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ABSTRACT

We discuss the structure of the divergences in the multiloop

vacuum diagrams for the closed bosonic strings in the framework of the Polyakov

covariant formalism. We find, by an explicit computation, that all the

divergencesd in the theory may be interpreted as due to tadpole diagrams in

which the dilation goes into the vacuum.
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Some early attempts to understand the nature of string

theories at the multiloop level were made in the context of the old

dual models [l]. Later, with the formulation of Polyakov [2], which

treats string amplitudes as sums over random surfaces, an important

step towards the computation of multiloop amplitudes was given by

Alvarez [3], indicating the principal mathematical ingredients. More

recently, with the emergence of interest in superstring theories^],

this study has been further revived both in the light cone approach [5,6]

and in the Polyakov covariant formalism[7,8 ] ; in particular,the one

loop amplitude [9] and the off-shell string propagator [10 ] are now

available in the latter approach.

In this note, we discuss the case of multiloop diagrams for

closed bosonic strings with no external legs. We aim to isolate the

divergent factors of the vacuum amplitude g? for an underlying two
h

dimensional manifold JJl of genus h ^ 2 , n being the same as the

number of loops. We shall confine ourselves to spacetime dimensions

D = 26 in the Polyakov formalism.

The functional integral is computed to give, in general [3,8]

In Eq.(l), the integrations over X^ , (including the centre of mass

coordinate X^1 giving V = Id X ) and over the continuous diffeo-

° J ° * -D/2
rnorphisms have been completed. The factor (det'A*.) is the

g
determinant arising from the xf* integration and the prime denotes

that the zero mode (related to the translational invariance) has

+ h
been removed, (det1 P P ) is the Paddeev-Popov determinant, where

P and P̂  are the operators introduced by Alvarez [3] and the

prime again denotes the deletion of zero modes of P, , which are
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however absent for surfaces of genus h^2. Both the determinants are

evaluated with respect to a fixed metric g of constant negative

curvature. Since we'work in D = 26 we ignore the conformal anomaly

and the corresponding integration over the conformal factor. It is

well known [ll ] that for h ̂. 2 we can represent the Riemann surface

by a fundamental domain H/r* in the upper half of the complex plane

H, where [~* is"a' Fuchsian group with only hyperbolic elements.

The metric § will be induced by the natural Poincare metric on H

2 . - 2 • • " • . •••.•• • . • • ; . < •• • " • • " : • • • " • • ; . . : • • • • ; • • • : ' ' • • • ' • - • •

ds = dzdz/(lmz) , which has curvature -1, defining a hyperbolic

geometry on the manifold. The factor d [Teich ] is the measure over

T - [Teichmueller I deformations of the Riemann surface. The 6h-6

dimensional.space of .2ero modes of.P is indeed the-space' of such

deformations, which: provide, a parametrization-of the'cohforraally ! • •"

inequivalent surfaces ̂ modulo a discrete gauge group • (the 'T-modular •'•' ::

grOUp) . • •: . • - . • • • ; , • • , ' S : . . . • : :; • • ^ i '-• '• -'••- • '• ' • •

Having chosen the metric g*, one can now evaluate the functional

determinants using the techniques of the Minakshisundaram-Pleijel

-function and the Selberg trace*formula [12, 13 ] . ~The'integrand

appearing in,Eq.(l) can be expressed, [|>,7,8 ], in terms of the Selberg.

Z-function: ' Jy ' v '"'"'- •- '•' •'* • "'•••••",•• •...-'•"•-' -...'. ̂  ,.••.';'

Here %.. are the hyperbolic minimal lengths, corresponxJin^ to iri- ' ••
P

conjugate primitive, elements of [^ , of closed curved on the surface

belonging, to definite ho.mQtQ.py classes. There is an infiriifce number '

of .% 's, which are in principle functions of the T-paretmeters.
P
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For instance, one gets [7,8]

(cUt A j ) ~ * = V. (if- Jet'Aj) = const. V. (Z'(i
JO (3)

where Z1 = dZ/ds and the volume V comes from the zero mode- Next, by

a similar computation,using the technique of ch.IV of ref [13] we

get

+ h
(det(p p )) = const. Z(2 ). (4)

1 1

Thus we find

-V/Z
> (5!

where K is a constant that depends on the genus h. Of course, we

still need the knowledge of the explicit dependence of Z(2) and Z'd)

on the 6h-6 real coordinates of the T-space , the measure [ dTeich ]

and the fundamental domain of the corresponding modular group. However,

for our purpose it is enough to assume that there exists a domain in

the T-space which covers all the physically distinct configurations

and that its measure is finite. The integration in Eq.(5) is meant

to be restricted to this domain.

