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Effective interactions and charges in *Ni
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Abstract. The structure of the low-lying states of %Ni has been calculated in shell
model by assuming an inert *Ni core plus two valence nucleons in the pys, fy;» and
D12 Orbitals. The two-body matrix elements are first expressed in terms of seven
radial matrix elements and these are then parametrized to give best fit between the
computed and the observed energies of the levels below 4 MeV. The wave-
functions obtained using these two-body matrix elements are used to study the
concept of effective charges. It.is found that a single effective charge is not
sufficient to predict the B(E2) rates equally well for the thirteen known transitions
for which experimental valuesare available. Assumption of state-dependent effec-
tive charges gives a far better agreement, An analysis using wavefunctions
obtained with Kuo’s two-body matrix elements also gives a similar result.

Keywords. *Ni; shell model; effective operators; nuclear speciroscopy; E2
transition rates. .

1. Introduction

Shell model calculations are severely restricted in the number of valence nucleons
and the extent of configuration space they can handle. The truncation of con-
figuration space generally involves ignoring an assumed core-configuration as well
as other configurations higher in energy than a stipulated limit. Such truncation
raises many interesting problems regarding effective interactions and effective
electromagnetic moments to be associated with these valence nucleons. It is not
easy to calculate from first principles the effective nuclear operators to be used
in any given configuration space. Often one resorts to an empirical analysis of
some experimental data on the energy spectra and electromagnetic transitions
in suitable nuclei to deduce information on the effective operators. Such an ana-
lysis can sometimes yield valuable information on the concealed core-excitation
effects and the nature of the assumed core.

We report here an analysis of the presently available data on *Ni to obtain the
effective interactions as well as effective charges associated with E2 transitions
in this nucleus. The analysis is made possible now because a rather large amount
of data—14 energy levels and 13 B (E2) values—have become available recently
(Start eral 1971).
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Previously, quite a few shell model calculations have been carried out for Ni-
isotopes, generally assuming an inert 5°Ni core plus valence nucleons in the pys,
fs;2 and Py 2 Orbitals (Cohen et al 1967, Auerbach 1967, Arvieu et al 1970, Plastino
et al 1966, Glaudemans et al 1972, Hsieh ef al 1973, Lawson et al 1966, Kuo
1967 and Hsu and French 1965). Empirically determined effective interactions
(in the first six of the references cited above), as well as interactions deduced
from realistic nucleon-nucleon potentials (Lawson ef al 1966 and Kuo 1967)
have given equally good fits to the energy spectra of low lying states. The
empirical methods of estimating the effective interaction have varied with
authors. Cohen et al (1967) fitted the energy levels with eight parameters—the
four potential interaction strengths and four radial integrals modifying the
interaction in relative s-states of two nucleons. The eight parameters were
estimated through a least squares fit to 24 observed levels in 5¥Ni, 57INI, 60N, $Ni
and 82Ni. Auerbach (1967) in his calculations used Kallio-Kolltveit (1964) potential
to get the non-diagonal matrix elements and for the diagonal matrix elements made
a least squares fit to the observed levels. Arvieu ef al (1970) and Plastino et al
(1966) applied effective surface delta interaction (SDI) and later Glaudemans et al
(1972) used modified surface delta interaction (MSDI) to estimate the effective
interaction parameters through a fit to the known energy levels of several Ni-
isotopes taken together.

Methods outlined above were followed, since for a long time information on
the energy levels of Ni-isotopes was limited and a direct estimation of all the 30
two-body matrix elements (TBME) was not possible. However, recently enough
information has become available to make such a direct estimate possible. Hsieh
et al (1973) have evaluated the 30 TBME through a minimization programme where
the square of difference between the calculated and known energies of 69 levels
of Ni-isotopes of mass numbers 58 to 66 is minimized. In this calculation and all
others where a simultaneous fit to the energy levels of all Ni-isotopes is made, the
agreement between calculated and observed spectra is relatively poorer for hez’wier
isotopes. -Cohen' et al (1967) attribute this to the possible contribution from the
conbutions uiog o of 1 neiecad i b, Thisshould boome impor
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2. Effective interaction

