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w 1. I n t roduc t i on  

F o r  a rea l  s e m i s i m p l e  L i e  g r o u p  G,  the  d e s c r i p t i o n  o f  the  un i t a ry  dua l  r e m a i n s  an  

e lus ive  ques t ion .  O n e  o f  the  d i f f icu l t i es  has  b e e n  the  l ack  o f  t e c h n i q u e  fo r  c o n s t r u c t i n g  
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unitary representations. Unitary induction from parabolic subgroups of G yields uni- 

tary representations by the very definition of these representations. However, all 

unitary irreducible representations of G are not obtained by this type of induction. In 

addition, we need derived functor parabolic induction (cf. [25]) to describe all irreduc- 

ible representations of G. For this second type of induction, the obvious analogues 

from parabolic subgroup induction regarding unitarity are false. In this article, we 

describe a setting where derived functor parabolic induction yields unitary representa- 

tions of G. These results include proofs of unitarity for some of the representations 

conjectured to be unitary by Zuckerman [28] and also proofs of unitarity for some 

which lie outside the domain described in those conjectures. 

The main results are described in section seven following the introduction of 0- 

stable parabolic subalgebras and the associated generalized Verma modules (section 

two), results on invariant forms and complete reducibility for these modules (sections 

three through five) and a brief description of the derived functors introduced by 

Zuckerman (section six). The main results all take the same form: under certain 

hypotheses a derived functor applied to a generalized Verma module or quotient of one 

is shown to be either zero or unitarizable. These results include a proof of unitarity of  

Zuckerman's modules when the parabolic subalgebra has the property that inner 

products of compact and noncompact roots of the nilradical are nonnegative. Parabolic 

subalgebras satisfying this condition will be called quasi abelian. 

The remaining sections describe various applications of the main results. In 

section eight, for each orthogonal group SO(p, q) with p+q even, we find a unitary 

representation which is multiplicity free as a f-module and has f-highest weights lying 

along a single line. We call these representations ladder representations of SO(p, q). 
This result complements a result of Howe and Vogan [26] which asserts no such ladder 

representations exist if p+q is odd and p, q>~4. A similar result is obtained in section 

nine. In this case, for each group Sp(r, s), we construct a family of unitary representa- 

tions each having the property that it is multiplicity free as a f-module and the highest 

weights of the f-submodules lie along a single line. 

Section nine also includes an application to continuous cohomology. We construct 

a unitary representation of Sp(n, R) which has nonzero cohomology at the rank. This 

implies that if G is a connected, split over R classical group then there exists a 

nontrivial irreducible unitary representation (re, H) of G such that Htcont(G, H)*0  for l 

equal to the real rank of G (cf. Theorem 9.8). 

In section ten we consider the group Sp(n, R) and construct families of unitary 

representations. Each of these representations is multiplicity free as a f-module and the 
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set of its highest weights of f-submodules is given. This set is essentially the positive 

cone inside a lattice of rank n. 

In section eleven we observe that sl(2n,R) has a unique maximal parabolic 

subalgebra which is 0-stable. Applying the results of section seven to this parabolic 

subalgebra, we obtain a family of unitary representations. These include the family of 

unitary representations l(k), kEN, of Speh [24] which she constructed by analyzing 

certain poles of Eisenstein series associated to automorphic forms. Using reduction 

techniques to subgroups, these modules l(k), k E N, prove the unitarity of all Zucker- 

man modules for SL(m, R), [28]. In section eleven, we give the analogous series of 

unitary representations for SU*(2n). The reduction techniques of Vogan [28] then 

prove, as with SL(m, R), the unitarity of the Zuckerman modules for SU*(2n). 
In the classification of  unitary highest weight modules [7] one case was handled by 

a difficult calculation. This case comprised a family of unitary representations for 

E r ( -  14). In section twelve, we obtain the unitarity of these modules as a corollary to 

our main results. 

In [29], the third author studied the analytic continuation of the holomorphic 

discrete series representations having a one dimensional cyclic f-module. In the last 

section, we apply our main theorems and results of Jantzen [13] to prove analogous 

results for certain discrete series representations of I~ with (g, 3) not Hermitian symmet- 

ric. The results here prove unitarity for certain coherent continuations of discrete series 

representations out of the Borel-de Siebanthal Weyl chamber. These results are given 

in the form of a table in section thirteen. If we add a hypothesis of complete reducibility 

of a certain family of modules, then these results extend to any 0-stable quasi abelian 

maximal parabolic whose complementary simple root has coefficient two in the maxi- 

mal root (cf. Proposition 13.4). 

There is a vast literature on various techniques for proving the unitarity of certain 

representations of G. Vogan and Zuckerman [28] have shown that all representations 

"having" nonzero continuous cohomology are Zuckerman representations. Thus these 

representations are a particularly important class of representations and their unitarity 

has been investigated in many articles (cf. [24], [I I], [19], [1]). To date the main success 

has been in the cases where the representations are of holomorphic type ([14], [11], [7], 

[12]), where they can be related to Howe's theory of dual pairs ([1]) or where they can 

be related to automorphic forms ([24]). 

Interesting classes of unitary representations have been constructed recently by 

Flensted-Jensen [10] and Schlichtkrull [20]. These representations are obtained by 

analytic methods by decomposing L2(G/H) for H the fixed points of an involution of G. 
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The full determination of the discrete spectrum of LZ(G/H) is given by Matsuki and 

Oshima [15]. 

Unitary representations have been constructed in many cases by geometric meth- 

ods. In particular, the recent work of Rawnsley, Schmid and Wolf [19] develops a 

theory of L2-cohomology based on harmonic forms for indefinite Kaehler metrics to 

unitarize representations on Dolbeault cohomology in a number of cases. 

The direct algebraic approach to proving unitarizability for g-modules other than 

highest weight modules has been used only in a few cases: Parthasarathy's work on the 

discrete series [18], Vogan's work on representations associated to the minimal coad- 

joint orbit [26], and Enright's work comparing representations of Hermitian symmetric 

pairs and complex Lie groups [5]. The methods of this article are also algebraic. They 

are based on the duality theorem (cf. section six) and the study of Hermitian forms on 

Verma modules. The main results, although not all the applications, of this article were 

announced in [8]. 

Finally a few remarks on the proof of the main results. First, if the parabolic 

subalgebra is quasi abelian then the associated generalized Verma module is complete- 

ly reducible as a f-module and the signature of the canonical invariant Hermitian form 

on the f-highest weight spaces is positive definite, whenever the generalized Verma 

modules highest weight is antidominant (cf. Lemma 3. I, Propositions 3.5, 4.1 and 5.4). 

Second, signature is preserved under the derived functor in the middle dimension. The 

precise formulation of this assertion is given as Proposition 6.6. Then in Proposition 6.9 

these results are combined to prove the unitarity of derived functor modules. 

We have recently received a preprint [27] from David Vogan containing general 

results on the unitarizability of derived functor modules. In particular his results 

include a proof of the conjecture given in his book [25]. Vogan's technique is more 

general than that developed in this article. However, in the cases studied here, the 

results of this article are the sharper. 

w 2. O-stable parabolic subalgebras 

Let G be a connected, simply connected semisimple Lie group and let K be a maximal 

connected subgroup of G whose image in G/center G is compact. Let go and 3o be the 

corresponding Lie algebras of G and K. Denote by 0 the Caftan involution of go giving 

the Caftan decomposition go=~o~l~o. Choose a Cartan subalgebra (CSA) to of 3o and 

let [9o be the centralizer of to in go. Then Do is a fundamental CSA of go. Let the 
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complexification of a space be denoted by deleting the subscript 0. This gives: .q=f•19 

and Cartan subalgebras t and [9. 

Let cl denote a 0-stable parabolic subalgebra of .q with decomposition ct=m~)u 

where u is the nilradical of q. Assume that fi is contained in m. Since cl is 0-stable, so is 

u. Also, since t is fixed by 0, so is ~ and then so is ra. For any 0-stable vector space, let 

subscripts c and n denote the +1 and - I  eigenspaces for 0. For example, u~=tt 0L 

un=u n~ giving the decomposition u=ur  and similarly, m = m ~ m n .  

For any ad (b) stable subspace of ~, let A(E) denote the roots which occur in the 

root space decomposition ofE.  I f E  is ad (t)-stable but not ad (b)-stable, let A(E) denote 

the nonzero i-weights which occur in E. Let A=A(0) be the set of roots of fi and fix a 0- 

stable positive system of roots A +. For any ad (~))-stable E, let A+(E)=A + n A(E). Let 

b be the Borel subalgebra corresponding to A +, i.e., b=fi0)E e~+ .q~. Then b is 0-stable 

and bc=bNf is a Borel subalgebra of f. Let A+(f) he the positive system of A(f) 

corresponding to b,. If E is ad(t)-stable, put A+(E)=A+(f)n A(E). 

