

Pure rotational spectroscopy of Vinyl Mercaptan

Marie-Aline Martin-Drumel¹, Oliver Zingsheim, Sven Thorwirth, Holger S. P. Müller, Frank Lewen & Stephan Schlemmer

I. Physikalisches Institut, Universität zu Köln, Cologne, Germany

> ISMS 69th meeting June 16, 2014

¹Present address: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Acetaldehyde

Vinyl Alcohol

Oxirane

Thioacetaldehyde

Thiirane

C_2H_4O vs. C_2H_4S

Acetaldehyde Detected in the ISM C. A. Gottlieb, Mol. Gal. Envir. (1973)

Vinyl Alcohol Detected in the ISM

B. E. Turner, Astrophys. J. (2001)

Oxirane Detected in the ISM

J. E. Dickens, Astrophys. J. (1997)

Thioacetaldehyde

Vinyl Mercaptan

Thiirane

C_2H_4O vs. C_2H_4S

Acetaldehyde Detected in the ISM C. A. Gottlieb, Mol. Gal. Envir. (1973)

Vinyl Alcohol Detected in the ISM

B. E. Turner, Astrophys. J. (2001)

Oxirane Detected in the ISM

J. E. Dickens, Astrophys. J. (1997)

Thioacetaldehyde

Vinyl Mercaptan

Thiirane T. Hirao, J. Mol. Spectrosc. (2001) M. K. Bane, J. Chem. Phys. (2012)

 C_2H_4O vs. C_2H_4S

Acetaldehyde Detected in the ISM C. A. Gottlieb, Mol. Gal. Envir. (1973)

Vinyl Alcohol Detected in the ISM

B. E. Turner, Astrophys. J. (2001)

Oxirane Detected in the ISM

J. E. Dickens, Astrophys. J. (1997)

Thiirane T. Hirao, J. Mol. Spectrosc. (2001) M. K. Bane, J. Chem. Phys. (2012)

Thioacetaldehyde

Experimental background

High resolution spectroscopy: limited to MW studies (up to 40 GHz)^{1,2,3}

- ▶ *syn* and *anti* rotamers
- ▶ Ground + excited states (SH torsion, CCS bending)
- D-isotopologues
- Produced by pyrolysis of 1,2-ethanedithiol

¹M. Tanimoto et al., J. Mol. Spectrosc. 78, 95 (1979)

²M. Tanimoto & J. N. Mcdonald, J. Mol. Spectrosc. 78, 106 (1979)

³V. Almond et al., J. Mol. Struct. 128, 337 (1985)

Experimental set-up

- ▶ Frequency multiplication chain (70 GHz 1.1 THz)
- ▶ 5 m long absorption cell
- Radio-frequency (RF) discharge

10 m absorption length

- Precursor: 1,2-ethanedithiol (liquid)
- ▶ Discharge power: \leq 5W
- Pressure: 10 µbar (flow)

Experimental conditions

- Frequency range covered:
 - ∘ 70 120 GHz (steps 10 kHz)
 - 170 250 GHz (steps 20 kHz)
- 20 ms time constant
- Second harmonic detection

"broad" portion of the spectrum

- ▶ 297 transitions (main isotopologue, GS)
- ▶ 263 *a*-type transitions ($J''_{max} = 23$, $K''_{a, max} = 17$)
- ▶ 34 *b*-type transitions $(J''_{max} = 24, K''_{a, max} = 3)$

- ▶ 164 transitions (main isotopologue, GS)
- ▶ 150 *a*-type transitions $(J''_{max} = 20, K''_{a, max} = 14)$
- ▶ 14 *b*-type transitions $(J''_{max} = 18, K''_{a, max} = 3)$

Watson-S reduction (SPFIT/SPCAT¹)

 ${\scriptstyle \triangleright}\,$ data from the literature 2,3 + new measurements

Parameter	syn				anti			
/MHz	This work		Previous study ²		This work		Previous study ³	
A	49816.0400	(40)	49815.28	(06)	49423.5651	(39)	49422.75	(5)
В	5835.708397	(70)	5835.716	(14)	5897.21141	(16)	5897.215	(9)
С	5222.075319	(66)	5222.081	(11)	5279.43977	(18)	5279.436	(9)
$D_J imes 10^3$	2.723864	(76)	2.85	(17)	3.09748	(16)	3.07	(17)
$D_{JK} imes 10^3$	-33.4946	(16)	-33.2	(21)	-37.6199	(32)	-38.5	(17)
D _K	0.79167	(32)			0.80927	(34)		
$d_1 imes 10^3$	0.424378	(54)	0.425	(35)	0.47277	(20)	0.498	(51)
$d_2 imes 10^3$	-0.023615	(42)			-0.03114	(21)		
$H_{KJ} imes 10^6$	-3.1334	(42)			-4.390	(28)		
$H_{JK} imes 10^9$	- 9.9	(20)						
Nlines	329		37		196		32	
RMS / kHz	48				52			
σ	1.55				1.38			