Although there now exists a considerable body of experimental evidence (Jaffrin
1969) showing that low-lying states of Ni involve a sizable amount of core-exci-
tation, we shall attribute the properties of the low-lying states of ®Ni to the two
valence neutrons moving in py, f5/» and p;,, orbits around the doubly closed-shell
core of Ni. We shall show in this section that the effect of core-excitation on
level energies can be included in an appropriately chosen effective two-body inter-
action. From the experimentally observed data on states of ¥Ni we take (like
everybody else) for the energies of the single particle states

E(pga) =0:0; E(f55) =0-78; E(pys0) = 1-08 MeV.

The one-hole two-particle 7/2- state in Ni occurs at about 2°6 MeV excitation.
However, in keeping with our philosophy of effective operators we do not take
into account any hole-configurations. The single-particle go, state lies at least
3 MeV above the py, state, and its admixture into the states of ¥Ni considered
by us is presumably unimportant.

The configuration space (pss, {52, P1/0)* gives 14 different states, and one can
identify all of them with states observed in 3Ni below 4 MeV excitation.

We shall assume the effective interaction to be central. The 30 TBME’s
(JyJoJ | V| J1JoJ) ) (we have only T = 1 interaction) can be effectively parametrized
as follows. The matrix elements are transformed to L-S coupling scheme, and the
orbital part of the wave functions is further analysed in relative and centre-of-mass
motions using the Brody-Moshinsky transformation (Brody and Moshinsky 1960).
The procedure is the same as described in Shah and Pandya (1962), Pandya (1963)
and Pandya and Green (1964). One then sees that apart from all the geometrical
factors, the interaction potential V enters the matrix elements only through the
radial matrix elements

[nl= f Rnl2(r) Vls(r)rzdr
0

where R,; (r) is the oscillator wavefunction of relative coordinate r, in relative
orbital angular momentum state with quantum numbers nl. The T' =1 restric-
tion allows the total spin S to take S = 0 for even [ and S = 1 for odd / values.
Past experience as well as simple qualitative arguments suggest that most of the
contribution to the matrix elements comes from interaction between two nucleons
in relative / = 0 (s) or [ = 1 (p) states. Geometry of the f-p shell shows that for
I=0weobtainn=0,1,2,3andfor/=1,n=0,1,2. We treat the seven radial
matrix elements Iy, Ie, Ios, L5 Tops Ly and I, as independent parameters and take
all other I,, =0. It may be noted that the assumption of central interaction is
necessary to avoid further off-diagonal radial matrix elements. All the thirty 7'=1
TBME’s are now linear combinations of the seven parameters described above.

In our procedure the seven parameters are obtained through a least squares
fitting procedure. The parameters are optimized to give the best agreement between
the calculated and the observed energies (relative to the ground state) of the thirteen
excited states below 4 MeV excitation energy. Optimization techniques have been
discussed at many places, a recent reference being Function Minimizations by
James (1972). (This reference has a complete bibliography of the various methods.)
From the various methods discussed in this text we selected Newton’s method for
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Table 1. The strength of radial matrix elements (J,;) in MeV

I Iog Iy I Iy Iop I, Lep
(in MeV) —5-12 —~3-05 -3-0 —3-79 —0-14 —1-21 0-39

Table 2. Effective two-body matrix elements (JJ;i|V|J Jy g

Present  Hsieh
27, 2J, 2J, 2J; J - Kuo calcula- etal

tions (set D)

