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Abstract

This dissertation considers the decentralized control of switched linear systems with parameter de-

pendent cost and system matrices. This problem class is investigated under a number of different

formulations of player information structure, performance criteria and switching architecture. Such

decentralized switched systems can be encountered in various applications like network control, con-

trol in a changing environment, economic theory, power systems, decision making in organizations,

resource allocation. The thesis is roughly divided into three parts.

The first part of the thesis focuses on the static quadratic team problem, where players observe

partial observations of an underlying random state and generate actions with the objective of

minimizing the expected value of a common quadratic cost function in the player actions. One

of the motivations behind studying this problem is to solve a static stochastic-parameter problem

useful in solving dynamic switched control problems encountered later. The problem however is

studied in full generality and an operator theoretic framework is presented to analyze the same.

We prove that a scheme where strategies are updated by sequentially applying the best responses

of players, converges to the team optimal strategy. Such an update scheme provides a mechanism

to numerically compute arbitrarily close approximations of the team optimal strategy. It also acts

as a tool for validating structure of the team optimal strategy which can be beneficial in some cases

for analytical computation of these strategies.

The second part of the thesis considers dynamic switched optimal control problems with quadratic

cost and players having local parameter knowledge. One of these problems is studied under full

state feedback and i.i.d. parameter; the remaining two problems are output feedback, distinguished

by the type of information structure: partially nested and one-step delayed sharing. For the for-

mer output feedback problem, parameters and measurements follow a partially nested structure

with the parameters possibly being correlated across all stages. For the latter case, parameters

are assumed to be Markov processes, with their values along with measurements available instan-

taneously to local controllers, but with a one time step delay to others. The solution to all these

problems rely on the optimal solution to a static (one-stage) stochastic-parameter problem with

local parameter dependent Gaussian measurements, and for this purpose the static quadratic team

problem, examined in first part is used. The strategies obtained in all these dynamic problems are

affine in the measurements with the parameter dependent coefficients obtained by solving a set of
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linear equations. These equations are immediately solvable when the total number of parameter

values is finite. However, for the case of infinite parameter values, the update scheme examined

in the first section also provides a mechanism to determine an approximation to the team optimal

strategy.

In the final part of the thesis, we consider a setup with switched linear nested plant whose system

matrices switch between a finite number of values, with transitions in time governed by a finite state

automaton. A linear nested controller is sought with corresponding system matrices dependent on

a finite path history of the plant’s system matrices in order to stabilize the plant and achieve a

desired level of `2-induced norm performance. The nested structures of both plant and controller

are characterized by block lower-triangular system matrices with compatible dimensions. For this

setup, exact conditions are provided for the existence of a finite path dependent synthesis. These

include conditions for the completion of scaling matrices obtained through an extended matrix

completion lemma. When individual controller dimensions are chosen at least as large as the plant,

these conditions reduce to a set of linear matrix inequalities. The completion lemma also provides

an algorithm to complete the closed loop scaling matrices leading to inequalities for controller

synthesis.
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Chapter 1

Introduction

Decentralized control has been a topic of interest in the controls community for at least half a cen-

tury. However, the past decade has seen a huge escalation of efforts in advancing this field. This can

be attributed to several factors like widespread adoption of large scale systems, vast improvements

in communication networks, declining costs of computation power, advances in sensor technology,

miniaturization. Despite several advances, decentralized control still remains a challenging field

with a wealth of problems to be explored. One such class of problems is the control of switched

systems which has been studied quite extensively in the context of centralized control, but has

seen little attention in the decentralized setting. These directions are explored in this thesis with

particular focus on achieving optimal or near-optimal costs.

In system dynamics, uncertainties are accounted for in two ways, either through a disturbance

signal or through parametric uncertainties affecting the system model. Although the latter form

of uncertainties is not well studied in the context of decentralized control, they do occur quite

naturally in a number of applications. These include:

• Networked control systems [1–4]: It constitutes a broad class of applications where plant and

controller subsystems are connected over a communication network. This introduces effects

like bandwidth limitations, packet drops, sampling, discretization and delays.

• Power systems [5, 6]: Decentralization is inherent to power generation and distribution over

a grid. Switching in the dynamics could be due to uncertainty in power generation (e.g.,

renewables) or variations in load demand.

• Building systems [7, 8]: An important application in this domain is the control of heating,

ventilation and air conditioning systems to regulate indoor climate; i.e., temperature, air

quality. Switching in such scenarios could represent variations in occupancy, environmental

conditions, performance requirements.

• Economic models [9, 10].

