
ON THE CONGRUENCE SUBGROUP PROBLEM 

by M. S. R A G H U N A T H A N  

Introduct ion.  

Let k be a global field and V the set of  valuations on k. Let oo denote the set 
of archimedean valuations on k. For w V ,  k~ denotes the completion o fk  with respect 
to v, ~), the ring of integers in k~ and F~ the residue field of k~. Let S D oo be any finite 
subset of  V and 

~ = - A ( S ) = { x e k l x e ~  ~ for all v~S). 

Next, let G be a linear algebraic group defined over k and G(k) the group of k-rational 
points. A subgroup (I) C G(k) is a S-congruence group if there is a faithful representation p 
of G in GL(n) defined over k and an ideal a # o  in A(S) such that the group 

*'={x~G(k)]p(x) eGL(n,  ~ ) ,  p ( x ) - i  (mod a)} 

is contained in (I) as a subgroup of finite index. (One may also fix the representation p 
once and for all and demand the existence of a non-zero a for this fixed representation.) 
A subgroup (I) in G(k) is S-arithmetic if there is an S-congruence group tF such that 
(I) c ~  has finite index in both �9 and ~ .  The family of S-congruence (resp. S-arithmetic) 
groups serve as a fundamental  system of neighborhoods of I for a topology g-(c) (resp. ~'(a)) 
on G(k) which makes it into a topological group. The completion of G(k) with respect 
to g-(c) (resp. g-(a)) is denoted G(S, c) (resp. G(S, a)). It  is not difficult to see that 
G(S, c) and G(S, a) are locally compact g r o u p s - - i n  fact the closure of an S-congruence 
group in either of these groups is compact and open. Since the topology g-(a) is evidently 
finer than g'(c), we have a natural  surjective map 

~(s,  a) ~(s)> ~(s, c). 

Let C(S, G ) = k e r n e l ~ ( S ) .  The congruence subgroup problem is the problem of 
determination of C(S, G) for a given G and S. (That C(S, G) is trivial is equivalent 
to saying that every S-arithmetic group is an S-congruence group.) C(S, G) is a 

(compact-) pro-finite group. 
Before we describe the results obtained in the present work, we will briefly recall 

what is already known. We begin with general comments which are well known and 
easily established (but are not set down in print). 
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C(S, G) is a functor:  if f : G - ~ H  is a k-morphism of k-groups we have a natural  
m m p h i s m  C ( S , f )  : C(S, G) --~ C(S, H). Suppose now that  

(,) ~x 

is an exact sequence of k-algebraic groups, 0~, ~ being k-morphisms;  the sequence 

(**) C(S, Gt) c(s,~)C(S, G~) c(s,~) C(S, Ga) 

is exact. This is an immediate  consequence of the following fact: if f :  G - ~ H  is a 
surjective k-morphism, the i m a g e f ( F )  of an S-arithmetic group F in G is an S-arithmetic 
group of H. In  general C(S, ~) is not injective. (An example to illustrate is the. 
following: Let k be of positive characteristic. Take G I =  the additive group of k and 
let G~ be the semidirect product  of the multiplicative group of k and the additive group. 
Then  if [S 1>2, C(S, G1) is non-trivial while the map  C(S, G1) -~ C(S, G~) is trivial.) 
There is, however, one simple situation where C(S, e) is injective: when Gt has finite 
index in G~. This remark with the trivial fact that  C(S, G) is trivial for finite G shows 
that, for any G, C(S, G ) ~ C ( S ,  GO), where G ~  component  of G. Once 
again, in general C(S, ~) is not surjective. One simple case where it is indeed surjective 
is the case when ( . )  is a split sequence; in this case moreover C(S, ~) admits a splitting 
and C(S, G2) is the semidirect product  of C(S, G~) and a quotient of C(S, G1). (If G 

is any group and G a covering group, and B is the kernel of G ~ G, it can be shown 
that  the cokernel of C(S, p) contains a subgroup isomorphic to the S-addle group of B.) 

At this point  we will separate the case of fields of characteristic zero from those 
of positive characteristics. The  remarks about split sequences enable one to reduce 
the problem to the semisimple case in characteristic o. 

In  this paragraph k will be of characteristic o. I t  is trivial and well known that  
C(S, G ) = I  for all S i f G  is the additive group ofk.  Since any unipotent  group over k 
can be obtained by forming successive semidirect products with the additive group, 
C(S, G ) = I  for any unipotent  group. I t  is a (non-trivial) theorem due to Chevalley [i] 
that  if G is a torus, CI(S, G) = I. F rom the structure theory one concludes that  C(S, G) 
is trivial for G solvable. For a general G, one knows that  G is the semidirect product  
over k of a reductive k-group M and the unipotent  radical U of G. Since C(S, U) 
is trivial, C(S, G) ~- C(S, M). The  problem is thus reduced to connected reductive 
groups. Again, if B is the maximal  connected semisimple normal  subgroup of the 
connected reductive group M, M/B is a torus and we conclude that  C(S, M) is a quotient  
of C(S, B). Thus  to a considerable extent the most important  information is contained 
in C(S, G) for connected semisimple G. Further,  if one solves the problem in the case 
when G is simply connected one can obtain considerable information in the general 
case as well. 

The  situation when k has positive characteristic is not so pleasant. The  
group C(S, G1) is non- t r iv i a l - - in  fact i n f in i t e - - even  for the additive group o fk .  I t  is 
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also non-trivial for tori. Nevertheless the semisimple case is obviously interesting, in 
any event. 

From now on we assume that G is simply connected and absolutely simple (this is 
no loss of generality; the general case can be reduced to this by changing the field). 
In the simplest such G viz. G = SL(2) over k =O_v, the rational number field, C(S, G) 
is known to be infinite. (That C(S, G) is non-trivial at least has been known for a long 
time.) For G = SL(2) over any k, Serre [i] has given a fairly complete solution. I f  
J S l ~ I  , G(S,  O) is infinite; if ] S I > 2  and if there exists v~S such that k, is not 
isomorphic to C, C(S, G ) = I :  if k, ~CI for all yeS and IS1>2,  C(S, G) is isomorphic 
to the group of roots of I in k. This result on SL(2) has an extension to all split groups. 
(Historically SL(2) was handled later; the higher rank groups were dealt with earlier.) 
Let G be a Chevalley group over k of r a n k > 2 .  Then C(S, G-)=I or ~t (= roo t s  of I 
in k) according as all w S  are not or are imaginary ( w V  is imaginary if k~="~C). 
G = S L ( n ) ,  k = Q ,  S=o% n >  3 was first settled by Bass-Lazard-Serre [i] and inde- 
pendently by Mennicke [ i ] ;  Bass-Milnor-Serre [I] and Mennicke [2] proved the result 
for SL(n), n_>3, Sp(n), n > 2 .  Matsumoto [i] extended these results to general 
Chevalley groups. Finally Kneser [I] and Vasserstein [I] have treated some non-split 
orthogonal groups. On the evidence provided by these results, Serre proposes the 
following conjecture (Serre [I], p. 489, footnote): 

(*) C(S, G) is finite if ~] k~-rank(G) > 2 (and G isotropic for all v~S--oo). 
vG8 

It  is necessary to impose the condition in parenthesis: see w 5. The present work provides 
further substantial evidence of the truth of ( , ) .  Our main results here are for groups 
of k-rank > 2. (Many of the results we prove are in fact true also for " most " k-rank I 
g r o u p s - - a t  least when k is a number  f i e l d -  but the present proofs do not apply to that 
case; the rank I groups will be dealt with by different techniques in a work now under 
preparation.) 

In the sequel we assume that G has k- rank> i and S is such that ~1 k,-rank(G) > 2. 
vffS 

Let �9 be an S-congruence subgroup of  G and E((I)) the group generated by 

{xeO l xeUnipotent  radical of  a k-parabolic group}. 

A group of the form E(q)) will be called an S-elementary subgroup in the sequel. The 
first main result of  the paper is 

Theorem A: Let A be a normal subgroup of an S-arithmetic subgroup of G. Then either A 
is finite and central or A contains an elementary subgroup. 

Theorem B: Assume that k-rank(G)> 2; then every S,elementary subgroup is S-arithmetic. 

Theorem C: Assume that k-rank(G)>2 and let G(k)+=group generated by 

{xsG(k)  l xeUnipo ten t  radical of a k-parabolic subgroup of G}. 
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Let G+(S, a) (resp. G+(S, c)) be the closure of G(k) + in G(S, a) (resp. G(S,c)) and 
C + (S, G)----C(S, G)n  G+ (S, a). Then C + (S, G) has finite index in C(S, G) and the sequences 

I-+ C+(S, G)-+ (~+(S, a)-+G+(S, c ) ~  I 

i--> C(S, G)/C+(S, G)->G+(S, a)/C+(S, G)-+G(S, c )~  I 

are exact and are central extensions. 
Theorem C reduces the problem of determination of C(S, G) to certain cohomology 

computations. Precise determination is possible when G is quasi-split thanks to 
Moore [I] and Deodhar [I]. (For non-split groups, Theorem C is new.) For 
general G, we can obtain the following information: 

Theorem D: Assume that k-rank(G)>2. I l k  is a number-field, C(S, G) is finite. I f  
k has characteristic p>o ,  the p-Sylow subgroup of C(S, G) has finite index in C(S, G) ; if in 
addition G is quasi-split for all vr C(S, G) is finite. 

The relevant cohomology computations are in fact done in a very general context: 

Theorem E: Let G be a connected simply connected algebraic group over a global field k. 
Assume that strong approximation holds for G. Let S ~ oo be any finite set and U be an open 
compact subgroup of the S-addle group of G. Then i f  k is a number field, H~(U, Q/Z) is finite 
for i -- I, 2 (here Q / Z  is given the discrete topology and cohomology is based on continuous cochains). 
I f  k is a function field the p-torsion (p = characteristic of h) in H2(U, Q/Z) has finite index 
in H~(U, Q/Z) and Hi(U, Q/Z) is finite. 

Theorem E has a local version: 

Theorem F: Let U be a compact open subgroup of a semisimple group over a local field K.  
Then i f  characteristic K =p,  H~(U, Q/Z) has p-torsion of finite index. 

These results are proved in w167 I- 5. In w 6 we examine what happens when we 
enlarge S and in w 7 some applications to representations of S-arithmetic groups are given. 

I. An Auxi l iary  L e m m a .  

Notation and Definitions (x. i) .  - -  The following notation will be used throughout 
this paper. We denote by 

k, a global field. 
V, the set of valuations of k. 
0% the set of archimedean valuations. 
S, a finite subset with IS[> I and ooC S. 
k, (veV) the completion of k with respect to v. 
~ ,  the ring of integers in k,. 
p*, the prime ideal in ~ .  
s  if there is no ambiguity about S, the ring of S-integers in k, i.e. 

a ( g ) = { x e k [ x e ~ ,  for all vr 
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po, the prime ideal p ; n A ( S )  in A(S) (v6S). 
F , = A / p ,  the residue field. 
G, a connected, absolutely simple, simply connected k-algebraic group. 

By and large in this paper  we look upon algebraic groups as rational points in 
a universal domain.  But sometimes, in this chapter  in particular, it is more convenient 
and natural  to take the scheme theoretic standpoint.  To avoid confusion we reserve 
the term algebraic group for the rational points in this universal domain.  GL(n) denotes 
the algebraic group of n • n non-singular matrices with entries in the universal domain,  
while GL(n) denotes the group-scheme over A, i.e. GL(n) = Spec B where B is the ring 

A[X0; I < i , j < n ]  [(det(X@)-l] .  

Let G '-~ GL(n) be an imbedding of G as a k-algebraic subgroup and ~ C B be the ideal 

{ f e  Bl f ( G  ) = o}. 

Note that  B/~ has no nilpotent elements. We fix once and for all the imbedding v above 
and denote by G the group-scheme Spec(B/~).  G is evidently a scheme over A = A ( S ) .  
We set 

G(A) = O  n GL(n, A) 

G(k) = G  n GL(n, k) 

(G(A) (resp. G(k)) is precisely the A- (resp. k-) rational points of the group-scheme G 
over A) and for an ideal a ff A, we denote by G(a) the congruence subgroup defined by a: 

G(a) = {  xe G(A) I x - Ident i ty(mod a)}. 

The  group GL(n)(a) is also denoted GL(n, a) in the sequel. We will need to consider 
some other families of subgroups of G(A) as well in the sequel. We make some definitions 
towards this end. 

Definition (1.2) .  - -  A unipotent  element xeG(k) is a good unipotent  if it belongs 
to the unipotent  radical of a k-parabolic subgroup of G. 

G(k) + is the group generated by good unipotents in G(k). 

Definition ( I .3 ) .  - -  A k-group G has (property) 
G(k)--G(k) +. 

It  is almost K-T if G(k)/G(k) + is finite abelian. 

K-T,  or G is a K-T  group, if 

For a wide class of (simply connected) G over any field it is known that  G(k) = G(k)+. 
However Platonov [3] has recently given an example when this does not hold for a 
field (which is not a global field). Nevertheless, the following result is proved in 
Raghuna than  [4]- I f  k is a global field and k- rank(G)>1,  G has almost K-T  for k. 

Definition (x .4). - -  A subgroup P C H in a semisimple k-group is a k-quasi-parabolic 
subgroup (QPS for short) of H if there exists a k-parabolic subgroup P* of H and a 
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maximal reductive k-subgroup IV[* of P* such that P*=M*U with U = u n i p o t e n t  radical 
of P* and P = M . U ,  where M is the product of all the isotropic k-simple factors of M*. 
A subgroup like M above is called an admissible subgroup (A-S for short). Also P is 

adapted to M. 

An alternate characterisation of admissible subgroups is the following: A connected 
(k-) subgroup M is admissible if and only if there is a maximal k-split torus T in H and 
an order on the character group X(T) of T such that the Lie algebra m of M is the span 
of all those root-spaces of H with respect to T which are linear combinations of a fixed 
subset of the system of simple roots (for the order). 

We note that (in the notation used in Definition (i .4)) the correspondence P*~ P 
sets up a bijection between sets of k-parabolic and k-quasi-parabolic subgroups of H. 
Evidently this bijection is compatible with the action (by conjugation) of I-I(k) on these 
two sets. It  is known moreover from Borel [I] (the case of number  fields) and Behr [i] 
and Harder  [I] (the case of function fields) that we have 

Lemma (1-5)- - -  There are only finitely many F-conjugacy classes of k-(quasi)-parabolic 
subgroups for any S-arithmetic subgroup F in G. 

We will now introduce three other families of subgroups of G(A). 

Definitions (z. 6). - -  Let a C S be any ideal. Then 

EG(a) = g r o u p  generated by {xeG(a) lx a good unipotent} 
FG(a) = g r o u p  generated by {P(a) lP a proper k-QPS in G} 
F*G(a )=group  generated by {M(a) IM a proper k-A-S in G} 

We have then two obvious inclusions among these normal subgroups 

EG(a) ,-+ FG(a), F*G(a) '-+ FG(a). 

The following is perhaps not so evident. 

Lemma (1.7).  - -  Assume that k-rank(G)>I. There exists s e A  such that for any 
ideal a C A 

FG(sa) C F*G(a). 

Let P1, . . . ,  Pm be a complete set of representatives for G(A)-conjugacy classes 
of k-quasi-parabolic subgroups. For each P~, we fix a semidirect product decomposition 
Pi=M~.U~, M~ a k-A-S and U~ the unipotent radical of  P~, over k. It  is then easily 

seen that there exists an element s ' eA  such that P~(s'a)C M~(a).Ug(a) for all i. It  
suffices thus to show that each U~(s"a)C F*G(a) for a fixed s " e A  independent of i 
and a. To see this let P* be the parabolic subgroup determined by P~ and T~ a maximal 
k-split torus in Pi. Let q~ be a root of G with respect to T~ and G (~) the unique connected 

k-subgroup of G whose Lie algebra is spanned by the k-root spaces corresponding to Xq~, 
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XeZ.  Let U ~ } : U ~ n G  (~). Since k - r a n k ( G ) ~ ,  it is easily seen that G (*)is contained 

in some admissible subgroup (in fact if q~[2 is not a k-root, G C*) is itself admissible). It 

follows that for every k-root ?, U~*/(a) C F*G(a). Now we can find k-roots ~1, - �9 -, ~q 

such that the product  mapping 

u7 x x . . .  x u, 

is an isomorphism of algebraic varieties. From this, it is easily deduced that there is 
an element s"cA(S)  such that for any ideal aC A, Ui(s"a ) is contained in the image 

of  U ~ ( a ) x U ~ ( a ) x . . . x U ~ q ( a ) .  This proves Lemma (1.7). 

Remark ( I . 8 ) .  - -  When k - r a n k ( G ) = I ,  all proper admissible k-subgroups are 
trivial and any proper  Q P S  is the unipotent radical of a k-parabolic subgroup, so that 

EG(a)~-FG(a) .  

We now go back to the scheme G and establish some facts about it. I t  is well 

known- -and  not difficult to p rove- - tha t  the following is true. 

Lemma ( x . 9 ) . -  There exists a finite set S I ~ S  such that for ~6S1, G| is 
a reduced, connected, semisimple and simply connected group scheme over A/p~. 

(Let Ch denote the Chevalley scheme over Z of  the same type as G. Let k' be 
a finite separable extension of k over which G splits. Let A' denote the S-integers in k'. 
We can then find a finite set S" C V, S C S* and an isomorphism 

q~ : GNAA'(S* ) -+ Ch| ). 

The group scheme on the right admits a good reduction at all primes of  A'(S') 
( =  S*-integers in k'). For S a we need only take the following subset: 

S * w { v e V l k ' / k  is ramified at v}.) 