3 3 3 3 0 —065 —160 —065
5 5 0  —1-07 -0-81 —126
1 1 0 —0-81 —1:08 —0-84
5 05 5 5 0 —1-58 —146 —I-42
1 1 0 —08 -0:28 ~—055
1 1 1 1 0  —014 —08 —076
3 s 3 5 0-31 =014 033
3 1 =006 00  —0-18
3 1 31 1 0-06 —0-06 059
3003 332 —024  —0d4i 042
3 5 2 =016 —010 —0-37
3.1 2 —026 —049 —057
S 5 2 =019 —0:22  —055
s 12 =011 —018  —0-09
35 35 2 0-21  —0-19 015
3 1 2 . -016 —014 —024
5 5 2 —0-14 —012 —025
5 1 2 -023 —024 =003
3. 1 3 1 2 —038 =076 012
S 5 2 038 —016 —027
s 1 2 —038 —026 —022
5 5 5 5 2 014 —051. —063
51 2 —049 —p21  —017
s 15 12 —023 —045 027
3 s 3 5 3 032 —0-06 079
501 3 010 —0-01  —0-05
s 1 5 1 3 053 —012 008
305 3 5 4 —017 —072 —025
5 05 4 —033 —019 —0-42
5 s 5 5 4 0:35  —018 058
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Figure 1. The observed experimental energy levels of %Ni are compared with
our calculations in columns 2 and 3. The columns marked I and IT show energy
levels calculated with Kuo (1968) matrix elements, and those of Hsieh eral (1973)
respectively.

the speed. The details of the method are given in the Appendix. First, derivatives
at an initial estimated point (Z,;), are calculated and then we linearize the problem
to estimate corrections Al,;. The parameters (/,;), are updated by a fraction
of the estimated corrections A[Z,;, and the cycle is repeated to reach a minimum.

The radial matrix elements thus obtained are listed in table 1. Figure 1 shows
the calculated energy spectrum and its comparison with the observed one. The
energy levels calculated with Kuo (1968) matrix elements and the spectrum obtained
by Hsieh et al. (1973) are also shown in figure 1. Our calculation reproduces
beautifully the observed level densities at different excitation energies. The root-
mean-square deviation between the observed and calculated energies is about
810 KeV (a 58 KeV per level). The TBME’s calculated with these 7,; are compared
with TBME’s of Kuo (1968) and of Hsieh er a/. (1973) in table 2.

We observe that the seven radial matrix elements in relative /=0 and /=1
states are adequate to represent the effective interaction; the relative magnitudes
of these matrix elements (table 1) already justify our neglect of interaction in higher
] (I> 2) states. The effective interaction is predominantly an s-state interaction,
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3, Effective quadrupole charge matrix elements

The phenomenological interaction of the previous section gives a good account
of the energy spectrum of ®Ni in spite of the neglect of considerable amounts of
core-excited configurations which are surely present in these states. Similarly,
one should expect that an adequate account of the electromagnetic properties of
these states should require use of effective matrix elements of the corresponding
electromagnetic operators. In the earlier shell model calculations this is attempted
by assigning an effective charge to each of the valence nucleons. Thus one takes,
for example, an effective E2 operator as:

Qz_u = & ?"12 qu (6; ¢4)

evaluates the matrix elements of this operator with standard harmonic oscillator
wavefunctions, and then fits the value of ¢, to obtain best possible agreement with
the observed B(E2) data. Such a procedure has not achieved much success in
Ni (Start et al 1971). Effective charges ¢ ~ 2 are required, and even then the
agreement between calculated and observed values is rather poor. Start et al use
wavefunctions obtained with Kuo matrix elements, and effective charge e = 1.
Their results show agreement for barely three out of the observed thirteen B(E2)
values. Glaudemans et al (1972) in their shell model calculation get an effective
charge ¢ = (1-70 + 0-08). They made a least squares fit to 33 B(E2)’s and
3 quadrupole moments in various Ni-isotopes. However, they conclude that the
electromagnetic properties of third and higher states of a given spin and parity
in general show poor agreement.

When dealing with the TMBE’s of the effective interaction, we isolated various
geometrical factors, and considered as free parameters only the radial matrix
elements which explicitly contain the potential operator 7. One can similarly
see that the electric quadrupole operator enters the calculation of B(E2) values
only through matrix elements such as (see the Appendix for details):