Most of the results of this article involve a special class of 0-stable parabolic 

subalgebras q defined by the property: for all a E A(u,) and fl E A(un), (a, fl)~>0. These 

0-stable parabolic subalgebras will be called quasi abelian. 
For any Lie algebra a, let U(ct) denote the universal enveloping algebra of ct. Let 

Z(a) denote the center of U(a). If 2 E~* is A+(m)-dominant integral and /~E t* is 

A+(mc)-dominant integral, let F(2) and F~(~) denote the irreducible finite dimensional 

m and m~ modules with highest weights 2 and/~. Define generalized Verma modules by 

N(gt) = U(g) | F(2), Nc(~)= U(f) | Fc(a). 
u(q) u(q~) 

Let L(2) and Lc(g) denote the unique irreducible quotients of N(2) and Nr There are 

many especially interesting cases where t=D and, for this reason, we include the 

subscript c to distinguish t~ and f-modules. For convenience we single out two Weyl 

chambers associated to these generalized Verma modules. Let ~ (resp. ~ )  be the 

closed Weyl chamber in t]* (resp. i*) corresponding to the positive system 

A+(m)U-A(u)  (resp. A+(m~)O-A(u~)). Let Q (resp. P,.) be half the sum of elements 

in A + (resp. A+(D). These Weyl chambers are distinguished by the property: 

If 2+e  E ~r (resp./~+Qc E qgc) then NO.) (resp. No(g)) is irreducible. (2.1) 

Let I t-(resp.  u c) be the sum of the root spaces ga (resp. f#) with - a E A ( u )  (resp. 

-/~ e a(u~)). 
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For any vector space E we let S(E) denote the symmetric algebra of E. Let 

denote the Weyl group of  (0, [~) and ~/(f) the Weyl group of (f, t). If E is a t-module and 

v E t* let Ev denote the weight subspace of E for weight v. 

w 3. Splitting criteria and signature 

In this section we study the splitting of N(~) as a f-module. In cases where N(A) is 

completely reducible as a f-module we investigate the signature of the canonical 

invariant Hermitian form on subspaces of N(2). Throughout this section we use the 

notation of sections one and two and we assume that q is a quasi abelian 0-stable 

parabolic subalgebra. The main result in this section is Proposition 3.5. 

LEMMA 3.1. Let 2 E ~* with 2[t+0cE c~c and F(A) irreducible as an m~-module. 

Then N(2) and L(2) are completely reducible as f-modules. Each irreducible f-sub- 

module is isomorphic to N~(izi) with ~i+P~ E ~ .  

Proof. Write S(u~)| Since F(2) is irreducible as an m~-module, 

each highest weight/~; has the form 2 plus a weight of S(u~). Now/z;+0r is A+(m~) - 

dominant; and so, to lie in ~ ,  we need only evaluate its inner products with the fl in 

A(u~-). But cl is quasi abelian and ,~[t+0cE~c so (/ui+O~,fl)>-O. This proves 

/z;+0~ E ~c. 
N(~) is isomorphic as a f-module to U(f) |174 For some indexing of 

the /~i, the decomposition above induces up to U(f) to give a filtration of 

N(~)=NI(A)DN2(A)D... with Ni(~)/N~+l(A)=Nc(~i). Since/~i+Q~E~, these f-modules 

are irreducible and N(2) splits as a direct sum. Finally, L(2) is a quotient of N0.) and so 

it also is completely reducible. This proves Lemma 3.1. 

Next we introduce the invariant Hermitian forms on N(A). Let p: U(0)---,U(m) be 

the linear projection given by the decomposition U(O) = U ( m ) ~ ( u - U ( 0 ) +  U(0)u). Let 

X ~ "  be the conjugation of 0 with respect to g0. For XE 0 define X*=-f~ and extend 

this action to a conjugate linear antiautomorphism of U(0): i.e., 

(xy)*=y*x*, 1"=1 with x, yEU(0) .  

A Hermitian form (.,  .) on a 0-module A is called invariant (with respect to g0) if 

(x.a,b)=(a,x*b),a, bEA, xEU(g) .  The finite dimensional module F(A) admits an 

invariant Hermitian form (with respect to m N g0) precisely when ~(H)= -~(/-I) for all 

HE b. In this case let ~a denote the Hermitian form which is unique up to real multiple. 
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Now define an invariant Hermitian form on N(2) by: 

(x | e, y |  = ~4(p(y*x) e, f ) .  (3.2) 

The radical of  this form is the maximal submodule of N(2); and so, (-, ")4 induces a 

nondegenerate form on the quotient module L(2). We let ( . , . )4 denote both these 

forms. We say that F(2) is unitarizable if ~4 is definite. In this case we assume ~4 is 

positive definite. For the remainder of this section assume that F(2) is unitarizable and 

note that this implies that F(2) is irreducible as an me-module. 

For convenience, in this section we write: 

r = u c  and r -=u~- .  (3.3) 

LEMMA 3.4. Let assumptions be as in Lemma 3.1. Then L=L(2) has an ortho- 
gonal decomposition 

L = L t ~ r - L .  

Proof. First split L into generalized eigenspaces for Z(t). These spaces are mutual- 

ly orthogonal. Then by Lemma 3.1, each such subspace say A is the sum of copies of 

one irreducible Nc~ui). Then A t is the full highest weight space in A. Weight spaces 

being orthogonal A = A r ~ r - A  is an orthogonal direct sum. This proves Lemma 3.4. 

For the remainder of  this section we fix ~E ~* with F(~) one dimensional and 

unitarizable and with (~, a ) < 0  for all a E A(tt). We now consider signature questions 

by looking at the family of modules N(2+t~), tER.  

PROPOSITION 3.5. Assume N(2+t~) is irreducible for all t>0 and 2[t+0c E ~c. 

Then the restriction of  (., .)4 to L(2) r is positive definite. 

Proof. Since N($+t~) is induced from r 

N(2 +t~) -~ U(u-) | F(2 +t~) = S(uc) @ S(un) | F(2) | F(t~). (3.6) 

We may drop this last factor from the tensor product since F(t~) is one-dimensional. So 

the underlying vector space for N(2+t~) is independent of t. Let X~ .. . . .  Xr be a basis 

for u~ and YI ..... Yd a basis for tt~ with Xi of weight - a i  and Yj a weight -flj. Let I 

(resp. J) be a multiindex of r (resp. d) indices and let XI=J~'... Jr,', Y~= YiJ' ... Y~a d." We 

assume the bases are normalized so that the Killing form B gives: B(Xi, Jly)=-6u, 
B(Yi, ~)=6  u. Now the usual computations and the identity X*=-~"  give: 

x,])= 
v ( [ ~  Y i ] ) = - ( v , # j ) ,  vE~*. (3.7) 
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L e t  e l  . . . . .  es be an orthonormal basis for the unitarizable module F(2) with ei of weight 

Yi. From our formula for ( . ,  .)4, it is clear that (., ")x+tr is a polynomial in t. Following 

Shapovalov [23], using (3.7) and an easy induction argument on the order I/l+lJI we 

obtain an identity for the leading term of this polynomial. 

(Xl @ YJ (~ eq, XI' @ YJ' | e)a+t,-- 6n, bjj, CS qp I-I (t~, at) i' I-~ " ( t~ ' f l*)  jk (3.8) 
l<~l<~r I<~k<~d 

modulo a polynomial in t of degree less than min (lll+lJI, II'l+lJ'l}. Note that (t~,flk) 

and (tr at) are both negative multiples of t. 

Fix a weight v e t *  and consider the weight space R=N(2+t~)x+,~+v. Let 

t o = ( ( l , J , l ) l E , - - i ,  ak+Es--js f ls+yl=2+v }. Then by (3.6) the set {X i |174  I 
(I, J , /)  E to} is a basis for R. Let R1 =R N r-N(2+t~) and observe that by (3.6), R as well 

as R1 is independent of t when expressed as a subspace of S(u~)|174 

Assume N(2) is irreducible. Then (., ")~+tr is nondegenerate for all t~>0 and the 

restrictions of (., ")x+tr to both R and R~ are nondegenerate by Lemma 3.4. Clearly, 

these forms depend polynomially on t; and thus, by nondegeneracy the signature is 

independent of t. Let (p, q) be the signature on R and (p', q') the signature on R~ with p 

and p' denoting the positive part. If we represent the restricted forms by matrices in the 

above bases then (3.8) implies that the diagonal terms dominate for large t. Therefore, 

for t>>O we have: 

p = # {(l, J , / )  ~ to I Ill is even} 

q = *1: {(I, J , / )  E to I Itl is odd} 
(3.9) 

p '  = # ((I, J , / )  E to I III is even and 4=0} 

q' = q. 

The equality q=q'  implies that (., ')~+tr is positive definite on the orthogonal comple- 

ment of R I in R. By Lemma 3.4 this is N(2+t~) r N R and proves Proposition 3.5 if N(2) 

is irreducible. 

To complete the proof we need: 

LEMMA 3.10. Assume  ;t]t+Pc(~qgr There are vectors vj(t) . . . . .  on(t) in R which 

satisfy the following: 

(i) vi(t)=E + a~,j,l(t) x l  | YJ |  t with coefficient funct ions  a~.~,l( t) which are rational 

in t and regular at t=0. 