• Formation flying and vehicular platoons [11–13]: Here even though individual subsystems may

be dynamically decoupled, agents could have a common cost function or share measurements.
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For such systems, switching could represent variations in shared environment or changes in

command objectives.

• Resource allocation [14].

In this introductory chapter, we will present a brief literature review of decentralized and switched

control relevant to this work and at the same time have a descriptive level understanding of some

basic concepts. We will also give an overview of the class of problems we examine in this work and

the organization of rest of the thesis.

1.1 Decentralized Control

1.1.1 Team Decision Theory

Much of literature in decentralized control can be traced back to the sixties when a number of

studies appeared in team (decision) theory. Team theory was put forth by Marschak [15] and

Radner [16] for static decision making and was originally intended for application in economics

(see [17]). Team theory just like game theory involves the study of decision making process of a

number of agents (also referred to as players or decision makers), collectively called a team, who

take actions based on information available to them. However unlike game theory where players

have individual costs representing possibly conflicting objectives, the agents here share a single cost

function representing a common objective. The source of the decentralization lies in the dissimilar

information held by the agents about the underlying state of the system. The goal of the team

problem is then to synthesize individual player strategies (which map players’ local information

to their actions) in order to minimize the common cost function. In [16], the author considers a

static team problem with a cost quadratic in the player actions while proving the existence and

uniqueness of optimal solution and providing a necessary condition for optimality. For the case of

non-stochastic cost matrices and Gaussian measurements, the team optimal strategy was shown to

be affine in the player measurements, with coefficients solvable though a set of linear equations.

Thereafter authors in [18] relaxed the conditions required for stationarity in [16], and in [19] they

explored the the static linear exponential of Gaussian (LEG) problem showing that corresponding

team optimal strategies are also affine.

In Chapter 3, we will look into static quadratic teams with particular focus on update schemes

and their convergence. More background in this regard will be presented within Chapter 3. In

general, for prior results in team theory, readers are directed to [20] which further focuses on static

teams in Chapter 2.
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1.1.2 Dynamic Teams and Information Structures

Team theory was subsequently expanded to a dynamic setting [21,22], where agents take decisions

repeatedly over a time horizon, based on dynamically evolving information. However this presented

a significant complication in that the information of one agent at a particular time could depend

on the strategy of another in the past, leading to difficult functional optimization. This complexity

is best captured in the counterexample provided by Witsenhausen [23] for a simple two player, two

stage problem with each agent acting at different stages. In [23] it was demonstrated that nonlinear

strategies vastly outperform linear strategies and to this day, a clear solution to the problem does

not exist. Thereafter studies [22, 24] have tried to characterize information patterns under which

the problems still remain tractable. A detailed account on this topic can be found in [20,25]. The

two information structures of most relevance to this work are described below.

• N-step delayed information sharing: In this setting, each agent’s information at a particular

time step includes all its past information (perfect memory) and that of the other agents until

N -steps prior to the current time. A special case of this is when N = 1 and is called one-step

delayed sharing (OSD) information pattern.

• Partially nested (PN): Here, each agent has perfect memory of its own information. Further,

if the action of one agent (say P1) at time t affects the information of another agent (say P2)

at a future time t+ s, then P2’s information at time t+ s should contain P1’s information at

time t.

While the information pattern where all agents share their information instantaneously with other

agents (equivalent to a centralized system) is called classical, the OSD and PN information sharing

patterns are referred to as quasi-classical. All other information patterns are called non-classical,

including the Witsenhausen counterexample.

1.1.3 Cost and Noise Structure

We now describe other important aspects of the decentralized system model. While several studies

have focussed on discrete state space and action space models (e.g., [26, 27]), this work primarily

focusses on the continuous counterpart with linear dynamics, to which we limit this discussion.

We start with one of the most popular setups, the linear quadratic Gaussian (LQG) problem

where the cost is the expected value of a quadratic function of the state and action variables, and

where additive Gaussian noise affects both the state update and measurements. A generalization

of the LQG problem is the H2 control problem, and their connection is discussed in Section 2.3.

Another setup closely related to LQG is that of linear exponential of quadratic Gaussian (LEG)

which assumes the same dynamical model as LQG, but where the quadratic cost is replaced by

an exponential of the same quadratic function. The LEG cost has an associated risk parameter
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(chosen on the real line) which when negative, represents a risk-averse (or pessimistic) scenario

and when positive represents a risk-seeking (or optimistic) scenario. In the limiting case of zero

risk, the LEG objective coincides with that of LQG. For a detailed treatment of the centralized

LEG problem see [28], [29]. Moving on to the H∞ control problem, the corresponding cost criteria

involves minimizing the `2 → `2 induced norm from the disturbance to performance output. H∞
problems can also be viewed as minimizing the performance criteria under the worst-case noise.

