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A crossing-syrometrio Regge-behaved dual amplitude, with second-

sheet poles and correct Mandelstam boundaries, was recently proposed

"by Cohen-Tannoudji, Henyey, Kane and Zakrzewski K This amplitude,

however, possesses multiple poles which degenerate into an essential

singularity when & -¥ oQ 5 clearly a very undesirable feature. It

is our purpose, in this letter, to introduce an amplitude which, while

similar in many respects to the amplitude of Cohen-Tannoudji et al«,

avoids this difficulty. This is done "by use of the technique of Van

2) 3)
der Corput neutralizer funotions ', earlier employed "by Suauki ' in

constructing an amplitude with complex trajectories.

The model we propose possesses several features besides

crossing symmetry, Regge behaviour, simple complex poles in all

channels and no ancestors. It accommodates arbitrary trajectories

(including trajectories with a finite number of resonances), has a

factorizable N-point generalization and a Tir-amplitude in which the

Adler zero may be incorporated. The region of analyticity of the

amplitude is discussed. The Mandelstam double-spectral functions

2 2vanish for s < 4m , t 4 4m , and appear to be very small outside the

region l/s + l/t ^ 4n» .

We propose the following amplitude for two-particle—> two-

partiole spinless scattering:

where
2

i ) f(z) is analytic except for a cut in Re z >/ 4m ,
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ii) N(i) ia a Van der Corput neutralizer satisfying '

N(0) = 1 , N(l) = 0, = 0, n = 1,2 (2)

iii) «(s) is the Regge trajectory function with a cut for

2
s >/ 4m .

Besides being manifestly crossing-symmetric, the amplitude (l)

possesses several interesting features whioh we now proceed to discuss*

&) Regge "behaviour

Write

A(s,t) = Â s.t) + A2(s,t) (3)

where

f -(1

1(M)' J x

o*\<i . (4)

By a change of v a r i a b l e

r X* "I -I1 A r~l -(l + a(t»N(s fj) -1 -(l + a(s))N(l-s (j) -1
A(s.t) = — r (s (i) (1-s fi) t(M) l(t-s t(i) aji .

I
0

Expanding the integrand about e" -> 0 and using (2) - noting that s

i s real for a l l /•• on the path of integration - we obtain the

asymptotic behaviour

A I (M) - g(t)s"(t) as »-** (5)

where

g(t) = f(t) / n w f0 i )d M , (6)
V

0
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provided that f(x) is ohosen suoli that this integral converges.

Under this condition the asymptotic behaviour (5) holds for all complex

s. The integral (6) is, in general, over a contour in the complex f*~

plane extending from the origin to the point at infinity.

For the convergence of the integral (6) we require

fOO < ** (7)

where (y i s the maximum negative value attained by Re <x(t) for a l l

t < 0, I f N(t) i s such that the value Of = -©0 i s possible, then

f(ju.) must tend to zero fas ter than any inverse power of flL as yU--*°o ,

Taking the fixed number A to be very olose to uni ty , we obtain

for Agfsjt) as s tends to 00

J l f (t(l-x)) dx

m \ '. . , r -l-a(s) + n . m f
- » ) hn(t) / (1-x) dx + s / k<x) dx

n = 0 \ \

CO

•"""<) n - V ^ + / Ifl*)dx Ĵ  • ^ «(s) < 0
n=0

K(x) i s a function that tends to zero faster than any power of (1-x)

as x -» 1. When X i s made to approach unity th i s term vanishes
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provided that the limit in s is taken auoh that Re 0((s) < 0, Thus

we obtain, for fixed t < 0

A(s,t) - g(t) sa<t) as t-¥co , Rea(s) < 0 .

This asymptotic "behaviour may now "be continued, in the Qt-plane, to

Re 0( >0, provided that we exclude all the points <x =. n, n = 0,1,2,... *

In the s-plane we see that if Re of(s)-»oo as jsj-»oo in some direction,

then such a direction must be excluded in taking the limit for large s.

Otherwise, the asymptotic behaviour (8) is valid for all directions in

the s-plane*

/ ,~b) Second-sheet resonances

The poles in t are generated as end-point singularities at

x = 0, Expanding the integrand in (1) about x = 0, following a

trivial decomposition, one obtains

A(s,t) = \ — — — + B(s, t) , Rea(t) < 0
L i ' ' (9)
n = 0

where

(10)

and the functions R (s,t) are polynomials in s of order n given

by

net) --V

The residue at of - n is R-fsjt-) where t_ is such that V{t ) - n.

