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A crossing~symmetric Regge-=behaved dual amplitude, with second-
sheet poles and correct Mandelstam boundaries, was recently proposed
by Cohen-Tannoudji, Henyey; Kane and Zakrzewski 1). This amplitude,
however, possesses multiple poles which degenerate into an essential
singularity when & —> & § c¢learly a very undesirable feature. It
is our purpose, in this letter, to‘introducezﬂramplitude which, while
similar in many respects to the amplitude of Cohen~Tannoudji et al.,
avolds this difficulty. Thia is done by use of the technique of VQnL
der Corput neutralizer functions 2), earlier employed by Suguki 3) in

constructing en amplitude with complex trajectories.

The model we propose possesges several features besides
crossing symmeiry, Regge behaviour, simple complex poles in all
channels and no ancestors., It accommodates arbitrary trajectories
(including trajectories with a finite number of resonances), has a
factorizable N-pcint generalization and a 7n —amplitude in which the
Adler zero may be incorporated, The region of analyticity of the
amplitude is discussed. The Mandelstam double~spectral functions
vanish for =& € 4m2, t £ 4m2, and appear to be very small outside the
region 1/8 + 1/t » 4n°,

We propose the following amplitude for two=- particle —» two~-

particle spinless scatterings

i . } '
At = M[ ;ﬁ+aaxnm)u_m a+““”Nax)ﬂn)ﬂqunm (1)

¢

where

i) f(z) is analytic except for a cut in Re 2z » 4m2,




i1) N(x) is & Van der Corput neutralizer satisfying 4’

n
N(®) = 1, N(I) = o, 9—559 -0, n=12 ...
dx

. (2)

x=d.1
iii) #(s) is the Regge trajectory function with a cut for

8 >/4m2c

Besides being manifestly érossing-symmetric, the amplitude (1)

possesses several interesting features which we now proceed to discuss.

a) Regge behaviour
Write

AsD = A(sD + A(sD) ' (3)

whare

A |
a0 = f x BHADINE =G rals) NOX) e 1-x)) dx

0 ' 0ex<i . (4)

By a change of variablle

AS

-1 B " =i .
-1 - -1 - N(l- -1
A = % f s lp) (1+a(thYN(s p) (1 lp) (1 + e(s)) N(I=s 1) fy fe=s ) dp -

0

Bxpanding the integrand about & * = O and using (2) - noting that e
is real for all A on the path of integration = we obtain the
asymptotic behaviour

Ay ~ g s as 1o (5)

where
od

g = £y j a7 £y ap , (6)
0



provided that £(x) is chosen such that this integral converges.
Under this condition the asymptotie behaviour (5) holds for all complex
8. The integral (6) is, in general, over a contour in the complex JIes

plane extending from the origin to the point at infinity,

For the convergence of the integral (6) we require

*n

iy < p ' (7)

where %, is the maximum negative value attained by Re «(t) for all
't_ <0, If bt(t) is such that the wvalue & = =<0 is possible, then

f(Mu) must tend to zero faster than any inverse power of M as M —>,

Teking the fixed number A to be very close to unity, we obtain

for A,(s,t) as & tends to o0

1
Agny = f x A HOINE (= ls)) N_(.l'x) F(x) f((l-x}) dx

A

o 1 S
¢y ™ f x L+ () N(x) (l-x)-(““(’”N(l'x) x ™ f(-x)) dx

A

c‘m ! =l-e(s)+ n % 1
= s Z hn(:) ‘f (I=x) ~° dx + s f K{x) dx

n=0 A A

p

o .

[+4 n-g(s) 1
E 1=

2 m { Lll'}T + f k{x)dx} , Re ae(s) < 0
n=0 A

K{(x) is a function that tends to zero faster than any power of (1-x)

as Y - 1. VWhen X\ is made to approach unity this ferm wvanishes

o



provided that the limit in ® is taken such that Re &(s) < O, Thus

wa obtain, for fizxed ¢+ <€ O

A(s,t) ~ g(t) su(t) as s »o0 , Reas) <0 . (8)

Thig agymptotic behaviour may now be continued, in the «-plane, to

Re K >0, provided that we exclude all the points X = n, n = 0,1,2,... .

In the s-plane we see that if Re w(8)— oo a8 |85 o0 in ‘some direction,
then such a direction must be excluded in taking the limit for large s.

Otherwise, the asymptotic behaviour (8) is valid for all directions in

the s-plane,

'b) Second-sheet resonances

Fa

The poles in 1 are generated as end~point singularities at
X = 0, Expanding the integrand in (1) about x = 0, following a

trivial decomposition, one obiains

-]
R (s, 1)
Als,0) = z n“_ wH T OBeY. Rear(t) ¢ O (9
n=0 '

where

-~

B(s1) - f {x"(““‘t” N (1gy G+ AN NCR) _ ~(Iralt)) j F(sx) F(t(l-x)) dx
0 (10)

and the functions Rn(s,t) are polynomials in s of order n given

. by

R (1) :;—, {:“ £%%0) £ + 8 & £ D0y - 19+ ... + £0) (1) f(“)(:)} . (11)

