SOME CONGRUENCE PROPERTIES OF THE ϕ -FUNCTION

By P. KESAVA MENON

(Madras Christian College, Tambaram)

Received August 6, 1946
(Communicated by Prof. B. S. Madhava Rao)

Let $\phi(n)$ denote the number of numbers not greater than and prime to n. Then the following lemma can easily be proved:

Lemma 1.—If a and b are prime to n and m is the least positive integer for which

$$a^m \equiv b^m \mod n$$

then every integer N such that

$$a^{N} \equiv b^{N} \mod n$$

is a multiple of m; in particular $\phi(n)$ is a multiple of m.

We now proceed to prove the following:

THEOREM 1.—If a is greater than and prime to b, then

$$\phi\left(a^n-b^n\right)\equiv 0\bmod n.$$

For, obviously

$$a^n \equiv b^n \bmod (a^n - b^n);$$

and if r < n, then $a^r - b^r < a^n - b^n$, so that

$$a^r \not\equiv b^r \mod (a^n - b^n).$$

It follows from lemma 1 that n is a divisor of $\phi(a^n - b^n)$.

THEOREM 2.—If a is prime* to b and $n \ge 2$, then

$$\phi \{a^{m(n-1)} + a^{m(n-2)}b^m + a^{m(n-3)}b^{2m} + \ldots + b^{m(n-1)}\} \equiv 0 \mod mn.$$

Proof.—It is clear that

$$a^{mn} - b^{mn} \equiv 0 \mod \{a^{m(n-1)} + a^{m(n-2)}b^{m} + \ldots + b^{m(n-1)}\}$$
 (1)

If N is the least positive integer such that

$$a^{N} - b^{N} \equiv 0 \mod \{a^{m(n-1)} + a^{m(n-2)}b^{m} + \ldots + b^{m(n-1)}\}$$
 (2)

then, by lemma 1, N is a divisor of mn. Also, for $N \le m(n-1)$,

$$|a^{N}-b^{N}| < a^{m(n-1)} + a^{m(n-2)}b^{m} + \ldots + b^{m(n-1)}$$

^{*} Here, as well as in what follows we shall exclude the case a = b = 1.

Therefore

$$mn \geqslant N \geqslant m(n-1).$$
 (3r)

Let g be the g.c.d. of m and N and let

$$m = gm_1$$
, $N = gN_1$.

Writing $a^g = a$ and $b^g = \beta$ we see from (2) that N_1 is the least positive intege) such that

$$a^{N_1} \equiv \beta^{N_1} \mod \{a^{m_1(n-1)} + a^{m_1(n-2)} \beta^{m_1} + \ldots + \beta^{m_1(n-1)}\}.$$

It follows that N_1 is a divisor of m_1n , and since N_1 is prime to m_1 , that N_1 is a divisor of n. But from (3) we see that

$$N_1 \geqslant m_1(n-1) \geqslant (n-1).$$

Hence $N_1 = n$, $m_i = 1$, and so m = g, N = mn.

Therefore, by lemma 1, mn is a divisor of

$$\phi \{a^{m(n-1)} + a^{m(n-2)}b^m + \ldots + b^{m(n-1)}\}.$$

2. Let $n = p^{\alpha} n_1$, where p is prime and n_1 is prime to p. Then if we write

$$f(m,n) = a^{m(n-1)} + a^{m(n-2)}b^{m} + \ldots + b^{m(n-1)}$$

we have

Lemma 2.—
$$a^n - b^n = (a^{n_1} - b^{n_1}) \prod_{i=1}^{a} f(n/p^i, p).$$

Let us further suppose that a is prime to b. Then we have

Lemma 3.—The g.c.d. of any two of the numbers

$$a^{n_1} - b^{n_1}, f(n/p^i, p) \ (i = 1, 2, \ldots, a)$$

is either p or 1.

For, if d is a common divisor of

$$f(n/p^j, p)$$
 and $f(n/p^i, p)$ $(i < j)$.

then

$$0 \equiv f(n/p^{j}, p) (a^{n/p^{j}} - b^{n/p^{j}})$$
$$= a^{n/p^{j-1}} - b^{n/p^{j-1}} \mod d;$$

and so

$$0 \equiv f(n/p^i, p) \equiv pa^{n(p-1)/p^i} \mod d$$

so that, since d is prime to a,

$$d = p \text{ or } 1.$$

Similarly we can show that the g.c.d. of

$$a^{n/p^{\alpha}} - b^{n/p^{\alpha}}$$
 and $f(n/p^i, p)$

is either p or 1.