(ii) For t in an open set containing zero, these vectors are a basis for  R N N(2 + t~) r. 
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Proof. Let al . . . . .  at be the simple roots of A+(f) and Xi the corresponding root 

vectors, l<.i<~t. Consider the map of R into the t-fold product of N(A+t~) given by: 

x~-~(X~ .x . . . . .  Xt'x). Let A(t) represent this map as a matrix with respect to the bases of 

monomials for (3.6). This is a matrix of polynomials in t and its kernel is precisely 

R A N(2+t~) r. By Lemma 3.1, rankA(t)<~rankA(O). Let rankA(0)=r and, by rearrang- 

ing bases if necessary, assume the upper left r x r block of A(t) has nonzero determinant 

D(t) and D(0)4:0. Consider the m x m  matrix 

all(t) ... a lm(t)~ 

a t) arm(t)_] 

This matrix has determinant D(t); and so, is invertible in the ring K=C[T](D(t)). Let 

T(t) be the inverse matrix. Then A(t) T(t) has the form 

~ ! . . 0  

o-_1 ~ t . 
The (r+ l)-st through mth columns of T(t) give the coefficient functions in (i). If D(t)*0 

then these vectors are a basis for R nN~0.+t~). This proves (ii). 

To complete the proof of Proposition 3.5 consider the restriction of (-, ")~+tr to 

RANr(2+t~). From the first part of the proof, this restriction is positive definite for 

t>0. By Lemma 3.10 the restriction is continuous in t near t=0; and so, the restriction 

is positive semi definite at t=0. The induced form on L(2) is nondegenerate; and so, the 

form is positive definite on R n L(2) r. This completes the proof of Proposition 3.5. 

The hypothesis 2lt+•c E qgc has been used in our proofs only to imply that N(A+t~) 

is completely reducible over U(f) for all t~<0. For one special application we reformu- 

late Proposition 3.5 as: 

PROPOSITION 3.11. Assume N(A+t~) is irreducible for all t>0 and completely 

reducible over U(~) for all t>~O. Then the restriction o f  (., .)~ to L(2) r is positive 

definite. 

8-858285 Acta Mathematica 154. Imprim~ le 27 Fevrier 1985 
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Moreover, i f  2 is A(f)-integral and L(2) is free over U(u~) then every irreducible 

summand o f  L(2) is isomorphic to an irreducible N~(iz) with I~+Qc singular or an 

element o f  qgc. 

Proof. For the first part, the proof is the same as that of Proposition 3.5. For the 

second part, since N(2) is completely reducible over U(f) so is L(2). Then any 

irreducible U(f)-summand of L(2) is a free U(u~) module which is a quotient of some 

Nr But then this module must equal Nr and Nr is irreducible. By Jantzen's 

work [13] this implies /z+Qc is either singular or an element of c~. This proves 

Proposition 3.11. 

w 4. Signature results when u~ is abelian 

The assumption 21~+0~ E ~ which appears in Proposition 3.5 is often too restrictive for 

our applications. In this section we prove a sharper result than Proposition 3.5 under 

the additional hypothesis that uc is abelian. We keep in force the standard assumptions 

of section three; i.e., q is quasi abelian, F(~) is one-dimensional, (~, a ) < 0  for all 

a E A(u) and F(~) and F(2) are unitarizable. In addition we assume u~ is abelian. The 

main result in this section is: 

PROPOSITION 4.1. Assume N(A+t~) is irreducible for  t>0. Then, the restriction o f  

( ' ,  �9 )~ to L(2) r is positive definite. 

This result is proved by introducing a canonical Hermitian form on N(2+t~) which 

has certain f-invariance properties and is positive definite when t>0. We introduce this 

form and its properties in a series of lemmas. 

Let r be the automorphism of U(f) induced by the identity on k N m and ( -1) .  iden- 

tity on u ~ ) u c .  Since u~ is abelian, r is well defined. Let x~ =r(x) *, xE U(~). Then x~--~x ~ 

is a conjugate linear antiautomorphism of U(f). 

LEMMA 4.2. Let  M be a finite dimensional or with mc-invariant form 

( ' ,  " )M. Let  N =  U(f) |162 Then there exist unique forms ( . ,  .) and { . ,  �9 } on N such 

that 

(i) {., .} and ( . ,  .) equal ( . ,  .)M on I |  

(ii) (x.e,  f )=(e ,  x ' f ) ,  {x. e, f}  = {e, x~f}, x E U(f), e, f E N .  

Moreover, i f  ( . ,  " )M is Hermitian then so are ( . ,  .) and { . ,  �9 }. 
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Forms which satisfy the first identity will be called *-invariant while those satisfy- 

ing the second will be called V-invariant. In either case we call the form on N the 

extension of (-, .)M from M to N. 

The proof of Lemma 4.2 is identical to that of Proposition 6.12 in [4]; and so, we 

will not repeat the argument here. The remark on Hermitian follows by Proposition 

6.13(b) in [4]. 

Recalling (3.6), let M=S(tt;)| let q0t be the restriction of (. ,  ")2+t~ to M. 

Then q0t is an mr form. N(a+t~) is isomorphic to U(f) | by (3.6), and 

so, the uniqueness assertion in Lemma 4.2 implies that (., .)a+te is the unique 

extension of ~Pt on M which is *-invariant. Let {., "}a+te be the unique V-invariant 

extension of ~t to N(it+t~). Let ro be the involutive linear isomorphism of N(a+t~) 

given by r |  acting on U(uT)| Now for x, yEU(tt-~), e, f E M  we have 

{x| y|162 f)=(x| r(Y)|162 This proves 

{a, b}a+t~ = (a, r0(b))a+te, a, bEN(2+t~). (4.3) 

By our assumptions, (., ")a+te is nondegenerate for t>0; and so, since to is bijective, 

{', "}a+,e is also nondegenerate. If we replace 2 by 2+t~ for t>>0 then (3.1) and (3.5) 

apply and we conclude: for t>>0, N(a+tO is completely reducible as a f-module into an 

orthogonal direct sum and (., ")a+te is positive definite on highest weight spaces of the 

irreducible summands. Also, each summand has the form N ~ ; )  with/~;+eiE cg~. 

Since both (., ")a+/e and { . , .  }a+t~ are Hermitian, (4.3) implies 

(a, ro(b))a+,~ = (to a, b)a+tr (4.4) 

r0 is involutive and the -1  eigenspace is contained in uTN(Z+t~). By (4.4), the + 1 and 

- l  eigenspaces are orthogonal; and so, (4.3) implies that {., "}a+tg and (., ")~+t~ are 

equal on the highest weight spaces of the irreducible f-summands. So, {., "}~+te is 

positive definite on the highest weight spaces for t>>0. 

The Nc~i) with/ui+ec E ~c correspond to holomorphic discrete series representa- 

tions for the real form of the Lie algebra f having mc as the Lie algebra of a maximal 

compact subgroup. Moreover, the V-invariant Hermitian forms defined above are the 

forms invariant with respect to this real form. Discrete series are unitary; and so, any v_ 

invariant form on N ~ i )  must have definite signature. By the preceding paragraph 

{', "}a+t~ is positive definite on the highest weight spaces of the summands. There- 

fore, for t>>0, {., �9 }a+te is positive definite. The forms are nondegenerate for t>0 and 

vary continuously in t. This proves 
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LEMMA 4.5. {., �9 }a+tg is positive definite for t>0, positive semi definite for t=0 

and positive definite for t=0 if N(2) is irreducible. 

By (4.3), { . , .  }~ and ( . , . )4  have the same radical; and so, both induce forms on 

L(2) which we denote by the same symbols. Also (4.3) implies that the radical is 

invariant under ro and thus ro induces a map also denoted ro on L(2). 

LEMMA 4.6. L(2) is completely reducible as a f-module and we have an orthogonal 
decomposition 

L(~t) = L(2) r ~ r-L(2). 

Also, the restriction of (.,  ")~ to L(A) uc is positive definite. 

Proof. From Lemma 4.5, { . , .  }a is positive definite on L(2). This form is f- 

invariant and so L(A) is completely reducible as a f-module into an orthogonal sum of 

irreducible f-modules. For any irreducible highest weight f-module Lc(g), Lc(g) is the 

orthogonal sum of Lc(g) r and r-Lc(g). Using (4.3) we conclude as above that {- , .  }~ 

and (-, .)a are equal on L~, since the - 1 eigenspace of ro is contained in r-L(2). Since 

{., .}~ is positive definite on L(2), (-, ")a is positive definite on L(2) r. This proves 

Lemma 4.6 which in turn proves our main result Proposition 4.1. 

w 5. Signature results when u is ahelian 

The sharpest signature results are available in the case where u is abelian. The theory 

here is related to the unitarizability of highest weight modules for the Hermitian 

symmetric case, a problem which has been solved recently [7] and [12]. The main result 

in this section is Proposition 5.4. 