(il @a i) = e, (|| 2 Y2 (0, 9) || o)

| 1), |ja) are standard single-particle spherical shell model wavefunctions and the
double-barred matrix elements are defined by De-Shalit and Talmi (1963).
Our calculations for ®Ni will involve the matrix elements containing the effective
charges ess, s, €51, €33 and ey, For convenience of notation we write ess = €595,
etc. (e;; = 0). These five ¢;,, ;, are treated as free parameters defining the effective
electric quadrupole operator in our configuration space. This provides a much
greater flexibility for interpreting the B(E2) data, than if we have only a single
parameter. Of course, there is enough reason to believe that ‘core-excitation’
effects may not be so simple as to be compensated for by a single free parameter.
We take the experimental data of Start et al (1971) for the thirteen B(E2) rates
and use the wavefunctions obtained with the TBME’s calculated in the last section
to compu?e these transition rates with a knowledge of the five parameters defining
the effective charge. These five parameters were chosen by a least squares fit
prn?cedurc (Details are given in the Appendix). All experimental data were
weighted by including a weight function defined as 1/(Standard Deviation)?
Standard deviation for 2; — 2, transition was taken as 1'0. The best parameter;
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Table 3. Value of effective charges (ez,,)
I,;-wave- Kuo-wave-  I,-wave- Kuo-wave-
J; A functions functions  functions functions
(No res- (Nores- (Restricted (Restricted
triction) triction) fit) fit)
3/2 3/2 2-05 1-24 1-88 1-23
3/2 5/2 —1-52 1-62 —0-90 1-58
3/2 1/2 1-93 —0-48 1-86 —0-72
5/2 5/2 4-04 1-35 2:0 1-36
5/2 1/2 2:43 2:24 1-9 1-99
Table 4. Experimental and theoretical B(E2) rates in 58Ni expressed in units of e2fm¢*
Root-mean-square fit value
Transition Experi- Kuo with
Ji—>Jt mental (L) (Kuo) y ) Kuo all charges
values no restric-  no restric- charges charges =10
tion tion restricted restricted
2,0, 140710 147 32-5 118 27-3 33-7
22— 04 0-36j%'.11% 0-52 2:0 0-72 0-32 11-4
23— 04 23i‘§ 23-3 16-8 18-7 19-2 0-15
2,— 0y 38+7 37-1 29-5 6-4 31-9 0- 52
2, —>0, 6-6:-1:0 66 77 5:1 51 L0- 10
2, -2, 199%% 92-1 87 60- 4 4-0 23-9
2g—> 24 20_-&;0 17-3 1-9 27-0 0-98 13-7
24> 25 104 431 14-9 8-7 T4 11-5 4-0
25— 21 2:5 3:6 7:0 0-29 66 3.3
0,—> 2, 0- 004 0-09 2-4 12-1 2-0 15-6
’ +0- 0006
02— 2, 231429 61-5 180 18-2 183 337
05— 2; 71i§é 23-8 1-2 17-9 4-7 4-6
4,2, 1824 14-4 0-18 4-0 0-20 0-002

Experimental values are taken from Start ez al (1971)
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so obtained are listed in column 2 of table 3 and the corresponding B(E2) rates
in column 3 of table 4. o )

The effective charge ess appears to be rather large. Slm1.1a.rly the nega.tlve value
for the off-diagonal effective charge e;3 appears to be surprising at first sight. We
have tried to see if there is a particular subset of experimental B (E2) data that
forces such abnormal values for these two parameters. This is d.one' by first
restricting ess = 2-0 and varying only the other four parameters. This gives very
low values, 1-54e2fm? for (24 — 0,); 7-7 2 fm?* for (24 — 2,) and 1-06 e? fm* for
(0; — 2,) transitions and rather a high value of 1-05 e? fm*? for (0, — 2,)
transition. Similarly the results obtained with restricting esz = 2-0 and
varying only the other four parameters are enhanced values of 413 e? fm4- .for
(2, — 0,); 114 e? fm? for (2, — 2,) transition; 284 e? fm* for (2; — 2,) transition
and a lower value of 11-3 e2 fm? for (2, — 2,) transition. However, more generally
we modified the programme to restrict the charges in the range — 1-0 and 2-0
and the best fit with this imposed restriction is also listed in column 4 of table 3
and the corresponding B(E2) rates in column 5 of table 4. The fit deteriorates
for 24 - 0;, 25— 2,, 0, —> 2, and 4, — 2; transitions.