We fix now two opposite parabolic k-subgroups P* and P*- in G. Let U (resp. U - )  
be the unipotent radical of P (resp. P - ) .  We define subgroup schemes P*, P*-, U and 
U -  of G over A in a way entirely analogous to the way we defined G, and then it is easy 

to obtain the following: 

Lemma ( I .  I O ) .  - -  There exists a finite set S~ C V,  S~ D S 1 such that for v6S2, P*QAA/po 

and P*- |  are (reduced) parabolic subgroup schemes of GQAA/p~, with UQAA/p ~ 
and U-| as the corresponding unipotent radicals. 

Lemma ( I ,  X I ). - -  Let a be a non-zero ideal in A. There exists a finite set S3(a) C V, 

S 3 D Sz, with the following property: for vr Sa(a), U + (a) maps (under the natural map) onto 
the group of A/p~-rational points of IJ+| moreover, these last groups generate the entire 

group of A/p~-rational points of G| ~. 
The first assertion is standard and quite easy to establish; the second follows from 

the work of  Chevalley [I] and Steinberg [I], combined with a theorem of Lang [i].  
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(Lang's theorem is that  for a finite field every semisimple algebraic group is quasi-split. 
The  papers of Chevalley and Steinberg which deal with quasi-split groups then immedi-  
ately give the lemma when P* is a minimal  parabolic subgroup, but  the passage to the 
more general case we need is quite simple.) 

Corollary (x.x2).  - -  For vr ) 

G(A) -+ (G| 

is surjective with kernel G(p~). 

the natural map 

( I .  I 3 ) .  - -  The Lie algebra of G - - m o r e  precisely its canonical (Scheme theoretic) 
A - f o r m - - c a n  be described as follows. Let 

~:  B(G) = B / ~ A  

denote the identity element (in G(A)). Let 9J~=ker ~. Since A is a Dedekind domain,  
9J~ is a finitely generated ideal in B(G) so that  0J~/gJ~ 2 is a finitely generated A-module.  
Let (5 =HomA(gJ~/9)l ~, A). Then  (Sk=(5| can be seen to be naturally isomorphic 
to the k-Lie algebra associated to G (with any definition). The  group G(A) (resp. G(k)) 
operates in a natural  fashion on (5 (resp. (sk). The  action of G(A) on the two is easily 
seen to be compatible with the inclusion (5 r We have then 

Lemma ( x . x 4 ) . -  There is a finite set S4CV , SACS4, such that for vr (5| ~ 
is naturally isomorphic to the Lie algebra of the (reduced) group scheme G| ~. This 
isomorphism is compatible with the adjoint G(A)-action on the two Lie algebras. 

Lemma (x. i5).  - -  Let U be the unipotent radical of a k-parabolic subgroup of G. Let 1I 
be the Lie algebra of U and i : 11-~-(5 the natural map. Let 11~=11| and (5 ,=(5 |  
Then for almost all v, i |  : 11~-~-(5~ is an inclusion and 11~ is the Lie subalgebra of (5~ corre- 
sponding to the unipotent radical of a h,-parabolic subgroup of G| ~. Let R be the group 
algebra F(G(F~)), F being the prime field in F,. Then there is a finite set SsDSa such that 
as a module over R, (5| ~ is generated by 11NAF ~ for all vr 5. 

This is proved by using explicitly the structure of quasi-split g r o u p s - - n o t e  that  
GNAF , is quasi-split over F~ (Lang [I]). For details see the Appendix. 

(x.x6).  - -  For veV, let G(k,) denote the k,-rational points of G and 

G(~,)  = G(k~) n GL(n, f:),). 

Then  G(s is an open compact  subgroup of G(k~). (It is k n o w n - - a n d  we will give 
a proof  of this fact l a t e r - - t h a t  G(~v) is a maximal  compact  subgroup of G(k,) for almost 
all v, but we do not need this fact now.) 

Let G(A(S)) or G(A) the corresponding addle group associated to G. Then  
by the definition of the adSle topology ]-I G ( ~ )  is an open compact  subgroup ofG(A(S)) .  

,~s 
The  following result needed in the sequel implies in particular that  the closure of an 
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S-arithmetic group G is open in G ( A ( S ) ) - - a  known consequence of strong approxi- 
mation (whenever strong approximation holds). 

Main Lemma (x. I7). - -  The closure of EG(a), a+-o, in G(A(S)) is a compact open 
subgroup G(A(S)). Consequently, for every non-zero ideal a C A, we can find an ideal a' +o 
in A such that the closure of EG(a) in G(A(S)) contains G ( a ' ) -  or equivalently, for every non-zero 

ideal b C A 
EG(a). G(b) __ G(a'). 

In order to prove the main lemma, we consider the two unipotent groups U + intro- 
duced earlier (see Lemma (i .  io)). Using strong approximation for unipotent groups, 
it is easily seen that the closures of U• in U• are compact open subgroups. 
This means that the closure of U• in U• is of the form 

]] D ~•  II U•163 
v~S '  v~SUS' 

where S' is a finite subset of V - - S  and for yeS', D~ is an open compact subgroup 
of U •  This shows that it suffices to show the following: D f  generate an open subgroup 
0fG(s ;for almost all veV--S,  U+(~v) and U-(s generate G ( ~ )  as a normal subgroup. 

(Note that the closure of E(a) is a normal subgroup o IIsG(9,) .  ) 

Now for yeS' (resp. yeS') the normal subgroup ~ generated by U+(s and 
U-(D~) (resp. D + and D;-) in G(s is easily seen to be open. Consequently it contains 

a subgroup of the form 

G(m, v) = { g e  G(9") ] g -  Identity(mod p~m)}. 

For a fixed vr let m(v) be the smallest integer such that t-I~DG(m(v), v). We need 
to prove only 

(*) for almost all v, m(v)=o.  

(,)  is a consequence of the two statements below: 

Assertion ( I . I S ) .  - -  There is a finite subset S o of V, SoDSh, such that for vr 0 

(S 5 as in Lemma (I . I5)) :  

a) U(m, v)/U(m-k~, v) is non-trivial for all m>m(v).  
b) For r e> i ,  G(m, v ) /G(m+I ,  v) is isomorphic to (5| ~ as a module over 

Z[G(A)]; as a Z[G(A)]-module it is generated by U(m, v ) /U(m+I ,  v). 

We will first prove (,)  assuming Assertion ( I . I8) .  For this 

natural map 

(assuming that 
with G(A)-action on the two sides, a contradiction to the assumption that 

consider the 

%- 

m(v)~>I). By Assertion ( I . I 8 ) ,  71; is surjective since it is compatible 
m(v)> I. 
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Thus  m(v)=o  or :. I f  re(v)=1, according to L e m m a  ( i . i i ) ,  the images of U~:(s 
in G(o, v)/G(I,  v)~G(F~) generate the entire group. Since U e (s CH~, n is 
surjective again, a contradiction to the assumption m ( v ) - - ~ I .  Thus m(v)=o for all 

vr 

( I . x g ) .  - -  We have now to establish Assertion ( : . : 8 ) .  We will begin with a 
more general set up. Let  D C GL(n) be an algebraic subgroup of GL(n) defined 
over k and B(D) be the quotient B/~(D) where ~(D) is the defining ideal of D. Let 
~Yt(D) be the ideal corresponding to the identity element in D: gJl(D) is the kernel of  

the ring homomorph ism B(D)-~A defined by the identity element. Now the group 
D(~ ,  v ) = D ( 9 , )  can be interpreted as the set of all A-algebra homomorphisms 

. ___) .~ )  t * n  f : B ( D ) ~ g v .  I f  n,  : gv  o/P, is the natural  homomorphism,  we have 

D(m, v )={x~D(o ,  v) I x = I d e n t i t y ( m o d  p;")} 

= { f :  B(D) ~ [ 7~,of=~,o~}.  

Since gJ l (D)=kernel  ~, one sees immediately that  f(931(D))CO;" for all feD(m, v) 
and f 0 X ( D )  2) C p;m + a; f thus defines a homomorph ism f : gJ~(D)/gJ~(D) 2 ~ p;,~/O*m + :. 
We obtain thus a map  X,, of D(m, v)/D(m+i,  v) into the (Fv-vector) space 

HomA(gX(D )/gJ~(D) 2, p;"/p*" + t) ~ b 

where b=HomA(gX(I))/gJ~(D) 2, A)| for almost all v. It  is easily seen that  the 
map  X~ is a group homomorphism.  I f  now D t C D is a k-algebraic subgroup we have 
the following commutat ive  diagram: 

D(m, + :, 

Dx(m, v) ]Dx(m + i, v) 

> ~)| 

:, ~)i| Fv 

More generally if Dx and D are group-schemes over A and u : ]D1---~I) is a morphism, 
one has the same kind of diagram. Using this fact it is easily proved by induction on 
the dimension of D that  we have the following: 

Let D be a unipotent k-algebraic subgroup of GL(n) admit t ing a filtration 

DD DIDD~D . . .  DD k 

by normal  subgroups such that  DdDi+:  is isomorphic to the additive group (of the 
field). Then  for almost all v, the natural  map  D(m, v)[D(m + :, v) ~ ~ | defined 
above is an isomorphism. 

116 



O N  T H E  C O N G R U E N C E  S U B G R O U P  P R O B L E M  Ix7 

Part  a) of Assertion (I .  I8) is an immediate  consequence of this statement applied 
to D = U  (see Borel-Tits [1]). Part b) again follows from the above since the map  

G(m, v ) / G ( m + I ,  v) -+ (~| 

is compatible with the action of G(A) on both sides. The  subspace ~ |  on ~| 
has a non-trivial projection on all the factors of (~| for almost all v. (For almost 
all v, II| , ~ (~| is injective; we use Lemmas (I .9)-(1.16) as well.) This proves 
Assertion (I .  18) and the proof  of the Main L e m m a  is complete. 

(1 .20) .  - -  We will now apply the Main L e m m a  to show that  projective limits 
of certain exact sequences (which we need to examine) remain exact. We have defined 
groups G(a), EG(a),  FG(a) and F*G(a) for each ideal a C A .  These groups can be 
used to define topological group structures on G(k) or G(A). Each of the families 
below can be taken as a fundamenta l  system of neighborhoods of I to obtain a topo- 
logical group structure on G(k) or G(A):  

i) All ari thmetic subgroups; this topology is denoted g-(a); 
2) the groups { G ( a ) [ a + o  on ideal in A}; this topology is denoted g-(c) (this 

is the same as the topology induced from the ad61e group G(A)); 
3) the groups {FG(a) I a ~ o  an ideal in A}; this is denoted g ' ( f ) ;  
4) the groups {EG(a) 1 ct+o an ideal in A}; this is denoted g-(e). 

The  completion of G(k) with respect to g'(a) (resp. g'(c), g ' ( f ) ,  g-(e)) is denoted G(a) 
(resp. G(c), G ( f ) ,  G(e)). The  closure o f  G(A) in G(a) (resp. G(c), G ( f ) ,  G(e)) is an 
open subgroup there and can be identified with the completion G(A, a) (resp. G(A, c), 
G ( A , f ) ,  G(A, e)) of G(A) for the corresponding topology on G(A). The  identity maps 
of  G(k) and G(A) give rise to the following diagram with all arrows continuous maps:  

We also set 

G(e) h(e, fl h(f, ~) hla, ~) , G ( f )  ~ G(c) ~ 6(a)  

l T T T 
O(A,e) O(A,a) 

h(e, c) = h(f ,  c)oh(e , f ) ,  

h(e, c )=  fz(f, c )oh(e , f ) .  

It  is then easy to see that  h( , ) and h( , ) have the same kernel which we denote by 
CG( , ). CG(a, c) is what  was called C(S, G) in the Introduct ion.  The  groups G(A, c) 
and G(A, a) are evidently compact .  (Also from the Main Lemma,  it is clear that  
G(A, c) is isomorphic to an open subgroup of G(A(S)).) In  general the groups EG(a) 
need not have finite index in G(A) and so the group G(e) is not in general compact .  
The  groups F*G(a) can again be used to define a topology on G(k) but  in view of 
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Lemma ( i .  7) this topology is the same as g ' ( f )  when k-rank(G)>2.  The group G(A, e) 
(resp. G ( A , f ) ,  G(A, c), G(A, a)) can also be regarded as the projective limit of  the 
following family of  groups 

{G(A) /EG(a) la  non-zero ideal in A} 

(resp. {G(A)/FG(a)  I a a non-zero ideal in A}, {G(A)/G(a)  [ a a non-zero ideal in A}, 
{G(A) /P l  P an S-arithmetic subgroup of  G(A)}. 

Consider now the following exact sequences: 

-+ G(a) /EG (o) -+ G(A)/EG(a)  ~ G(A)/G(a)  -+ I 

-+G(a ) /FG( , )  -+ G(A)/FG(a)  -+ G(A)/G(a)  -+~ 

-+ G(o)/EG(a)  -+ G(A)/EG(a)  -+ G(A)/FG(a)  -+ 

These lead in the projective limit to the exact sequences described before 

-+ CG( , ) -+ G ( A ,  ) ~('>) G ( A ,  ) 

We will now deduce from the Main Lemma the following: 

Proposition ( x . 2 I ) . -  The maps /z( , ) are all surjective. 
In  the case of lz(a, c) this is immediate from the compactness of the groups G(A, a) 

and G(a, c). We will prove the proposition in the case h(e, c). The other cases are 
proved entirely analogously. 

['] EG(a) G(b).  The Main Lemma FoI a non-zero ideal a C A ,  let G * ( a ) = b , 0  

guarantees that G*(a) D G(a') for some a' 4:o. It  follows that in the projective limit 
the natural maps G(A)/G*(a) -+ G(A)/G(a)  induce an isomorphism. From the Main 
Lemma and the definition of G*(a), it is clear that we have 

(**) EG(a)G*(b) = G*(a) 

for all non-zero ideals a, b C A with b C a. We have now to establish that the projective 
limit of the family of the exact sequences 

i --> G*(Q)/EG(a) --~ G(A) /EG( , )  -+ G(A)/G*(a) -+ i, 

a a non-zero ideal in A is again exact. Fix a decreasing family of non-zero ideals 
{ a ~ [ ~ < n < o o }  cofinal in the family of all non-zero ideals. Let 

{~,eG(A)/G*(%) 1 i < n<oo} 

be any element in the projective limit. We will prove inductively that we can find 

~%E G(A)/EG(an) 

which maps under the corresponding natural maps into ~ and ~n-1- 

chosen for ~<i<r .  Let ~q~G(A)/EG(a,) be an arbitrary lift of  ~r. 
image in G(A)/EG(a,_~). Then ,-1 �9 

Assume the ~qi 

Let ~' be its 

view of (**) 
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above we can find ~q"eG*(a,)/EG(ar) which maps into ~,-1~,_~. It  is then clear 
that ~, = ~ "  is a lift of  ~r with the desired properties. 

(In the other cases we need an analogue of the Main Lemma. Since EG (a) C FG(a), 
such an analogue is immediate when we deal with the G(a) and the FG(a). When 
we are dealing with EG(a) and FG(a) a more subtle consideration is needed. We 
fix a (finite) complete set of representatives Pi, I < i < q, of proper k-QPS in G, and 
for each P~ a k-AS M i to which P~ is adapted. Since P~ is a semidirect product 
Pi = MiUi with Ui the unipotent radical of Pi, and Ui(a ) C EG(a), it suffices to show 
the existence of a non-zero ideal ct' in A such that EG(a).  Mi.(b ) D Mi(a') for all non-zero 
ideals b C A. But this follows simply from the Main Lemma applied to the group Mi 
instead of G. Note that Mi is simply connected and EMi(a ) C EG(a). M~ may not 
be simple but it decomposes over k into a product of k-simple factors; these k-simple 
factors again may not be absolutely simple but they are of the form Rv/k(H ) with H 
an absolutely simple group over the field k', a finite extension of k.) 

Corollary ( x . 2 2 ) . -  The sequences 

i - + C G ( ,  ) -+G(A,  ) -+G(A,  )---~I 

and 

are exact. 

The exactness of the first sequence is given by Proposition (i .2I).  Since 

G(A, , ) G ( k ) =  G(*), 

G(A, , )  is an open subgroup of G(*) and G(k) is dense in G( , ) ,  the exactness of the 
second sequence follows. 

Remark (x.23). - -  The group CG(e,c) is the projective limit of  G ( a ) / E G ( a ) .  

Similarly 

C G ( e , f )  = Lim FG(a)/EG (a) 
II 

and CG(f ,  c) = Lira G(a)/FG(a) .  
< 

iI 

For convenient future use we state explicitly as a lemma the following which 
was proved in the course of the proof of Proposition (I .2I) :  

Lemma ( x . 2 4 ) .  - -  Given a non-zero ideal a we can f ind a non-zero ideal a* such that 

FG(a).  G(b)D G(a*) f o r  all non-zero ideals b. 

2. N o r m a l  S u b g r o u p s  i n  A r i t h m e t i c  G r o u p s .  

Our aim in this section is to establish the following. (We make free use of the 

notation introduced in w I: beginning of w i and the paragraph before Lemma (I-7).) 
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Theorem ( 2 . I ) . - -  Assume that k-rank(G)>i and that • k~-rank(G)>2. Let PC G 
y E S  

be an S-arithmetic subgroup of G and ~ C F a normal subgroup of F. Then either ~F is central 
(and finite) in G or there exists a non-zero ideal a C A  such that E(a)C~F. 

The first observation is 

Lemma ( 2 . 2 ) .  - -  I f  �9 is not central in G it is Zariski dense in G. 
Let G' be the Zariski closure of  LF in G. Since F is Zariski dense in G', G' is 

a normal subgroup of  G. Since G is (absolutely) simple, G' is either central and finite 

or all of G. This proves the lemma. 