Such a viewpoint can be best understood from a game theoretic formulation, presented in [29] which

considers the control design problem as a minimax game with the controller being the minimizing

player and the noise being the maximizing player. The corresponding minimax game is also closely

related to the LEG problem.

The choice of cost and noise structures can play an significant role in the structure of the optimal

strategies. This point is demonstrated by the references discussed next. For a two stage decentral-

ized LQG problem, it was noted in [30] that when the cost function does not contain a product

term between the decision variables, the resulting optimal strategies are linear. An example, which

includes the cross terms is the Witsenhausen counterexample, where nonlinear strategies are known

to outperform linear ones. This counterexample was also studied in [31], with an induced 2-norm

cost instead of a quadratic cost, and it was shown that linear strategies are optimal under this

setup. Recently in [32] it was noted that the choice of cost structure and noise covariance matrices

in LQG problems can have a significant effect on the dimension of the optimal controller.

1.1.4 Tractable Problems in Optimal Decentralized Control

Having described some of the important information, cost and noise structures, we now list a

few relevant studies which find tractable solutions under some combination of these structures.

Decentralized LQG problems appeared prominently in the literature during the seventies. Explicit

solutions were obtained for the OSD information pattern by several authors ( [33–35]). The solution

technique involved using dynamic programming, while solving a static team problem at each stage

using the result in [16]. The solution structure involves separation between state estimation and

control. While [24] conjectured the existence of such separation for general delayed structures, it

was proved in [36] that separation holds only for OSD structures and not for general N -step delayed

sharing information structures. A decentralized LEG problem with OSD information structures was

solved in [37] using dynamic programming. The most notable result for PN information structures

was provided by Ho and Chu [22]. For the decentralized LQG problem with such an information

pattern, they proved that the finite horizon case has a linear optimal solution. However, unlike

OSD problems, dynamic programming solutions are hard to obtain [38] and explicit solution for

the strategies did not appear until recently. These results include the cases of partial state feedback

( [39,40]) and the two-player output feedback [41] for H2 control problems.

In a recent work [42], authors define an algebraic property called quadratic invariance to char-
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acterize the constraint sets (which captures the information structure) for the controller. It was

shown that when this property holds, the constraint on the controller can be converted to an affine

constraint on the corresponding Youla parameter. Subsequently, if the constraint set is convex, the

resulting model matching problem for control design is convex. H2 control with sparsity constraints

is one of the problems this result was used for in the same reference. In [43], it was shown that

quadratic invariance and partial nestedness are equivalent concepts when they are well defined in

LTI formulations.

1.2 Switched Systems

Systems with switched system matrices have been the focus of several studies within the centralized

control literature in the past [2, 44–50]. We will limit our discussion here to linear, discrete time

switched systems of form

xt+1 = A(θt)xt +B(θt)ut

yt = C(θt)xt +D(θt)ut

where the systems matrices vary in pre-defined sets. The exact nature of switching is captured by a

parameter θt which takes values in a set Θ and is generated by a process assumed to be independent

of the state x and input u. Switched systems of the above form have been studied under a variety

of setups as described below.

Switching model: While the set Θ could be finite or infinite, the switching model relevant to us

can be roughly classified as

• Unstructured: There is no structure in the switching and within the set Θ, parameters

can switch from one value to another indiscriminately.

• Stochastic: The parameters are associated with a probability distribution over Θ. Some

possibilities are the parameters being i.i.d. [51], Markov chain [45,46] or even correlated

over time.

• Language or automata based: This is a non-deterministic, non-stochastic setting where

the sequences of switching parameter are restricted to a strict subset of all possible

switching sequences [49,52]. In particular, sequences could be generated by a finite state

automata, in which case they are said to be generated by a regular switching language.

Controller access/memory of parameters: The controller may have a restrictive access to the

parameter θt, which could be due to physical constraints of information availability or practical

limitations regarding implementation of the controller. Different models of controller access

typically studied are listed below
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• Parameter independent: Controller has no access to switching parameter (e.g., [51]).

• Mode dependent: Controller has access only to parameter θt at time t implying that

there is no parameter retention in memory. This is one of the most commonly studied

setup due to its simplicity of analysis and implementation. (e.g., [53])

• Finite path dependent: Controller has access to parameters over a fixed window which

may stretch to a future time i.e. there exist non-negative integers τ1 and τ2, such that

controller at time t has access to θt-τ1 , . . . , θt+τ2 (e.g., [49, 52]).