Clearly, the divergences could arise from possible zeroes of

Z(s) corresponding to particular configurations, and from Eq.(2) one

can see that they arise whenever one of the lengths, say l , contracts
Y

to zero. The problem is now to find how many such lengths can be

simultaneously shrunk. When a homotopically non trivial geodesic

on the surface shrinks and pinches it, in the limit it produces a
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node, i.e. two identified punctures, either reducing by one the

number of handles or splitting the surface into two parts with a

puncture on each (the Euler characteristic for a surface of genus

h with n punctures is X = (2-2h-n). This cannot be done in an

arbitrary way, since the Gauss-Bcnnet theorem provides a powerful

constraint: the hyperbolic area A = -2T{ X of the manifold remains

constant during this deformation. Take ]f to lie along the imaginary

axis in H, which can always be achieved by a conformal transformation,

and consider an annular piece of the surface containing it, called

a collar (see fig. la). It is a mathematical result that there

always exists a collar with a stricly positive area [14].

Since the area of the collar- (EFCD) is 2& cotQ, then Q ~ A as
Y Y

0. Therefore any geodesic on the manifold T Y V intersecting

must have, in the limit i —>>0, an infinite hyperbolic length,

equal to or greater than the length of BC which is *%/|lnfc | (We

also note that the length of the boundaries CD and EF goes to a non

zero constant in the limit). Hence only non intersecting geodesies

can be shrunk simultaneously, and there are at most 3h-3 of these,

giving a partition of j/|_ into 2h-2 disjoint pieces. Further these

3h-3 geodesies can be chosen in a finite number of ways [ 15 ] . They

can also be used to provide coordinates for T-space, the coordinates

being their lengths and the twists on them [ ll] . For some partitions,

some of these geodesies can be dividing geodesies (a dividing geodesic

splits the surface into two distinct pieces) and their number in a

partition can be at most (2h-3). These counting rules indicate that

the manifold swept out by a propagating closed string can be repre-

sented by the Feynmann diagrams of a O theory. Fig (2a) shows two

possible partitions of a genus h=2 surface.

Let us first consider the shrinking of one of the dividing

ics ̂  . We evaluate the behavio

isolating the factors that depend on

geodesies X . We evaluate the behaviour of Z(2) for K.—• 0, by
Y



(2) =

(6)

where R(2) contains all other factors which are nonzero and bounded.

Using a version of the Jacobi identity

7)

we find

-D/2
The behaviour of the other factor, i.e. (Z'(D) in Eq.(7),

requires more care. We recall that Z(l) = 0 because of a zero mode,

and even when this is eliminated by taking the derivative Z'(l), we

can still get in the limit an additional zero. Indeed JfL will split

into two infinitely separated halves, and each of them could acquire

a zero mode. We find it useful therefore to follow the strategy of

dividing Yf\_ into three parts with a collar _H. sandwiched between

manifolds OH. with boundaries 0 $Tl - <S" • (See Fig. 3.)
1,2 1»2 1,2

By taking a collar of finite hyperbolic area, as discussed earlier,

the (hyperbolic) lengths of the boundaries 6" remain nonzero
1,2

and finite when t -* 0 and AreadfP-) + Areaflflft ) <L Area(WL). This

ensures that $() has no punctures or non trivial closed curves

"' 2 -D/2
of vanishing length. We may represent (Z'(D) as a functional

integral over X*4" (U= 1,2,..26) by fixing first x(C) = X
if

on 6" and performing the integrations over X (6") , XAS) at the
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end:

The factor in the middle is a functional integral over the collar_fl_.

We may use a Weyl transformation from hyperbolic to flat metric and

then a conformal transformation

so that the collar transforms to a straight cylinder fig. K b ) , where

the periodic variable is v with range (0,1) and the range of u is

(0, ^ = 71/j ). Each of these transformations gives a conformal

anomaly which we may evaluate using the formula for a manifold with

boundaries in Eq. 4.42 of ref. [3 ](disregarding the power-like

divergences since we consistently use \f -function regularization).

One can check that the conformal anomaly is a constant in both cases.

For example, for § = e 0 , 6" = - lny, we get Jd *aaV4£' =

hyperbolic area of JTL = constant.