In the sequel, then we assume that T is not central in G, so that it is Zariski dense 
in G. In  particular ~F is infinite. Hence so is any subgroup of finite index in ~F. This 
enables us to replace F by Fc~G(A) and ~F by ~FnG(A) .  We assume in the sequel 

that F C G(A) - -  in fact, we assume as we may that P is a normal subgroup of G (A) of finite 
index in G(A). Next, one knows the following from reduction theory (Borel [i] for 

number  fields and Behr [i] and Harder  [I] for function fields): 

Lemma (2.3)- - -  G has only finitely many F-conjugacy classes of minimal k-parabolic 
subgroups. 

Suppose now U is the unipotent radical of a minimal k-parabolic subgroup P 
of  G. Since F C G ( A ) ,  we see that for any ideal a C A  and any element y e P ,  
vU(a) = (vU)(a). In view of Lemma (2.3), this remark reduces the proof  of the theorem 

to establishing 

Proposition (2.4).  - -  Let U be the unipotent radical of a minimal k-parabolic subgroup P. 
Then there exists a non-zero ideal ct C A such that ~ D  U(a). 

The rest of  the section is devoted to the proof  of this proposition. We introduce 

some additional notation for this purpose. 

Notation (2.5).  - -  We fix P and U as above. Let T C P  be a maximal k-split 
torus and X(T)  the group of characters on T. Let fl be the Lie algebra of G and for 

z ~ X ( T ) ,  let 
g~ = {  vE fl lAd t(v) = z(t).  v}. 

Let  O={~X(Y)l~+o, g=:~(o)}: �9 is the set of k-roots of G with respect to T. Let 
O+-~{ 0ce �9 [ g~ C u = Lie algebra of  U}. Then there is a lexicographic ordering on X(T)  

such that O+ is precisely the set of positive k-roots. Let A denote the system of simple 

roots for this ordering. Then, for each ?cO ,  

with all m~(?) of  the same sign, this sign being positive if ~0~0 +. For ~ A ,  let 

O(~) ---{ ~ e 0+  I m,(~) >o} .  
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Let 

and 

S(e)=ident i ty  component of ~ kernel ~, 
~ - ( ~ )  

Z(a) = connected centralizer of S(e). 

Then Z ( e ) . U = P ( e )  is a maximal proper k-parabolic subgroup of G. If  U(a) 
is the unipotent radical of P(~), the Lie algebra u(~) of U(a) is the subspace ~ go 

of g. Let Z(T) (resp. N(T)) denote the centralizer (resp. nmmalizer) of T and 
W0=N(T) /Z(T  ) (the k-Weyl group of G). Let WCN(T)(k)  be a complete set of 
representatives for W o. Such a W exists (see BoreI-Tits [I] for this as well as any other 
facts about algebraic groups involving rationality questions). Let weW be the unique 
element which induces on X(T) the automorphism which takes all of �9 + into negative 
roots. For o~A, 

w(~) ~ - -8  with ~ A .  

The map e ~ a  is 

checked that ~ =  

an automorphism of the Dynkin diagram of A. Moreover, it is easily 

0: and, if w U = U - ,  wP(00=Z(a)U- ( ae2 P(--a)) .  Let 

: u(a) • G 

be the map f~(u,p)=uwp. Then fi, is an isomorphism of U(~)xP(~) onto an open 
subset B(~) of G. For xeB(e) we set 

x-----u~(x)wp~(x), u~(x) eU(a),  p~(x) e P(0t). 

Then x~u~(x) and x~p~(x) are k-morphisms of B(~) into U(~) and P(~) respectively. 
Next, let D(~) = P(a) nwP(a). Since w has order 2 modulo Z(T), D(~) is stable under w 
(and contains Z(T)). Let M(~) be the identity component of the Zariski closure of 
D ( e ) n P .  The group M(0:) is in fact intrinsically determined by D ( a ) - - i t  does not 
depend on the S-arithmetic subgroup P (though it does depend on the set S). It is 
a connected normal subgroup of D(00. For q0eO, let n (~'/-~ ~ gel Then there 

k~Z,  k>O 

is a unique connected unipotent k-subgroup U (~) of G having u (~) for its Lie algebra 
(we note here that if ~ d )  with k~e(I), k an integer, then k = •  or •  so that the 
above summation is over at most 2 terms). With this notation we record here as a 
lemma the following observation. 

Lemma (2.6). - -  For eeA, M(:r DU (~) foraU ~ with •  and • or 8. I f  
~e~ ,  M(~) DU (~) and U (-2~). 

This is a simple consequence of the following. I f  V is a connected unipotent 
algebraic k-group, then any S-arithmetic subgroup of V (with See 0) is Zariski dense 
in V. One has only to apply this remark to conclude that U (~) C M(e) as well as the 
other two inclusions when ~+~. 
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Notation (o. 7)- - -  We need to introduce yet another subgroup of G for each 0~eA. 
P'(e) is the algebraic subgroup generated by the set 

{p-X;pux-lu-*lue U(~), peP(e ) ,  xeM(~)} 

and where for xeM(00, s The group Z(e) decomposes into an almost direct 
product : 

Z(e) = C(e).  A(e) .  H(e) 

where C(e) is the identity component of the center of  Z(e), A(e) is the maximal normal 
semisimple subgroup Z(~) which is anisotropic over k and H(e) is the product of all 
the isotropic h-simple factors of Z(0c). Then it is easily seen I and well k n o w n - - t h a t  
C(~).A(e) CD(0c). I f  ~=~,  H(~) CD(0~) as well and D ( e ) = Z ( e ) .  I f  e@~, however, 
one cannot assert this. Nevertheless we do have 

Lemma ( 2 . 8 ) .  - -  (Assume that S+O.)  Then P'(e) contains the identity component of 
the Zariski closure of any S-arithmetic subgroup of Z(~). 

To prove this assertion, we observe first that if �9 is an S-arithmetic subgroup of Z(e), 
the group (q) n C (e)). (O n A (e)). (O n H (e)) has finite index in �9 (Borel [~ ] for k a number  
field and Harder  [~] and Behr [~] for k a function field). It suffices then (since 
C(e) .A(e)  C D(e)) to show that the e-component of the Zariski closure of (I)nH(~) is 
contained in P'(e).  When e = ~ ,  H(~) CD(0~) and the assertion is immediate. One 
observes next that H(e) is generated as an algebraic group by the {U/• ~eA--{e}} 
and U~:~nO is Zariski dense in U +~, ~eA--{e} .  The group M(e),  one concludes 

then, contains all of H(e) if e = ~ ,  and if e@~, it contains U • ~eA--{e ,  ~} and U l-~/. 
Then if e = ~ ,  M(e) 3H(~) and the lemma follows. I f  0~+~, we note that the element 
seW corresponding to the reflection with respect to ~ belongs to P(e). It follows that 

sU-~s-~=U~C p'(~) 

leading again to the conclusion that P'(e) contains H(e).  The lemma follows immediately 
from this. 

We are now in a position to prove 

Proposition (2.9). - -  WnP(~)  contains in its Zariski closure the identity component of 
the Zariski closure of any S-arithmetic subgroup of Z(e). 

In  view of Lemma (2.8) it suffices to show that the Zariski closure of tFnP(~)  
contains P'(e). For this consider the subset tFn  B(e) (see w 2.5 for notation) of iF. 

As B(e) is Zariski open in G and tF Zariski dense in G, i F ( e )  ~ tFn  B(~) is Zariski dense 
in G. It follows that 

~={(u ,  p) ~U(~) x P(e) luwp~tr } 

is Zariski dense in U(~) •  Next, for a fixed ueU(a)(k) ,  let 

R(u) = { x e  M ( ~ ) n  r [ xux-lu- ler}  
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and let 5~={(u,p,  x ) l ( u , p ) e g ,  xeR(u)}. Let 

F :  - , a  

be the map defined by 

F(u,p,  x ) = x p - l x ' - l p u x u - l x  - t  ueU(~),  p~P(~), x~ M(e),  

where x ' = w - l x w .  We claim that F(oq') C P(~) ntF. To see this, let T=uwp, (u, p) eN; 

then y e w  and hence so is 

= 0y0-1 = 0u0-1. OwpO- 1 = OuO- lu -  1. uwO'pO- 1 

for all 0eR(u).  Let 0~=0u0-au-1; then eel?, so that 

We have, moreover, 

~e(~l = 0u0-1 u-  t T r(~,) = ~P(~/ 

(note that U(~)CP(~)  so that 0u0-1u- leP(e) ) .  Since P(e) is its own normalizer, 

~-~ ~ = 0p-10'- lp.  uOu-aO - l e ~ n  P(e). 

We have thus proved that F(SP)E P(~)c~F. We now claim that 5g is Zariski dense 
in U ( ~ ) •  Since g is Zariski dense in U(~)xP(~) ,  it suffices to show 
that for each ueU(~)(k),  R(u) is Zariski dense in M(e).  To see this consider the map h 
of M (~) ir~ G given by x ~ xux- lu -  1 Nov,, the erttries of (xux- 1 u-  1 __ Identity) are poly- 
nomials in the entries of ( x - -  Identity) with coefficients in k and without constant terms. 
It  follows that we can find an ideal aeeo in A such that h(M(~)(a) )CG(A) .  Let 

be the composite map re oh 

rc~ M(~)(a) L G(A) -~ G(A)/F 

being the natural projection. Then we have for x, y e M ( ~ ) ( o ) n D ,  

h( xy) = x y . u . y -  l x - l  u -1 = x ( y u y - l u - 1 ) u x -  lu -1 = xh (y )x -  l .h(  x) 

so that ]~(xy)=h(y).]z(x). (Note that we have assumed that P is normal in G(A).) 
Since G(A)/r is finite, h-l(e) is a (normal) subgroup of rc~M(~)(a) of finite index. 
Clearly this subgroup is contained in R(u) and on the other hand it is Zariski dense in M(0t). 
This shows that R(u) is Zariski dense in M(~), thereby establishing Proposition (2-9). 

(~,.~o). - -  Let U(~) ~, o < i < r + ~ ,  be the descending central series of U(e) :  
U(0~)~ and for i > o ,  U(0~) i is the connected subgroup with 

Lie algebra = 2~ g~ 

(see Appendix) and r + ~ = i n f { q l U ( a ) e = ( t ) } .  For o < i < r ,  let V( i )=U(~) ' /U(e )  '+~. 
I t  is known that V(i) has a natural  structure of a k-group k-isomorphic to a vector space. 
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Moreover each U(e) ~ is stable under P(e) and since [U(~), c '+1, this 
action passes down to a linear action of P(e)/U(~) on each of the V(i), an action defined 
over k. The group Z(~) maps k-isomorphically onto the quotient P(e)/U(0~)=Zl(~), 
say. Let Z*(e) (resp. Z~(~)) denote the identity component of the Zariski closure of 
any S-arithmetic subgroup of Z(e) (resp. Zl(0c)). Let P*(~) be the Zariski closure of 
tFnP(e ) .  Then Z~(e) is contained in the image of P*(e) in ZI(~ ). Evidently Z~(e) 
is a k-subgroup and the image of tFc~ P(~) in Zl(e  ) contains Z~(e) in its Zariski closure. 
Consider now the natural map p~ : U(a ) i~V( i ) .  We identify each V(i) with a vector 
space through a k-isomorphism and fix a k-basis in V(i). Let L~ denote the A-linear 
span of such a k-basis. Then from Corollary (A. 6) (Appendix) we know that pi(U(e)i(A)) 
contains an A-submodule L i of I~.' of  maximal rank. Since [G(A), F] C F, one concludes 
immediately that the Z-module spanned by p~([U(e)*(A), P(e) n F ] )  Cp~(U(e)ic~F). 
Clearly pi([U(e)i(A), P(0~) c~ F]) contains the Z-span of {(a~(x) -- i)(v) [ xe P(~) c~ F, ve L~} 
where ai is the natural  representation of P(~) on V(i). This shows that p~(U(e)~c~F) 
contains an A-submodule Ki of L~ with I~./Ki finite. The argument given above can 
now be repeated with F replacing G(A), K~ replacing L~ and W(a)=tFc~G(a), ar 
an ideal in A, replacing F, to conclude the following: for each i, o <  i < r, and a non-zero 
ideal a CA, pi(U(~)~c~(a))  contains the A-submodule of Ki spanned by 

{ (odx) --  ~)(v) tve K,, xe P(~) c~F(a) }. 

We denote this last A-submodule of K i by J/(a). 

Claim (2. i I  ). - -  For o < i < r, J~(a) has maximal rank in V(i) - -  i.e. Ji(a) contains 
a basis of V(i) as a vector space. 

Proof of Proposition (2.4) ( 2 . I 2 ) ,  - -  W e  will first show that Theorem (2. I) is a 
consequence of Claim (2. I I). We argue by downward induction on the integer i to 
show first that for any ideal a r  in A, U(a) in tF  contains a congruence subgroup 
of U(a) i. The start of  the induction at i =  r is immediate from Claim (2. I I). Assume 
now that for some integer m, I < m < r, and any ideal b ~: o, we have an ideal b*r o, b* C b, 
such that ~ (b )  c~U(0~)mDU(~)m(b*). Let a~=o be any ideal in A and choose a* as 
above. Choose next an ideal a'=~o, a'C a*, such thatJm_l(a* ) containspm_l(U(0~)m-l(a*)). 
(Such a choice of a' is possible in view of Claim (2 . i i ) . )  We now assert that 
U(~)m-lc~tF(a) contains U(0~)m-l(a'). In fact, if xeU(~)~- l ( a ' ) ,  by the definitions 
of a' and Jm_l(a*), we can find y~U(~)m-i~tI~(a  *) such that pm_l(x)=pr~_l(y), 
i.e. y-lxeU(e)m(a*). But then by the induction hypothesis y-lxeU(~)mn~(a), so 
that x=y.y-lxeU(e)"nt!'(a). It  follows from this that ~ n U  (*), for any positive 
k-root % contains a congruence subgroup U(*)(a) with a C A, a non-zero ideal. Now 
if we arrange the positive roots in, say, increasing order @= (el, �9 �9 %), then the map 

X : U (~1) x U (~'*) x . . .  X U (~')-+ G 
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given by X(xl, . . . ,  x,~)= x l . x 2 . . . . . x = ,  is an isomorphism defined over k; the entries 
of{X(xa, . . . ,  x,) - - iden t i ty}  are polynomials without constant terms with coefficients in k 
in the entries of {(xj-- identi ty)  [ I ~ j ~  m}. A similar remark applies to X -1. It  follows 
that t F n U  contains X(U(~(a)•215215 and the last set obviously 
contains an S-congruence subgroup of U. This proves Proposition (2-4) and hence 
Theorem (2.1) (subject to Claim (2. I I ) ) .  

Before we proceed to the proof of Claim (2. i i ) ,  we make the following 

Remark ('~.i3). - -  Y A is infinite and Zariski dense in T if and only if I S [ > 2 .  
I f  IS l =  i and v is the unique valuation in S, k~-rank(G)> 2. 

In  the sequel we consider the two cases when  [ S I = I  and I Sl>i  separately. 

(2.x4) Case when ISI2>I. - -  From Remark (2.I3) , we see that T is contained 
in the Zariski closure of any S-arithmetic subgroup of Z(0c). Now the characters of T 
which are eigen-characters in the representation (re are all k-roots of G and are hence 
non trivial. It follows that the set 

{(ai(t)--I)v ] t~T ,  veV(i)} 

spans all of V(i) as a vector space. In  view of the density results we have proved earlier, 
we conclude that for any non-zero ideal a C A, Jr(a) spans all of V(i) as a vector space, 
establishing Claim (2. I I) in this case. 

( 2 .  I S )  Case when IS] = I .  - -  As was observed this would mean that for the unique 
yeS, k,-rank(G) >_ 2. Let T 'c~Z(T) be a maximal k,-split torus in G. Choose an 
ordering on the character  group X(T')  of T '  compatible with the order on X(T) 
introduced earlier and the restriction map X(T)--->X(T'). Let (I)' (resp. A') denote 
the system of k~-roots (resp. simple k,-roots) of G with respect to T'.  For q0~q)', let 
gv denote the eigen-space of T'  corresponding to q~ for the adjoint action of T'  on g. 
We can then describe the Lie algebra u(e) of U(e),  seA,  as follows: for :teA, let 

A ' ( ~ ) = { ~ A ' I ~ I T = ~  }. Let 

Then 

}2 m~(q~). ~, m~(q~)>o for some ~EA'(~)}. 
13 E 2x' 

cO ~ (I)' <a> 

Now, the identity component Z*(g) of the Zariski closure of any S-arithmetic subgroup 
of Z(~), it is easily seen, intersects the k,-split torus T '  in a subgroup T'* of codimension i. 
We denote by T* the identity component of T'*. Suppose now for the action of Z*(a) 
on V(o) we have a quotient module which is trivial. Such a module would be trivial 
under T* as well. Since the actions of T and T* on V(o) are completely reducible, we 

conclude that this means that for some eigen-character ~ of T occurring in the space V(o), 
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9IT* is trivial. Suppose now ~ is the adjoint representation of  Z(r162 on u(e). Then 
x(t) = det a(t) is a character on Z(~) defined over k. It follows that x(Z(0~)(A)) C S-units 
in A, a finite group (since IS I = I ) .  It follows that X is trivial on Z*(~), so that XIT' 
is a character with x(T*) ~ I. We conclude therefore that the character 9 is necessarily 
a multiple of X- Now the character X is known (and it is also not difficult to see) to 
be a dominant weight (for the kv-root system and the order chosen). It  follows that 
in the expression for 9 as a linear combination of the simple kv-roots all the roots peA' 
occur with a strictly positive coefficient. On the other hand, from the definition of V(o), 
it is immediate that at most one of the ~e A'(e) occurs with a non-zero coefficient and 

that coefficient is i. I t  follows that A'(e) contains only one element which we denote 
in the sequel. We have therefore proved the following: 

I fV(o)  as a module over Z*(~) has a trivial quotient, then I A'(~)[ = I ;  the unique 
element of  A'(~) being denoted ~. 