Let notation be as in earlier sections. We assume that q is 0-stable, u is abelian and 

F(2) is unitarizable. For convenience, also assume that O is simple. Our assumptions 

on q imply there exists HoEX/ - 1  f0 with Ho having eigenvalue +1 (resp. 0) on u • 

(resp. m). Let 0 1 = e x p ( : r ~ / - I  adH0). Then 0~=1 a n d 0 a n d 0 1  commute. Let 

o(X)=O! 0(,("), xE g and let g~={xE O]o(x)=x}. Then gl is a real form of tg equipped 

with 02 as a Caftan involution. Let g~=f~)r  be the corresponding Cartan decomposi- 

tion. Let subscripts C denote the complexification. Then by the definition of  01 

m = (f0c, u -  ~ u + = (~0c. (5.1) 

Now this implies that (gl, f~) is a Hermitian symmetric pair. 
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Let x # = - o ( x )  and extend x,-,x # to a conjugate linear antiautomorphism of U(g). 

A Hermitian form ( . ,  �9 } on a g-module M is invariant with respect to g0 (resp. gl) if 

{x.a, b}={a,x*b} (resp. {x.a, b}={a,x#b}) ,  xE U(g), a, bEM.  For convenience we 

call the first invariance *-invariance and the second #-invariance. 

For v E ~*, N(v) admits a *-invariant (resp. #-invariant) Hermitian form precisely 

when v(H)= - # ( / ~  (resp. v(/- /)=- v(a(/-/))), H E  ~7. For the remainder of this section we 

assume 2 satisfies both of these conditions. Equivalently, these conditions say that 2 is 

supported on t and is pure imaginary on t N g0. Let (. ,  .)~ (resp. {., �9 }a) denote the *- 

invariant (resp. #-invariant) Hermitian form on N(2), as well as quotients of N(2). We 

now compare these two forms using the automorphism of U(g), 3,=0~ o0=0o01 .  

By our assumptions, y(cl)=cl and ~(2)=2. Therefore, y |  induces an action on 

N(2). Let y also denote this linear isomorphism of N(2). Since the image o f a  submodule 

by ~ is a submodule of N(2), the maximal submodule of N(2) is stable under y. So y 

induces an action, also denoted ~, on L(2). 

LEMMA 5.2. (i) For both N(2) and L(/t) the forms (.,  .)~ and ( . , .  }a are invariant 

by ~; i.e., (y(m), y(n))a =(m, n)~, {y(m), ),(n)}~ = {m, n}~, m, n E N(/t) or L(2). 

(ii) Also we have the identity: 

{m, n}~. = (m, y(n)),l, m, n E N(2) or L(2). 

Proof. y preserves U(m); and so, as above, induces an action on F(/t). Since F(2) is 

unitarizable, F(2) is irreducible under m N l and the induced action on F0.) is the 

identity. Recall from section three the projection p and (3.2). Then ~, commutes with 

* , #  andp.  So for x, yE U(g), e, fEF(2) ,  

(y(x) | e, y(y) | f)~ = ~(p(y(y)*y(x)).e, f )  

= ~a(yp(y*x) e, f )  

= ~a(p(y*x) e, f )  = (x | e, y | 

The invariance for {., �9 }~ is proved in the same way. This proves (i). 

We define {x |174  e , f ) .  Since y#=y(y)*, {m,n}~=(m,),(n))~ 

which proves (ii). 

LEMMA 5.3. Let L(2)- l={xEL(X)ly(x)=-x} .  Then L(2)-lc~:-L(2) and r-L(2) is 
stable by ~. 
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Proof. N(A)~U(u-)|  Since ), acts by the identity on F(2) and u~ and 

(-1). identi ty on u~ and since U(u-)=u~U(u-)~)U(tt:) ,  L(2) -I is contained in 

ttcL(;t). Since ~,(r-)=r-,  r-L(A) is stable by y. 

PROPOSITION 5.4. Suppose that L(2) is a unitarizable representation o f  {h ; i.e., 

{ ", �9 }4 is positive definite. Then 

(i) relative to (. ,  ")4 we have the orthogonal direct sum L(A)=L(A)t~)r-L(2), 

(ii) the restriction o f  (. ,  .)4 to L(2) ~ is positive definite. 

Proof. Let A=r-L(2) .  The restriction of {. ,-}a to A is nondegenerate; and so, 

Lemma 5.2 (ii) and Lemma 5.3 imply that the restriction of (-, .)a to A is nondegener- 

ate. Then relative to (. ,  ")4, L(2)=A~A • But r - * = r  and so A-L=L(2)L This gives (i). 

By Lemma 5.3, A contains the - 1  eigenspace of ), and since distinct eigenspaces of y 

are orthogonal, ~ is the identity on A • Then by Lemma 5.2(ii), (., ")4 is positive 

definite on A • This proves (ii). 

Under the hypotheses of this section the ~-structure of N0.) is especially interest- 

ing. The remainder of the section concerns this question and begins with a basic 

lemma. 

LEMMA 5.5. Let S(u~)| Assume N(2) is completely reducible as a 

f-module. Then N(A)=EiN~i )  and each Nc(~i) is irreducible. 

Proof. The proof is similar to Lemma 3.1. As in Lemma 3.1, N(2) has a filtration 

with Ni/Ni+l=Nc(ui). Now N(2) is completely reducible and Nc(~i) is indecompos- 

able. So, Nc~i) is irreducible and we obtain Lemma 5.5. 

Since u is abelian, ~ = u ~ ) m c ~ u n  is a Lie algebra. Also we may choose real 

forms -~'1 of ~ and ml of mc so that ( ~ ,  m0 is a Hermitian symmetric pair. Let 

A~ ..... Aq be the components of the root system A(& ~) not contained in A(mc). 

Following the definition of Harish-Chandra (see [29] or [7]), let yi.~<...~<yi.,, be the 

strongly orthogonal roots associated to the pair (Ai, Ai n A(mc)), 1 <~i<<.q. Recall that ~i, 

is the smallest element of A+\A(mc) .  Then for j~2 ,  y~,j is the minimal element of 

A+\A(mc)  subject to y~,j=l=yi, t, and yi,j+Fi, t is not a root for all l, l<.l<j. The sum 

Y,l<~i~qr i is the split rank of-~1. 

PROPOSITION 5.6 [21]. S(tt~) is multiplicity free as an mc-module and the highest 

weights are precisely those o f  the form 
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- E E auYu 
I<~i<~q I<~<~r i 

where auEN and ail>~...>~air, l<-i<~q. 

Now combining Lemma 5.5 and Proposition 5.6 we have: 

COROLLARY 5.7. Assume F(2) is one-dimensional and N(2) is completely reduc- 

ible as a Z-module. Then N(2)---t~/,N~(~) where the sum is taken ooer the set 11 o f  the 

form 

2 -  ~ ~ au), U 
I<~i<~q I.~j<~r i 

where ao.E N and ail>~...>~air, l<-i<-q. 

w 6. Zuckerman functors 

Here we describe briefly the derived functors introduced by Zuckerman [6], [25]. These 

results will be used in the next section to translate the results of sections three through 

five into our main results on Harish-Chandra modules. 

Let ~(a, b) be the category of a-modules which as b-modules are U(b)-locally finite 

and completely reducible. For an object A in cr me), define FA to be the subspace of 

U(f)-locally finite vectors. Then F is called the Z-finite submodule functor and F: 

qg(g, mc)---,qg(~, 3). The category has enough injectives to construct injective resolu- 

tions; O---~A---~I*. Now define F"A to be the ith cohomology group of the complex: 

O---~FI~ J--, .... The F / are the right derived functors of F. For all i, FiA is 

a U(f)-locally finite ~3-module. If it has finite Z-multiplicities, it is infinitesimally equiv- 

alent to an admissible representation of G. 

Let qg(f, me) be the category defined as above with ~ replaced by 3. Let F be the 

forgetful functor F: qg(g, m~)--,qg(f, m~) which considers a ~-module as a Z-module. As 

is shown in [6], F maps injectives in qg(g, m~) into injectives in qg(f, m~); and so, we 

have: 

LEMMA 6.1. For all i, F i and F commute. More precisely: F o F  i and FioF are 

naturally equivalent. 

This lemma implies that the F i are frequently quite computable. The basis is the 

computation in 'r me) given as: 
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PROPOSITION 6.2. Let /.tEl* be A+(~)-dominant and let ogE~ satisfy: 

~oA+(f)~A+(mc). Then, for  i E N, s=dimuc,  

SLc~-Q)  i f  i= length o f  to and I~ is integral and regular 
F2S-W c( wp-O c ) (o otherwise 

For a proof of Proposition 6.2 see [6]. 

For A E C~(a, b), let A* be the space of all conjugate linear functionals on A. A* is an 

a-module under the action (x.cp)(a)=cp(x*,a), xEa,  q0EA*, aEA.  Let A denote the 

subspace of A* of U(b)-locally finite vectors. Then fi, E cO(a, b). If A is admissible then 

so is A. In [6] a duality theorem for the admissible dual was proved. The proof works 

equally well in our case and gives the following variant for the conjugate dual. Let 

~(a,  b) be the subcategory of r162 b) of admissible objects. 

THEOREM 6.3. For all i, A~-->(FiA) ̂ and A~--~F2s-i(t~) are  naturally equivalent 

functors from ~(g,  m~) to r162 ~). 