We now perform the integration over the manifold _TL to give

as in ref. [ 10 ] I

)U
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= /
"1,2 J

where X = / d<T e X («"). In the limit l
J l'2 Y

the last exponential factorises ;

(12)

and we can absorb the factors in the r.h.s. in the integration over x
n

Substituting Eq.(ll) in Eq.(9), we obtain

V. (z'
oo

A (13)

The factors M are the result of the functional integration over
1,2

the manifolds JfJl at fixed X . There are therefore no zero modes
1 / 2 0112

and, because of the translational invariance, they are independent

of X . Further, the integration over JTL will be finite and

non zero as these have no non-trivial closed curves that can be

arbitrarily small. We may point out that Eq.(13), apart from the

(XO1 " o2
factor exp - , displays the same behaviour in %, = T/v

X Y
as could be nai'vely obtained by analysing Z{1), (which is actually

zero) by means of the Jacobi identity, as was done for Z(2) in

Eqs.(7) and (8).

Since we are looking at the corner of the T-space where l-yO,

let us take S, and the related twist o(v to be a pair among

the T-coordinate*(in fact in our limit the integrand is independent

of e< ). The relevant measure will factorise
t

- 1 -



(14)

The coordinates JLy and 0(~ parametrise a cylinder, which in

our case links JfjL , but it could also be considered, for instance,
1,2

to close and form a torus. In the case of the torus the measure

[ dTeich ] = d[fcyoA ] appearing in Eq.(l) is known [8,9] to

be (with our definition, the factor coming from the zero mode of

(P P > has to be inserted in the measure)

(15)

we take Eq.(15) for our case too, since we expect the relevant part

of the measure to be independent of what is attached to the cylinder

Putting together Eqs.(8),(13),(14),(15) into Eq.(5), we finally

obtain for this corner of T-space:

(1 -
(16)

The remaining integration over X and X will give, apart

from the usual volume factor, the Euclidean propagator in momentum

space [ 10 ]

(corner)—*con.t. V . I dCN)__i_

- 8 -



2 t* \\
evaluated at p = 0 . Here d{N) is the degeneracy of the N level

2
and we read from Eq.(16) that m (0) = -16TTrepresenting the tacbyon

2 2
(in units 4n*' = 1), m (1) = 0 is the dilaton, all the other (mass)

being positive. Our result displays explicitly that the configuration

we are analysing gives rise to a divergence which can be interpreted

as the dilaton tadpole (see fig. 2b). Such a divergence and its

interpretation was, in fact, foreseen [16 ],and emphasized more

recently [17] .

Since a surface of genus h can be drawn with at most (2h-3)

dividing geodesies and therefore (2h-3) tadpoles, we expect the

maximal divergerce ofjf to be of this order, when primitive lengths

other than the dividing geodesies are shrunk, we do not expect di-

vergences other than the exponential factor exp 471 / i, , signalling

the tachyon. The tachyon divergences can be regularized in the same

manner, as the Laplace transform of a diverging exponential is

defined by analytic continuation. This would amount to some prescrip-

tion on how to go around the tachyon pole in the integration over a

propagator like the one in Eq.(17). We do not wish to insist on this

procedure, since the tachyon is anyhow an unphysical feature of the

bosonic string. The dilaton, on the other hand is not expected to

give rise to any divergence other than the tadpole. This can be

understood in terms of the suppression of the infrared divergences in

Eeynmann loop integrals coming from the high dimension of the phase

space. This fact is also indicated by our discussion on the possible

new zero modes, which can arise only for dividing geodesies.

As a final comment, we recall that in the (closed) superstring

case there is no tachyon, and the residue of the dilaton tadpole is

expected to be zero [18] , allowing the theory to be finite. To show

this explicitly one would need the covariant formulation of the

superstring, which has not yet been developed at a quantised level,
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or equivalently the formulation for the higher genus of the light

cone gauge version of the theory [5,6 ] . Of course, for the case

of external legs one should also understand possible external-line

divergences [ 19 ] .
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Note added in proof: After completing this work we have found in the

paper "On the Weil-Petersson geometry of the moduli space of curves"

by S. Wolpert (American Journal of Mathematics, Vol.107, 969 (1985)

that our formula (15) agrees with the expression found by this author

with very different techniques.
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FIGURE CAPTIONS

Fig. 1 - (a) The collar _£L

(b)_TL as a cylinder

Fig. 2 - (a) Partitions of a genus 2 surface

(b) A tadpole diagram

Fig. 3 - Division of the manifold
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OB=1

Ff

D'

•> u

F l C r . l

tMUi dt,

- 14-



FIG-. 2 (<0

F l C r . 2 (<>)
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FIG. 3
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