Millimiter-wave spectroscopy of OSSO

Marie-Aline Martin-Drumel^{a,1}, Jennifer van Wijngaarden^b, Oliver Zingsheim^a, Sven Thorwirth^a, Frank Lewen^a & Stephan Schlemmer^a

^aI. Physikalisches Institut, Universität zu Köln, Cologne, Germany ^bDepartment of Chemistry, University of Manitoba, Winnipeg, MB, Canada

> ISMS 69th meeting June 16, 2014

¹Present address: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Results & Prospects

Sulfur-Rich Oxides S_nO_m

Sulfur: element with the largest number of binary oxides¹ Lower oxides of sulfur: SO, S_2O , S_2O_2 , S_3O ...

Sulfur containing species in space:

- $\triangleright~{\sim}10$ % of known interstellar molecules
- Detected sulfur oxides: SO₂², SO³
- Observed in molecular clouds, star forming regions, atmospheres (Venus⁴, Io)

- ²L. E. Snyder, Astrophys. J. 198, L81(1975)
- ³C. A. Gottlieb & J. A. Ball, Astrophys. J. 184, L59 (1973)

⁴Image: NASA, http://solarsystem.nasa.gov/planets

¹R. Steudel, Top Curr Chem 231, 203 (2003)

Structural complexity of sulfur oxides

Example: S_4O^1

- 11 stable conformers
- B3LYP/6-31G(2df)
- Energy within 120 kJ/mol

¹M. W. Wong et al., Chem. Eur. J. **13**, 502 (2007) M.A. Martin-Drumel et al.

Introduction

▷ $E(branched) < E(cis) \sim E(trans)^1$

¹Calculation: CCSD(T)/cc-pwCVQZ

²F. J. Lovas et al., J. Chem. Phys. 60, 5005 (1974)

M.A. Martin-Drumel et al.

- ${\scriptstyle \blacktriangleright} \ {\sf E}(\textit{branched}) < {\sf E}(\textit{cis}) \sim {\sf E}(\textit{trans})^1$
- Only the cis isomer have been observed to date²

¹Calculation: CCSD(T)/cc-pwCVQZ

²F. J. Lovas et al., J. Chem. Phys. 60, 5005 (1974)

Spectroscopy of OSSO

- ▶ planar, C_{2v} symmetry
- *b*-type transitions
- ▷ only levels with K_aK_c = ee/oo are populated

¹F. J. Lovas et al., J. Chem. Phys. 60, 5005 (1974)

²S. Thorwirth et al., J. Mol. Struct. 795, 219 (2006)

Spectroscopy of OSSO

- ▶ planar, $C_{2\nu}$ symmetry
- *b*-type transitions
- ▷ only levels with K_aK_c = ee/oo are populated

Previous investigations:

Pure rotational spectroscopy up to 50 GHz^{1,2}

Produced by discharge in SO₂

▶ OSSO (
$$\nu = 0$$
, $\nu_3 = 1$)

▶
$$O^{34}SSO(\nu = 0)$$

- ¹F. J. Lovas et al., J. Chem. Phys. 60, 5005 (1974)
- ²S. Thorwirth et al., J. Mol. Struct. 795, 219 (2006)

Experimental set-up

- ▶ Frequency multiplication chain (70 GHz 1.1 THz)
- ▶ 5 m long absorption cell
- Radio-frequency (RF) discharge

Introduction

Electronic configuration

M.A. Martin-Drumel et al.

 $\mathsf{MG12}$ - Millimiter-wave spectroscopy of OSSO

Introduction

Optical arrangement

10 m absorption length

M.A. Martin-Drumel et al.

- ▶ Precursor: SO₂
- Discharge power: \leq 5W \triangleright
- Pressure: 3 µbar (flow)

SO₂ (GS, $\nu_3 = 1$), SO¹⁸O, SO¹⁷O, S₂O, SO, ³⁴SO, ³³SO, S¹⁸O

Other observed species:

Experimental conditions

- Frequency range covered:
 - 70 120 GHz (steps 10 kHz)
 - 340 500 GHz (steps 50 kHz)
- 20 ms time constant
- Second harmonic detection

Introduction

Experimental details

Results & Prospects

OSSO: ground and $\nu_3 = 1$ states

Results

▶ 608 lines in the ground state (
$$J'' \le 95$$
, $K''_a \le 24$)
70 - 120 GHz, 340 - 500 GHz