Lemma 4. $f(n/p^i, p) = f(n/p^\alpha, p) \mod p$ $(i = 1, 2, \ldots, \alpha)$.

This follows immediately from

$$a^{n/p^4} = a^{p^{\alpha-\epsilon} n/p^{\alpha}} = a^{n/p^{\alpha}} \mod p.$$

Lemma 5. If $f(m, p) = 0 \mod p$, then

$$a^m = b^m \mod p$$
.

For.

$$0 = f(m, p) (a^m - b^m) = a^{mp} - b^{mp} \mod p,$$

and

$$a^{mp} = a^m \mod p$$

$$b^{mp} \neq b^m \mod p$$

so that

$$0 = a^{mp} - b^{mp} = a^m - b^m \mod p.$$

Conversely, we have

Lemma 6. If $a^m \approx b^m \mod p$, then

$$f(m, p) \in 0 \mod p$$
.

From lemmas 2 to 6 we get

Lemma 7. If any one of

$$a^{m_1} = b^{m_2}, f(n/p^i, p) = (i = 1, 2, \ldots, \alpha)$$

is prime to p, then they are all prime to each other, and

$$\phi(a^n - b^n) - \phi(a^{ni} - b^n) \prod_{i=1}^n \phi\{f(n/p^i, p)\}$$

Similarly we get

Lemma 8. If any one of $a^{n_i} = b^{n_i}$, $f(n/p^i, p)$ (i > 1, 2, ..., a) is divisible by p, then so are all of them and

$$(a^{n_1}-b^{n_1})/p$$
, $f(n/p^i, p)/p$ $(i=1, 2, \ldots, a)$

are prime to each other; further, $a^n - b^n$ is divisible by $p^{\alpha+1}$ and

$$\phi \{(a^n - b^n)/p^{\alpha+1}\} = \phi \{(a^{n_1} - b^{n_2})/p\} \prod_{i=1}^{\alpha} \phi \{f(n/p^i, p)/p\}.$$

Lemma 9. Nore of

$$f(n/p^i, p)$$
 $(i = 1, 2, ..., \alpha - 1)$

is divisible by a higher power of p than the first.

If one of a, b is a multiple of p, then the other is not, and so $f(n|p^i, p)$ is clearly prime to p. Therefore we may assume that a and b are both prime to p. Then

$$\frac{n}{ap^i} \left(1 - \frac{1}{p}\right) \equiv 1 \mod p^2, \ a > i + 1$$

 $a^{n/p^i} \equiv a^{n/p^{i+1}} \bmod p^2, \ a > i+1,$

and so

i.e.,

$$f(n/p^i, p) = f(n/p^{i+1}, p) \mod p^2, i < \alpha - 1.$$

It follows that if any one of $f(n/p^i, p)$ (i = 1, 2, ..., a - 1) is divisible by p^2 , then so are all the others; but this cannot be the case because of lemma 3.

We are now in a position to prove

THEOREM 3.—If $n = p^a n_1$ where p is the smallest prime factor of n, and n_1 is prime to p, and a is greater than and prime to b, then

$$\phi (a^n - b^n)$$

is divisible by

$$\phi(a^{n_1}-b^{n_1}) n^{\alpha}/p^{\alpha(\alpha-1)/2}$$
 if a^n-b^n is prime to p.

and by

$$\phi(a^{n_1}-b^{n_2})(pn)^a/p^{a(a-1)/2}$$
 if p is a divisor of a^n-b^n .

Proof.—If any one of $a^{n_1} - b^{n_2}$, $f(n/p^i, p)$ $(i = 1, 2, ..., \alpha)$ is prime then by lemma 7 we have

$$\phi(a^n - b^n) = \phi(a^{n_1} - b^{n_2}) \prod_{i=1}^{n} \phi\{f(n/p^i, p)\}.$$

But, by theorem 2

$$\phi\left\{f(n/p^i,p)\equiv 0 \bmod n/p^{i-1},\right.$$

and so

$$\phi(a^n - b^n) \equiv 0 \mod \phi(a^{n_1} - b^{n_2}) \prod_{i=1}^a n/p^{i-1}.$$

If, on the other hand, $a^{n_1} - b^{n_1}$, $f(n/p^i, p)$ are all divisible by p, then by 1emma 8

$$\phi \{(a^{n_1}-b^{n_1})/p^{a+1}\} = \phi \{(a^{n_1}-b^{n_1})/p\} \prod_{i=1}^a \phi \{f(n/p^i, p)/p\}.$$