• Complete past knowledge: Controller has perfect memory of all past parameters but

does not have access to future parameters (e.g., [2, 50])

• Complete knowledge: This is same as the linear time varying (LTV) setup [54].

For the various switching models discussed above, a number of different stability and perfor-

mance metrics are adopted in literature. For systems with stochastic switching models, the notions

of stabilities generally considered include mean stability [51], mean-squared stability [51, 55] and

almost sure stability [56], while in the non-stochastic setting uniform-exponential stability is gen-

erally sought. Performance metrics commonly used are quadratic costs [45, 46, 51] and induced `2

norm [49,52,53].

The above discussion mainly focuses on centralized control of switched systems; in comparison,

literature dealing with decentralized control of switched systems is relatively sparse. In decentral-

ized systems different controller agents could have different partial information about the switching

parameters and this presents a rich set of possibilities and challenges in the control problem. The

exact parameter availability to a particular controller agent would be captured by the informa-

tion structure. Prior work include [57] which considers a robust stability problem and [58] which

considers a system with parameter dependent A-matrix.

A related field where switched systems are encountered in a decentralized setting is networked

control systems. Here plant and controller subsystems are connected over a communication net-

work whose links can be thought of being switched. Problems well studied this domain include

stabilization and estimation of linear system over noisy channels [2, 50,59–62].

1.3 Overview of Problem Formulations

We now elaborate on the broad class of systems considered in this thesis. We typically consider a

parameter dependent linear plant model as shown below

xt+1 = A(θt)xt +Bu(θt)ut +Bw(θt)wt

zt = Cz(θt)xt +Dzu(θt)ut +Dzw(θt)wt

yt = Cy(θt)xt +Dyw(θt)wt.

6



Chapter 4 5 6 7 8

Information structure static PN OSD full state nested

Performance criteria quadratic quadratic quadratic quadratic `2 induced norm

Parameter set, Θ infinite infinite infinite infinite finite

Switching model stochastic stochastic Markov process i.i.d. regular automata

Controller memory NA NA perfect perfect finite history

NA: not applicable

Table 1.1: Summary of switched system models by chapter

Here xt, ut, yt, wt and zt are the state, control input, measurement output, noise and performance

output respectively. Further, the control input and measurement are partitioned into individual

components as ut =

[
u1t
...

uMt

]
and yt =

[
y1t
...

yMt

]
respectively. The system matrices depend on a switched

parameter θt generated by a process independent of the system. The overall interconnection diagram

is depicted in Figure 1.1. We consider an M -agent decentralized controller, where each agent has

private observations of both the switched process and measurement. For agent i at time t, these are

denoted as θit and yit respectively. Besides these private observations, agents could have access to

others’ observations based on the information structure. All observations private or shared available

to player i will be called its information, and at time t this is denoted by Iit. The objective then

is to design strategies of individual players γit which map information Iit to control inputs uit, in

order to minimize the desired cost function.

We consider a number of different models throughout the thesis, these are summarized in the

Table 1.1. While the relevant information structures were discussed in Section 1.1.2, we will describe

the various cost structures in a little more detail in Section 2.3. Besides the models summarized in

Table 1.1, in Chapter 3 we will consider a static team problem with a cost function quadratic in

the control actions. Here we do not consider separate state and parameter, but consider a single

random variable ξ to which players have partial observations constituting their informations.

1.4 Organization

Following this, in Chapter 2, we present some preliminary matter which includes mathematical

notation used in the thesis and some useful background on linear operator theory, linear systems

theory and linear matrix inequalties. In Chapter 3, we describe the static quadratic team problem

(originally considered in [16]) and present an operator theoretic framework for its analysis. We show

that the sequential update scheme converges exponentially to the team optimal strategy and provide

bounds for the same. We further elaborate on how convergence of sequential update scheme helps

in numerical and analytical computation of team optimal strategies. In Chapter 4, we solve a static
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Switched parameter
process {θt}

G

[ u1
...
uM

] [ y1
...
yM

]