▶ 156 lines in
$$\nu_3 = 1$$
 ($J'' \le 54$, $K''_a \le 12$)
70 - 120 GHz

Results

- ▶ 608 lines in the ground state ($J'' \le 95$, $K''_a \le 24$) 70 - 120 GHz, 340 - 500 GHz
- ▶ 156 lines in $\nu_3 = 1$ ($J'' \le 54$, $K''_a \le 12$) 70 - 120 GHz
- $\triangleright\,$ SNR up to 130, unc. down to 5 kHz

Results

- ▷ 608 lines in the ground state ($J'' \le 95$, $K''_a \le 24$) 70 - 120 GHz, 340 - 500 GHz
- ▶ 156 lines in $\nu_3 = 1$ ($J'' \le 54$, $K''_a \le 12$) 70 - 120 GHz
- $\triangleright\,$ SNR up to 130, unc. down to 5 kHz
- ▶ fc-CCSD(T)/cc-pV(Q+d)Z calculation: Vibrationally excited transitions assigned to the ν_3 mode

Frequency and uncertainty

Pseudo-Voigt profile of type (1 - s)G + sL:

$$y(\nu) = A\left\{ (1-s)exp\left[-\ln 2\left(\frac{\nu-B}{C}\right)^2 \right] + s\frac{1}{1+\left(\frac{\nu-B}{C}\right)^2} \right\}$$

A height of the line, B center frequency, C FWHM, s "shape"

Uncertainty on line frequency¹:

$$\delta(\nu) = \frac{(C\Delta\nu)^{1/2}}{SNR} \left\{ (1-s) \left(\frac{2}{\pi \ln 2}\right)^{1/4} + s \left(\frac{32}{\pi}\right)^{1/2} \right\}$$

¹D. Landman et al., Astrophys. J. 261, 732 (1982)

M.A. Martin-Drumel et al.

Frequency and uncertainty

M.A. Martin-Drumel et al.

Frequency and uncertainty

M.A. Martin-Drumel et al.

 $\mathsf{MG12}$ - Millimiter-wave spectroscopy of OSSO

Watson-A reduction with SPFIT/SPCAT programs¹

GS
$$u_3 = 1$$

▶ 74 lines – literature^{2,3}

Fits

▶ 608 lines – this work

- 20 lines literature²
- 156 lines this work

- ¹H. M. Pickett, J. Mol. Spectrosc. **148**, 371 (1991)
- ²F. J. Lovas et al., J. Chem. Phys. 60, 5005 (1974)
- ³S. Thorwirth et al., J. Mol. Struct. 795, 219 (2006)

Fits

Watson-A reduction with SPFIT/SPCAT programs¹

GS $u_3 = 1$

- ▶ 74 lines literature^{2,3}
- ▶ 608 lines this work
- RMS= 40 kHz (our data: 23 kHz)

▶ *σ* = 0.99

¹H. M. Pickett, J. Mol. Spectrosc. **148**, 371 (1991)
 ²F. J. Lovas et al., J. Chem. Phys. **60**, 5005 (1974)
 ³S. Thorwirth et al., J. Mol. Struct. **795**, 219 (2006)

- 20 lines literature²
- ▶ 156 lines this work
- RMS= 50 kHz (our data: 7 kHz)