A similar calculation has also been performed with Kuo’s TBME’s. The effective
charges that give best fit with and without the restrictions mentioned above are
listed in columns 3 and 5 of table 3 and the B(E2) rates they give are tabulated
in columns 4 and 6 of table 4. In column 7 of this table we also list the B(E2)
rates obtained with e, = 1-0. (They are same as reported by Start efal 1971.)
A comparison of columns 1, 6 and 7 of table 4 clearly shows the improvement when
one uses state-dependent effective charges.

The estimated errors on the effective charges obtained here are about 109{. The
most serious discrepancy is found in the 0, — 2, transition. However, the general
agreement is very satisfactory, and far better than anything that can be obtained
by using only a single charge parameter. It will be interesting to mention that
Oberlechner and Richert (1972) who have included particle-hole space in the shell
model calculation of 3Ni report that 0, and 2, states have a large 4p—2h component
and this may explain the poor agreement of the 0, — 2, transition.

We would like to point out that if a good measurement of E2 transitions amongst
the lowest three states of "Ni and the quadrupole moments becomes available,
it would furnish an excellent test of the effective charges deduced in this section.

4. Conclusion

We have shown that the two-body matrix elements deduced from phenomenologi-
cal or from realistic nucleon-nucleon interactions are equally good for calculating
energy levels. However, the effect of the neglected configurations (in particular
core excitation) is rather complex on effective charges. This is evident from the
fact that some of the diagonal terms attain a very high value and the off-diagonal
matrix elements are modified to an extent that in one case they become negative.
The change is very sensitive to the wavefunctions. Our procedure gives negative
ess when we use the wavefunctions of our TBME’s and a negative eg; with wave-
functions calculated with Kuo’s TBME’s.

The state dependence of effective charges is justified since the B(E2)’s calculated

with single effective charges are found to show much poorer fit. Similar state -
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dependence of MI reduced single-particle matrix elements has been found by
Glaudemans et al (1972) in Ni-isotopes. However, in their fitting of B(E2) rates
they found that ““an independent adjustment of five reduced single-particle
matrix elements for E2 operator did not reproduce the experimental data much
better than the one-parameter fit of the neutron charge”. This may be due to
the difference in their and our approach. Whereas we used transitions only in ®Ni
to estimate the effective charges, Glaudemans et al. (1972) used transitions in
several Ni-isotopes. Their value for ¢, = (1°70 4 0°08) is quite close to the majority
of the values we obtained.

State dependence of effective charges have been calculated for 7O and F nuclei
by Siegel and Zamick (1970) and for 2p-1f nuclei by Federman and Zamick (1969).
In both these calculations strong state dependence is found. However, Siegel
and Zamick (1970) emphasize that one needs a good estimate of (|| % ||j’) to com-
pare the theoretical estimate of e, with that estimated from experiment and the
accuracy of (|| r2||j') is tied to the accuracy with which the parameters for Saxon-
Woods potential can be estimated. More recent calculations are by Osnes (1973)
for A =17 and A =41 and by Kirson (1974) for 4 = 17. These results also
show a strong state dependence for effective charges. It would be of interest to
calculate the effective charges for Ni in a microscopic formulation, to see how
they compare with what we obtain in this work. Asaword of precaution we may
quote Kirson (1974): “ Present calculations (microscopic) are, of course, far from
perfect ”’.

It will be of interest to do similar calculations for other nuclei near doubly closed
shells and check the state dependence of effective charges. It would also be of
theoretical interest to calculate them from a microscopic description. The large
deviation found in *Ni shows (i) the existence of interference phenomena from the
various components, and (ii) that even the low lying states of ®Ni have a complex
structure. Another interesting extension of the prescription we adopted here
will be to follow the same procedure for higher mass members of Ni-isotopes and
study how the effective interactions and effective charges vary with mass numbers.
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Appendix

The reduced transition rate B(E2) for electric quadrupole radiation is given by
(De Shalit and Talmi 1963)

B(E2; T~ J)= st ('] Tert %, (040110 1* (A1)

T+ 1

The state functions | J') and | J) are known in the form; -
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IJI>=J§, a(J1' le; J/) IJll J21; J')

and (A-2)
| J) = JZJ' a(Jys I) [ Ndes T)

where a (J," Jy'; J') and a (J;J;; J) stand for the amplitudes of the various compo-
nents | J,'Jy'; J') and | J,J,; J) respectively. The state vector | J.Jy; J ) denotes
an antisymmetrised state with total angular momentum J formed by coupling two
particle states | J;) and | J,) and a similar definition holds true for | J;'Jy'; J').