The residue at ¥ = n is Rn(s}tn) where t  is such that ¥{t,) = n,
We observe that:

i) The poles in the sum in Eq.(9) are complex poles in 1%,
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ii) Although the trajectory function is essentially arbitrary,
no ancestors are introduced.
1ii) The number of resonances is not necesserily infinite,
iv) The residues are completely determined by the function_f(x)
and are independent of any particular choice we make for
the neutralizer N(x). .

v) The function B{s,t) contains no poles in t and does not
contribute to the asymptotic behaviour (8) as & - oo . Thus
only the first term in(9),containing all the resonances in
t,gives the dominant Regge pole behaviour as 8 —>oca 1It
is in this sense that the amplitude is duzal 5).

vi) It appears to be possible to eliminate daughters, at least

from the four=point function, by a suitable choice of F(x).

o) Analyticity boundary
Because of the presence of &(t) and O(s) in the integrand
in (1), the domain where the double~spectral function is non-zero is
the sharp=-corner region s »-4m2, t 2-4m2. We note, however, that
for both the high~energy region and the neighourhocd of resonances, we
égain almost have a curved boundary of analyticity. Thus for large s,for ex-—

aple, our amplitude is for all practical purposes given by

1 =}~c(t)
A(s,t) -};f X f:(sx) f{(l-x)) dx (12)
0 . .

which has the boundary 1/s + 1/% ‘>-1/(4m?), as in Ref,1, The same form also
gives the amplitude in the low + region where the resonances dominate,

In fact, one may directly verify that the contribution of the factor




< (4 + o)) N(x) x)"(l + a(s)) N(1-x)

(1~

to the integrand for P(s,t) tends to zero faster than any power,
2
Thus to a good approximation p(s,t) vanishes outside 1/s + 1/t » 1/(4n"),

for any choice of neutralizer funotion N{(x).

d) N-point function .

Ceneralzatbn of the amplitude to the N-point funciion is
straightforward and is similar to the corresponding situation in the

Veneziano model. We write

| 1+ as,)) N(u)
Ay = f H du, (up) E(splup) H 5("17"1:1 u‘ﬁ'-1> (13)
P'

P P'#(L )

where P labels the wvarlocus possible partitions 6), 8p the corresponding
energy variable and P denotes channels dual to P, The factorized
form of the integrand ensures both the bootstrap principle and the
general factorization for residues., To see this, notice that as

up > 0y all variables ug —»1l. The residue of the pole -% D((SP) = 0

is .obtained from the integrand as up - 0, On choosing a suitable

normalization one gets

Res. of AN = AN-m-i-l Am—fl ’

a(sp) =0

where the partition P separates the N interacting particles into

two groups of m and K-m. particles, respectively.

The residues at other integer wvalues of A’(SP) are obtained
from the coefficients of the corresponding powers of up in the
expansion of the integrand about up = 0. One notes that, due to the

properties of the function N(x), such an expansion arises entirely
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from the function f(x). It may therefore be possible to ourtail

severely degeneracies of the poles by a judicious choice of f(x).

e) W =amplitude

A simple modification in the amplitude makes it sultable for
trajectories with positive intercept, The problem ig to eliminat.e'the
pole at (s) = O without changing either the high-energy behaviour

or crossing symmetry. We propose

o N
A(s. 1) =f ax x BN NE) o, =(1+a(t) N(i-x)

f(s(l-x), 1I-x) f{m, x) ’ _.(i4)
0

where we have made f depend upon two variables, If we now impose

£{0,0) = 0, the power series expansion of the integrand starts with

the term x %(8) and tne first pole is situated at &(s) = 1. High~

energy behaviour is not affected. The N-point generalization of this

amplitude is immediate,

The Adler condition A(mﬁ_ ) m,ﬁ.) » 0 requires that the integral
2 2
1 ~(1+e(m ) N(x) =(1 + e(m. ) N(I-x) 0
f X (1-x) f(mfr X, X) f(rnﬂ_(l-—x). 1-x) dx (15)

0
venishes. The integrand in (15) is symmetric about x = 4 and behaves ‘
like X-N(m%) near x = O (using £(0,0) = 0), For the integral to
vanish, it is therefore necessary that .f(mTerxo, XO) = 0 for at least
one point X, € (O,4). Such a eondition can easily be satisifed and
it is then clearly possidble to incorporate the Adler zero in the

present model T).




f) . Remarks

We wish to emphasise that the use of the neutralizer function
. (%] -

. J
has praevented the occurrence of terms like 1) E =

. k+l
K=o [J‘N(t) + n+k]
which =~ begides introducing multipoles = have the undesirable feature

that a non-linear trajectory X ends up as an sssential singularity as
™ ~>00s 3By using the neutralizer function, which kills all multipoles,
we have retained most of the nice features of the model of Ref.l and

at the same time avoided this oatastrophé.

There is in our model sufficient freedom to ensure correct
threshold béhaviour and perhaps some unitarity effectis without affecting
the crossing symmetry and ssymptotic behaviour of the amplitude,. As
arymed in Ref.l, such arbitrariness is gxpected since unitarity is‘not
yet fully imposed, However, since amplitude (1) has second-sheet
resonance poles, correct Regge asymptotic behaviour for essentially
arbitrary «® , non~vanishing double-spectral functions and a factorizable
N-point generalization, it may be expected to serve as a starting point

in 3 search for an exactly unitary amplitude.
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