

VISIBLE PHOTODISSOCIATION SPECTRA OF THE 1-METHYL AND 2-METHYLNAPHTHALENE CATIONS: LASER SPECTROSCOPY AND THEORETICAL SIMULATIONS

H. FRIHA, G. FERAUD, C. FALVO, P. PARNEIX, T. PINO, Ph. BRECHIGNAC, Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud, Orsay, France;

TYLER TROY, TIMOTHY SCHMIDT, School of Chemistry, The University of Sydney, Sydney, NSW, Australia;

ZOUBEIDA DHAOUADI, LSAMA, University Tunis El Manar, Tunis, Tunisia.

PAH cations in space and the DIB's spectra Methyl substitution is relevant for astro-PAHs

Tan, X.; Majewski, W.; Plusquellic, D.; Pratt, D. Methyl-group torsional dynamics from rotationally resolved electronic spectra: 1-methylnaphthalene and 2-methylnaphthalene. NEUTRALS J. Chem. Phys. 1991, 94, 7721–7733

The experimental challenge of PAH cations

Andrews, L.; Kelsall, B.; Blankenship, T.

Vibronic absorption spectra of naphthalene and substituted naphthalene cations in solid argon. J. Phys. Chem. 1982, 86, 2916–2926.

What about the gas-phase spectrum?

The « Argon tagging trick »

In the case of aromatic species, the electronic spectrum of the bare cation can be deduced by such tagging photodissociation spectroscopy when the properties of the aromatic chromophore M solvated by RG atoms are known in the $M^+-(RG)_n$ n=1,2 clusters.

The observed perturbation, due to the solvation, is known as the electronic shift and is additive upon an increasing number of rare gas atoms.

Nowadays widely spread ...

Experimental set-up

Principle of the technique

How to record a spectrum of PAH⁺-argon?

Spectrum = Fragmentation ratio versus laser wavelength

ISMO

A change of protocol

Institut des sciences moléculaires d'orsa

Ions, formed right at the exit of the nozzle, freely fly until they are extracted by a delayed voltage pulse

A typical TOF

Multiplex recording

The photodissociation spectra

UNIVERSITÉ

PARIS

An Optical Parametric Oscillator (0.2 cm–1 bandwidth; Spectra-Physics) was used to photodissociate the cations in the 680–580 nm range.

The Van der Waals spectral shifts : recovering the free gas-phase values

UNIVERSITÉ PARIS

The main results

Separation of the hindered rotor motion from the other intramolecular modes

 $H_{\alpha}(\theta, \mathbf{q}) = H_{\alpha}^{\text{rot}}(\theta) + H_{\alpha}^{\text{vib}}(\mathbf{q})$ full decoupling of θ

Harmonic and Born–Oppenheimer approximations using the cumulant Gaussian fluctuations formalism (CGF)

(Franck-Condon-like)

- Mukamel, S. Principles of nonlinear optical spectroscopy; Oxford University Press: New York, 1995.

- Mukamel, S.; Abramavicius, D. Many-Body Approaches for Simulating Coherent Nonlinear Spectroscopies of Electronic and Vibrational Excitons. Chem. Rev. 2004, 104, 2073–2098.

DFT calculations B97-1 functional, 6-31G* basis set

Hindered rotation

$$H_{\alpha}^{\text{rot}}(\theta) = -B_{\alpha} \frac{\partial^2}{\partial \theta^2} + V_{\alpha}(\theta)$$
$$V_{\alpha}(\theta) = \frac{1}{2} V_{\alpha,3}(1 - \cos(3\theta)) + \frac{1}{2} V_{\alpha,6}(1 - \cos(6\theta))$$

Fit of the Electronic Structure Data

	B_{α} (cm ⁻¹)	V _{α,3} (cm ⁻¹)	$V_{\alpha,6}$ (cm ⁻¹)
1Me–Np+ (D ₀)	5.33	439.4	-31.5
1Me–Np+ (D ₂)	5.30	1226.1	-64.1
2Me–Np+ (D ₀)	5.31	81.3	-0.6
2Me–Np+ (D ₂)	5.32	-92.7	-2.1

For comparison : Methylanthracene S₀ $V_6 \sim 100 \text{ cm}^{-1}$ or less (Baba, 2009)

Extension of the Cumulant Gaussian Fluctuations formalism to include the internal rotation.

Comparison of experiment and theory

Thank you very much for your attention

Full reference for this work: dx.doi.org/10.1021/jp407627x J. Phys. Chem. A 2013, 117, 13664