Let A E ~(g, mc) and let ~/, be an invariant Hermitian form on A. We now apply 

Theorem 6.3 as follows to define F~;. Let 0 be the natural equivalence given by 

Theorem 6.3. Now ~, defines a map ~v: A---,,4 by (VT(a))(b)=v/(a,b). So F'~pv: 

F'A--~F~A. Finally, composing with 0 we obtain 

0 o FS~ ~ : F~A --~ (FSA) ̂ . (6.4) 

This map corresponds to an invariant sesquilinear form on F'A which we denote by 

I'~p. 

The duality in Theorem 6.3 depends on the choice of one constant, a basis vector 

for A2, (t/m~). From formulas (4.5) and (4.6) in [6] which describe the duality explicitly, 

we may and do choose ~ so that if q, is Hermitian then so is F'~,. 

In the remainder of this section we consider the action of F" on the canonical 

invariant forms on Nr E t*. 

Each Verma module M(g) has a canonical cyclic vector 1 | 1. I fp  is pure imaginary 

on to then M(g) admits invariant Hermitian forms (w.r.t.*) unique up to scalar multiple. 

Let ~p~, be the unique form with 

q0u(1 | 1, I | 1) -- 1. (6.5) 

Let q~, also denote the induced form on all quotients of  M~) .  Let ro be the element of 

~ such that ro % is the positive chamber associated with A+(t~) and let So be the 

longest element of ~ 



UNITARY DERIVED FUNCTOR MODULES WITH SMALL SPECTRUM 121 

PROPOSITION 6.6. Let/aEt* with Iz+Oc a A(f)-integral, regular element in ~ .  

Define constants a F, by 

F'qo~, = a u qo,oO~+~)_e. 

Then these constants are real, nonzero and all of the same sign. 

Proof. The forms defining a~, are Hermitian; and so, the constants are real. To see 

that auar note that Nc(u) is irreducible. Then ~puis a nonzero multiple of the identity 

(cf. (6.4)) and the functor F s maps this to a nonzero multiple of the identity. So auar 

Let 2 be an integral element of ~gc. We now prove: 

a F, and au+ a have the same sign. (6.7) 

Write F=L(-soro2), q~=q0_s0,0~, N=N0t+2)  and L=L(ro(U+2+Oc)-Oc ). Let q01 (resp. 

q0z) be the canonical form on N (resp. L) and let W denote the Zuckerman translation 

functor which carries N(u+2) to N(/z). 

The functors A~--~Fi(F| and A~->F| are naturally equivalent [6]. Using this 

equivalence we now show that 

FS(~p | cp,) = q0 | FSq0,. (6.8) 

Let ~ be the basis vector for A2S(f/mc) chosen above. Then ~ determines an 

m~-invariant Hermitian form ~' on A s(f/mC). For any f-module X, let 

h(X)=Homt, tmc) (A' (f/me), X). Following the notation in [6], let V~ denote an irreduci- 

ble finite dimensional f-module and q0y its invariant Hermitian form (normalized as 

above). Then formulas (4.4), (4.5) and (4.6) in [6] show that FSq0~ is induced by the 

forms ~'|174 on h(V~,| as we vary y. Moreover, the natural equivalence 

described above (6.8) is induced by the equivalence of F|174 and h(Vy|174 

But then this equivalence takes ~0|174174 to ~'|174174 The first form 

induces ~p| while the second induces FS(cp| This proves (6.8). 

If a (resp. b) is a highest weight vector o f f  (resp. N), then a| is a highest weight 

vector for N(~). Since cp| (a| a| a)cpn(b, b)>0, the restriction of ~p| 

to N(~) equals a.q0~, with a>0.  The form ~0 corresponds to the Hermitian form for a 

compact real form of f; and so, since finite dimensional representations of compact 

groups are unitarizable, ~p is positive definite. Therefore, q0| is either positive 

or negative definite depending on whether a~+a is positive or negative. Now 

~(a.cp~,)=a.a~, qg~00,+Q~)_Q~ is positive (resp. negative) definite if a~,+a is positive (resp. 

negative). This proves (6.7). 
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To prove Proposition 6.6 let/z 'E t* w i th /~ '+~  a A(f)-integral, regular element of 

qg~. Then there exist 2 and 2' integral elements of ~c with/z+2=/z'+2'.  Now applying 

(6.7) twice, a~, and a~,+a and a~,, have the same sign. 

We should also note that Proposition 6.6 can be proved "directly" by a careful 

study of the resolution which gives the duality theorem. 

PROPOSITION 6.9. Assume L(2) is completely reducible as a f-module and all 

irreducible summands are isomorphic to Nr for I ~ E t*. Assume the restriction o f  

( ' ,  .)~ to L(2) uc is positive definite. Then 

(i) FiL(2)=O for  ia~s. 

(ii) F~L(2) is either zero or a unitarizable representation o f  G. 

Proof. We can write L(2)=EiN~(IZi) as an orthogonal sum where each NcQ.~i) is 

irreducible. If2 is not A(f)-integral then FiL(2)=0 for all i by Propositions 6.2 and 6.9 is 

true. So assume 2 is A(f)-integral. Then by [13] Corollary 4, the irreducibility of N~i )  

implies that Izi+O~ E qgc o r / ~ i + ~  is singular. Then Proposition 6.2 proves (i). The 

restriction of (-, �9 )a to N ~ i )  is a positive multiple of tp~,,; and so, applying Proposition 

6.6, FS( �9 , .)a is a definite Hermitian form on FSL(2). This proves (ii). 

w 7. The main results 

Here we apply the derived functors to the modules studied in sections three through 

five. Fix 2, ~E [~* and assume F(2) and F(~) are unitarizable (w.r.t. m0) and F(~) is one- 

dimensional. Also assume (~, a ) < 0  for all a E A(u), and 0 is quasi abelian. 

THEOREM 7.1. Assume N(2+t~) is irreducible for all t>0 and either (a) 

;tlt+0cE qgc or (b) L(2) is free over U(u~) and N(A+tO is completely reducible over 

Uff) for t>-O. Then 

(i) FiL(A)=O for  i~=s. 

(ii) FSL(2) is either zero or a unitarizable representation o f  G. 

Note that (a) implies (b). 

Proof. Combine Lemma 3.1, Propositions 3.5 and 6.9 to prove the result under 

hypothesis (a). For (b), replace Proposition 3.5 by Proposition 3.11. 
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THEOREM 7.2. Assume u~ is abelian, N(2+t~) is irreducible for all t>0 and L(2) is 

a free module over U(u~-). Then 

(i) FiL(A)=O ifi=~s. 

(ii) F~L(2) is either zero or a unitarizable representation o f  G. 

Proof. By Lemma 4.6, L(2) is completely reducible as a f-module. Since it is free 

over U(u~), each irreducible summand must be isomorphic to an irreducible Nc(~). 

This fact, Propositions 4.1 and 6.9 complete the proof. 

The sharpest results are available when u is abelian. Let notation be as in section 

five. In particular, recall that ~ is a Hermitian symmetric real form of g and G! is the 

corresponding simply connected real Lie group. 

THEOREM 7.3. Assume u is abelian. Assume L(2) is a unitarizable representation 

o f  Gi and is free over U(u~). Then 

(i) VL(2)=O ifia~s. 

(ii) FSL(A) is either zero or a unitarizable representation o f  G. 

Proof. Since L(2) is unitarizable for GI, it is completely reducible as a f-module. 

Since it is free over U(uT), each irreducible summand is isomorphic to a irreducible 

N~(#). This fact, Propositions 5.4 and 6.9 combine to prove Theorem 7.3. 

Under the hypotheses of Theorem 7.3, L(2) is complete reducible: L(A)=EiNc(gi) 

with each N~(gi) irreducible. 

PROPOSITION 7.4. Under the hypotheses o f  Theorem 7.3, the t-multiplicities o f  

FSL(2) are given by: for i ~ E t*A+(f)-dominant integral, 

dim Hom (Lc(#), FSL(2)) = dim Hom (Nc(ro~(#+Oc)-Oc), L(2)) 

with ro as in Proposition 6.6. 

Proof. We may assume 2 is A(f)-integral. Since any Nc(gi) occurring in L(2) is 

irreducible, ~i+0c is either in cr or is singular. Then Proposition 6.2 proves Proposi- 

tion 7.4. 

Remark. As indicated by Corollary 5.7, the t-decomposition of L(2) is frequently 

quite explicit. So, in many applications, Proposition 7.4 will give explicit formulas for f- 

multiplicities in FSL0.). 
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w 8. Ladder representations for orthogonal groups SO(p, q) with p+  q even 

In this section we describe the first application of our main results. We define a 

distinguished unitary representation for each orthogonal group SO(p, q) with p+q even. 

We call these representations ladder representations since their ][-types have highest 

weights which lie on a single line in t*. Our results here follow from Theorem 7.3 when 

tto=SO(p, q) and ill=so(2, 2n-2)  with 2n=p+q. 