▶ σ = 1.04

Parameter	ν	= 0	ν_3	= 1
(MHz)	This work	S. Thorwirth (2006)	This work	F. J. Lovas (1974)
A	12972.92980 (10)	12972.93037 (72)	13133.21612 (45)	13133.245 (22)
В	3488.970410 (34)	3488.96986 (33)	3469.568432 (77)	3469.5754 (62)
С	2745.054829 (31)	2745.05543 (20)	2736.199454 (72)	2736.2036 (77)
$\Delta_J imes 10^3$	3.380639 (20)	3.3717 (44)	3.180504 (79)	3.125 (45)
$\Delta_{JK} imes 10^3$	-26.97455 (14)	-26.926 (35)	-26.5592 (13)	-26.07 (39)
$\Delta_K imes 10^3$	97.04625 (57)	96.921 (38)	104.136 (15)	98.7 (46)
$\delta_{I} \times 10^{3}$	1.0308574 (72)	1.0313 (17)	0.957989 (25)	0.9662 (80)
$\delta_K \times 10^3$	6.50171 (27)	6.158 (83)	6.64716 (87)	6.21 (39)
$\Phi_J \times 10^9$	0.3703 (49)	13.9 (24)		
$\Phi_{JK} \times 10^6$	0.16598 (12)	0.087 (30)	0.1621 (17)	
$\Phi_{KJ} imes 10^6$	-1.92136 (48)	-0.89 (15)	-1.985 (31)	
$\Phi_K imes 10^6$	5.6180 (16)	3.51 (43)	6.74 (37)	
$φ_J imes 10^9$	0.4595 (23)	-11.5 (11)	0.320 (19)	
$\phi_{JK} imes 10^6$	-0.01177 (10)		-0.0159 (14)	
$\phi_K \times 10^6$	0.7542 (25)		0.755 (32)	
$L_{J} \times 10^{12}$	0.06273 (43)			
$L_{JJK} \times 10^{12}$	-0.182 (18)			
$L_{JK} \times 10^9$	-0.02326 (46)			
$L_{KKJ} \times 10^9$	0.1688 (14)		-1.00 (17)	
$L_K \times 10^9$	-0.4099 (15)		7.7 (18)	
$I_J imes 10^{12}$	0.02917 (22)			
$I_{JK} \times 10^{12}$	0.295 (12)			
$I_{KJ} imes 10^9$	0.02363 (37)			
$I_K \times 10^9$	-0.1493 (58)			

M.A. Martin-Drumel et al.

Parameter	ν	= 0	ν_3	= 1
(MHz)	This work	S. Thorwirth (2006)	This work	F. J. Lovas (1974)
Α	12972.92980 (10)	12972.93037 (72)	13133.21612 (45)	13133.245 (22)
В	3488.970410 (34)	3488.96986 (33)	3469.568432 (77)	3469.5754 (62)
C	2745.054829 (31)	2745.05543 (20)	2736.199454 (72)	2736.2036 (77)
$\Delta_J \times 10^3$	3.380639 (20)	3.3717 (44)	3.180504 (79)	3.125 (45)
$\Delta_{JK} imes 10^3$	-26.97455 (14)	-26.926 (35)	-26.5592 (13)	-26.07 (39)
$\Delta_K imes 10^3$	97.04625 (57)	96.921 (38)	104.136 (15)	98.7 (46)
$\delta_J \times 10^3$	1.0308574 (72)	1.0313 (17)	0.957989 (25)	0.9662 (80)
$\delta_K \times 10^3$	6.50171 (27)	6.158 (83)	6.64716 (87)	6.21 (39)
$\Phi_J \times 10^9$	0.3703 (49)	13.9 (24)		
$\Phi_{IK} \times 10^6$	0.16598 (12)	0.087 (30)	0.1621 (17)	
$\Phi_{KJ} \times 10^6$	-1.92136 (48)	-0.89 (15)	-1.985 (31)	
$\Phi_K \times 10^6$	5.6180 (16)	3.51 (43)	6.74 (37)	
$φ_J imes 10^9$	0.4595 (23)	-11.5 (11)	0.320 (19)	
$\phi_{JK} \times 10^6$	-0.01177 (10)		-0.0159 (14)	
$\phi_K \times 10^6$	0.7542 (25)		0.755 (32)	
$L_{J} \times 10^{12}$	0.06273 (43)			
$L_{JJK} \times 10^{12}$	-0.182 (18)			
$L_{JK} \times 10^9$	-0.02326 (46)			
$L_{KKJ} \times 10^9$	0.1688 (14)		-1.00 (17)	
$L_K \times 10^9$	-0.4099 (15)		7.7 (18)	
$I_{J} \times 10^{12}$	0.02917 (22)			
$I_{JK} \times 10^{12}$	0.295 (12)			
$I_{KJ} \times 10^9$	0.02363 (37)			
$I_K \times 10^9$	-0.1493 (58)			

M.A. Martin-Drumel et al.

