not experimentally ac-
cessible at present]. Let us now consider the case of very
low temperatures and a magnetic field applied along the
c axis; then all the cobalt spins experience the same mag-
netic field strength B · e0

i = |B|/
√

3. The magnetization
will show a plateau at M = 0 if the effective interaction
in Eq. (7) is positive (antiferromagnetic), but not if it is
negative (ferromagnetic). For large fields, the magnetiza-
tion will saturate at M = MS = µBgeff/(2

√
3). We thus

see that there is no magnetization plateau at fractional
values of MS (such as MS/3) regardless of what the sign
of δθ in Eq. (7) is; namely, states with magnetization
equal to MS/3 are not the lowest energy states for any
value of the field.

We therefore require a slightly different model in or-
der to obtain magnetization plateaus at both M = 0
and M = MS/3 as the experimental data seems to sug-
gest [3]. After considering several possible variations of
the basic model, we have found that the following idea
works. We assume that all the cobalt spins in a single
molecular chain do not have the same angle of tilt with
respect to the c axis. We further assume that the angles
θi take three different values θ1, θ2 and θ3 for three succes-
sive cobalts, and that they repeat periodically thereafter.
The repeat period of three makes it plausible that there
could be a magnetization plateau at MS/3 (correspond-
ing to a state with σi repeating as 1, 1,−1, i.e., a ↑↑↓
spin alignment). However, it turns out that θ1, θ2 and θ3

need to satisfy some additional conditions as we will now
discuss.

Since the θi’s repeat with period three, the thermody-
namic properties of the system can again be found using

the transfer matrix method. If the number of cobalt-
radical pairs is denoted by N , and we use periodic bound-
ary conditions (taking N to be a multiple of 3), then the
partition function can be written as

Z = Tr ( A1 A2 A3 )N/3 , (9)

where the matrix elements of the 2 × 2 matrices Ai are
given by

(Ai)11 = exp [−βJi,i+1 +
βµBgeff

4
B · (e0

i + e0
i+1)],

(Ai)12 = exp [βJi,i+1 +
βµBgeff

4
B · (e0

i − e0
i+1)],

(Ai)21 = exp [βJi,i+1 +
βµBgeff

4
B · (−e0

i + e0
i+1)],

(Ai)22 = exp [−βJi,i+1 +
βµBgeff

4
B · (−e0

i − e0
i+1)],

(10)

with β = 1/(kBT ). The magnetization per cobalt-radical
pair is then given by the derivative of lnZ with respect
to |B|,

M = − kBT

NZ

dZ

d|B| . (11)

(We must eventually take the limit N → ∞).
We should note here that when we actually do the

transfer matrix calculations (on which Figs. 2 - 7 are
based), we have not used the assumption made in Eqs.
(3) and (5) that each radical spin is aligned in a direction
which is determined only by the neighboring cobalt spins.
Rather, we solve for the two eigenvalues of the Hamilto-
nian of each radical spin which is interacting both with its
neighboring cobalt spins and with the applied magnetic
field. We then take only the larger of these eigenvalues
into account when we integrate out that particular rad-
ical spin; the justification for this is that the two eigen-
values are separated by an energy of order J , and the
temperatures of interest are much smaller than J/kB.

While considering the magnetization as a function of
the magnetic field, one can think of various possible pat-
terns of signs and magnitudes of the parameters δθ1, δθ2

and δθ3. One pattern which leads to magnetization
plateaus at 0 and MS/3, for a magnetic field applied
along the c axis, is given by the conditions

(i) δθ1 + δθ2 , δθ1 + δθ3 , δθ2 + δθ3 > 0 ,

(ii) δθ1 ≥ δθ2, δθ3 , and 2δθ1 > δθ2 + δθ3 . (12)

(Condition (i) in Eqs. (12) corresponds to antiferro-
magnetic interactions Ji,i+1 between neighboring cobalt
spins). At zero temperature, we then find that there is
a magnetization plateau at M = 0 if the strength of the
field lies in the range 0 < B < B1, where