K

w z

θ

θ1, . . . , θM

Figure 1.1: Interconnection diagram for general class of M -player control of switched systems

stochastic-parameter problem to illustrate the ideas developed in Chapter 3 and also to aid us in

solving dynamic team problems in Chapters 5, 6 and 7 with switched cost function quadratic in the

state and control inputs. In Chapter 5, a dynamic team problem with partially nested information

structure is considered. Here we assume a hierarchical decision graph in which players act only

once using information from above levels. The problem is modified to have a static information

structure like that of Chapter 4 resulting in a static quadratic team problem. In Chapter 6, we

consider a finite horizon dynamic team problem with one-step delayed information sharing with the

parameter being a Markov process. The solution is obtained through dynamic programming while

using the result of Chapter 4 at each stage. In Chapter 7, we consider a dynamic problem where

controllers have access to full state feedback, however they have only partial knowledge about the

parameter (assumed i.i.d.). Solutions to both finite and infinite horizon versions of this problem are

presented. In Chapter 8, we consider a decentralized switched control problem with a discrete-time

mode dependent switched linear plant which is nested and whose system matrices switch between a

finite number of values according to a finite state automaton. The goal is to synthesize a finite-path

dependent nested controller to achieve a desired level of `2-induced norm performance. For this

setup, exact feasibility conditions for synthesis are provided along with an algebraic method for

controller synthesis. Finally, in Chapter 9, we present the conclusions of this work and discuss some

possible avenues of research which can be explored further.
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Chapter 2

Preliminaries

In this chapter we present some preliminary concepts and define notations used in the thesis.

2.1 Mathematical Preliminaries

We denote the set of real numbers, non-negative and positive integers by R, N0 and Z+ respec-

tively. The n-dimensional Euclidean space is denoted by Rn with the corresponding norm being

| · |2. The space of n×m dimensional real valued matrices is denoted by Rn×m. The spaces of n-

dimensional symmetric, positive-definite and positive-semidefinite matrices are denoted by Sn, Sn+
and S̄n+ respectively. Elements (say X) of Sn+ and S̄n+ are also often indicated by X � 0 and X � 0

respectively. For a matrix W : W T , W †, rank(W ), Im(W ), Ker(W ) and σ̄(W ) represent its trans-

pose, pseudo-inverse, rank, image space, kernel space and maximum singular value respectively.

As a shorthand notation we represent a block diagonal matrix by diag(D1, . . . , Dk) with {Di}ki=1

being its diagonal blocks. An identity matrix of dimension n is denoted by In or simply I. For a

matrix W we will use W⊥ and W|| respectively to denote a matrix with full column rank satisfying

Im(W⊥) = Ker(W ) with W T
⊥W⊥ = I, and Im(W||) = Ker(W )⊥ (the orthogonal complement of

Ker(W )) with W T
||
W|| = I.

For a matrix W ∈ Rn×m, its singular value decomposition (SVD), refers to the factorization

W = UDV T where D ∈ Rn×m is a diagonal matrix with non-negative diagonal entries called

singular values, U ∈ Rn×n and V ∈ Rm×m are unitary matrices. The decomposition is done so that

columns of U and V are also the eigenvectors of WW T and W TW respectively. Corresponding

eigenvalues are same as the squares of the singular values of W .

Schur complement formula for positive-definite matrices describes the following equivalenceX11 X12 X13

XT
12 X22 X23

XT
13 X

T
23 X33

 � 0 ⇔ X22 � 0 and

[
X11 X13

XT
13 X33

]
−

[
X12

XT
23

]
X-1

22

[
XT

12 X23

]
� 0.
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Following is an useful property of matrix inverse, when the constituent inverses exist

(Q+ URV )-1 = Q-1 −Q-1U(R-1 + V Q-1U)-1V Q-1. (2.1)

We will encounter several inequalities of the form W THW � 0 where H and W are matrices of

compatible dimensions. To save space, we will sometimes write such inequalities as [•]THW � 0.

Also for partitioned symmetric matrices say

[
X1 X2

XT
2 X3

]
, we occasionally suppress repeated sub-blocks

as

[
X1 X2

· X3

]
. As an aid to identify compatible sub-blocks while multiplying partitioned matrices,

we will sometimes use the notation

[
AU

V P

]
to separate out some parts of the partitioning.

We denote `n to be the space of infinite sequences in Rn, namely an element is given by

x = (x0, x1, x2, . . . ) with xt ∈ Rn for t ∈ N0. (2.2)

When the dimension n is clear from context, this space is simply denoted as `. A subspace of ` is

the Hilbert space `n2 (or simply `2) which is equipped with the inner-product 〈x, y〉 :=
∑∞

t=0 x
T
t yt

satisfying
∑∞

t=0 |xt|22 < ∞. We denote the norm on `2 by ‖ · ‖. For a Hilbert space X (different

from `2), the associated norm and inner product are denoted by ‖ · ‖X and 〈·, ·〉X respectively.

For two vector spaces X and Y, their external direct sum denoted by X ⊕Y refers to the vector

space

{(x, y)|x ∈ X , y ∈ Y}.