Putting (A-2) in (A-1) we get

! 1 ! L4 ’
BE2; T>T) =57 | 2 Ul Jy's 7Y alhdes )

X U5 S e Yo () || s ) }]2 (A-3)

To evaluate the reduced matrix element appearing within curly brackets of eq,
(A-3) use was made of the relation (Thankappan and Pandya 1962, Rose and Brink
1967).

(Jy/ s J'T | T (1) + T @) || JyJa; JT)
= (=) 21+ DR X E{[1 + 8yp0n] [1 + 850,118
X By () VU + 1 WY BJJT; L) M (')
+ 84y, (—')J+T+T’ V2l +1 W(J, JoJ' J; LI M (Jy' Jp)
+ 8y, (—) TH VI 1 W (I JJ' T3 L)) M (J3 Jh)
+ S04, (=YL 1 W (L T L) M (Jy J5)
(A-4)
In the above equation we have introduced the following notations.
T (@) =e r? Yy (09)
and
M) =L TeW L) + (= D™ (L[ T @) [ L)] (A5

Equation (A-4) is written in the most general form. The isospin of the initial
and final states are 7'and 7°. For our purpose T'= T' = 1. Also L, which stands
for the rank of the operator Ty, is 2 for an E2 operator.

The evaluation of B (E2) using equation (A~3) reduces to the estimation of the
reduced matrix elements of the operator T (i), i.e.

(SN TL @D T = (Tl er® Ya(Oidy) || Jo)
= €7, ( r® >n1hnm (LJy || Yo (6i9) || 12 ) (A-6)
The values of {r,®*)..,, »1, are taken as:

(ra)u,n:("z)zp, 29"—‘%52
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and
(P2 )ap, 10 = (), 5p = — V14 b2
with 5% = 103 48 fm? (McGrory et al 1971).

We do not assign any fixed value for the charge e;,,,. Rather it is treated as
an adjustable parameter and its best value is chosen so as to make the calculated

values agree to measured values as closely as possible with the method of least
squares, The function minimised is:

F=2 o, [B(Egs — B(E2euly? (A-7)

w;, defines the weight function and is taken as the 1/o,2 where o, is the standard
deviation of the observed value.

The method discussed below minimizes the function F of eq. (A-7). To make
the notation simpler, and the description more general, we rewrite (A-7) as:

Fx)= 2" ¥, — Ty ()]? (A-8)

Here Y, are the measured values of the quantity being fitted and T, the values
predicted by the model. The x’s are the unknown parameters to be evaluated.

The minimization techniques are discussed at many places, a recent reference
18 Function Minimizations by James (1972). (This reference contains a complete
bibliography of the common methods.) We used Newton’s method. In this method
the first derivatives of the model functions T, (x) are needed. It is rather compli-
cated to calculate these analytically for the two minimizations discussed here. The
dependence of T',’s (energy levels and E2 rates) on x’s (I,; and e, ;) is too complex
to allow an analytical expression for their derivatives with respect to x’s. A
numerical method (the method of finite differences) is thus used to evaluate d7,/dx;.
Better results follow if derivatives at a point x,, are calculated through the difference
of T} (x,) evaluated at points chosen symmetrically on either side of x, (James
1972 and Stewart 1967), i.e.