But $f(n/p^i, p)/p$ being prime to p for i < a, (by lemma 9)

$$\phi \{f(n/p^i, p)\} = \phi \{f(n/p^i, p)/p\} \phi (p),$$

and so, by theorem 2

$$\phi \{f(n/p^i, p)/p\} \equiv 0 \mod n/p^{i-1}, i < \alpha,$$

since every prime factor of n/p^{i-1} is greater than $\phi(p) = p - 1$. Further, if the greatest power of p dividing $a^n - b^n$ be $p^{\alpha+1+r}$ $(r \ge 0)$, then either

$$a^{n_1} - b^{n_1}$$
 or $f(n_1, p)$ is divisible by p^{r+1} and
$$\phi(a^n - b^n) = \phi(p^{\alpha+1+r}) \phi[(a^n - b^n)/p^{\alpha+1+r}]$$
$$= \begin{cases} p^{\alpha+1} \phi[(a^n - b^n)/p^{\alpha+1}] & \text{if } r \ge 1 \\ p^{\alpha}(p-1) \phi[(a^n - b^n)/p^{\alpha+1}] & \text{if } r = 0; \end{cases}$$

and

$$\phi(a^{n_1} - b^{n_1}) = \phi(p^{r+1}) \phi[(a^{n_1} - b^{n_1})/p^{r+1}]$$

$$= \begin{cases} p \phi[(a^{n_1} - b^{n_1})/p] & \text{if } r \ge 1, \\ (p-1) \phi[(a^{n_1} - b^{n_1})/p & \text{if } r = 0. \end{cases}$$

It follows that

$$\phi(a^{n} - b^{n}) = p^{\alpha} \phi(a^{n_{1}} - b^{n_{1}}) \cdot \frac{\phi[(a^{n} - b^{n})/p^{\alpha + 1}]}{\phi[(a^{n_{1}} - b^{n_{1}})/p]}$$

$$= p^{\alpha} \phi(a^{n_{1}} - b^{n_{1}}) \prod_{i=1}^{\alpha} \phi\{f(n/p^{i}, p)/p\}$$

$$\equiv 0 \mod p^{\alpha} \phi(a^{n_{1}} - b^{n_{1}}) \prod_{i=1}^{\alpha} n/p^{i-1},$$

since $\phi \{ f(n_1, p)/p \}$ is certainly divisible by $n_1 p$ by Theorem 2 whether $f(n_1, p)$ is divisible by a higher power of p than the first ore not, from the fact that n_1 is prime to $\phi(p)$. This completes the proof of the theorem.

From theorem 3 we get the following refinement of theorem 1.

THEOREM 4.—If $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$, where $p_1 > p_2 > \dots > p_r$ are the distinct prime factors of n, and a is greater than and prime to b, then

$$\phi\left(a^{n}-b^{n}\right)\equiv 0 \bmod \prod_{i=1}^{r} p_{i}^{\alpha_{i}\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{i-1}\right)+\frac{\alpha_{i}\left(\alpha_{i}+1\right)}{2}}$$

Proof.—From theorem 3 we have

$$\phi(a^n - b^n) = 0 \mod \phi(a^{n/p_1^{\alpha_1}} - b^{n/p_1^{\alpha_1}}) \times \dot{n}^{\alpha_1}/p_1^{\alpha_1(\alpha_1 - 1)/2}.$$

Since p_2 is the least prime factor of $n/p_1^{\alpha 1}$ we have similarly

$$\phi\left(a^{n/p_{1}^{\alpha_{1}}}-b^{n/p_{1}^{\alpha_{1}}}\right) \equiv 0 \mod \phi\left(a^{n/p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}}-b^{n/p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}}\right) \times \left(\frac{h}{p_{1}^{\alpha_{1}}}\right)^{\alpha_{2}} \left(p_{2}^{\alpha_{2}(\alpha_{2}-1)}\right)^{2}$$

and so on. Thus

$$\phi\left(a^{n}-b^{n}\right)\equiv 0 \bmod \prod_{i=1}^{r} \left(\frac{n}{p_{1}^{a_{1}}\ldots p_{i-1}^{a_{i-1}}}\right)^{\alpha_{i}} / p_{i}^{a_{i}(\alpha_{i-1})}$$

which is easily seen to be theorem 4.