B1 =

√
3

2

δθ2 + δθ3

geff

J

µB
, (13)
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FIG. 2. Magnetization (in units of µB) per cobalt-radical
pair versus the magnetic field (in Tesla) applied along the c
axis, for various temperatures. The crossing points I , II and
III are discussed in the text. (We have taken J/kB = 400 K,
gC = 9, gR = 2, δθ1 = δθ2 = 2.64o, and δθ3 = −1.32o).

a plateau at M = MS/3 if the field lies in the range
B1 < B < B2, where

B2 =

√
3

4

2δθ1 + δθ2 + δθ3

geff

J

µB
, (14)

and a saturation plateau at M = MS if B > B2. (Note
that the condition 2δθ1 > δθ2+δθ3 in Eqs. (12) is needed
in order to have B2 > B1; otherwise the intermediate
plateau at M = MS/3 will not exist). As we raise the
temperature, the plateaus will gradually disappear.

In Fig. 2, we show the magnetization as a function of a
magnetic field applied along the c axis, for one particular
choice of the parameters δθi which satisfies the conditions
in Eqs. (12), and different temperatures. For the vari-
ous parameters given in the caption of Fig. 2 and using
Eqs. (8), (13) and (14), we find that B1 = 1.92 Tesla,
B2 = 4.81 Tesla, and MS/µB = 1.78. The locations of
the plateaus in Fig. 2 at the lowest temperature of 0.5
K are consistent with these numbers. We have chosen
the parameters δθi in such a way that the locations of
the plateaus and their temperature dependences are in
rough agreement with the data presented in Ref. [3]; the
agreement can be improved by changing the value of gC ,
but we will not do that here.

In Fig. 3, we present the magnetic susceptibility
χ = (∂M/∂B)T as a function of the magnetic field for
different temperatures; these plots are just given by the
derivatives of the plots in Fig. 1. At the lowest temper-
ature of 0.5 K, we see peaks at the ends of the magneti-
zation plateaus, i.e., at B = B1 and B = B2. The peaks
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FIG. 3. Magnetic susceptibility (in units of µB/ Tesla) per
cobalt-radical pair versus the magnetic field (in Tesla) applied
along the c axis, for various temperatures. (J/kB = 400 K,
gC = 9, gR = 2, δθ1 = δθ2 = 2.64o, and δθ3 = −1.32o).

get washed out with increasing temperature.
We observe three special points labeled I, II and III in

Fig. 2 where the curves for different temperatures seem
to cross. In terms of the magnetic field (in Tesla) and
magnetization (in units of µB), these crossing points lie at
I = (1.93, 0.42), II = (3.36, 0.62), and III = (5.25, 0.99).
We will now provide an explanation of these points based
on the transfer matrix method in the limit of zero tem-
perature.

For B1 ≤ B ≤ B2, we find that there is an exponen-
tially large number of degenerate ground states, giving
rise to a finite entropy per cobalt-radical pair at T = 0.
In the limit N → ∞, the zero temperature entropy (in
units of kB) per cobalt-radical pair is found to be

S

kB
=

1

3
ln (

√
2 + 1) for B = B1 ,

=
1

3
ln 2 for B1 < B < B2 ,

=
1

3
ln 3 for B = B2 ,

= 0 for B < B1 and B > B2 . (15)

[We should note here that the numbers given in Eq. (15)
are valid only for our particular choice of the δθi, with
δθ1 = δθ2 > δθ3. If we had chosen δθ1 > δθ2 > δθ3,
the entropy at zero temperature would be finite only for
B = B1 and B = B2].