Consider the Dynkin diagram for Dn 

t;t n 
j O  

O - - O - -  �9 �9 �9 ~ O ~ O  
Ctl 

t2n--  1 

with ai=ei-ei+~, l<.i<n, and a,,=en-t+en. Let 0 be the parabolic subalgebra 

q=m0)u  with A+(m) having simple roots a2 .. . . .  an. Assume n~>4 and l is an integer 

2<~1<~n-2. Let all ai be compact roots except at which is noncompact. Then [~ is the 

complexification of a compact Cartan subalgebra of so(21, 2n-2/). The Cartan involu- 

tion 0 equals the identity on [9; and so, 0 is 0-stable. In the ei coordinates, let 

2=(z, 0 .. . . .  0), z E R. From [7], N(2) is irreducible and unitarizable for so(2, 2n-2)  if and 

only if z < - n + 2 .  At z = - n + 2 ,  N(2) is reducible. Let N=N(2) and L=L(2) for z = - n + 2 .  

From [29], p. 29, we have: 

L ~- N/N(A-2el). (8.1) 

Now in the notation of section five, ~=u~@mc@un is the complexification of 

so(21-2)• with r=n-l .  The strongly orthogonai roots here are yt=e,-t t+l 

and 72=t,+tt+~. So, by Corollary 5.7, we have 

N ( 2 ) -  E Nc(2-(2a+b)el+bet+O" (8.2) 
a, b E N  

From (8.1) 

L -- E Nc( -n+2-b ,  0 ... . .  0, b, 0 .. . . .  0) (8.3) 
bEN 

where the b occurs as the l+ 1 coordinate. 

If we change an- I and an to complex roots and let 0 act on [J by the identity on el, 

l<~i<n, and ( -D- ident i ty  on en, then instead of go=SO(21,2n-21) we have 

go=SO(21+l,2n-21-1). Now t* is spanned by ei, l<~i<n. In this case, ~ is the 

complexification of so (21-1)xso(2, 2 n - 2 / - 1 )  and formulas (8.2) and (8.3) still hold. 

Note that since l+ l<n  the weights in these formulas are supported on t. 
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The module L is unitarizable for S0 (2 ,2n -2 ) ,  and so, by Theorem 7.3 and 

Proposition 7.4 we obtain: 

PROPOSITION 8.4. Let 2n=p+q, /= Lo/2] and assume p and q are positive integers, 

n~4 and 2<~1~n-2. Let G=SO(p, q). Then X=F~L is a unitarizable representation o f  

G. Moreover, X is multiplicity free as a 1-module with highest weights 

(n -p+j ,  0 . . . . .  O,j,O ... . .  O) 

with n-p+j>>-O, jE  N and j occurring as the l+ 1 coordinate. 

Note that in the case l= 1, go = gl, s=O and FSL=L. 

In the case p+q odd, p, q~>4, results of Howe and Vogan [26] assert that no such 

ladder representations exist. 

w 9. Ladder representations for Sp(r, s) and special representations for Sp(n, R) 

First we construct some special unitary representations of  Sp(r, s). As in the previous 

section, we shall call these representations ladder representations since the highest 

weights of their l-types lie on a single line in t*. Here our results follow from Theorem 

7. l for a quasi abelian parabolic subalgebra which, however, does not satisfy the 

hypotheses of Theorems 7.2 and 7.3. 

Let go=sp(r, s), n=r+s and let 1~o be a compact CSA of go. As usual let g and [~ be 

the complexifications of these Lie algebras and let A § be any positive system of roots 

for (g, [~). Consider the Dynkin diagram for C,: 

0 ~ 0 - -  . . .  - - 0 " ~ ' - -  0 

(21 a n 

where a; are the simple roots of A +. Since all long roots of $ are compact, a ,  is 

compact. In coordinates we write ai=ei-ei+~, l<.i<n, a,=2e~. Let ~; be the maximal 

0-stable parabolic subalgebra with A+(m) having simple roots c~i, 2<.i<~n. Then u 

is a Heisenberg algebra and 0 is quasi abelian. In this case ~=sp(r)xsp(s), 

m----u(1)x sp (n -  l). 

LEMMA 9.1. / f m  is not contained in ~ then mr is isomorphic to either 

u (1 )xsp(r -  l )xsp(s)  or u( l ) x s p ( O x s p ( s - 1 ) .  

Proof. We decompose u with u=utt~u2,  A(UE)=2el and A(ul)={el+ejl2~j<~n}. 

Now split u~ into its compact and noncompact parts u~=u~,cO)uLn. Let 2d= 
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dimu~,c, 2e=dimth,,, .  So d+e=n-1 .  If e~+ej is compact then so is e~-ej and 

conversely. So if el+ej and e~+ek are all in A(u~,c) or all in A(ul,n), then 

ej+ek E A(mc). Since all long roots are compact this implies m n f contains sp(d)xsp(e). 

But m n f  has rank n with a nontrivial center; and so, mnf=u(1)xsp(d)xsp(e)  or 

u(1)xsp(n-1). This second case is excluded if m is not contained in f. Since m n f  is a 

rank n subalgebra of f, either d<.r, e<<.s or d<<-s, e<<.r. Now d + e = r + s -  1 implies {d, e} 

equals the set { r -  1, s} or {r, s -  1 }. This proves Lemma 9. I. 

The action of sp(e) on ul,n is the defining action of sp(e) on C 2e. The other factor 

sp(d) acts trivially on tq,n. Let 7 be the lowest weight in A(ul,n). 

LEMMA 9.2. As an me-module, S(u~) is multiplicity free and S(tt~)= 

r.~eNF~(-ny). 

Proof. This action is equivalent to the action of sp(e) on S(C2e). Here the result is 

classical [30]. 

LEMMA 9.3. Let 2=(z, 0 ... . .  0), z E R. Then, for z<O, N(2) is irreducible and as a f- 

module 

N(2) = ~ N~(A-ny). 
hEN 

Note. This is an especially curious result since reducibility does not occur until 

z=O where L(2) is the trivial representation. 

Proof. The irreducibility can be verified by using Jantzen's criteria (cf. Table 13.2). 

Let f=fl0)f2 with fz contained in m. Then since y is not orthogonal to A(fz), Nc(;~-nT) 

and N~(A-my) have different infinitesimal characters for harm. Therefore the filtration 

on N(;t) induced by the decomposition of S(u~)| Lemma 9.2, actually splits. This 

proves Lemma 9.3. 

Recall the element r0 E ~///'(f) with r0 ~c the positive chamber for A+(D. 

PROPOSITION 9.4. Let 2=(z, 0 . . . . .  0). For each integer z<0, FSN(2) is a unitariza- 

ble representation o f  Sp(r, s). Moreover, the f-types are multiplicity free and highest 

weights are those elements ro(A-ny+Q~)-Oc, n E N, which are A+(f)-dominant. 

Proof By Theorem 7.1, FSN0.) is unitarizable or zero. However by Lemma 9.3, 

Propositions 3.11 and 6.2 the f-structure is as described and a short calculation shows 

this set is not empty. So F'N(2) is not zero. 

We now turn to the case of Sp(n, R). Let ~o=sp(n, R) and boa compact CSA of ~0. 
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Let ct be the maximal parabolic as above; but now all the long roots are noncompact. 

The restriction of 0 to m is a Caftan involution. Since m is not contained in f (long roots 

being noncompact), (f,mr corresponds to the symmetric pair (u(n), u(1)xu(n- l ) ) .  

Therefore, u~ has dimension n - 1 .  Then u,, has dimension n. Let 3'! =2e~ and let 3'2 be 

the minimal short root in A+(u,,). The analogue to Lemma 9.2 for sp(n, R) is: 

LEMMA 9.5. As an mc-module, S(u~) is multiplicity free and 

S(u~-)= ~ Fc(-a3'l-bY2). 
a, b E N  

Proof. u~ contains the one-dimensional F~(-3'l) spanned by the -3'! root space. 

Also -3'2 is a highest weight of u~; and so, F(-3'z) also occurs in u : .  But F(-3'2) has 

dimension =n-1 .  So u~=Fc(-3'O~Fc(-3"z). Now Fc(-3'2) is the defining representa- 

tion of u(n-1)  on C n-l. Then S(u-,~)=S(F~(-3'O)| and since F ~ ( - y 0  is 

one-dimensional, the classical decomposition [30] of S(Fc(-3'z)) gives Lemma 9.5. 

LEMMA 9.6. Let 2=(z, 0 . . . . .  0), z E R. Then for z<0, N(A) is irreducible and as a f- 

module 

N(2)-~ 0) Nc(;~-a3'l-b3"2). 
a, b E N  

Proof. The irreducibility is given in Lemma 9.3. By Lemma 4.6, N(A) is completely 

reducible as a f-module. Then as in Lemma 9.3, the decomposition in Lemma 9.5 

induces to give Lemma 9.6. 

In this case u~ is abelian and q is quasi abelian. So we may apply Theorem 7.2 and 

Proposition 6.2. This gives: 

PROPOSITION 9.7. Let 2=(z, 0 . . . . .  O) in the ei coordinates. For each integer z<0, 

F~N(2) is a unitarizable representation of  Sp(n, R). Moreover, it is multiplicity free as a 

f-module and the highest weights are those element ro(A-a3'l-bFz+Or162 a, b E N, 

which are A +(f)-dominant. 