For a vector space V, if V1 and V2 are its subspaces satisfying V1 ∩V2 = {0} and V = V1 +V2, then

V is called the internal direct sum of V1 and V2 and is also denoted by V1 ⊕V2. Within the thesis,

we will refer to both these kinds as simply ‘direct sums’ with them being internal or external clear

from context.

We use Prob{E} to denote the probability of an event E, P(ν) to denote the distribution of

a random variable ν and P(νa|νb) to denote the distribution of a random variable νa conditioned

on another random variable νb. For a function g of a random variable ξ, the expected value of

the function is written as E[g(ξ)], while its expectation conditioned on another random variable

ν as E[g(ξ)|ν]. To keep the notation compact, for both conditional distribution and conditional

expectation, we do not distinguish between the random variable and the value it takes. Following

is a well known result

Lemma 1. E
[
E[g(ξ)|ν]

]
= E[g(ξ)].

With a slight abuse of notation, we would sometimes condition the expectation on functions (say

f) as E[g(f(ξ))|f ] to stress the exact knowledge of the function (in this case) f .

A stochastic (or random) process is a collection of random variables indexed in time as {νt}t∈N0 .
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Such a process is called independent and identically distributed (i.i.d.) if random variables νt and

ντ are mutually independent and have identical distribution for any t 6= τ ∈ N0. A stochastic

process is called a Markov process if it satisfies the Markov property P(νt|ν0, . . . , νt-1) = P(νt|νt-1).

2.2 Operator Theory

We work with operators1 which map one Hilbert space to another and satisfy the properties of

linearity and boundedness, i.e. for an operator Z mapping Hilbert spaces X to Y, it satisfies

• Z(ax+ by) = aZ(x) + bZ(y) for all x, y ∈ X and scalars a, b

• There exists a positive constant α such that ‖Z(x)‖Y ≤ α‖x‖X for all x ∈ X

Typically we will write the operation Z(x) as Zx for simplicity. The space of linear bounded

operators mapping Hilbert spaces X to Y is denoted by L(X ,Y) (or simply L(X ) when the two

spaces are same). The induced norm of an operator Z in such a space is defined by

‖Z‖X→Y := sup
x∈X , x 6=0

‖Zx‖Y
‖x‖X

.

For the special case when both these spaces are `2, the induced norm is denoted simply by ‖ · ‖.
For operators X ∈ L(V,X ) and Y ∈ L(Y,V), their composition XY ∈ L(Y,X ) is defined by

(XY)(x) = X(Y(x)) for all x ∈ Y. The corresponding induced norms satisfy ‖XY‖Y→X ≤
‖X‖V→X ‖Y‖Y→V referred to as submultiplicative property. The identity and zero operators will

be denoted by I and 0 respectively.

For an operator Z ∈ L(X ), Z∗ ∈ L(X ) represents its adjoint and satisfies 〈Zx, y〉X = 〈x,Z∗y〉X .

An operator Z ∈ L(X ) is called self-adjoint if it satisfies Z = Z∗. Such an operator is said to be

positive definite (written as Z � 0) if there exists a constant ε > 0 satisfying

〈x,Zx〉X ≥ ε‖x‖
2
X for all x ∈ X .

However, if the previous inequality satisfies only with ε = 0, operator Z is said to be positive

semi-definite (written as Z � 0). Under the notation Z � 0 or Z � 0, the operator Z is implicitly

assumed to be self-adjoint. We use Z ≺ 0 to denote −Z � 0 and similarly define Z � 0. For two

self-adjoint operators Z and Y, we use the notation Z � Y and Z � Y to imply Z −Y � 0 and

Z−Y � 0 respectively.

An element in the Hilbert space X1 ⊕ X2, constructed with elements x1 ∈ X1 and x2 ∈ X2

can be written in two equivalent ways: (x1, x2) or

[
x1

x2

]
. A partitioned operator

[
Z11 Z12

Z21 Z22

]
∈

1Throughout this thesis, the convention of using boldfaced alphabets for linear operators is adopted.
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L(X1 ⊕ X2,Y1 ⊕ Y2) can be constructed from individual operators Zij ∈ L(Xj ,Yi) for i = 1, 2 and

j = 1, 2. Such an operator would correspond to the following operation for x1 ∈ X1 and x2 ∈ X2[
Z11 Z12

Z21 Z22

][
x1

x2

]
=

[
Z11x1 + Z12x2

Z21x1 + Z22x2

]
.

These definitions can be generalized to spaces having larger number of direct sum partitions.

Following is the operator version of Schur complement formula

Lemma 2. Consider Hilbert spaces V1, V2 and V := V1 ⊕ V2, and operators X1 ∈ L(V1), X2 ∈
L(V1,V2) and X3 ∈ L(V2), then

X :=

[
X1 X2

X∗2 X3

]
� 0 ⇔ X3 � 0 and X1 −X2X

-1
3 X∗2 � 0.