The magnetization at T = 0 is given by an average
over all the degenerate ground states. For B = B1 = 1.92
Tesla, we find that M = MS/(3

√
2) ≃ 0.42; this agrees

with the location of the first crossing point mentioned
above. For B1 < B < B2, we can see why there is
a degeneracy of 2N/3; in each group of three successive

4
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FIG. 4. Entropy (in units of kB) per cobalt-radical pair
versus the magnetic field (in Tesla) applied along the c axis,
for various temperatures. (J/kB = 400 K, gC = 9, gR = 2,
δθ1 = δθ2 = 2.64o, and δθ3 = −1.32o).

cobalts, the Ising spins (σ1, σ2, σ3) can take the orienta-
tions ↑↓↑ or ↓↑↑; different groups of three cobalts can take
either of these two orientations independently of each
other. The magnetization of all these states is given by
MS/3 = 0.59; this roughly agrees with the location of the
second crossing point; the significance of the magnetic
field value of 3.36 Tesla at that crossing will be discussed
in the next paragraph. For B = B2 = 4.81 Tesla, the
degeneracy of 3N/3 arises because the Ising spins in each
group of three successive cobalts can independently take
the orientations ↑↓↑, ↓↑↑ or ↑↑↑; the average magneti-
zation is therefore given by 5MS/9 = 0.99 which agrees
well with the location of the third crossing point (the
magnetic field value does not agree so well however).

We will now see why the second crossing point in Fig.
2 occurs at a magnetic field value of 3.36 Tesla [8]. We
saw above that in each group of three successive cobalts
spins (σ1, σ2, σ3), there are two spin configurations which
are degenerate in the range B1 < B < B2, namely, ↑↓↑
and ↓↑↑. Let us now consider the lowest excitations lying
above these configurations. There are two kinds of exci-
tations: (i) a cobalt spin can flip from down to up, i.e., a
group of three cobalts can become ↑↑↑, and (ii) a cobalt
spin labeled σ3 whose neighbors are pointing up can flip
from up to down, i.e, a group of six cobalts can change
from ↓↑↑↑↓↑ to ↓↑↓↑↓↑. The first kind of excitation costs
an energy

E+ =
J

4
(δθ1 + 2δθ2 + δθ3) − µBgeff

B√
3

, (16)

and increases the total magnetization by µBgeff/
√

3.
The second kind of excitation costs an energy
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FIG. 5. Specific heat (in units of kB) per cobalt-radical pair
versus the magnetic field (in Tesla) applied along the c axis,
for various temperatures. (J/kB = 400 K, gC = 9, gR = 2,
δθ1 = δθ2 = 2.64o , and δθ3 = −1.32o).

E− = − J

4
(δθ1 + δθ2 + 2δθ3) + µBgeff

B√
3

, (17)

and decreases the total magnetization by µBgeff/
√

3.
The energy costs of the two excitations are equal at a
magnetic field given by B0 = (B1 + B2)/2 = 3.36 Tesla,
where we have used Eqs. (13) and (14). At this value of
the magnetic field, and at very low temperatures, the con-
centrations of the two kinds of excitations will be small
and equal; hence the magnetization will lie at its plateau
value of MS/3. This explains why the different plots in
Fig. 2 cross at this value of the magnetic field and mag-
netization.

In Fig. 4, we show the entropy versus the magnetic
field for the same values of parameters and same temper-
atures as in Fig. 2. We see that at the lowest temperature
of 0.5 K, the entropy has a substantial value in the range
B1 < B < B2, has peaks at B1 and B2, and is quite small
for B < B1 and B > B2; the values of the entropy at B1

and B2 and on the plateau in between are in agreement
with Eq. (15). As the temperature is raised, the entropy
increases in such a way as to wash out these features; this
is consistent with the disappearance of the magnetization
plateaus in Fig. 2.

Fig. 5 shows the specific heat CV = T (∂S/∂T )B as a
function of magnetic field at different temperatures. An
interesting feature to note is that at the lowest tempera-
ture of 0.5 K, the specific heat vanishes with a parabolic
shape at the ends of magnetization plateaus shown in
Fig. 1, i.e., at B = B1 and B2. This can be understood
as follows. If ∆E denotes the energy of a state with re-
spect to the ground state, the contribution of that state
to the specific heat is proportional to

5
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FIG. 6. Magnetization (in units of µB) per cobalt-radical
pair versus the magnetic field (in Tesla) applied along six
different directions in the a − b plane, for a temperature of 1
K. (J/kB = 400 K, gC = 9, gR = 2, δθ1 = δθ2 = 2.64o, and
δθ3 = −1.32o).