Parameter	ν	r = 0	ν_3	= 1
(MHz)	This work	S. Thorwirth (2006)	This work	F. J. Lovas (1974)
A	12972.92980 (10)	12972.93037 (72)	13133.21612 (45)	13133.245 (22)
В	3488.970410 (34)	3488.96986 (33)	3469.568432 (77)	3469.5754 (62)
C	2745.054829 (31)	2745.05543 (20)	2736.199454 (72)	2736.2036 (77)
$\Delta_J \times 10^3$	3.380639 (20)	3.3717 (44)	3.180504 (79)	3.125 (45)
$\Delta_{JK} imes 10^3$	-26.97455 (14)	-26.926 (35)	-26.5592 (13)	-26.07 (39)
$\Delta_K imes 10^3$	97.04625 (57)	96.921 (38)	104.136 (15)	98.7 (46)
$\delta_J \times 10^3$	1.0308574 (72)	1.0313 (17)	0.957989 (25)	0.9662 (80)
$\delta_K \times 10^3$	6.50171 (27)	6.158 (83)	6.64716 (87)	6.21 (39)
$\Phi_J \times 10^9$	0.3703 (49)	13.9 (24)		
$\Phi_{JK} \times 10^6$	0.16598 (12)	0.087 (30)	0.1621 (17)	
$\Phi_{KJ} imes 10^6$	-1.92136 (48)	-0.89 (15)	-1.985 (31)	
$\Phi_K imes 10^6$	5.6180 (16)	3.51 (43)	6.74 (37)	
$φ_J imes 10^9$	0.4595 (23)	-11.5 (11)	0.320 (19)	
$\phi_{JK} \times 10^6$	-0.01177 (10)		-0.0159 (14)	
$\phi_K \times 10^6$	0.7542 (25)		0.755 (32)	
$L_{J} \times 10^{12}$	0.06273 (43)			
$L_{JJK} \times 10^{12}$	-0.182 (18)			
$L_{JK} \times 10^9$	-0.02326 (46)			
$L_{KKJ} \times 10^9$	0.1688 (14)		-1.00 (17)	
$L_K \times 10^9$	-0.4099 (15)		7.7 (18)	
$I_{J} \times 10^{12}$	0.02917 (22)			
$I_{JK} \times 10^{12}$	0.295 (12)			
$I_{KJ} imes 10^9$	0.02363 (37)			
$I_K \times 10^9$	-0.1493 (58)			

M.A. Martin-Drumel et al.

Parameter	ν	= 0	ν_3	= 1
(MHz)	This work	S. Thorwirth (2006)	This work	F. J. Lovas (1974)
A	12972.92980 (10)	12972.93037 (72)	13133.21612 (45)	13133.245 (22)
В	3488.970410 (34)	3488.96986 (33)	3469.568432 (77)	3469.5754 (62)
С	2745.054829 (31)	2745.05543 (20)	2736.199454 (72)	2736.2036 (77)
$\Delta_J imes 10^3$	3.380639 (20)	3.3717 (44)	3.180504 (79)	3.125 (45)
$\Delta_{JK} \times 10^3$	-26.97455 (14)	-26.926 (35)	-26.5592 (13)	-26.07 (39)
$\Delta_K imes 10^3$	97.04625 (57)	96.921 (38)	104.136 (15)	98.7 (46)
$\delta_J \times 10^3$	1.0308574 (72)	1.0313 (17)	0.957989 (25)	0.9662 (80)
$\delta_K \times 10^3$	6.50171 (27)	6.158 (83)	6.64716 (87)	6.21 (39)
$\Phi_J \times 10^9$	0.3703 (49)	13.9 (24)		
$\Phi_{JK} \times 10^6$	0.16598 (12)	0.087 (30)	0.1621 (17)	
$\Phi_{KJ} imes 10^6$	-1.92136 (48)	-0.89 (15)	-1.985 (31)	
$\Phi_K imes 10^6$	5.6180 (16)	3.51 (43)	6.74 (37)	
$φ_J imes 10^9$	0.4595 (23)	-11.5 (11)	0.320 (19)	
$\phi_{JK} imes 10^6$	-0.01177 (10)		-0.0159 (14)	
$\phi_K \times 10^6$	0.7542 (25)		0.755 (32)	
$L_{J} \times 10^{12}$	0.06273 (43)			
$L_{JJK} \times 10^{12}$	-0.182 (18)			
$L_{JK} \times 10^9$	-0.02326 (46)			
$L_{KKJ} \times 10^9$	0.1688 (14)		-1.00 (17)	
$L_K \times 10^9$	-0.4099 (15)		7.7 (18)	
$I_J imes 10^{12}$	0.02917 (22)			
$I_{JK} \times 10^{12}$	0.295 (12)			
$I_{KJ} imes 10^9$	0.02363 (37)			
$I_K \times 10^9$	-0.1493 (58)			

M.A. Martin-Drumel et al.