I f  V(o) has no trivial quotient as a Z*(~)-module, the set 

wV(o), 

spans all of  V(o) as a vector space and an argument similar to what was given in (2. I4) 
now shows immediately that J0(a) has maximal possible rank in V(o). We will now 
show next that V(o) has no trivial quotient as a Z*(a)-module even in the case A ' (~)=  I. 
For this fix a maximal torus T "  in Z(T) containing T'  and introduce an ordering 
on X(T" )  compatible with those introduced on X(T)  and X(T ' )  already. Let A" 
denote the simple roots of G with respect to T" .  Let q~ be a root of G with respect to T 
which is an eigen-character of T "  for its action on the unique maximal quotient of  V(o) 
on which Z*(~) acts trivially (on this unique maximal quotient, Z(~) has a natural 
a c t i o n - - n o t e  that Z*(~) is normal in Z(~)): we assume such a 9 exists. Then we see 
that <~? IT', ~ > = o  for all ~ e A ' - - ~  where < , > denotes the canonical scalar product 
on X(T ' ) :  equivalently <<?IT', ~ ) : o  for all k~-roots of the (reductive) group Z(~). 

Since r IT' is a positive k~-root, <9 IT', ~ ) > o .  It  follows that there is some root cr 
such that cr  and <9, e*>>o.  Now from the Stlucture theory of semisimple 
groups (over algebraically closed fields), one sees that either 9 : ~ *  or 9 - -  ~* is necess- 

arily a positive root. Now since 9 occurs as a weight in V(o),  there is at most one simple 

root ye  A" with Y IT' : ~  which occurs with positive coefficient ( :  I) in the expression 
for q~ as a combination of  the roots in A. Now if 9=~*, this would mean that ~ is 
orthogonal to all the other simple k,-roots of  T, a contradiction to the (k.-) simplicity 
of G. We see therefore that 9 - - ~ * = ~  is a positive root of the reductive group Z(0r 

(with respect to T".)  Since 9IT* is trivial and ~*[T.=~IT. is non-trivial, (q~--~*)tT' 
is non-trivial and is therefore a positive k,-root. Now if we set "f = 9 - -  x*, 9 - -  5" and 9 
are roots. Again from the fact that  "fiT* is non-trivial, it is easily concluded that y is 
a positive root of Z(e) with respect to T and that the corresponding 1-parameter unipotent 

group is then necessarily contained in Z*(~). It  follows that < 9, T ) = o .  From structure 

theory now it is immediate that 9 + Y  is a root and 9 + 2 T  is not a root. The Chevalley 
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commutat ion relations among the one parameter  unipotent groups Z,+v(t) and X-r(t) 

now give us (for t, sealgebraic closure of k) (see Steinberg [3]) 

(*) + z -  = z (ts). 

modulo  U(=) 1 for a suitable 4. Now the character q)--,( cannot occur in any quotient 

of V(o) which is trivial as a Z*(=)-module (note that ?-- ' t iT* is non-trivial) so that 
the eigen-space corresponding to the character ~0--" r certainly is contained in the span 

{(f0(x)--I)V[~EV(o), x@Z*(a)}. 

Since X_v(s)eZ*(=) for all s, ( ,)  shows that z~(t) belongs to this span as well for all t, 
a contradiction to our choice of ?. This shows that V(o) has no quotient Z*(T)-module 
which is trivial. We have thus proved that when I S I = I ,  for all ideals a4 =o in A, 
J0(a) has maximal rank in V(o). To prove the statement for theJi(a) ,  i > o ,  we observe 

that arguments entirely analogous to those given above show that the span of  Ji(a) 
in V(i) would contain all eigen-spaces of V(i) with the exception at most of those roots ~0 
on T which are trivial on T*. I f  we now again choose a root ,r C A" with (% cr 
and 0r IT' = g ,  we conclude that q~--~* is a root (but now this is a root occurring as 
eigen-character in V( i - - I ) ) .  It follows that " ~*-series " of roots through q~ are either 
(? - - , r  q~) or (~--2~*, ~0--~*, % ? + @ ) .  In the first case, using the Chevalley commu- 

tation relations, one sees immediately that the eigen-space corresponding to ~0 is in the 
image of  the natural map V(o) |  given by commutation. An obvious 
induction gives us now Claim (2. i I) in this case. In the second case, we observe that 
the group G is of  type G2, that a* is necessarily the short simple root, ~ a short root, 
and i =~ .  Further ~0-- 20r is necessarily the long simple root ~, a root of Z(a), so that 
(q~--2~*, q~)-----o. Moreover, we note that G 2 has only one isotropic k-form, viz .  the 
split form (Tits [2]) so that T = T ' = T " ,  A = A ' = A "  and ~, ~eA. I f  we then consider 
the root ~ in place of c~, our arguments above would show that the claim is true for this 
root and we conclude that U(~)n tF(a )  is a congruence subgroup of U(~).  But this 
would mean that U(~)nU(0~)~c~tF(a) is a congruence subgroup and then we can 

conclude that its image in U(~)I/U(0r ~ contains the eigen-space corresponding to 

?=~-F2cr in its image. 

R e m a r k .  - -  The proof  can be simplified in the case of the number fields where a 

qualitative statement would have sufficed instead of the precise form of Chevalley 

commutation relations. A slightly different approach can also be used in this case 

and this was in fact done in an earlier preprint of the author. 

3. T h e  A c t i o n  o f  O(k) + o n  C( , ). 

In w I, we obtained the following exact sequence 
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The group G(k) + is a subgroup of  G( ) in a natural  fashion. It  operates therefore 
on the normal subgroup C( , ) of  G ( ) .  We will take a closer look at this action 
in this chapter. The following is a well known theorem due to J. Tits [i].  

Proposition (3.x). - -  The only normal subgroups of  G(k) + are central (in G) and finite. 

In particular G(k) + has no proper infinite normal subgroup. 

Proposition (3. i) has the following consequence: to show that G(k) + operates 
trivially on a set X, it would be sufficient to show that an infinite subgroup acts 
trivially on X. 

Theorem (3.2). - -  Assume that k - r a n k ( G ) > 2 .  Then G(k) + centralizes CG(f ,  c). 
In  view of the remark made above it suffices to show that there is an infinite 

subgroup A of G(k) + such that A commutes with all of CG(f ,  c). From the discussion 
in (I.  2 I) it is clear that it is enough to find a infinite subgroup A C G(A) n G(k) + such 
that [A, G(a)] C FG(a). Such a group A is obtained as follows : let T be a maximal 
k-split torus in G. Fix an order on X(T)  ( =  group of characters on T) and let U be 
the unique connected unipotent k-subgroup of G with the span u of  all the positive 
k-root-spaces (in the Lie algebra g of G) for its Lie algebra. Let ~ be the highest k-root 
and U C~l the unique connected unipotent k-subgroup with g0 (=k- roo t  space corre- 
sponding to ~) as the Lie algebra. Then  A = U I m n G ( A )  is infinite and we assert 
that [G(a), A] C FG(a). To see this we use the Bruhat decomposition in G(k): let 
N(T) (resp. Z(T)) be the normaliser (resp. centraliser) of T and W a complete set of 
representatives for N(T) /Z(T)  with WC N(T)(k).  Let 7~ : N(T) ~ N(T) /Z(T)  be the 
natural map. The group N(T) /Z(T)  acts on X(T)  permuting the k-roots. For 
weW, ~eX(T)  we write w(~) for ~(w)(e). Now it is known that each geG(k)  can 
be written in the form 

g = uwzv 

with ueU(k),  weW, zeZ(T)(k)  and veU(k). I f  now xeU(~) ,  we see that 

gxg -  * = u w z v x v - l z - l w - l u  -~  
- - 1  uyu 

where yeU~"X~)l: this is because Z(T) normalizes and U centralizes U (~). Now 

X = u - X x u e U  (~) 

and u -  * (gxg-  1) u = y e U (w(~)). 

Since the k-rank of G is > 2, x a n d y  are contained in the same k-QSP: if w(}) and 
are linearly independent, U (~/ and U (wl~// are both contained in the unipotent radical 
of some proper k-parabolic subgroup; if w(})=r[~ with r > o ,  the same conclusion holds; 
if w ( ~ ) = - - ~ ,  U (~) and U~w(~))=U (-~) are contained in a proper k-A-S of G. We 
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see thus in any case, for any gEG(k) and x~U (~, gxg- lx  -1 is contained in a proper 

k -QPS so that 

[A, c 

This proves that G(k) + centralises CG(f ,  c). 

Corollary ( 3 . 3 ) . - - L e t  F = G ( k ) + n G ( A ) .  Then for every ideal a C A ,  a~eo, we 
can find a non-zero ideal a* such that [I', G(a*)] C FG(a). 

From Theorem (3.2) we know that P centra|ises C G ( f ,  c). It  follows that (taking 
images in G(A)/FG(a))  FFG(a)/FG(a) commutes with the image of CG(f ,  c) in 
G(A)/FG(a).  On the other hand it is an immediate consequence of  Lemma (1.24) 
that we can find an ideal a 'CA,  a*+o, such that the image of CG(f ,  e) contains 
G(a*)FG(a)/FG(a). It follows that we have [F, G(a')] C FG(a). 

( 3 - 4 ) ,  - -  The following theorem is due to Kazdan [I] (see also S. P. Wang [I] 

and Delaroche and Kirillov [I]).  
Let k~, I < i <  r, be local fields, H~ an absolutely almost simple kcalgebraic group 

and H;(k~) the locally compact group of kcrational points of H i. Let H = (1 I~.(ki) 

and q5 a lattice in H. I f  ki-rank(Hi.)> 2, for all i, i < i <  r, �9 is finitely generated 

and qS/[q5, q~] is finite. 
In  the references cited above the theorem is not stated explicitly in the case of 

fields of positive characteristic. However the proofs are valid in the case of  positive 
characteristic as w e l l - - a t  least the proofs as given in the last of the three references. 
Now according to Harder  [I] (also Behr [i]) an S-arithmetic group in G is a lattice 
in II G(k~). I f  k-rank(G)> 2 we conclude from the theorem above that we have 

vE~ 

Proposition (3-5). - - / f  �9 C G /s an S-arithmetic subgroup and k-rank(G)> 2, 0 / [ 0 ,  O] 

is finite. 
Using results of  Dieudonn6 [i,  2] and G. E. Wall [I] it is deduced in Raghu- 

nathan [4] that G(k)/G(k) + is abelian (and finite) if k - rank(G)> 2. As a consequence 

we have 

Lemma (3-6). - -  I f  k-rank(G)> 2 and �9 is an S-arithmetic subgroup of G, @riG(k) + 
has finite index in O. In particular F = G ( A ) n G ( k )  + has finite index in G(A). 

Corollary (3-3) combined with Lemma (3.6) gives us the following: 

Corollary (3-7). - -  For every non-zero ideal aCA,  
(G /s assumed to have k-rank> 2). 

The next result is similar to Theorem (3.2). 

FG(a) has finite index in G(A) 

Theorem ( 3 . 8 ) .  - -  Assume that k-rank(G)>_ 2. Then G(k)+ eentralises C G ( e , f ) .  
Let P be a proper k-quasi-parabolic subgroup. Let M be a k-admissible subgroup 
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to which P is adapted. Let P* be the k-parabolic subgroup associated to P and P*- 
an opposite parabolic group containing M. Let U + (resp. U - )  be the unipotent radical 
of P* (resp. P*-). Then  M normalises U + and U - .  It  follows that for any non-zero 

ideal a C A ,  we have 

[M(a), U+(A)] C U+(a) C EG(a) 

and [M(a), U- (A) ]  C U - ( a )  C EG(a),  

so that [ M ( a ) , A ] C E ( a )  and [M(a) .E(a) ,A]CE(a)  where A = s u b g r o u p  of G(A) 
generated by U+(A).  Let E*(M(a))=M(a) .E(a)  and DM(a)=E*M(a) /E(a) .  The 
projective limit f)(M) of the DM(a) can then be regarded as a subgroup of the projective 
limit CG(e , f )  = Lim FG(a)/EG(a) .  Then from what we have seen above, we conclude 

< 

that A centralises ~)(M). Now it is easy to see that M(k) normalises f)(M) and that 
M ( k ) + n A  intersects every non trivial k-simple component of M in an infinite group. 
Applying Proposition (3-i)  (to these simple components in place of G) we conclude 
that M(k) + centralises f)(M).  When M is trivial so is f)(M).  When M is non-trivial, 
it is not difficult to see that M(k) + and A generate all of G(k) +. We conclude then 
that G(k +) commutes with f3(M) for every k-admissible M. Consider now the image 
of f)(M) in FG(a)/EG(a). Using the Main Lemma of w I applied to M, it is easily 
seen that this image contains a subgroup of the form M(a ' ) .  EG(a)/EG(a) ,  a ' = a ' ( M ) #  o 
depending on a and M. It follows then that if we set I ' = G ( k ) + n G ( A ) ,  we have 

[F, P(a ' (M))]  C EG(a). 

Now if we choose a (finite) set P1, - . . ,  Pn of representatives for the O(A)-conjugacy 
classes of k-QPS, and for each of the Pi a k-admissible subgroup M i to which P~ is 
adapted, we can find a single non-zero a ' # o  contained in a such that 

[F, Pi(a')] C EG(a). 

Since P is normal in G(A) and every k-QSP is conjugate by an element of G(A) to one 
of the Pi, we conclude that we have 

( . )  [V, FO(a')]  C EG(a). 

In  the projective limit this implies that F centralises CG(e , f ) .  Since F is infinite G(k) + 
centralises CG(e , f ) .  This proves Theorem (3.8). 

Since F n F G ( a ' )  is an S-arithmetic subgroup for a non-zero ideal a ' C A  
(Lemma (3.6) and Corollary (3-7)), we conclude from (*) above that we have 

Corollary (3-9). - -  EG(a) has finite index in G(A)for  all non-zero a (we assume of course 
that k-rank(G)> 2). 

Combining now this corollary with Theorem (2. I) we have the following: 

Theorem ( 3 .  x o ) .  - -  I f  k-rank(G)>2 every normal subgroup r in an S-arithmetic subgroup 
is either finite and central in G or has finite index in ~.  
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This generalises theorems of Bass-Milnor-Serre [i] and Matsumoto [I] for 
split groups. 

Corollary (3 . ix ) .  - -  The topologies defined by the E(a), a a non-zero ideal in A,  and the 
S-arithmetic subgroups on G(k), are identical: in other words there is an isomorphism of  G(e) on G(a) 
inducing the identity on G(k). The group C,(A, e) is compact. 

(3.I2)-  - -  The  main problem then is the determinat ion of CG(e, c). Toward  
this end we introduce some further notation. Let G+(e) (resp. G + ( f ) )  denote the 
closure of G(k) + in G(e) (resp. G ( f ) ) .  The  closure of G(k) + in G(c) is all of G(c). 
(This follows from Platonov [1] - -v iz .  the truth of the Kneser-Tits conjecture for groups 
over local fields). The  density of G(k) + in G(c) has the following consequence: 
G ( k ) + . G ( A ) = G ( k ) .  And, as remarked earlier, if G has k - r a n k > 2 ,  G(k) /G(k)  + is 
abelian. Thus  we have (see Raghuna than  [4]) from Proposition (3-5): 

Proposition (3-x3)- - -  I f  k-rank(G)> 2, G(k) /G(k)  + is finite (and abelian). 

(,) 

and 

(**) 

where CG+(e, c )=CG(e ,  c )n  G+(e). 

(3-I4) .  - -  Consider now the exact sequences 

I --+ CG(e, c)/CG+ (e, c) ~G(e) /CG+(e ,  c) ~ G ( c )  ~ I 

~ C G  + (e, c) ~ G +  (e) ~ 6 (c) --~ I 

The second sequence is exact for the following 
reason: the closure r(e) of G ( A ) n G ( k ) + = I "  in G+(e) is an open compact  subgroup 
of G+(e); the image of F(e) is a closed subgroup of G(A, c) of finite index and is hence 
open;  it follows that  the image ofG + (e) in G(c) is open, hence closed, and contains G(k) + ; 
in view of the density of G(k) + in (~(c) the map  G+(e)---~G(c) is surjective. Since 
G(k)/G(k)  + is abelian and finite one sees that CG(e, c)/CG+(e, c) is finite and abelian 
and that  the extension (*) is central. Theorems (3.2) and (3.8) together with the 
fact that  [G(k) +, G(k )+ ]=G(k  +) enable one to conclude that  (**) is central as well. 
Now the group CG+(e, c) can be imbedded in yet another exact sequence: 

(***) i -~ CG+ (e, c) ---> ]~ (e) ~ P(c)---~i 

where P(c)=c losure  of P (=G(A)nG(k) +) in G(c). To (**) and (***) we can 
associate cohomology exact sequences, for cohomology groups based on continuous 
cochains with values in the trivial module  Q / Z  = I. These sequences are: 

H(**)  : Hom(G+(e),  I) ~ Hom(CG+(e,  c), I) -~ H2(6(c), I) 

H(***)  : Hom(P(e) ,  I) ~ Hom(CG+(e,  c), I) ~ H2(P, I). 

In  fact, since G(k) + is its own commutator ,  we have an injective homomorphism:  

I ---> Hom(CG+(e,  c), I) -~ H2(G(c), I). 
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Further, since the sequence (**) splits on the group G(k) +, ~ maps into the kernel of  y: 

v : H2(G(c) ,  I) + H (G(k) +, I). 