The representation FSN(A) for z = -2n  is the Zuckerman module Aq for q as above. 

These modules have computable relative Lie algebra cohomology or equivalently 

continuous cohomology (cf. [28] Theorem 3.3). 

THEOREM 9.8. Let G be a connected, split over R classical group. Then there 

exists an irreducible unitary non-trivial representation (:r, H) o f  G such that the 

continuous cohomology group /~cont(G,/-/)+0 for I equal to the real rank of  G. 
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Proof. From the formula for the cohomology of AQ ([28] Theorem 3.3), the 

cohomology is nonzero for l=dimu, .  For the example above l=n which is the split 

rank of Sp(n,R). For G=SL(n, R) the result follows by the unitarity of the Speh 

representations (cf. section eleven and [28] table 8.2). The remaining cases are 

G=SO(p,p+ 1) and SO(p,p). Then by table 8.2 in [28] the 0-stable parabolic one must 

choose is a maximal parabolic subalgebra with abelian nilradical. So in this case also 

the parabolic is quasi abelian and Theorem 7.3 gives the unitarity of the representation 

Aq. 

w 10. Special multiplicity free unitary representations of Sp(n, R) 

Let go=sp(n, R) and let Do be a compact CSA of ~o. Let A + be any positive system. 

Consider the Dynkin diagram 

0--0-- ... --0-'~'---0 

~1 122 ~n 

ai=ti-ex+l, l~<i<n, and a,=2e, with a; the simple roots of A +. All long roots are 

noncompact so a ,  is noncompact. The remaining a~ are compact or noncompact as 

specified by A +. Conversely, for any assignment of compact and noncompact for ai, 

l<~i<n, there is a corresponding positive system. 

Let q = m ~ u  be the 0-stable parabolic subatgebra with A+(m) having simple roots 

ai, I<~i<n. Then m=m(n).  Since the unitary highest weight representations for t~o are 

known we avoid this case; and so, assume not all aj, l~<i<n, are compact. The 

restriction of 0 to m is a Cartan involution of m. Thus mc---m(r)xm(s) with r+s=n, 

r, s>0. Now ~=u=@mr  is a Hermitian symmetric pair. All the positive long roots 

lie in A(u,) and me has a two-dimensional center. Therefore the Hermitian symmetric 

pair is sp(r, R)xsp(s, R). These algebras have split rank r and s and we let yl<...<yr, 

y~<...<y'~ be the strongly onhogonal roots described in Proposition 5.6. 

PROPOSITION 10.1. Let 2=z(l ,  1 .. . . .  I) in the ei coordinates. Assume 2zEN and 

z<-(n-1)/2. Then FSN(,~) is a unitarizable representation of the universal covering of 

Sp(n, R). Moreover, as a f-module it is multiplicity free with highest weights all 

elements in the A+(f)-dominant chamber of  the form 

\ I <~i<~r I <~j<~s / 
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with ai, bjEN, al>~...~ar, bl~.. .~bs. Also, none of these representations has a 
highest weight. 

Proof. Jantzen's criteria [13] (cf. [7]) imply that N(2) is irreducible. So Theorem 7.3 

asserts that FSN(2) is either zero or unitarizable. Then Proposition 7.4 and Corollary 

5.7 give the Z-multiplicity formula. In turn this formula implies FSL(2) is not zero since 

all weights of L(2) are A(D-integral. 

Using the ei coordinates, the center of m is spanned by r 1 . . . . .  1) while the 

center of f is spanned by r =(al . . . . .  an) with ai= + I. Since m . f ,  r and r are linearly 

independent. So the ai are not all of the same sign. A (g, D-module is a highest weight 

module precisely when the set of inner products of all Z-highest weights with ~' is 

bounded either above or below. The strongly orthogonal roots in our case are all long 

SO {~/i} U {?j}={2eill<~i~n}. The 7i are strongly orthogonal roots for sp(r,R) with the 

compactly embedded subalgebra corresponds to a factor of m n 3. All the ~; are linear 

combinations of ~ and elements of A(m fl 3). Now r is orthogonal to A(f), so (r yi) all 

have the same sign, l<~i<~r. Likewise (r  all have the same sign, l<.j<.s. If these 

signs are equal then a,  l<~i<~n, are all +1 or all - I .  This contradiction implies that 

(r 7l) and (r ~,~ ) have different signs. So, from our formula for Z-highest weights 

and the fact that r0r162 the set of inner products ~' with a Z-highest weight is 

unbounded above and below. This proves FSL(2) is not a highest weight representation. 

w 11. The Speh representations for SL(2n, R) and their analogues for SU*(2n) 

First we describe an alternate proof of unitarity for the Speh representations [24]. 

Following this we describe the analogous set of unitary representations for SU*(2n). In 

both cases, we shall be applying the results of section five and Theorem 7.3 with 

go~-sl(2n, R) or su*(2n) and gl--'-su(n, n). 

Consider the Dynkin diagram for A2n-i: 

O - - O - - . . .  ~ O - -  . . .  ~ 0 ~ 0  

I ~ n  OE2n-- I 

with ai=ei-ei+i, l~ i<2n.  Let go=sl(2n,R) and [3o be the fundamental CSA with 

positive root system A + having simple roots a;, l~<i<2n. Assume A + is 0-stable. Then 

0 flips the diagram; i.e., Oei=--e2n_i. In this case, an is a noncompact root and all 

other ai are complex roots. Let q be the 0-stable parabolic subalgebra q=mE)u with 

9-858285 Acta Mathematica 154. Imprim~ le 27 Fevrier 1985 
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A+(m) having simple roots a;, l~<i<2n and i*n.  For l<~i<~n, define 26~= 

az+ai+ t+. . .+a2n-i  restricted to t. Then the 6i span t* and 

A+(f) = {t)i + 6jl 1 <~ i <j<~ n} ,  

A(u) = {ei-ejl 1 <~ i <~ n < j  <. 2n}, 

A(u~) = {dii+t~jl 1 <.i<j<-n},  

A(lln) = {6i+6j11 <~i<~j<~n}. 

(11.1) 

Let 2=�89 . . . . .  1 , - 1  . . . . .  - 1 )  with both 1 and - 1  occurring n times. Then 

2lt=z(c~l+... +c$n). Let G and G1 be the simply connected covering groups of SL(2n, R) 

and SU(n, n). We know [7] that N(2) is irreducible and unitary for G' if and only if 

z < - n +  1. Put X(2)=FSN(2). 

PROPOSITION 11.2. For any half  integer z < - n +  1, X0,) is a unitarizable represen- 

tation o f  G. Moreover, X(2) is multiplicity free as a f-module and the highest weights 

are: 

(--z--n+l)( t~l+. . .+6n-i  + ~ ) + 2 a l  ~ 1 + . . . + 2 a ~ ,  aiEN, al >~a2>~...>~a~, 

and + (resp. - )  is taken if n is even (resp. odd). 

Proof. This follows from Theorem 7.3, Corollary 5.7 and Proposition 7.4. The 

strongly orthogonal roots used in Corollary 5.7 are y;=26i, l<.i<.n. 

In the case above, 2+Q lies in ~r for z~<-2n+l.  

Speh has constructed a family of unitary representations [24] denoted l(k), k E N, 

which are the Zuckerman derived functor modules for the maximal parabolic subalge- 

bra above. Comparing f-types and indices in the two cases we obtain: 

PROPOSITION 11.3. For kEN and z = - k - n ,  X(A) and l(k) are isomorphic 9- 

modules. 

We note there is an easy proof that X(;t) is irreducible. To prove this we observe 

that i fg  E t* is a Aft) § highest weight in N(;t) then/~+Qc E c~c. Moreover, if a E A then 

/~+o~+alt E ~ .  From [5] it follows that if A is a f-submodule of N(),), FSA is a 9- 

submodule of X(;t) if and only if A is a ~-submodule of N(2). So X(;t) is irreducible. 
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PROPOSITION 11.4. Let z = - n + l  and L=L(2). Then F~L is a unitarizable repre- 

sentation o f  SL(2n, R). Moreover, it is multiplicity free as a f-module with highest 

weights 

2alCSl+...+2a,,_lCSn_l, aiEN, al>-...>-a,_~. 

Proof. Since 21t+0c E c~c, L(2) is completely reducible. By [29], L(X)=N(2)/N(2') 

where 2' corresponds to 2 with z = - n - 1 .  N(2) and N(2') are completely reducible as f- 

modules with decompositions given by Corollary 5.7. Now applying Theorem 7.3 and 

Proposition 7.4, we obtain Proposition 11.4. 

Now we consider the similar series for SU*(2n). Let notation be as above except 

now a,, is compact. So all long roots are compact and we have 

A+(f) = {(~i-4- t~j[1 ~< i < j  <~ n} 0 {2c~,l 1 ~< i ~< n}, 

A(tt c) = {h i + t~jl 1 ~< i <~j ~< n}, (11.5) 

A(n,) = {c~ i + c~jl 1 ~< i < j  ~< n}. 