Watson-A reduction with SPFIT/SPCAT programs¹

- ▶ 19 lines literature²
- ▶ 58 lines this work (70 120 GHz)
- RMS= 72 kHz (our data: 17 kHz)

▶ σ = 1.03

¹H. M. Pickett, J. Mol. Spectrosc. **148**, 371 (1991)
 ²F. J. Lovas et al., J. Chem. Phys. **60**, 5005 (1974)

Molecular parameters of O³⁴SSO

Parameter	This work	F. J. Lovas (1974)
A	12845.6535 (42)	12845.671 (28)
В	3441.42831 (65)	3441.439 (16)
С	2709.90814 (62)	2709.911 (13)
$arDelta_J imes 10^3$	3.21332 (89)	3.210 (96)
$arDelta_{JK} imes 10^3$	-25.7457 (62)	-25.30 (44)
$arDelta_{K} imes 10^{3}$	94.80 (14)	89.8 (60)
$\delta_J imes 10^3$	0.978236 (86)	0.9884 (97)
$\delta_{K} imes 10^{3}$	6.2498 (43)	5.85 (43)
$arPhi_{JK} imes 10^{6}$	0.1026 (56)	
$arPhi_{{ m KJ}} imes 10^{6}$	-1.74 (22)	
$arPhi_{K} imes10^{6}$	8.0 (24)	

M.A. Martin-Drumel et al.

Molecular parameters of O³⁴SSO

Parameter	This work	F. J. Lovas (1974)
A	12845.6535 (42)	12845.671 (28)
В	3441.42831 (65)	3441.439 (16)
С	2709.90814 (62)	2709.911 (13)
$arDelta_J imes 10^3$	3.21332 (89)	3.210 (96)
$arDelta_{JK} imes 10^3$	-25.7457 (62)	-25.30 (44)
$arDelta_{K} imes 10^{3}$	94.80 (14)	89.8 (60)
$\delta_J imes 10^3$	0.978236 (86)	0.9884 (97)
$\delta_{K} imes 10^{3}$	6.2498 (43)	5.85 (43)
$arPhi_{JK} imes 10^{6}$	0.1026 (56)	
$arPhi_{{\it KJ}} imes 10^6$	-1.74 (22)	
$arPhi_{K} imes 10^{6}$	8.0 (24)	

Geometry of OSSO

Empirical, F. J. Lovas *et al.* (1974) Calculated, CCSD(T)/cc-pwCVQZ Empirical, this work, using zero-point vibrational corrections calculated at CCSD(T)/cc-pV(Q+d)Z MG12 - MILLIMITER-WAVE SPECTROSCOPY OF (

Geometry of OSSO

S-S bond length: about 7 % shorter

than in isovalent S_4^1

Prospects

▶ *cis*-0SS0

- Improved structure
 - \rightarrow other isotopologues (FTMW)
- $\circ \ \nu_{\rm 3}$ band center: beamtime accepted at SOLEIL synchrotron

▶ cis-0\$\$0

- Improved structure
 - \rightarrow other isotopologues (FTMW)
- $\circ \ \nu_{\rm 3}$ band center: beamtime accepted at SOLEIL synchrotron

▶ branched-S₂O₂

- Pure rotation \rightarrow Chirped-pulse + FTMW (see talk RE03)
- HR ro-vibration (SOLEIL)

⊳ *cis*-0SS0

- Improved structure
 - \rightarrow other isotopologues (FTMW)
- $\circ \ \nu_{3}$ band center: beamtime accepted at SOLEIL synchrotron

▶ branched-S₂O₂

- Pure rotation

 → Chirped-pulse + FTMW
 (see talk RE03)
 HR ro-vibration (SOLEIL)
- trans-OSSO ($\mu = 0$)
 - HR ro-vibration (SOLEIL)

Other lower oxides of sulfur

Acknowledgements

Research funding: DFG SFB 956, DFG TH 1301/3-2

M.A. Martin-Drumel et al.