We also know that Hom(~(e),  I) is finite. Finally Hom(CG+(e,  c), I) is the Pontrjagin 
dual of the compact abelian group CG +(e, c). Thus CG + (e, c) can be recovered from 
the dual. This discussion is summarised in 

Theorem (3-x5)- - -  Assume that k-rank( G) ~ 2. Let G+(e) denote the closure of G(k) + 
in G(e) and CG(e, c)nG+(e)=CG+(e,  c)----C +. We have then: 

(i) C/C + is finite and abelian; 
(ii) C + /s abelian and compact and central in G+(e) ; 
(iii) the Pontrjagin dual iV[ of C + admits an injective homomorphism into the kernel of 

y : H~(6(e), I) ---> H2(G(k) +, I ) ;  

(iv) a quotient of M by a finite group admits an injection into H2(F(e), I) (where 
F:closure of F (--~G(k)+nG(A)) in G(c)). 

Theorem (3. I5) reduces the problem of computation of C(e, c) (at least quali- 
tatively) to one of computing certain cohomology groups of certain adSle groups. The 
rest of this paper is devoted to obtaining results on these cohomology groups. 

Remarks (3-I6) .  - -  We have used Kazdan's theorem repeatedly in the discussions 
above. For certain groups for which the Kneser-Tits conjecture is known to hold it 
is possible to solve the congruence subgroup problem first and then deduce Kazdan's 
theorem in those cases. This is notably true for quasi-split groups. 

4" C o h o m o l o g y  c o m p u t a t i o n s  - -  I ( G r o u p s  o v e r  Loca l  F ie lds )  

Notation (4- � 9  - -  Throughout  this chapter we adopt the following notation. 

L will denote either a locally compact field of positive characteristic or the field Qo 
of p-adic numbers, p a prime in Z. 

2), the ring of integers in L. 
p, the unique prime ideal in 9 .  
F, the residue field O/p  and 
p, the characteristic of  F. 
H C GL(n) a connected simply connected algebraic subgroup defined over L. 
H(L)  = H n GL(n, L), H(f:)) = H n GL(n, i)). 
t t  will denote the group scheme over f:) associated to H nd the inc lus ion H C GL(n). 

When the abelian group I ---- Q / Z  is treated as a module over a locally compact 
group, it is always understood that the action is trivial and the topology on I is 
discrete. Cohomology groups are always based on continuous cochains. 
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For an integer i>o,  let H(i) be the subgroup 

{x~H(~) [ x--Ident i ty  mod pl} 

of H ( ~ ) .  The following lemma is obvious: 

Lemma ( 4 . 2 ) .  - -  H( i ) /H( i+ i ) ,  i>_i, is a finite abelian p-group. Hence H(I)  is 
a pro-p-group. 

Corollary (4.3).  - -  For re>I, i > i ,  Hm(H(i), I) is a p-torsion group. The group 
H"(H(s I), m >  I, has a p-torsion subgroup of finite index. 

Corollary (4.4). - - / f  H'(H(s I)-----o, H~(H(s I) is a p-torsion group. 
This follows immediately from the Hochschild-Serre spectral sequence. 

Corollary ('t-5)- - -  If H=(H(D)/H(I) ,  I) = o ,  H is quasi-split over L and i f  characteristic 
L > o  the natural map H2(H(L), I) -+ H2(H(D), I) is trivial. 

When H is quasi-split, it is known (Moore [I] and Deodhar [i]) that H~(H(L), I) 
is a quotient of ~ZL= the group of roots of unity in L. Since [ ~LI is coprime to p 
Corollary (4.5) follows. 

( 4 - 6 ) -  - -  From now we assume that the characteristic of L is zero. Let q be 
the smallest positive integer such that the exponential series converges on 

{x~M(n, L) [ x---o(mod pq)}. 

Then q = I  if p4:2 and q = 2  if p = 2 .  Moreover the logarithmic series 
oo 

~(X)= Z ( - - I ) i + l ( x - - I ) i  
i=l  

converges for all xeGL(n, 23), x -  I (modp),  and provides an inverse for exp on suitable 
domains. More precisely, let I)(L) C M(n, L) be the Lie subalgebra corresponding 
to H, D(o)=h(L)c~M(n,  s and for an integer i > o ,  

I)( i )={x~I)(s  (mod p')}. 

Then exp(II(i))CH(i) for i > q  and 

exp :  t)(i) ~ H(i) 

is a homeomorphism with t for inverse. We denote by t~ the map t restricted to H(i) 
considered as a map into I?(i). I t  is easy to see that we have 

(,) 

for all i>q .  
isomorphism 

(**) 

ti(x.y ) - #,(x) + l t (y  ) (mod t)(2i)) 

From this it is immediate that for j < i, we have a continuous group 

u~ : H(i) /H(i + j) ~ I)(i) fl)(i §  ; 
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also of course, one has (for i >  q), 

(***) [H(i), H(i)] C H(2i). 

We note that  ui~ is compatible with the action of H(o) on the two groups. Further  
the map  x~p~x obviously gives an isomorphism 

b ( ~ ) / b ( j ) - ~  b(i) / I i ( i+j) ,  j < i ,  i ~ q .  

In  particular as a group t)(i)/I)(i +j)  is isomorphic to dimLI)(L ) copies of Z/(p~). This 
suggests that  the discussion below in '(4.7) will be useful in our eohomology computations.  

(4.7).  - -  Let R be the ring Z/(r),  r some integer. Let M be a finitely generated 
free R-module.  We are interested in the cohomology of the group M with coefficients 
in I. Let B(M) = Homz(M|  z M, I), the group of I-valued bilinear functions on M. 
One has evidently B(M) = Homz(M@ z M, R). Since any bilinear function is a 2-cocycle 
we get an inclusion 

B(M) ~ Z2(M, I) 

where Z~(M, I ) = g r o u p  of I-valued 2-cocycles on M, and hence a homomorph ism 

: B(M) -+ H2(M, I). 

I t  is easily seen that  kernel (7)  is precisely S(M), the subgroup of symmetric bilinear func- 
tions on M, leading to an injective homomorph ism 

: B(M)/S(M) ---> H2(M, I). 

Lemma ( 4 . 8 ) . -  + is an isomorphism. Also H I ( M , I ) ~ H o m z ( M , I ) .  These 
isomorphisms are moreover compatible with the action of Aut(M) on the various groups involved. 

The  first assertion is proved by induct ion on the rank of M as an R-module:  one 
need only show that  the two groups (which are finite: note that  H~(M, I )~H3(M,  Z)) 
have the same cardinality. This is easily done using the Hochschild-Serre spectral 
sequence. 

We will next establish 

Lemma ( 4 . 9 ) . - - L e t  UCH(s be a compact open subgroup. Let E = H o m e ( I ) ( ~ ) ,  ~)), 
B=Home(D(s174 s and S C B the subgroup of symmetric forms. Let F = B / S .  Then 
there exists a subgroup FC U with the following properties: 

a) F is finitely generated; 
b) P is dense in U;  
c) H~(F, E |  is finitely generated as a 5D-module for i = I ,  2; 
d) IP (F ,  E) is finite (hence a p-torsion group). 

(U C H(s has a natural action on E and F; the cohomology groups are for this action; F is given 
the discrete topology.) 
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It  is easily seen that the problem can be reduced to the case when H is simple 
over L. In  this case we can find a finite extension L' of L and an absolutely simple 
group H '  over L' such that H is L-isomorphic to RV/L(H' ). I f  9 ' C  L' is the ring 

of integers we have a natural isomorphism 

H ' ( D ' ) ~ H ( D ) .  

Now according to the main result in Appendix I I I  we can find a number field 
k' C L' such that k' is dense in L' and H '  is L'-isomorphic to a group over k'. In other 
words, we may assume that H '  is defined over k'. Enlarging k' if necessary we may 

assume the following: 
k' admits two distinct archimedean valuations vl, v~ such that the completions k' i 

of k with respect to v i are both isomorphic to C. 
This has the following implication: if D=R~,/Q(H'), D is simple over O and 

R- rank (D)~  2. Evidently, 

D(R)---- II  H'(k;) 

where c~ is the set of  archimedean valuations of k' and, for w 0% k~ is the completion 

of  k' with respect to v. Let [~ (resp. D', b) be the Lie algebra of H (resp. H' ,  D). One 

has then natural identifications 

(k') 

b(z) 

here 0~ is D-linear, ~ is D'-linear and y, Z-linear. 
Now since D(R) is non-compact  we can choose, using strong approximation, an 

arithmetic subgroup P C D(Z) which is dense in U (cf. Platonov [i ]). On the other hand, 
the Hi(F, E |  are finitely generated D-modules since E and F are finitely generated 
D-modules (Raghunathan [5] or Serre [3]). In view of the isomorphisms e, ~, ~, above, 
to prove the lemma we have only to show that 

H~(F, b ) = o  

for the above choice of P. 
I f  D has Q- r ank>o ,  this follows from the main results of Raghunathan [I, 2]. 

I f  D is anisotropic over Q,, this follows from a theorem due to Weil (see for instance 
Raghunathan [3, Ch. VII ,  w 5])- One has to note in the last case that D(R)  may have 
compact  factors but  the action of  P on the various factors of  b over t3 are equivalent 

under Galois automorphisms. 
This completes the proof of Lemma (4-9). 

Theorem ( 4 . x o ) . - - L e t  U C H ( L )  beacompactopensubgroup. ThenthegroupsHq(U, 1) 

are finite for q = I, 2. 
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The proof  yields rather more precise information which is needed in the sequel. 
We formulate therefore a more technical version of the theorem for convenient future use. 

Proposition (4- n ). - -  Let U C H(L) be a compact open subgroup. Assume that U C I-t(s 
Let m;'~o be an integer such that H ( m ) C U .  I f  p=2 assume that m~2.  Let F C U  be 
chosen as in Lemma (4- 9)- Let p~ be the smallest power of p that annihilates the (p-) torsion 
in Hi(p ,  E@F) |  E). Then the natural map 

Ht(U/H(m + 3 a + i), I) ~ He(U, I) 

is surjective for t -~ I, 2. 
Note that  since U / H ( m + 3 a + I  ) is finite the group Ht(U/H(m+3a+I) ,  I) is 

finite. By definition Ht(U,  I) is the inductive limit of the groups Ht(U/H(r), I) as r 
goes to oo. It  follows that  if a2>o, Proposition (4.11) is a consequence of 

Assertion ( 4 . x 2 ) .  - -  Assume that  a > o .  Let i be any integer greater than or 
equal to m + 3 a +  I. Then  the groups Ht(U/H(i+3a),  I) and H t ( U / H ( i + 4 a ) ,  I) 
have the same image in Ht(U/H(i+5a),  I). 

(4. x3). - -  The  proof  is a result of a careful examination of the Hochschild-Serre 
spectral sequences associated to the following pairs: 

(U/H(i+4a), t t ( i+ta) /H(i+4a)) ,  i < t <  3, 

and ( U / H ( / +  5a), H(i  + 3 a) /H(i  + 5a)). 

We denote these spectral sequences by ,E~ q, I < t < 3 ,  and E, pq respectively. We 
discuss the case t = 2 in detail. The  arguments for t = I are analogous and simpler. 
Let F ( j ) = F n H ( j )  ( j  an integer). Then  F( j )  is dense in H( j )  for j > m  and the maps 

u#, : H(j) /H(j +j') -+ I)(j) /t)(j +j') 

introduced in (4.6) induce isomorphisms of I ' ( j ) /P( j+j ' )  on t)(j)/t~(j+j') as well. 
The  inclusions 

H(i  -t- 3 a) ~ H(i  + 2a) ~ H(i  + a) 

induce homomorphisms 

,~3q~(p, q)r ~E~ q > aE, pq 

of spectral sequences. All the three spectral sequence ~E, converge to the same limit 
viz. H*(U/H(i+4a ), I). The  E~ terms relevant to the second cohomology can be 
described in the following manner :  consider first 1E: 

1E~ ---- H~ + a), I-P(H(i + a)/H(i -t- 4a), I)) 

1E~1= HI (U/H( i  + a), Ht(H(i  + a)/H(i + 4a), I)) 

~E~ ~ = I-P(U/H(i  + a), I). 
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(4. I5)- - -  The claim shows that the filtration on H 2 associated to the spectral 
sequence ~E is in fact a 2-step one, the term ~E ~ making no contribution to the cohomology. 
Our  next task is to analyse 28~(I, i)2. This is a little more delicate than what we have 
done above. We introduce a 2-step filtration on 2E~ 1 and 3E~ 1 as follows: consider 
the commutative diagram (with exact rows): 

p2a 
o > E > E > E / p a ' E  > o 

pa 
o > E > E ~ E / f E  ~ o 

Passing to cohomology, we have 

H i ( r ,  E) > Hi(F, E/p~E) 

51 ~(r) 1 

H:(P, E) > l-l:(r, E/rE) 

the following commutative diagram with exact rows: 

p2a 
> H2(F, F,) > U"(r, E) 

pa 51 

pa 
> H~(F, E) > H*(F, E) 

Now the natural  maps 

H~(U/H(i  + 2a), E/p2~E) --> H~(F, E/p2~E) 

and HI(U/H( i  + 3a), E/p~ ~ tP (P ,  E/p~E) 

are easily seen to be injective. We may thus identify 2E~ 1 and 3E~ 1 as subgroups of 
I-P(F, E/p2~E) and I-P(F, E/p~E) respectively. Let u rE2. -- tE~ 1 c~ Image tP (F ,  E). Now 
the maps at the right end of both the rows above have the same kernel v i z .  the (p-) torsion 
in H~(F, E). The vertical map is clearly trivial on this kernel. It  follows that 
rc*(P) maps I-P(P, E/p2~E) into the image of Hi(F, E). This means that 

c 

This discussion shows that the essential information about H 2 in the spectral sequence 3 E 
is contained in l~0| Ell 3 ~ 2  3 2* " 

(4. I6). -- We are now in the final stage of the proof of the assertion. We examine 
the map 3 E , ~ E , .  (This is somewhat different from the earlier situation: the " big " 
groups are now different.) As before, we have identifications 

E~ t ~ H~(U/H(i  + 3a), E/p~E), etc. 

vll T~II The map q~ :3r_,2 -->r~ 2 is the map 

H ' ( U / H ( i  + 3a), E / r E )  ~ H~(U/H(i  + 3a), E/p2~ 
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induced by the natural  inclusion E/p~E -+ E /p~E .  

commutat ive  d iagram with exact rows: 
pa 

o > E . > E > E/p"E > o 

p2a 
o > E > E > E / p ~ E  > o 

Now a is imbedded in the following 

Now consider the induced cohomology sequence (for F) 

Ha(r, E) , Ha(r, E/rE) w(r, E) ~~ > , H~(P, E) 

H~(P, E) ~ Hi(r, E/p~g) > H~(r, E) '~~ H*(I', E) 

This diagram shows that  a*(P) maps image of t-Ia(P, E) (in Ha(F, E/p~E)) into zero. 
The  diagram 

H I ( U / H ( i + 3 a ) ,  E/p=E) =*> H ~ ( U / H ( i +  3a), E/pa'E) 

Hi(F,  E / r E )  ~*cr/ ~- HI(F ' E/pUE) 

is commutat ive.  The  vertical maps, as was remarked earlier, are easily seen to be 
injective. I t  follows from this that  q~ maps 3E~. t into zero. This shows that  the second 
cohomology group Hg(U/I ' - I ( i+4a) ,  I) maps into the first stage of the filtration of 
H 2 ( U / H ( i + 5 a ) ,  I) given by the normal  subgroup H ( i + 3  a ) / H ( i + 5 a ) .  But this 
is nothing but  the image of H~(U/H(i  + 3a), I) in H2(U/H( i  + 5a), I). This completes 
the proof  of Assertion (4- 12) in case a > o .  

(4-t7)-  - -  We now consider the case a = o .  The  arguments here are in fact 
much  simpler. Fix i>__ra and consider the spectral sequence associated to the pair 
(U/H(i) ,  U / H ( i + I ) ) .  As in (4-I3),  we have the following isomorphisms: 

E~176 E/pE), E~176 F/pF) 

and E~ 1 ~ H 1 (U /H  (i), E IpE). 

I t  suffices to show that  these groups are trivial. This  follows from the exact cohomology 
sequences (for the group F) associated to 

o ~  E ~  E ~  E/pE---> o 

and o-+ F ~ F-+ F / p F ~  o, 
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since Ha(F, E@F) and H*(F, E) have no (p-) torsion. This completes the proof  of 

assertion (4.12). 

Remark (4-x8). - -  Let B be a simply connected semisimple algebraic group over 
any local field K of characteristic o. Then  B(K) is isomorphic as a locally compact  
group to RK/Qp(B)(Qp) where Qp is the field ofp-adic  numbers  contained in K (Qp is 
the closure of Q i n  K). I t  follows from Theorem (4. Io) that  if M C B(K) is a compact  
open subgroup of B(K), I-I~(M, I) is finite for i = I ,  2. 

5" Cohomology Computations--II (Adelic Groups). 

(5"  I ) .  - -  We revert to the notations of w167 1- 3 now. Thus k is a global field and 
G C GL(n) is a k-algebraic subgroup which is k-simple and simply connected. For 
technical reasons, we do allow G to be not necessarily absolutely simple when k is of characteristic o. 
When k has positive characteristic G is assumed to be absolutely simple. Except for this provision, 
the notations are as explained in w (1.1). We make one further hypothesis on G: G has 
strong approximation, i.e. for any finite set S of valuations o fk  with l'I G(ko) non-compact,  

yES 
G(k) is dense in the S-ad61e group G(A(S)) ( : t h e  restricted product  I I  G(k,)). When  

v~s 
k is a number  field, this is known to be true for all G (Platonov [I] ; earlier work of Kneser 
covers all classical cases). When k is of positive characteristic, it is not known whether 
strong approximation holds in general. However if k - rank(G)~  i, strong approximation 
does indeed hold for G. This follows from strong approximation for connected unipotent  
groups combined with the t ruth of the Kneser-Tits conjecture for local fields. (Pla- 
tonov [I] :  Platonov's methods work equally well for the proof  of  the Kneser-Tits 
conjecture for all local fields though his proof  of strong approximation cannot  be carried 
over to the case of positive characteristic.) 