We observe thati

i) The poles in the sum in Eq.(9) are complex poles in t.
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i i ) Although the trajectory function i s essentially arbitrary,

no ancestors are introduced.

i i i ) The number of resonances is not necessarily inf in i te ,

iv) The residues are completely determined "by the funotion f (x)

and are independent of any particular choice we make for

the neutralizer N(x).

v) The function B(s, t ) contains no poles in t and does not

contribute to the asymptotic behaviour (8) as s -> oo < Thus

only the f i r s t term in(9),containing a l l the resonances in

t,gives the dominant Eegge pole behaviour as s -* <*» . I t

5)i s in this sense that the amplitude i s dual ;*

vi) I t appears to be possible to eliminate daughters, at least

from the four-point function, by a suitable choice of F(x).

o ) Analyticity "boundary

Because of the presence of 6((t) and 0((B ) in the integrand

in ( l ) , the domain where the double-spectral function is non-zero is

2 2

the sharp-corner region s ^ A m j t ^ - ^ . We note, however, that

for both the high-energy region and the neighourhocd of resonances, we

again almost have a curved boundary of analytioity. Thus for large s,for ex

aiple, our amplitude is for a l l praotioal purposes given by

/

1

X W f;(SX) f<t(l-X)) dx

o

which has the boundary l/s + l/is ^ l/(4m. ), as in Ref,l, The same form also

gives the amplitude in the low t region where the resonances dominate.

In fact, one may direotly verify that the contribution of the factor
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-(1 + cc<t)) N(x) -(1 + a(s)) N(l-x)

to the integrand for £>(s,t) tends to zero faster than any power.

Thus to a good approximation ,P(s,t) vanishes outside l/s + l / t >/ l/(4m ),

for any choice of neutxalizer function N(x).

d) N-point function

Generalization of the amplitude to the K-point function is

straightforward and is similar to the corresponding situation in the

Vgneziano model* We write

r ~<l + ct(s))N(u )

- \ II d W (13)

where P latols the various possible partitions » sp ^ e corresponding

energy variable and P denotes channels dual to P. The factor!zed

form of the integrand ensures "both the bootstrap principle and the

general factorization for residues. To see this, notice that as

tip-* 0, all variables u= ->1. The residue of the pole -t ^(sp) =. 0

is obtained from the integrand as up -> 0. On choosing a suitable

normalization one gets

Res. of A
N Vm+1 Am+1

a(sp) = 0

where the partition P separates the N interacting particles into

two groups of m and IT-in. particles, respectively.

The residues at other integer values of #(s_) are obtained

from the coefficients of the corresponding powers of Up in the

expansion of the integrand about u_ = 0. One notes that, due to the

properties of the function N(x), such an expansion arises entirely
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from the function f(x). It may therefore "be possible to curtail

severely degeneracies of the poles "by a judicious choice of f (x).

e) TTTT -amplitude

A simple modification in the amplitude makes it suitable for

trajectories with positive intercept. The problem is to eliminate the

pole at Of(s) - 0 without changing either the high-energy "behaviour

or crossing symmetry. We propose

where we have made f depend upon two variables. If we now impose

f(0,0) « 0, the power series expansion of the integrand starts with

the term X ^S' and the first pole is situated at #(s) = 1. High-

energy behaviour is not affected. The JJ-point generalization of this

amplitude is immediate*

2 2
The Adler condition A(m , m^) a 0 requires that the integral

2 2
I -(1 + oc(m )) N(x> -(1 + a(m )) N(l-x) 2

x (1-x) f(m x.x) f(m (1-x). 1-x) dx (15)

vanishes. The integrand in (15) is symmetric about x » •&• and behaves
2

like x-^mfi> near x - 0 (using f(0,0) » 0). For the integral to

vanish, it is therefore necessary that ffm^KQ, xQ) = 0 for at least

one point XQ € (Q»-&0* Such a condition oan easily be satisifed and

it is then olearly possible to incorporate the Adler zero in the

present model '»
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f ) . Remarks

We wish to emphasise that the use of the neutraliaer function

1)
has prevented the occurrence of terms like

which - besides introducing multipples - have the undesirable feature

that a non-linear trajectory [X Qn&s up as an essential singularity as

(X->OQ. By using the neutralizer function, which kills all raultipoles,

we have retained most of the nice features of the model of Ref.1 and

at the same time avoided this oatastrophe.

There is in our model sufficient freedom to ensure correct

threshold behaviour and perhaps some unitarity effects without affecting

the crossing symmetry and asymptotic "behaviour of the amplitude. As

ar,';ued in Ref .1, such arbitrariness is expected since unitarity is not

yet fully imposed. However, since amplitude (l) has second-sbeet

resonance poles, correct Rogge asymptotic behaviour for essentially

arbitrary (X , non-vanishing double-spectral functions and a factorizable

IT-point generalization, it may be expeoted to serve as a starting point

in a search for an exactly unitary amplitude.
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