Proof. To prove the above, we start by noting that X = L∗M L with M = diag(X1−X2X
-1
3 X∗2, X3)

and L =

[
I 0

X2X
-1
3 I

]
. L being invertible on V, it is clear that positive-definiteness of either one of

X or M implies the positive-definiteness of the other.

2.3 Linear Systems Theory

We primarily work with linear discrete time systems and in this section we discuss some basic

concepts of stability and performance associated with such systems in context of this work. Consider

an LTV system described by

xt+1 = Atxt +Btwt (2.3)

zt = Ctxt +Dtwt

with x0 = 0 and where xt ∈ Rn, wt ∈ Rnw and zt ∈ Rnz . Here xt, wt and zt are respectively

called the state, input and output of the system. These vectors, sequenced by t further define

corresponding elements in ` similar to (2.2) and are denoted with the same name x, w and z. The

above equations describe causal relationships, where given w ∈ `, unique solutions for x ∈ ` and

w ∈ ` can be computed. In this thesis we explore such systems in both finite and infinite horizon

settings. Unlike problems with finite horizon, in infinite horizon setting, it is important to achieve

system stability, defined next.

Definition 3. The system 2.3 is said to be exponentially stable if for w ≡ 0 and x0 6= 0, there

exist constants α > 0 and 0 < β < 1 such that |xt|2 ≤ αβt|x0|2 holds for all t ∈ N0.

The following lemma describes the Lyapunov inequality condition for stability of LTV systems.
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Lemma 4. The system 2.3 is exponentially stable if and only if there exist positive constants a, b

and ε, and a sequence of positive definite matrices {Xt}t∈N0 satisfying

aI � Xt � bI and Xt −ATt Xt+1At � εI

for all t ∈ N0. Further, if the above condition is satisfied then with w ≡ 0, we have |xt|2 ≤√
b
a

(
1− ε

b

)t/2 |x0|2 for all t ∈ N0.

For the system 2.3, the input to output mapping is denoted by w 7→ z. One of the cost criteria

we examine is that of the `2 induced norm, which is defined by the `2 induced norm of the input w

to output z i.e. ‖w 7→ z‖. In literature, this norm is also referred to as root mean square gain of

the system. For LTI systems, this induced norm coincides with the H∞ norm of the system, hence

we refer to it as a H∞-type norm.

Another cost criteria of interest is defined here for the case of finite horizon and when w is a

white noise process. It is given by

N∑
t=0

E[|zt|22]. (2.4)

For infinite horizon LTI case, the above cost also has a induced norm interpretation. If w is

considered a signal in `2 instead, the above cost is equivalent to the H2 norm defined by the

induced norm ‖w 7→ z‖`2→`∞ .

The above cost criteria is also closely connected to the quadratic cost encountered in LQR

problems. To see this connection we write the entire plant mode with control input ut ∈ Rnu and

measurement output yt ∈ Rny as below

xt+1 = Atxt +Bw
t wt +Bu

t ut

zt = Czt xt +Dzw
t wt +Dzu

t ut

yt = Cyt xt +Dyw
t wt

The quadratic cost defined by

E
[N-1∑
t=0

(xTt Qtxt + uTt Rtut) + xTNQNxN
]

with Qt ∈ S̄n+ and Rt ∈ Snu+ is then equivalent to the cost in (2.4) under the choice Czt =

[
Q

1
2
t

0

]
,

Dzu
t =

[
0

R
1
2
t

]
and Dzw

t = 0 for t ∈ {0, . . . , N} (while assuming RN = 0).
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While this subsection is a brief overview focussed mainly on non-stochastic problems, in this

thesis we also encounter systems, where the system and cost matrices are functions of stochastic

parameters. In such a setting we will be using the same cost criteria as in (2.4), but the expectation

will be taken additionally with respect to the parameters. We will explain the setup in greater detail

later when the problem is introduced.

2.4 Linear Matrix Inequalities

In chapter 8, the conditions for existence of a controller synthesis and the synthesis procedure itself

are expressed in terms of linear matrix inequalities (LMI) which take the following form

F (X) � 0.

Here X is the unknown variable and takes values in a real vector space X and F : X → S is an affine

mapping. The above LMI represents a feasibility problem, in which we seek an element X ∈ X
satisfying the same inequality. LMIs form a special case of a broader class of convex optimization

setup called semidefinite programming (SDP). In SDP, the goal is to minimize a linear objective

function c(X) under LMI and linear equality constraints in the variable X ∈ X . Note that a finite

sequence of LMIs can be written as a single LMI, where F (X) corresponding to individual LMIs

are arranged into a block-diagonal structure to form a singe affine function of X.