As in w (I .  i), V will denote the set of valuations o f k  and for a finite subset S C V, 
oo C S, A(S) will denote the ring of S-integers in k (we will have to consider more than 
one finite set of valuations at the same time so it is necessary to indicate clearly dependence 
on S). For S as above, A(S) will denote the S-ad61es ofk  and G(A(S)) the corresponding 
addle group associated to G. For S' D S D ~ ,  S' finite, ~(S, S') : G(A(S)) -+ G(A(S')) 
will denote the natural  map.  Our  main result in this section can now be stated. 

Theorem (5.2).  - -  Let U be a compact open subgroup of G(A(S)) (SDoo, any finite 
subset of V). Then: 

(i) I f  the characteristic p of k is positive, H~(U, I), j ~- I or 2, is a torsion group in which the 
p-torsion subgroup has finite index. Also, there exists a finite subset St----SI(U) such that 
for all S' D S u $1, Hi(~(S, S')U, I), for i = I, 2, is a p-torsion group. 

(ii) Assume that characteristic k = o .  Then Hi(U,  I), j = I ,  2, are finite. Also, there exists 
afinite subset Sx--~ SI(U) of V such that for all finite S' D S t3 $1, H~(~(S, S')(U),  I) = o 

for j = i ,  2. 
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(5-3). - -  We want to apply the results of w 4 to obtain this theorem. However 
the results we need from w 4 in the case of characteristic o are valid as they stand only 
for completions of Q.  Because of this we need to make a preliminary reduction (when 
k has characteristic o). Let I t  = Rk/QG. Then H is a simply connected semisimple 
group defined and simple over O .  Let S be as in Theorem (5-2), let S* be the set 
of valuations of O~ lying below S, and g the set of att valuations lying over S*. Then 
one has a natural identification (as locally compact groups) of G(A(g)) and H(A(S*)). 
On the other hand G(A(S)) ~ ( II G~) • It follows that U contains a subgroup 

v ~ S - - S  

of finite index of the form ( II M~) • U1 where each M,, w S - -  S, is a compact open 

subgroup of G, and U1 is a compact open subgroup of O(A(g)). Now from the results 
of Chapter 4, we know that I-I2(M~, I) and I-Ia(M,, I) are finite (Remark (4. I7)). 
Using the Ktinneth formula, one sees that the finiteness of H~(U, I) is equivalent to 
that of the finiteness of H~'(UI, I). Next we can find a finite subset S~ D S* of valuations 
on Q with the following property: let St be the set of valuations of k lying over S~; then 
r~(S, gl)(U)=r~(g, N1)(U1) decomposes into a direct product of the form II M~, each M~ 

being a compact open subgroup of G,. Further, if U2 is considered as a subgroup 
of H(A(S*)), r~(S*, SI)(U1) decomposes also as a product I-[ B, (w valuations of Q) ,  

w~S; 
each B~ being compact and open in H,A moreover, for a valuation w of Q ,  if ~ denotes 
the set of all valuations of k lying over w, we have a natural isomorphism ~ M~ ~ B~ 

v ~ . w  

for w~S~. Appealing again to the K~inneth relations (for the product decomposition 
of the B~) one sees that the second assertions (of Part (ii)) in Theorem (5.2) need also 
be proved only in the case k = Q .  This shows that for proving the Main Theorem 
we may assume that if k is of characteristic o, k is the rational number field Q .  

We will now establish the following consequence of strong approximation (Pla- 
tonov [i] ;  actually Platonov [2] has essentially proved the proposition; the proof below 

is a variant). 

Proposition (5.4)" - -  We take k to be any global field (we do not assume that k is necessarily 0 
when the characterist# # zero). Let U be a compact open subgroup of G(A(S)). Then U 
contains an open subgroup o f finite index of the form ,~s M, ,  where each M,  is compact open in G, 

and for almost all v, M~= G(~,) is a maximal compact subgroup of G~. Moreover, Uc~ G(k) 
is an S-arithmetic subgroup of G(k). Further, / f  I' C G(k) is an S-arithmetic subgroup, then 
either P is finite or the closure of F is open (and compact) in G(A(S)). 

That  U contains a subgroup of finite index of the form I] M, with M, open and 
v~s 

compact in G, and M~, M,=G(s for almost all v is immediate from the definition 
of the addle topology. Since the first assertion concerns only almost all v, we may 
without loss of generality assume that G(A(S))/s infinite. Let M* be a maximal compact 
subgroup of G~ containing M,. Then M;/(M, nG(s isfinite for all v(sS. It  follows 
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that if U * =  H M; and x e U * n G ( k ) ,  then the eigen-values of x are v-adic integers 
,$s  

for all vq!S. Let Pt : G-+f~ (=universal  domain), i < / ~  denote the l - th  coefficient 
of  the characteristic polynomial. Then Pt is a k-regular function on G and Pt(x)ek 
for all x e P * = U * n  G(k). Now let R(G)  denote the algebra of regular functions on G 

and E C R(G) the smallest f~-subspace which contains the Pt and is stable under the 
left regular action of  G. Then E is a k-subspace of R(G)  and the representation 
of G on E is defined over k. Now, let ~ f f E  be the A(S)-linear span of 

{ =(y)Pt Iyer*, i<e<n}. 

spans E over f~ - - th i s  follows from the Zariski density of F* in G; and F* is Zariski 
dense in G since P* is dense in U* (strong approximation: note our hypothesis that 

G(A(S)) is infinite.) On the other hand, since Pt(I'*) C A(S) for I <g  < n, f(P*) C A(S) 
for all fe~q ~. It  follows that ~qo is a finitely generated A(S)-module. Consequently 
a(I'*) is contained in an S-arithmetic subgroup of  ~(G). On the other hand since G 

is k-simple and a is defined over k, ~ is an isogeny. Hence if qb C a(G) is an S-arithmetic 
subgroup, a - l (qb)nG(k)  is commensurable with G(A(S)) (Behr [I], Harder  [I]). I t  
follows that r*nG(A(S)) has finite index in P*. Now the closure of G(A(S)) is 
contained in IV[ G(~C~)=U', say. We see thus (since lP*/ (PnG(A(S)) )  is finite) that 

~ s  
U*/ (U*nU' )  is finite. But this means that M ; = G ( ~ , ) = M ~  for almost all v. We 
conclude therefore also that G(A(S) ) / ( r*n  G(A(S))) is finite as well, i.e. F* is arithmetic. 
The argument given above shows the following. Let W=G(k)  n v~q G ( ~ ) .  Then W is 

dense in U*=  II  G(O~) and tF/G(A(S)) is finite. Since U* is open and the closure P'  
yes 

of  I ' n tF  has finite index in U*, F is open. 

Lemma (5-5)- - -  Let G be as above. Then there exists a finite subset S O C V, 
such that for any So-arithmetic subgroup �9 of G, ~/[rb, q)] is finite. 

We give the proofs for positive and zero characteristics separately. 

S o D 0% 

(5 .6)  Case A (Characteristic k = p > o ) .  - -  We have assumed in this case that 
G is absolutely simple. I f  the absolute rank of  G is i, G is isomorphic over k to SL(2) or 
the group of  norm i elements in a division algebra over k. In the former case we can 
choose any S o with ]S O [ > 2  (Serre [i]) .  In the second case we have to choose S O 
with IS0122 and G split over k~ for all veS 0. That  q)/[q~,q5] is finite for an 
S0-arithmetic �9 follows from Kazdan-Bernstein [i].  Next, if G has absolute r a n k S 2 ,  
we claim that there exists v with k,-rank(G)~> 2. I f  this claim is granted, the result 
follows f iom Kazdan [I]. To prove the claim we observe first that since G is quasi-split 

for almost all v, the relation k~-rank(G)<_i for all v would imply that G is isomorphic 

to SL(3 ) over the algebraic closure, and then that G is either an anisotropic or a quasi-split 
not split form of SL(3 ) over k. This means that G is either one of the following two kinds 

of  groups : a) the group of  norm i elements in a division algebra of degree 3 over k or 
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b) the special unitary group S U ( f )  of  a hermitian quadratic form f in 3 variables over 
a quadratic extension k' ofk. In the former case, for almost all v, G is k,-split, a contra- 
diction. In  the second case, one can find infinitely many v such that k' is isomorphic 
to a subfield ofk~. For any such k~, G is k~-split, hence of k,-rank =2 ,  a contradiction. 

(5-7) Case B (Characteristic of  k = o ) .  - -  I f  G is anisotropic over k we choose So 
such that 1s0122 for all v eS0; G is non-compact. That  S o has the required propeity 
follows from Kazdan-Bernstein [ I ]. When G has k-rank I, choose any S O with ] S o [ > 2 : 
this follows from Margulis [I] (which generalises the theorem of Kazdan-Bernstein 
cited). I f k - r a n k ( G ) ~ 2  we can take S 0 = m :  this follows from Kazdan [i] .  

Corollary (5.8).  - -  The notations are as in Proposition (5.4). Then, for almost all v, 
[M,, M J =  M~. 

This follows from Lemma (5-5) and Proposition (5-4) (applied to S = S o and 
r =  [q), q)]). 

In  the case of characteristic o, we also need the following: 

Lemma (5.9)- - -  Assume that characteristic k = o .  Let g(k) C M(n, k) denote the Lie 
algebra corresponding to G. Assume that G has no absolutely simple factor of rank I. Then 
there exists a finite set SoCV , m C So, with the following property. For any So-arithmetic 
subgroup q)CG, Ha(q), g ( k ) ) = o  (where g(k) is considered as a q)-module via the adjoint 
representation). 

Note that if G has one absolutely simple factor of rank i, all the absolutely simple 
factors are of rank I. Assume first that G(m) is compact. The group G is of  the 
form Rk./kH where H is absolutely simple. I f  G(m) is compact, so is H(m),  H being 
absolutely simple and of absotute r a n k S 2 ,  we can argue as in (5.6) to conclude that 
there is a valuation v' ofk '  such that k~,-rank(H)~2. Now, according to S. P. Wang [2], 
tta(W, g (k ) )=o  for any {v'}-arithmetic subgroup W of H(k ' )=G(k) .  (Since H(m) is 
compact, the adjoint action is equivalent to a unitary action.) Let v be the valuation 
of k lying under v'. Then, for any v-arithmetic group r  Itl(q), g (k) )=o.  To see this 
observe first that any i-cocycle of q) is cohomologous to one f which is trivial on 
a v'-arithmetic subgroup W of q). Now if ~ q ) ,  and x~W is chosen such that ~x~-l~W, 

then we have 

o =f(exo~- 1) = f (o  0 + Ad af(x) + Ad x Ad xf(~-  1) 

=f (~ )  --  Ad(:~x~- 1)f(a) ; 

this means that f(0 0 is invariant under all of {xe~F[~x0c-le~}. But this last set is 
Zariski dense in G, so that f ( ~ ) = o .  This proves that I-IX(q), g(k))=o.  Next, if G(m) 
is not compact, I-F(r g (k ) )=o  according to a theorem of Weft (see Raghunathan [3, 
Ch. VII ,  w 5]) and results of Raghunathan [I, 2] for any {m}-arithmetic group q). 

We will be needing the following in the sequel. 
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Lemma (5 . i o ) .  - -  For almost all v, H~(G(f3o)/G(o,), I ) = o  for  i = I ,  2. 
This follows from the work of Steinberg [I] and Deodhar  [I]. For almost all v, 

reduction mod p~ of G is a simply connected semisimple algebraic group over the residue 
field F, and G(9 , ) /G(o , )  is isomorphic to the rational points of this group over the 
field F, .  Since F, is finite, this group is quasi-split and the theorems of Steinberg (and 
Deodhar)  apply. 

Lemma (5.xx).  - -  Assume that k = Q .  Then for  almost all v, the natural map 

H'(G(~) /G(p~) ,  I) ~ H ' ( G ( ~ ) ,  I) 

is surjective. 

We appeal to Proposition (4- I I ) .  We see that  we need to construct a finitely 
generated subgroup Fv C G(i3,) (for almost all v) with the following properties: 

(i) I'~ is dense in G(f3~). 
(ii) Let g(k) be the Lie subalgebra of M(n, k) corresponding to G and 

g(f3) = M(n, f3) n 9(k), 

23 the ring of integers in h. Let E=Hom~(g ( f~ ) ,  ~ ) ,  B = H o m ~ ( g ( ~ ) |  f~), 
S = s y m m e t r i c  forms in B, and F = B / S .  Then  H~(ro, E| has no p,-torsion 
for i = I ,  2. 

(iii) HI(F~, g (k ) )=o .  

To do this we consider two cases separately. 

Case A : All absolutely simple factors of G are of rank--> 2. 
Case B: All the absolutely simple factors are of rank i. 

(5" I2) Case A. - -  Pick S O as in Lemma  (5-9). Let F be an So-arithmetic subgroup 
of G. Let S 1 be the complement  of the set 

{ v l v $ S o U ~  , F is dense in G(9")} 

and S 2 the complement  of the set 

{v[ v~S1, H*(F, E |  has no p~-torsion}. 

Then  $2 is finite and if we set P = F ~  for all v e S t ,  F, satisfies (i)-(iii) above. 

(5" I3)  Case B. - -  In  this case we have G----Rk,/kH where H is absolutely simple 
of rank i. For almost all valuations v' o f k ' ,  H=~SL(2) over k~, and one deduces easily 

that  one has isomorphisms G(~3,) ~ YI~SL(2, 9 r  for almost all v~V, where ~' is the 
V ~ V  

set of valuations of k' lying over v. The  mapping  % however need not in general carry 
the integral Lie algebra g(~v) isomorphically onto ]J ~I(2, ~v,). But i fk '  is unramified 

at v, then % does do this. Thus  omit t ing some further finite set of valuations one gets 
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an isomorphism g(~o)T II  ~t(2, 23~,). 

with 1So1>2 and let F = S L ( 2 ,  A(So) ). 

Now let S O 3 oo be any set of valuations of k' 

Then  we have inclusions of F , ~  r l  SL(2, s 
v ~ ~ So 

and hence F~G(s  for almost all veV. 
that  H*(P, M(2, 9, , )  has p~,-torsion for some 

HI(p ,  sI(2, D ~ , ) ) :  o 

for almost all v'. We can now clearly take 

There are only finitely many  v~V such 
v'e~' and according to Serre [I], 

P~ = F. 
In  w (5-3) we showed that  for the proof  of the Main Theorem we can assume k=O... 

if characteristic of k = o .  The  Main Theorem thus follows easily from L e m m a  (5. Iv) 
and (5. I I) combined with Proposition (5.4) in the case of characteristic o; in the case 
of positive characteristic Proposition (5.4) combined with L e m m a  (5. io)  and Cor- 
ollary (4.4) gives us the desired result. 

We prove one final cohomological result. For this result, it is more convenient  
to formulate it over any global f i e l d - - w e  drop the assumption made  in the discussion 
above that  when characteristic k = o, k = Q .  On the other hand  we do assume that  
G is absolutely simple. 

Theorem (5. I 4 ) "  - -  Let k be any global field and G an absolutely simple, simply connected 
k-algebraic group. Let 

S 1 = { w V  1G is anisotropic over k~} 

and $2 = { w V [  G is not quasi-split over k~}. 

Let S be any finite set of  valuations with S D oo. Then we have 

H~(G(A(S)) I)~ 17[ H~(G~, I) 

H2(G(A(S)),I)~H2( II G~,I)• 1-[ H2(G~,I). 
~S~--S v~S~uS 

I f  S D $2, HS(G(A(S)), I )~  vPs Exv where for vr ~.~ is a quotient of  the group of  roots of I 

in k v. In particular, it is a torsion group with all torsion coprime to p. 
These Kfinneth relations are a consequence of the following facts already proved:  

for almost all v, G(s is a maximal  compact  open subgroup o fG, ,  [G(~?v), G(s =G(E)~) 
and for almost all v, the natural  map  HS(G~, I) -+ H2(G(~,) ,  I) is trivial. The  last 
statement has not been explicitly proved so far, but  it follows from Lemmas (5. IO) 
and (5. II)  when k has characteristic o. In  the case of positive characteristic p we 
know that  for almost all v, HZ(G(~) ,  I) is a p-torsion group for almost all v; on the other 
hand according to Moore [i ] and Deodhar  [I ], when G is quasi-split on Rv, t-IS(G~, I) ~ ~x~, 
a quotient  of the group of roots of I in k,. The  " Kiinneth relations " stated are easily 
obtained from these considerations and the definition of the addle topology in view 
o f t h e f a c t  [G~, G~]=Gv for all YeS 1 ( P l a t o n o v  [ I ] ) .  (See Moore [i,  Theorem ( I 2 . I ) ]  

where the necessary arguments  are given in detail.) 
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Remark (5- I5)- - -  When G is anisotropic over k,, G, is the group of norm I elements 
in a division algebra over k, and HI(G,, Q/Z)  is non-trivial. In  fact, i fD,  is the division 
algebra, R, the maximal compact sub-ring of D, and ~3, the unique maximal (2-sided) 
ideal in R,,  D,/(D,c~(I+~3,)) is isomorphic to a non-trivial cyclic group. (See for 
instance Well [i, Ch. I, w 4]-) 

Theorem (5-�9 - -  Let G be a connected, absolutely simple, simply connected algebraic 
group defined and of rank> 2 over a global fe ld  k. Let S D oa be any finite set of  valuations 
of  k. I f  characteristick=o, C(S, G) is finite. I f  characterist# k=p,  the p-Sylow subgroup 
of C(S, G) has finite index in C(S, G). I f S  contains all the primes at which G is not quasi-split 
over k,, C(S, G) is finite. 

This is obtained by combining Theorem (3-15), (5 -2) and (5. I4). 