Recall . ~= t t~ r ac~ t t , , .  Then (.2',me) corresponds to so*(2n) which has split 

rankl=[n/2]. The strongly orthogonal roots are y ,  l<.i<.l, with Y;=6,-2,'+~+ 

~ n - 2 i + 2 .  Exactly as in Proposition 11.2 we prove: 

PROPOSITION 11.6. Let z be an integer < - n + l ,  X(;t)=F~N(2). Then X(2) is a 

unitarizable representation for  S U*(2n). Moreover, it is multiplicity free as a f-module 

with highest weights all A(t)+-dominant elements o f  the form: 

(-z--n--l)(c51+...+6,)+al(~l+c~2)+az(c53+64)+...+at(cSzH+c~2t), aiEN, a, >t ... >~a I. 

w 12. An application to unitary highest weight modules 

In the classification of unitary highest weight modules [7] one case was handled by a 

long and difficult calculation. This occurred in the exceptional group E6(- 14). Here we 

give an alternate proof of the unitarity of these representations. 

Following Bourbaki notation consider the Dynkin diagram: 

(21 (23 (24 (25 (26 

0~0~0~0~0 

I 
0 

(22 
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with a2=el+e2, ai=ei_~-ei_ 2 (3~<i~<6) and oq=�89 Let ctl be 

noncompact and a; be compact, 2~<i~<6. Let c l = m ~ u  be the 0-stable parabolic subalge- 

bra with A+(m) having simple roots ai, 1~<i~<5. Now the pair (m, me) corresponds to 

u(1)xso(2,8); and so dimuc=8. Since dimu--16, dimun=8. As in section five, let 

~?=u~-~mc0)u,,. Then (~, m~) is a Hermitian symmetric pair and since the center of 

m~ has dimension two, ~ has at most two simple ideals not contained in f. Since 

[m~, m~]---SO(8), (.~,mc) corresponds to u(1)xso(2,8). The split rank of so(2,8) is 

two, and so we let 71 and Y2 be the strongly orthogonal roots in A(tt~) as in Corollary 

5.7. A quick check of the roots gives in ei coordinates: 

),~ = � 8 9  + 1 , - 1 , - 1 ,  +1) 

~2=�89 + 1 , + I ,  + 1 , + I , - 1 , - 1 ,  +1). 

(12.1) 

Now put 2=(O,O,O,O,z,-z/3,-z/3,z/3), zER. With ro as in Proposition 6.6, 

Q~=(0, I, 2, 3,4, 0, 0, 0) and ro(e3= -T-ei depending as i= 1 or 5 or not. So, in particular, 

(12.2) r0(2+9~)-Qc = (0, 0, 0, 0, - z - 8 ,  -z/3, -z/3, z/3). 

From [7], N(2) is irreducible for z < - 3 ;  and so Theorem 7.3, Proposition 6.6 and 

Corollary 5.7 combine to give: 

PROPOSITION 12.3. For any integer z<~-4, X(;O=F~N(;O is unitarizable. More- 

over, X0.) is multiplicity free as a f-module with highest weights all A+(f)-dominant 

elements of the form: 

ro(2-n~y~-n2y2+ec)-Q~ with niEN, n~>~nv 

Remark 12.4. Let ~=(0,0,0,0,0,  -1 ,  - 1 ,  1). Then ~ is orthogonal to elements in 

Aft) and r0~=~. Now (7, ~)>0 for both i=1 and i=2. So, X0.) is a highest weight 

module. By (12.2), for z an integer < - 8  the highest weight of X(;t) takes the form 

(0, 0, 0, 0, a, - b ,  - b ,  b) with a + 3 b = - 8 .  These representations X(2) are precisely those 

considered in Proposition 12.5 and Corollary 12.6 in [7] which was the especially 

difficult case in that article. 

w 13. Coherent continuation of Borel de Siebenthal discrete series representations 

In [29], Wallach described the analytic continuation of the holomorphic discrete series 

representations having a one-dimensional cyclic f-module. In this section we apply 



UNITARY DERIVED FUNCTOR MODULES WITH SMALL SPECTRUM 

Table 13.2. First reduction point 
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Root Complementary 
system Diagram simple root at First reduction point z = a  

B.  o - - o - - . . . - - � 9  } �9 2~<l<~n-I n - I / 2 - 1 / 2  i f / i s  o d d  and  n - 1 < ~ ( I - l ) / 2  

a~ a .  n - l ~ 2  otherwise 

C. � 9 1 4 9  ( �9 I = l  2 n - I  

aj  a n 2<~l<~n - i n - l ~ 2  if I is even  an d  n-1>~l/2 

n - I ~ 2 +  1/2 otherwise 

l � 9  a .  n - I ~ 2 - 1  i f / i s  even  an d  n-1<~l/2 

D n o - - � 9  - -  2<<.1<~n-2 . . .  0 ~ � 9  

al  an_ I n - I ~ 2 - 1 / 2  otherwise 

E 6 a I a 3 a 4 a 5 a 6 3 o r  5 5 

o - - � 9 1 4 9  2 I 1/2 
I 
�9 a 2 

E7 a I a~ a 4 a 5 a 6 a 7 I 17/2 

o - - o - - o m o - - e - - o  2 7 
t 6 6 
�9 a 2 

E 8 a~ a 3 a~ a 5 a 6 a 7 a a I 23/2 

o - - o - - o - - o - - o - - o - - o  8 29/2 
t 
�9 a 2 

F 4 o - - o  } o - - o  1 4 

a n a 2 a 3 a 4 4 5 

G 2 o " " ( - - o  2 4/3 

a I (l  2 

Theorem 7.2 to prove analogous results for certain discrete series representations of 

with (g, 3) not Hermitian symmetric. 

Let notation be as in earlier sections. Let az . . . . .  an be the simple roots of A +. 

Assume at are all compact except a = a t  which is noncompact. Let A+(m) have simple 

roots ai, all ia~l, and a s s u m e  the coefficient of a in the expansion of the maximal root as 

a sum of simple roots is two. Then cl=m0)u is a maximal 0-stable parabolic subalgebra 

with u=uc~un.  A(un) (resp. A(uc)) is the set of roots fl whose coefficient of a in the 
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Table 13.3. ~-Integrality 

Root Condition for Number of unitary Unitarity of 
system A(~)-integrality F'N(R), O<-z<a F'L(3.) at z=a 

B~ 2z E Z 2 n - I -  1 

2n-I  

C~ zEZ 2 n - I  

z E Z n-l~2 
n-[(/-I)/21 

D, 2zEZ 2 n - 2 - 1  

2 n - l - I  

In both cases, yes if a<~2n-21. 

? otherwise 

? 

FSL(a)=O 

If a ~ Z then FSL(a)=O. 
FSL(a) is unitary if a E Z and a<2n-21. 
? otherwise 

In both cases, yes if a<<.2n-21-1. 

? otherwise 

E 6 2z E Z 10 Yes 

11 

E 7 2z E Z 17 Yes 

14 
12 

E 8 2z E Z 23 Yes 

29 

F~ 2z E Z 8 Yes 

z E Z  5 ? 

G 2 2z E Z 3 F'L(a) =0 

expansion of fl as a sum of simple roots is one (resp. two). In this case, weight vectors 

in [u, uc] would have a weight with coefficient of a greater than two. So [u, uc] =0 and 

Theorem 7.2 applies in this setting. 

Let ~E ~* be orthogonal to A(m) and normalized by 2(a, r a ) = l .  Consider 

the line z~, z E R, and let ;!.o be the unique point on this line such that 20+0 lies on a wall 

of ~. Let 2=20+z~. We consider the modules N(~.) for various values of z. Let a be the 

smallest value of z with N(2) reducible. We call this the first reduction point. 

PROPOSITION 13.1. For z<a, N(2) is completely reducible as a t-module and if2 is 

A(l)-integral, X(2)=FSN(2) is a unitary representation o f  G. Moreover, for z<0 and 2 

A(f)-integral, X(2) is a discrete series representation o f  G. 
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Proof. A short calculation shows that X(2)*0 if 2 is A(f)-integral. Then the first 

part follows from Theorem 7.2. Let  ro be the Weyl group element in Proposit ion 6.6. 

For  z<<0,  X(2) contains the f-module Lc(r0(A+Qc)-Oc) but not Lr 

for any noncompact  positive root  a. By Schmid's  result [22], X(2) is infinitesimally 

equivalent to a discrete series representat ion.  Now applying translation functors,  we 

extend this to all z<0.  

Jantzen [13] has computed the determinant  of  the canonical form on N(2). Using 

this product  formula for the determinant  one can compute  the value a above. See [9] for  

details of  how this calculation is performed.  Tables 13.2 and 13.3 describe the outcome.  

The results above hold in a more general setting if we add an additional hypothesis.  

Let  q = m ~ u  be any maximal 0-stable quasi abelian parabolic subalgebra whose com- 

plementary simple root  has coefficient two in the maximal root (as above). Theorem 7.1 

now implies: 

PROPOSITION 13.4. Assume F(~) is a unitarizable too-module and N(2) is com- 

pletely reducible as a f-module for z<a. Then, for z<a, FSN(2) is either zero or 

unitarizable. 
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