2T,
0Xo;

= [Ty (Xos + d) — T}, (xoy — d)1/2d (A-9)

These derivatives are then used to linearize F (x). Let us assume that an initial
guess of x, say x, can be made. Then we write

X =Xo+ Ax

Making a Talylor’s series expansion of (A-8), we write

F(x) = Z wk[Y,c — T} (x0) — Z": (STT: ) Axi]z (A-10)

k i=1

In the above equation xg, Xeg-.. ... Xo, are the initial values of the » parameters
Xo,. We select the n variables Ax; such as to minimize F (x). This is achieved
by putting the condition

oF
2 0 A-11)
o) (A-11
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for each of the unknown Ax;. What we get by doing this is that instead of esti-

mating x; directly we estimate first Ax,’s the correction to an initial guess x,.
The conditions (A~11) lead to n linear equations in # unknown Ax;’s and this

1s called ‘linearization’ of the problem. Woritten in a matrix form, the n equations

which follow- from conditions (A-11) are:
(4] [B] = [C] (A-12)

[A] is an (# X n} matrix and {B] and [C] are column matrices of dimension (1),
with elements:

Ay = Z wk(oni) S—)?.;f)
k
B; = Ax;

T,
C;, = Z Wy (Yk - Tk) (a—x—;)

.

In the last equation for T, we take its value at x,. Equation (A-12) is solved to
get Axy, AXgy..o..... AXx,. These may not be exact increments, for we have
neglected higher order terms in the Taylor series expansion (A-10). The usual
practice then is to start a new iteration after the first one by updating the old x,;
with a fraction of Ax,. The cycle is then repeated till a minimum is reached.

References

Arvieu R, Bohigas O and Quesue C 1970 Nucl. Phys. A 143 577
Auerbach N 1967 Phys. Rev. 163 1203

Brody T A and Moshinsky M 1960 Tables of Transformation Brackets (Monografias del Insti-
tute de Fisica, Mexico City)

Cohen S, Lawson R D, Macfarlane M H, Pandya S P and Soga M 1967 Phys. Rev. 160 93

De-Shalit A and Talmi I 1963 Nuclear Shell Theory (Academic Press, New York)

Federman P and Zamick L 1969 Phys. Rev. 177 1534

Glaudemans P W M, De Voigt M J A and Steffens E F M 1972 Nucl. Phys. A 198 609

Halbert E C, McGrory J B, Wildenthal B H and Pandya S P 1967 Advances in nuclear physics
Vol, 4 ed Baranger M and Vogt E (Plenum Press, New York)

Hsieh S T, Wang M C, Chiang H C and Lee T Y 1573 Phys. Rev. C 8 563

Hsu L S and French J B 1965 Phys. Lert. 19 135

Jaffrin A 1969 Proc, Int. Conf. Properties of Nuclear States, Montreal, Cacada eds Harvey M
etal 338

James ¥ 1972 Proceedings of the 1972 CERN Computing and Data Processing School, Pertisau
Austria, Sept, 1972 (CERN 72-21)

Kallio A and Kolltveit K 1964 Nucl. Phys. 53 87

Kirson M W 1974 Ann. Phys. (N.Y)) 82 345

Kuo T T S 1967 Nucl. Phys. A90 199

Kuo T T S 1968 (Private Communication to Dr X H Bhatt)

Lawson R D Macfarlane M H and Xuo T T S 1966 Phys. Lert. 22 168

Macfarlane M H 1972 The Two-Body Force in Nuclei ed Austin S M and Crawley G M
{(Plenum Press, New York)

Oberlechner G and Richert J 1972 Nucl. Phys. A 191 577

Osnes E 1973 (Private Communication to Dr C S Warke)

Pandya S P 1963 Nucl. Phys. 43 636



Effctive ineraction and charges in )

Pandya § P and Green I M 1964 Nucl, Phys. 37 638

Plagtino A, Arvien R and Moszkowski S A 1966 Phys. Rev. 145 837

Rose H J and Brink D M 1967 Rev, Mod, Phys. 39 306

Shah § K and Pandya § P 1962 Nucl, Plys. 38 420

Siegel S and Zamick L 1970 Nucl, Phys. 4 145 89

Start D F H, Auderson R, Carlson L E, Robertson A G and Grace M A 1971 Nucl, Phys,
4161 49

Stewart G W 1967 J. Assoe. Comput, Machin, 14 7

Thankappan V K and Pandya S P 1962 Nucl, Phys, 39 394