6 .  " S t a b l e  " R e s u l t s  a n d  S o m e  G e n e r a l  R e m a r k s .  

(6. �9 - -  As hitherto, G will denote a connected simply connected absolutely 
simple group over a global field k. We assume that G has strong approximation. (This 
is known to be the case if k is a number field or if k-rank(G)~i . )  As we will be 
considering different finite sets of valuations of k, our notation will have to be more 
precise to indicate the dependence on the finite set of valuations. We fix an imbedding 
G C GL(n) of G as a k-group and for any finite set S of valuations ofk with oo C k, denote 
as before by G(A(S)) the group of A(S)-rational points of G where A(S) is the ring of 
S-integers. The first observation is 

Lemma (6.2). - -  Suppose ooC S C S' and there exists w S  such that G is isotropic at v. 
Then the cokernel of the map C(S, G) -+ C(S', G) is naturally isomorphic to II  G(k,) where 

v E ~ ( S '  - s) 

d ( S ' - - S ) = { v e V  1G anisotropic over k,}. 

In particular i f  G is isotropic over k, for all ve S' --  S, the map C(S, G) -+ C(S', G) is surjective. 
Also i f  d ( S ' - - S ) = S ' - - S ,  the map C(S, G) -+C(S',  G) is injective. 

This lemma is easily deduced from the commutative diagram: 

i > C (S ,  G)  > 0 ( S ,  a) ::, 0 ( S ,  c) > I 

NS, S') 

, , c ( s ' ,  G)  > a) , 0 ( s ' ,  c) , i 

Observe that the map r~(S, S') at the extreme right is simply the natural map of the 
group G(A(S)) into the group G(A(S')) (strong approximation). Passing to the quotient 
by C(S, G) and its image in the second row we obtain the following diagram 
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x . :, C(S', G) / Im  C(S, G) ~. G(S', a)/Im(C(S, G)) ~- G(S', c) :, t 

The image of ~ is a closed subgroup containing G(k). To see this we observe first that 
the kernel of :~(S, S') is the product H G(k,). This group maps under 0~ into the 

v ~ S ' - - S  

profinite group G(S', G) / Im C(S, G). Since all the G(k~) for G isotropic over k~ admit 
no infinite proper normal subgroups we see that = factors through G(S w d ( S ' - - S ) ,  c) 
(which projects onto G(S', e) with compact kernel). I t  is easily deduced from 
this that the image of cr is closed. Since it contains G(k), = is surjective and 
C ( S ' , G ) / I m a g e C ( S , G )  is isomorphic to 1I O(k~). The second assertion is 

E ~ ( S '  - S) 

immediate. The third follows from the fact that if G is anisotropic over k~ for all 
veS ' - -S ,  the families of S-arithmetic and S'-arithmetic groups coincide. 

The preceding lemma suggests that it is best to consider only those sets S such 
that, for all v e S - - ~ ,  Gis  isotropic at v. In  the sequel we will in fact assume always 
that finite sets of valuations which we consider do not contain any non-archimedian valuation v 
such that G is anisotropic over k, (unless explicitly stated otherwise). In  order to overcome 
technical difficulties that arise we need to make our choice of the imbedding G C GL(n) 

somewhat carefully. 

Lemma (6.3).  - -  Let S 0 3 m  be any  finite set of valuations (S O may contain v at which 
G is anisotropic). I f  S o is non-empty we can find an imbedding of G in GL(n) (as a k-algebraic 
group) such that: 

(i) For all vr G(s is a maximal compact subgroup of G(kv). 
(ii) For all S 3 So, G(A(S)) is a maximal S-arithmetic subgroup of G. 
(iii) I f  S ' ~ S 3 S  0 and G is anisotropic over k~for w S ' - - S ,  G(A(S) )=G(A(S ' ) ) .  

Start with some k-imbedding G,--> GL(n). Then since G has strong approximation, 
G ( ~ )  = M~ is for almost all v a maximal compact subgroup of G(k~). Let M, D M~ 

- -  ~ t e t be a maximal compact subgroup of G(k~). Let L~--s if M~=M~, if M~:~M~, let 
Lo be a compact open subgroup of k~ containing 231 and stable under M,.  Let L C k" 

be the subset 
{xek" l xeL~  for all vCS0}. 

Since So is non-empty, L is dense in I I L v  (strong approximation for a vector space!) 
v~S. 

(and is in fact a A(S0)-moduIe of rank n). We now change the basis of k" to one which 

generates L over A(S0) and thus obtain a new imbedding of G in GL(n) satisfying the 

required conditions. 

Note: When k is a number  field, we can take S O = ~ .  
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(6.4). - -  In the sequel we fix once and for all a fixed finite set S O with the following 
properties: 

(i) So ~ ~o. 
(ii) If ve So-- o% 
(iii) There exists 

So 4: ~o). 

We set d = { v e V - - o o i G  anisotropic at v} and V ' = V - - d .  Unless otherwise specified 
all finite sets considered (denoted S, S', S", etc.) will be assumed to contain S o and to be contained 
in V'. We assume also that our embedding G,-+GL(n) satisfies the conditions of Lemma (6.3)- 
This means in particular the map C(S, G) -+C(S', G) is surjective (Lemma (6.2)). A 
corollary to this is 

G is isotropic at v. 
w S  o such that G is isotropic at v (this is of course redundant if 

Lemma (6.5). - -  I f  S' D S, the centraliser of C(S', G) in G(k) contains that ofC(S, G). 
In particular i f  C(S, G) is central in G(S, a), C(S', G) is central in G(S', a). 

Notation (6.6). - -  In the sequel, P(S) will denote the group G(A, S), l~(S, a) 
(resp. F(S, c)) its closure in G(S, a) (resp. G(S, c)). If  G(k)* is any subgroup of G(k), 
F*(S)=G(k)*n F(S) and G*(S, ) (resp. F*(S, )) denotes the closure of G(k)* (resp. 
I'*(S)) in I~(S, ); also C*(S, G) will denote the group 

c(s, G)n a)=C(S, G)n a). 

With this notation, the following is proved exactly as Lemma (6.2). 

Lemma (6.7). - -  Assume that G(k)* has finite index in G(k), and has a dense projection 
on H G(k~). Then the map C(S, G) -~C(S', G) is surjective for all (SoC)SCS'(CV') .  

In particular i f  C*(S, G) is finite (resp. central in G*(S, a)) C*(S, G) is finite (resp. central 
in G*(S', a)). 

Corollary (6.8). - -  The natural map F(S, a) -+ P(S', a) is surjective. 
We look at the commutative diagram: 

i > C(S,G) > ]~(S,c)(=HsG(s ) > ~ 

I ) C(S ' ,  G) > F(S ' ,  C) (----- vl]s G(~Dv) ) ) I 

> a) 

, a) 

whose rows are exact. The maps at the extremes are surjective (lemma (6.7) and 
our choice of embeddings guarantee this). By five-lemma, the middle map is surjective 
as well. 
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Corollary (6.9) .  - -  I f  O' is an S'-arithmetic subgroup of G and q) = q)'~ F(S), S' D S, 
then the natural map O(S, a) ~ O ' ( S ' ,  a) where O(S, a) (resp. q)'(S', a)) is the closure of �9 
(resp. q)') in G(S, a) (resp. G(S', a)), has finite cokernel. 

Remark (6. I l l ) .  - -  In the corollary above we need only the fact that S, S' contain 
S0 - - they  may contain anisotropic places: this is because S-arithmetic groups and 
(S- -d ) -a r i thmet i c  groups are the same and a similar remark applies to S'. 

The following consequence of Corollary (6.9) is perhaps of greater interest than 
that corollary itself. 

Corollary (6. xx). - -  I f  S is any finite set such that for every S-arithmetic group q~, �9 is 
infinite and O~ [0, O] is finite, then the same holds for every S'-arithmetic group O' for S'D S. 
(We do not need to assume that S and S' are contained in V'.) 

Combining with Kazdan's theorem on the first Betti number of lattices in groups 
without rank i or compact factors we obtain the following extension of his result. 

Corollary ( 6 . 1 2 ) . -  Let S be any finite set such that there exists ve S with k:rank( G ) ~ 2. 
Then for any S-arithmetic group 09, O/[@, O] is finite. 

Corollary (6.x3).  - -  Let G(k)* be a subgroup of finite index in G(k). Then 
G(k)*/[G(k)*, G(k)*] is finite. 

Replacing G(k)* by a subgroup of finite index we may assume that G(k)* is normal 
in G(k). Let tF=[G(k)*, G(k)*]. Then tF is a normal subgroup of G(k). Now in 
w167 (5.6), (5.7), we have seen that there exists S such that G is isotropic at v for some veS 
and for every S-arithmetic group O, q~/[q~, O] is finite. Pick one such S-arithmetic 
group @ C G(k)*. Then q ) c ~  is S-arithmetic as well. Its closure is therefore open 
in G(A(S)) (strong approximation). Thus the closure CF of �9 in G(A(S)) is open as 
well. Now for the natural identification of G (kv) (vr S) as a closed subgroup of G(A(S)), 
G(k,)c~q: is open and normal in G(kv). I t  is therefore equal to G(k,) for all yeS at 

which G is isotropic (Kneser-Tits conjecture for local fields). I t  follows that CF has 
finite index in G(A(S)), so that G ( k ) ~ = G ( k ) * n ~  has finite index in G(k)*. Now from 
the density of tF in OF, we see that for any S-congruence subgroup A of G 

G(k) ~ C ~F(A • G(k) ~).  

The desired result now follows from Corollary (6. x2). 

Proposition (6. x4). - -  Assume that S C V' ,  ~ C S and that C*(S, G) is central in G*(S, a) 
for some subgroup G(k)* of finite index in G(k). Then the p-Sylow subgroups of C(S, G) and 
C*(S, G) are of finite index in these groups (p = characteristic of k). 

We first pick S' C V ' - -  oo such that if S " =  S w S' for any S'-arithmetic group O, 
r  q)] is finite and G is quasi-split for all veS'. Such a choice is possible by 
w167 (5.6"5.7) and Corollary (6. i I). 
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Let I2I(S, a) (resp. I2I(S, c)) be the closure of F*(S") in G(S, a) (resp. G(S, c)). Then 
from strong approximation one sees immediately that I2I(S, c )=(  ps G(k~) ) •  where 

U is a compact open subgroup of G(A(S")). Consider now the central extension 

, - +  C*(S, G)-+H(S, a) ~ H ( S ,  c)-~ 1. 

Associated to this one has a cohomology sequence (here I = Q / Z )  

. . .  --~ Hom(t~I(S, a), I) ~ Hom(C*(S, G), I) ~ H2(ft(S, c), I) 4 . . .  

Now from Theorem (5.2) and the results of Deodhar [I] and Moore [i], the p-torsion 
in H2(H(S, c), I) has finite index in that group. On the other hand Hom(~I(S, a), I) 
is isomorphic to Hom(P*(S"), I) and is thus finite. It follows that Hom(C*(S, G), I) 
has p-torsion of finite index. Taking the Pontrjagin duals we obtain the proposition. 

Corollary (6. xS). - -  I f  there exists S C V' ,  ~ C S, such that C*(S, G) is central in G*(S, a) 
for some subgroup G(k)* of finite index in G(k), then the p-Sylow subgroup of C(S', G) is of finite 
index in it for all S' D S, S' C V' .  

Remark (6. x6). - -  One can refine the arguments given above in the case when 
d is empty. (We note that this happens when G is not of type An). In this case we 
observe first that the map 

C*(S, G) -+ C'(S', G) 

is surjective for S' D S, so that for S C S' C S" both the extensions in the commutative 
diagram below arc central. 

, c* ( s ' ,  G) , ~ ' ( s ' ,  a) > 6"(s ' ,  ~) = ~ ( s ' ,  c) , 

, > C*(S", G) 

Also the vertical maps are surjeaive. 

I " C*(S', G) 

, , .  ~ ' ( s " ,  a) . ~ ' ( s " ,  c ) =  ~ . ( s" ,  c) , . 

We also have the following commutative diagram: 

, .  P'(S' ,  a) . ~*(s ' ,  c) > 

1 
A A 

> C*(S", G) ) r * ( s " ,  a) , r* ( s" ,  e) , 

The corresponding cohomology sequences are again embedded in a commutative diagram: 
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Hom(P'(S ' ,  c), I) > Hom(F'(S ' ,  a), I) > Hom(C'(S ' ,  G), I) 

Hom(P*(S", c), I) > Hom(F ' (S" ,  a), I) > Hom(C*(S", G), I) 

I51 

> H*(P'(S ', c), I) 
r 

2 ^ *  t t  H (v (S , c), I) 

Now according to Corollary (5.8), there exists S O D S such that the groups at the extreme 
left are trivial if S'D So and, by Theorem (5.2), we can also assume So so chosen that 
the groups at the extreme right axe p-torsion groups. We may also assume So so chosen 
that for any S'"-arithmetic group �9 with S"'  D So, ~ / [ ~ ,  ~] is finite. I t  follows (from 
the injectivity of ~*) then that there exists $1 D S O such that 

Hom(P*(S',  a), I) = H o m ( r ( s ) ,  I) =Hom(G(k)*,  I) 

for all S 'DS x. I f  characteristic k = o, we see immediately that 

Hom(C*(S', G), I )~Hom(G(k)*,  I) 

When the characteristic is positive, we have to argue a little more for all S 'DS  1. 
delicately: we look at the following exact sequence as well (for S'D $1): 

Hom(F*(S'), I )=Hom(G(k)* ,  I) _~z Hom(C*(S', G), I) --+ H~(G*(S ', c), I) 

Hom(G*(S', a), I) H*(G(S', c), I) 

From the results of Deodhar and Moore (loc. cit.) the group at the extreme right has 
no p-torsion if G is quasi-split for all vr 1. On the other hand we have seen from the 
earlier discussion that the cokernel of k is a p-torsion group. We conclude therefore 
that the cokernel of X is zero. We summarize this discussion in the following. 

Theorem (6 . I7 ) .  - -  Assume that G is isotropic at all vr Let G(k)* be a normal 
subgroup of G(k) of finite index and S C V  ( = V ' )  be a finite set such that C*(S, G) is central 
in G*(S, a). Then we have: 

(i) The p-Sylow subgroup of C(S', G) has finite index in C(S', G) for all S' D S. 
(ii) The maps C*(S, G) ~C*(S ' ,  G) and C(S, G) ~ C ( S ' ,  G) are surjective. 
(iii) There exists a finite set S1DS such that for all S'DS1, the map C(S1, G) -+C(S' ,  G) 

is an isomorphism; all these groups are naturally isomorphic to the finite group 

G(k)'/[O(k)*, O(k)*] =- P*(S')/[P*(S'), P*(S')]. 

Corollary {6. I 8 ) .  - -  Assu~  that k-rank(G)~ 2. Then there exists a finite set S o such 
A 

that for all S DS0, C(S, G) is central in G(S, a) and isomorphic to G(k)/G(k) + (notation 

as in w 3). 
Take G(k)*=G(k) +. Since G(k) + is its own commutator,  C*(S, G) is trivial for 
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all S D $1 where $1 is chosen as in Theorem (6. I7). Once C*(S, G) is trivial, we know 
that C(S, G) is central in G(S, a) and we can apply Theorem (6. I7) to G(k) itself. 

Remark (6 . I9) .  ~ There is one other situation to which Theorem (6.I7) is 
applicable: Kneser [i] has announced the following result: Let k be a number field. Let 
G----- Spin f ,  f a quadratic form in n >  5 variables over k. Let S D oo be a finite set 
of  valuations such that 52, k , - rank(G)> 2. Then  C(S, G) is central in G(S, a). The- 

yES 
orem (6. i7) now furnishes the further information that C(S, G) is indeed finite in this 
case. When f is isotropic over k, Kneser has a much more precise result. 

7- Representations of Arithmetic Groups. 

(7. x). - -  Throughout this chapter, k will denote a number field, G an absolutely 
simple k-group and S D oo a finite set of valuations of k containing az. We assume 
that G is simply connected and has in addition the following property: 

(CSP) The group C(S, G) is finite. 

(Note that if G has (CSP), it is necessarily isotropic at all veS - -  oo.) We also assume 
that there exists yeS such that G is isotropic at v (this to ensure that S-arithmetic groups 
are not finite) and that G has strong approximation. With these notations our first 

result is 

Theorem (7.2).  - -  Assume that G has (CSP). Let @ be an S-arithmetic group of  G. 
Let p be a finite dimensional representation of  go on a finite dimensional vector space V over afield F 
of  characteristic o. Then there exists a subgroup go' in go of finite index and a rational represen- 

tation ~ of  Rk/Q(G) defined over F such that ~1r = p Jr 
When F = Q ,  this result is proved in Bass-Milnor-Serre [I]. When F is a finite 

extension of Q ,  one can reduce to the case of F = Q ,  by looking at the F-vector space 
as a Q-vector space. Since go is finitely generated one sees easily that this covers the 
case when F is algebraic over Q as well. Consider now the general case. We make 

first an observation about representations over Q =  algebraic closure of Q .  These 
representations are all completely reducible since rational representations of semisimple 

groups are. Equivalently for every finite dimensional representation a of go on Q-vector 
spaces HI(go, a)~-o. Now, let ~ ( F )  denote the variety of all representations of gO 
in GL(n, F) (F any field and F its algebraic closure). Then  ~ ( F )  is a variety defined 

over Q .  If  a e ~ ( I ' )  is a Q-rational point, Hi(go, A d o a ) = o ,  where Ad is the adjoint 
representation of GL(n) on its Lie algebra. According to A. Weil [I] this means that 
the orbit of ~ in ~ ( I ' )  under inner conjugation is Zariski open in ~ ( F ) .  Let 

all= { gag-  1 1 g~GL(n, F), ae~(a )~} .  