¹H. M. Pickett, J. Mol. Spectrosc. 148, 371 (1991)

²M. Tanimoto et al., J. Mol. Spectrosc. 78, 95 (1979)

³M. Tanimoto & J. N. Mcdonald, J. Mol. Spectrosc. 78, 106 (1979)

Watson-S reduction (SPFIT/SPCAT¹)

${\scriptstyle \triangleright}\,$ data from the literature 2,3 + new measurements

Parameter	syn				anti			
/MHz	This work		$Previous\ study^2$		This work		Previous study ³	
A	49816.0400	(40)	49815.28	(06)	49423.5651	(39)	49422.75	(5)
В	5835.708397	(70)	5835.716	(14)	5897.21141	(16)	5897.215	(9)
С	5222.075319	(66)	5222.081	(11)	5279.43977	(18)	5279.436	(9)
$D_J imes 10^3$	2.723864	(76)	2.85	(17)	3.09748	(16)	3.07	(17)
$D_{JK} imes 10^3$	-33.4946	(16)	-33.2	(21)	-37.6199	(32)	-38.5	(17)
D _K	0.79167	(32)			0.80927	(34)		
$d_1 imes 10^3$	0.424378	(54)	0.425	(35)	0.47277	(20)	0.498	(51)
$d_2 imes 10^3$	- 0.023615	(42)			-0.03114	(21)		
$H_{KJ} imes 10^6$	-3.1334	(42)			-4.390	(28)		
$H_{JK} imes 10^9$	- 9.9	(20)						
Nlines	329		37		196		32	
RMS / kHz	48				52			
σ	1.55				1.38			

¹H. M. Pickett, J. Mol. Spectrosc. 148, 371 (1991)

²M. Tanimoto et al., J. Mol. Spectrosc. 78, 95 (1979)

³M. Tanimoto & J. N. Mcdonald, J. Mol. Spectrosc. 78, 106 (1979)

Watson-S reduction (SPFIT/SPCAT¹)

 ${\scriptstyle \triangleright}\,$ data from the literature 2,3 + new measurements

Parameter	syn				anti			
/MHz	This work		Previous study ²		This work		Previous study ³	
Α	49816.0400	(40)	49815.28	(06)	49423.5651	(39)	49422.75	(5)
В	5835.708397	(70)	5835.716	(14)	5897.21141	(16)	5897.215	(9)
С	5222.075319	(66)	5222.081	(11)	5279.43977	(18)	5279.436	(9)
$D_J imes 10^3$	2.723864	(76)	2.85	(17)	3.09748	(16)	3.07	(17)
$D_{JK} imes 10^3$	-33.4946	(16)	-33.2	(21)	-37.6199	(32)	-38.5	(17)
D_K	0.79167	(32)			0.80927	(34)		
$d_1 imes 10^3$	0.424378	(54)	0.425	(35)	0.47277	(20)	0.498	(51)
$d_2 imes 10^3$	-0.023615	(42)			-0.03114	(21)		
$H_{KJ} imes 10^6$	-3.1334	(42)			-4.390	(28)		
$H_{JK} imes 10^9$	- 9.9	(20)						
Nlines	329		37		196		32	
RMS /kHz	48				52			
σ	1.55				1.38			

¹H. M. Pickett, J. Mol. Spectrosc. 148, 371 (1991)

²M. Tanimoto et al., J. Mol. Spectrosc. 78, 95 (1979)

³M. Tanimoto & J. N. Mcdonald, J. Mol. Spectrosc. 78, 106 (1979)

Prospects

- Geometry optimization
 - \rightarrow study of more isotopologues (FTMW)

Prospects

- \blacktriangleright Geometry optimization
 - \rightarrow study of more isotopologues (FTMW)
- ▶ Astronomical searches in the millimeter-wave range

Results

Acknowledgements

Cologne Laboratory Astrophysics Group

Acknowledgements