CV

kB
∼

( ∆E

kBT

)2

e−∆E/kBT . (18)

At the lowest temperature and at B = B1 and B2, it
turns out that all the states either have ∆E >> kBT
(hence their contributions to the specific heat are expo-
nentially small and can be ignored), or ∆E << kBT .
For the latter states, one can show that ∆E vanishes
near B = B1 and B2 as (µBgeff/

√
3)|B − B1| and

(µBgeff/
√

3)|B − B2| respectively. From Eq. (18), we
see that the contributions of these states to the specific
heat go as (B −B1)

2/T 2 and (B −B2)
2/T 2 respectively.

This explains the behavior of the specific heat in Fig. 5
near B = B1 and B2.

In Fig. 6, we show the magnetization versus the mag-
netic field applied in the a − b plane for six possible di-
rections (parameterized by the angle φ with respect to
the projection of e1 on that plane), for the same values
of parameters used in Fig. 2, and a temperature of 1 K.
The six directions were chosen with equiangular spacing
to cover the full range of possible directions from 0o to
180o; we recall that the behavior of an Ising model does
not change if the sign of the magnetic field is reversed,
i.e., if φ → φ + 180o. [The projections of the easy axis
of the three cobalts on the a − b plane are given by 0o,
120o and 240o. Since we have chosen δθ1 = δθ2, we also
have a symmetry under φ → 120o − φ. This explains
why the plots for φ = 30o and 90o are identical, as are
the plots for φ = 0o and 120o]. We see in Fig. 6 that
there is a plateau at intermediate values of the magne-
tization only for a magnetic field direction given by 60o;
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FIG. 7. Magnetization (in units of µB) per cobalt-radical
pair versus the magnetic field (in Tesla) averaged over the six
different directions shown in Fig. 2, for various temperatures.
(J/kB = 400 K, gC = 9, gR = 2, δθ1 = δθ2 = 2.64o, and
δθ3 = −1.32o).

even that plateau is much weaker than the plateau seen
in Fig. 1 at the same temperature.

Fig. 7 shows the magnetization versus the magnetic
field applied in the a − b plane, averaged over the six
directions indicated in Fig. 6, for various temperatures.
We see that there is no discernible plateau at intermedi-
ate magnetization even at the lowest temperature of 0.5
K. This may explain why no plateau is observed experi-
mentally when a magnetic field is applied in the a − b
plane. Since the system consists of several molecular
chains, and these may happen to be rotated with respect
to each other by various amounts in the a− b plane, it is
possible that the behavior observed experimentally is an
average of the different directions of the magnetic field in
that plane.

Another pattern of signs and magnitudes of the pa-
rameters δθ1, δθ2 and δθ3 which leads to magnetization
plateaus at 0 and MS/3, for a magnetic field applied
along the c axis, is given by the conditions

(i) δθ1 + δθ2 > 0 , δθ1 + δθ3 < 0 , δθ2 + δθ3 < 0 ,

(ii) δθ2 ≥ δθ1 , and δθ1 + 4δθ2 + 3δθ3 > 0 . (19)

We will not discuss the details of this case since the anal-
ysis and magnetization plots obtained are similar to the
case of Eqs. (12) considered above.

To summarize, we have studied a model for CoPhOMe
in which the tilt angles of the easy axis of the cobalt spins
with respect to the c axis vary with period three. We have
shown that for certain patterns of these tilt angles, the
magnetization at low temperatures exhibits plateaus at
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non-trivial values if a magnetic field is applied along the
c axis, but not if it is applied in the a − b plane. We
have not considered here any dynamical effects (arising
from the time-dependence of the magnetic field) for the
magnetization; such effects have been discussed earlier
for the case of a magnetic field applied along the c axis
[3,4].
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