Then  ~ /as  well as it complement ~ '  are stable under the group of all automorphisms 
of F (over Q ) .  Since Y/ is Zariski open, a//, is a Q-subvariety. On the other hand 

it has no Q-rational point. Hence q / =  ~(go) and the theorem is established. 
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Corollary (7-2). - -  Let p be any finite dimensional representation of an S-arithmetic group rb. 
I f  C(S, G) is finite, HI((I), p)---- o. 

Corollary (7- 2 ). - -  I f  C (S, G) is finite, for any S-arithmetic group rb, ~ / [(I), ~] is finite. 

Theorem (7.2).  - -  Assume that C(S, G) is finite and that G is isotropic at all vr Let 
F be afieldofcharacterist# p > o .  Then anyhomomorphism p : ( I ) ~ G L ( n , F )  is trivial on 
a subgroup of finite index. 

We will deduce this from 

Lemma (7-3). - -  Let K be a locally compact field of characteristic o and I-I a K-simple group 
isotropic over K. Let M be a compact open subgroup of I-I(K). Then the kernel of any homo- 
morphism of M into GL(n, F), F a field of positive characteristic, is open in M. 

Let f : M -+ GL(n, F) be any homomorphism. Let U be any maximal unipotent 
K-subgroup of M and T a K-split torus normalising U. Let B----TU. Then  B is a 
solvable group. The Zariski closure of f (B  n M) is again a solvable group. It  follows 
that we can find a subgroup B 1 of finite index in B n M such that f(B1) can be put in 
triangular form (over the algebraic closure of F). Consequently [B1, B~] consists of  
unipotents. It is not difficult to see that [B1, B1] contains an open subgroup U'  of 
M n U. Now f ( U ' )  consists entirely of unipotents. Since F has positive characteristic 
( = p ,  say), ( f (x))V'=I for all x~U' .  Thus the set {x~"[ xeU '}  and hence the group U "  
generated by it is in the kernel o f f .  Evidently (since characteristic K = o ) ,  U "  is 
open in Uc~ M. Now as U varies, we get different U "  which together are easily 
seen to generate an open subgroup of M. This proves the lemma. (The lemma is 
probably true without the hypothesis that H is isotropic over K but the present proof 
fails to cover that case.) 

To deduce the theorem from the lemma we argue as follows: since ~ is finitely 
generated, p(~)C GL(n, F'), where F' is a finitely generated algebra over the prime 
field, which is a subring of F. We consider two cases separately. 

Case (i) : p(~) contains an element y one of whose eigen-values X is transcendental 
over the prime field. 

Case (ii): For all y~ p(~), the eigen-values of y are algebraic over the prime field. 

We will now show that Case (i) cannot occur. Let Fq be the algebraic closure 
of the prime field in F'. Let F o ~--Fq(X) and F* the algebra generated by F o and F'. 
Then F* is a finitely generated algebra over F o. Let ~ : F*-+ F0 be any homomorphism 
of F* into a finite extension F o of F 0 which is identity on F o. (Such a q0 exists by the 
Nullstellensatz.) I f  we now regard p as a homomorphism of d) in GL(n, F*), we obtain, 
composing with a, a homomorphism P1 : ( I )~  GL(n, Fo). From our choice of ~ it is 

clear that pl((I)) is infinite. Moreover pl((I)) is contained in GL(n, A) where A is the 
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ring of T-integers for a suitable finite set of valuations T on F 0. Now if we denote 
by A(A) the ring of T-addles, P1 defines a continuous homomorphism 

71 : (~(S, a) ~ GL(n, A(A)). 

Now since C(S, G) is finite, we can find an open compact subgroup AC~(S ,  a) such 
that & c~C(S, G) is trivial. Then  A is isomorphic to an open compact subgroup of (~(S, c). 
Again passing to a subgroup of finite index we can assume that/~ is of the form [ I M , ,  

o$s 
M~ a compact open subgroup of G(k,). Let ~ : G L ( n , A ( A ) ) - + G L ( n ,  K) be the 
projection onto any one of the local factors; since 7: l aL(,. A)is injective it suffices to show 
that ~z(~l(A)) is finite. For this again, it suffices to show that ::(p~(M,)) is finite for 
all v and trivial for almost all v. The finiteness for all v is proved in Lemma (7-3). 
Now let ~ be the K-linear span of ~(~(A)) in M(n, K). Then ~ is also the K-algebra 
generated by ~UslT:(p~(M~)) where $1 is some finite set of valuations (with S i n S = O ) .  

It  follows that for v r  ~z(~l(M,) ) Ccentre of ~ .  This means that n(~'I(M~)) is 
abelian for almost all vr Now we know that M ~ = [ M , ,  M,] for almost all v (Cor- 
ollary (5.8)). We see therefore that ~zop~ is trivial on almost all M~ (vr This 

covers Case (i). 
In order to prove the theorem in Case (ii) we will argue by induction on the length 

of F" as a module over (P. We assume in f a c t - - a s  we may by passing to an extension 
of F if neces sa ry - - tha t  the composition factors are absolutely irreducible. Consider 
first the case when the length of F" as a (P-module is I. This means that O((P) spans the 
entire matrix algebra M(n, F). Consider now the smallest subspace E of the space of 
all regular functions on GL(n) stable under p ((P) and containing the function x ~ trace(x). 
Since trace(x) is in the algebraic closure of the prime field for all x~p((P), one sees that 
the representation of p((P) in E takes p((p) into a finite subgroup of GL(E). We claim 
now that if a denotes the representation of 9((P) on E, (~ is faithful. In  fact if a (x )=  I, 
we have trace(xy)=trace(y) for all yEp((P) or equivalently t r a c e ( ( x - - i ) y ) = o  for 
yEp((P). Since p((P) spans M(n, F), this means that x = i .  Since a(p((p)) is finite, so is 

O((P). To prove the general case we appeal to Corollary (7-3): let V = F "  and W C F" 
be a maximal proper (P-submodule. Then we have a natural  homomorphism (deduced 

from p) 

+ : (P ~ GL(W) x GL(V/W).  

By the induction hypothesis the kernel of  ~ ( =  (P', say) has finite index in (P. Now 
P 1~' maps (P' into a unipotent, hence solvable, group. But from Corollary (7.3) any 
solvable quotient of (P' must be finite. This proves our contention. 

Theorem (7-4). - -  Suppose that C(S, G) is finite for some S and p is a finite dimensional 
representation of G(k) over a field of characteristic o. Then we can find a subgroup G(k)* of finite 
index in G(k) and a rational representation ~ of Rk/Q(G ) such that ~]o(~)*=P Io(k)*. 
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Let d be the set of valuations v of k, v6oo, at which G is anisotropic. Then 
C(S', G) is finite for all S' D S, S' C V ' = V - - d .  I f  �9 is any S'-arithmetic group, 01~' 
extends to a rational representation ~ of R~/QG, where 0 '  is a subgroup of finite index. 
I t  is easily seen that  "~ is indeed independent  of the choice of S' and � 9  this follows 
from the fact that  �9 1 n 0 3 is Zariski dense in G for Scari thmetic groups 0~ with S i D S. 
Let G(k)* be the subgroup generated by the collection of groups 

{ 0 1 0  S ' -a r i thmet icwi th  S 'DS,  S ' C V ' ,  p Io=~[o}-  

One sees easily that  G(k)* is normal  in G(k) and it is open in the S-arithmetic 
topology. Now the closure of G(k)* in G(S, c) is easily seen to be a open subgroup 
of finite index (Kneser-Tits conjecture for local fields and strong approximation).  This 
means that  for a subgroup q~C G(k) of finite index, we have uric G(k)*A where A is 
any S-congruence subgroup. Since S(k)* contains an S-arithmetic group, A•G(k)* 
has finite index in A, so that  G(k)* has finite index in q~. This proves Theorem (7.4). 

Theorem (7.5).  - -  Assume that C(S, G) is finite and that G is isotropic at all v6 S. Then 
G(k) has only finitely many normal subgroups of finite index. 

Let Pl and 92 be homomorphisms of G(k) in GL(n) with pi(G(k)) finite. We 
will show that  the natural  extensions 9"i :G(S,  a ) -+GL(n)  are equivalent if and only 
if 0"~ [c(s.Q) are equivalent. One implication is obvious. Suppose ~1 and ~, restricted 
to C(S, G) are equivalent. Consider the representation ~1| (~  = dual  of P2). This 
representation contains the trivial representation ofC(S,  G). Let  E be the representation 
space of ~=p1|  and 

E 0 = { v ~ E  [ , ( x ) v = v  for all x~C(S, G)}. 

E 0 is non-zero and stable under  G(S, a). Moreover the action of G(S, a) on E 0 factors 
through G(S, c), and from the Kneser-Tits conjecture for local fields, G(S, c) has no 
proper  subgroups of finite index. This shows that  E 0 is a trivial G(S, a)-module 
i.e. "Pl and ~z are equivalent as representations of G(S, a). I t  follows that  01 and p~ 
are equivalent. I t  is easily deduced from this that  the family of subgroups of finite 
index in G(k) are in bijective correspondence with a subset of the family of subgroups 
of C(S, O). Since C(S, G) is finite, the theorem follows. 

Remarks (7.6) .  ~ Most of the results obtained in this chapter  overlap with results 
obtained by Margulis by completely different methods. Margulis has in fact a much  
more satisfactory r e su l t - - h i s  conclusions are drawn f iom the hypothesis 

k~-rank(G) > 2 

whereas the finiteness of C(S, G) is not known for practically most of the pairs (G, S) 
with this property.  Theorem (7.5), however, does not seem amenable to Margulis '  
techniques. I t  is possible to formulate some of the above results without  the hypothesis 
that  G is isotropic at all v6 oo but  the formulations are c u m b e r s o m e -  and in any event 
the essential ideas of proof  would be the same. 
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A R I T H M E T I C  SUBGROUPS IN U N I P O T E N T  G R O U P S  

We collect together some results on unipotent groups which were used in the 
main paper. These results are really known though perhaps not set down in p r i n t - - a t  
least not in the present form. The first result below is standard commutative algebra. 

Proposition (&. i ) .  - -  Let G be a connected k-group and H a connected k-subgroup. I f  
G / H  is k-isomorphic to a vector space (over k)  as an algebraic variety (over k) ,  there is an 
isomorphism 

(P : G - - ~ H •  

of  k-varieties such that the Cartesian projection on G/H is the same as the natural map G -+G / H .  

Definition (&.2).  - -  A unipotent k-group U is k-split if it is connected and admits 
a filtration 

U = U o ~ U I ~ . . .  ~Ur ~-(I ) 

by connected k-subgroups U~ such that for I ~ i ( r ,  U i is normal in Ui_ 1 and U~_I/U~ 
is isomorphic over k to a vector space (of dimension i). 

Remark (&.3). - -  (i) I f  U is unipotcnt k-split, then an), connected k-subgroup is 
also k-split. 

(ii) I f  G is a connected scmisimple k-group, the unipotent radical of  a k-parabolic 
subgroup of G is k-split (Borel-Tits [I]).  

Corollary (A.4) .  - -  Let U be a connected unipotent split k-group and V be a connected 
normal k-subgroup. Then U is k.isomorphic to a vector space (as an algebraic variety). Moreover, 
there is an isomorphism 

f :  (u/v)x v- w 

of  k-varieties such that the natural morphism U - ~ U / V  coincides with the cartesian projection 
composed with f - 1 .  

One argues by induction on the dimension of U. By the induction hypothesis U / V  
and V are k-isomorphic to vector spaces. The second assertion now follows from 
Proposition (A. I). The first assertion follows from the fact that any split unipotent 
k-group admits a connected (split) k-subgroup of codimension I. 
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Corollary (&. 5). - -  Let U be a connected unipotent k-group split over k. Let S D oo be 
any finite set of valuations of k (oo being the set of archimedean valuations). Then any S-arithmetic 
subgroup of U is Zariski dense in U for any non-empty S. 

Observe that if q~ is a k-isomorphism of a vector space V on U (as a k-variety) 
with ~ ( o ) = i  for any S-congruence subgroup P of  U (resp. P' of  V), ~-~(P)  (resp. 
* - I ( F ' ) )  contains a S-congruence subgroup of V (resp. U) .  Similar remarks applied 
to an isomorphism of U with U ' •  (U/U ' )  where U '  is a connected normal k-subgroup 

leads us to conclude the following: 

Corollary (A. 6). - -  Let U be a split unipotent k-group and U'  a connected normal k-subgroup. 
Let 7: : U--~U/U'  be the natural map. Then for each S-congruence subgroup F of U (S D 0% etc.), 
~(P) is an S-congruence subgroup of U / U ' .  
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Theorem. - -  Let k be any field and G a connected simply connected absolutely simple 
quasi-split algebraic group over k. Let P be a k-parabolic subgroup of G and U the unipotent 
radical of P. Let g be the k-Lie algebra of G and u the (k-)Lie subalgebra of g associated to U. 
Let F C k be the prime field and A the group-algebra of G(k) over F. Then g is generated by u 
as an A-module (g is a module over A via the adjoint action). 

The theorem is easily checked in the special case when k - r a n k ( G ) = I :  in this 
case G is k-isomorphic either to SL(2) or S U ( f ) ,  the special unitary group of an isotropic 
bilinear form f in 3 variables over a separable quadratic extension L of k. One can 
verify the theorem in these cases by using these explicit realisations. 

We will now deduce the general case from the special case above. Let T be a 
maximal k-split torus in P and q~ denote the system of k-roots of G with respect to T. 
We fix an ordering on X(T),  the group of characters on T, such that 0~eq~ is positive 
if the root-space g~ of ~ is contained in It. Let A be the system of simple roots for this 
ordering. Let P1 be a minimal k-parabolic subgroup determined by T and this ordering. 
Let P~- be the (unique) opposite k-parabolic subgroup to P1 which contains T. Let U1 
(resp. Ui-) be the unipotent radical of P1 (resp. P~-) and ul (resp. u~-) the Lie subalgebra 
of g corresponding to UI (resp. U~-). Then u (resp. u~-) is the sum of root spaces g~ 
as e varies over all the positive (resp. negative) k-roots. Now, let V be the smallest 
A-submodule of g containing u. Since G(k) acts on g as k-linear automorphisms, V is 
a k-vector-subspace ofg. Now, given anyroot  ~e(I), we can find an element w~N(T)(k) 
(where N ( T ) = n o r m a l i s e r  of T) such that Ad w(g ~) = gw(~)C u, hence we see that 
ul@u ;- C V. Now for each 0~cA, let T~ be the identity component of the kernel of cr 
Then Z(T~) is a reductive subgroup of G. Let H(a) be the connected semisimple part 
of Z(T~). Then H(~) is a quasi-split simply connected group of k-rank i. Let D(~) 
be the Lie subalgebra of fl corresponding to H(a) (I)(a) may be identified with the Lie 
algebra of H(0~) since the inclusion H(a) , -+G is a separable morphism). Moreover, 
it is not difficult to see that the sum of the D(~), cceA, and 11 + and u~- is all of  fl (one 
can for instance argue by going over to an extension of k over which G is split). Now 
ulc~ I)(0~) is the Lie algebra of the unipotent radical U(a) of the minimal k-parabolic group 
P(0 0 =Ulc~  H(~) of H(0~). Applying the theorem to the rank 1-group H(a),  we conclude 
that VDD(~). Thus V D u + u - +  Y, 19(~)=fl. This proves the theorem. 

sEA 
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Theorem. - -  Let G be a simply connected semisimple algebraic group defined over Qp. Then 
there exists a number field K C (~p and a group H defined over K which is isomorphic to G over Qp. 

I t  is easily seen that the theorem is equivalent to the following. Let g be a 
semisimple Lie algebra over Qp.  Then there exists a number field K C O~p and a 
(semisimple) Lie algebra I? over K such that g is isomorphic to [?| 

Consider a vector space V over 0 of  dimension equal to dimQp(g). Let 

V = V |  Q.p and E = HomQp(A~V, V). 

Let % : V->  g be any Q.p-linear isomorphism. Then the bracket operation on g gives 

rise to an element f 0 e E  (through the isomorphism %). Let  Xl ,  . . . ,  X r be a basis 
of  V over O and for I < i < j < k < r ,  let 

q)~jk : E-->V 

be the map 

aP,jk(f) =f(X~. , f (Xj ,  Xk) ) + f (X~ , f (Xk ,  X,)) + f ( X  k , f ( x  o X~)). 

n -1 Then the set L of f which define a Lie algebra structure on V is precisely 1 <i<i<k_<raPijk (O). 
On the other hand the group GL(V) operates on E in a natural fashion and we have 
the following diagram 

GL(V) E ~ 1-[ V 
l ~ i < j < k ~ r  

where i ( x )~x ( fo )  and the image of i is contained in the fibre of *~--{r r 
over o. Now the tangent space to E at f can be identified with ]~ itself. One checks 

that the kernel of daP at f0 is the set of all closed 2-forms on V with respect to the Lie algebra 
structure on V defined by f0 with coefficients in the adjoint representations; the image 
of di (at identity) similarly turns out to be the space of  exact forms. Since the Lie 

algebra fl is semisimple, H~(g, g ) ~ o .  It  follows that Image di=kernel  dap (at f0 ). Now 
from the implicit function theorem, one deduces that Image i is a neighbourhood off0  

in aP-~(o) z L and that we can find coordinate projections Pl, �9 �9 Pm of E (with respect 
to the standard basis of E deduced from X1, . . . ,  Xr) such that p ~-(Pl, - �9 -, Pn) : L--~O'~ 
is a diffeomorphism of a (non-singular) open neighbourhood o f f0  in L onto an open 

subset of  O~. Now choose f c I m a g e  i such that p~(f) are algebraic over Q., I < i <  m. 
Then we claim that all the coordinates o f f  are algebraic over Q:  this follows from the 

fact that the aPi~ k are polynomials on E with coefficients in Q .  This proves the theorem. 
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