Several problems in control theory can be posed as LMIs [63], particularly in the context of

H∞ and H2 control [64] which are relevant to this thesis. The widespread adoption of LMIs

as a synthesis tool can be attributed to efficient numerical techniques of interior point methods

with suitably chosen barrier functions as presented in [65]. Reformulating problems as LMIs is an

important goal in Chapter 8, however exploring any further numerical aspects of solving them is

beyond the scope of this thesis. The examples presented in Chapter 8 were implemented using

CVX tool [66,67] run within MATLAB [68].
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Chapter 3

Convergence of Update Schemes in

Static Quadratic Teams

In this chapter, we focus on the static quadratic team problem originally considered in [16]. We

adopt an operator theoretic framework to analyze the problem and explore the convergence of

update schemes involving repeated application of best response mappings.

3.1 Background and Motivation

In [16], a class of problems with convex cost was considered and under specific conditions, uniqueness

of person-by-person optimal (hence team optimal) solution was established. Further, a stationarity

condition which also serves as the necessary condition of team optimality was provided. These

conditions when applied to the quadratic team problem with non-stochastic cost matrices directly

yields the corresponding team optimal strategies. The strategies thus obtained have been used in

a number of dynamic LQG decentralized problems [22, 33–35] where no switching in the system

matrices is involved. For dynamic switched problems (which can be seen as extensions of the

decentralized LQG problems) discussed later, a corresponding static result is desirable. However,

the stationary conditions provided in [16] do not directly provide any information or intuition

about the structure of the controller. In specific cases, one may guess the structure of the optimal

strategies and substitute them back into the stationary conditions to obtain equations in reduced

dimensions; however to ensure that the structural guess is correct, one has to verify that these

equations indeed have a solution. This is not always a straightforward task.

One method which can lead to the team optimal solution (or approximations of it), is iteratively

applying the best response of the players at each stage while starting at some arbitrary strategy.

Early uses of this idea include [35] and [69] where it was applied to the static problem encountered

in their respective setups of decentralized LQG team and multi-criteria LQG game. The literature

in game and team theory (e.g., [20, 70] and references therein) commonly use two schemes known

as sequential (Gauss-Siedel) update and parallel (Cournot/Jacobi) update in this context. When

these schemes converge, their limit is the team optimal solution (or Nash equilibrium in game

problems); however, in general such convergence results are presented with additional conditions,

usually in terms of contraction of certain operators. The main result of this chapter is showing

that sequential update scheme converges to the team optimal solution for the M -player quadratic
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team problem with stochastic cost matrices. In the 2-player scenario, since the parallel update

scheme coincides with sequential update, we can make a similar claim here as well; in the special

case of a non-stochastic setting with two players this result was obtained in [20]. In our work

here, we adopt an operator theoretic approach to show that the best response dynamics of the

update scheme satisfy an operator Lyapunov inequality, and thereby prove its convergence and also

provide a guaranteed rate. In order to demonstrate the effectiveness of this approach, we provide

an example of a nonlinear static problem, where guessing the structure of the solution is generally

impossible, and obtain its optimal strategy through numerically computing the best responses. We

also demonstrate how the property of guaranteed convergence can be instrumental in isolating the

structure of the team optimal strategy.

3.2 Static Team Theory

In this section, we provide a descriptive introduction to static team decision theory. Broadly

speaking, multiple players are faced with the problem of finding feedback strategies in order to

minimize a common cost function. These strategies are functions of local information available

to each player. For a M -player static problem, consider a cost function J(ξ, u1, . . . , uM ) where

ui ∈ Rmi is the action of i-th player and ξ is a finite dimensional random variable with known

probability distribution. Let the information available to player i be denoted by Ii, which is a

known function of ξ. The objective then is to find decentralized strategies (γ1, . . . , γM ), with γi

assumed to be in a space Ki containing mappings from Ii to ui, which minimize the expected cost

J̄(γ1, . . . , γM ) := E[J(ξ, γ1(I1), . . . , γM (IM ))]. (3.1)

The minimizing solution (γ◦1 , . . . , γ
◦
M ), if it exists is called the team optimal strategy. The best re-

sponse of a player is defined as a function of the other players strategies γ-i := (γ1, . . . , γi-1, γi+1, . . . , γM )

as1

Γi(γ-i) = argmin
γi

E[J(ξ, γ1(I1), . . . , γM (IM ))|γ-i] (3.2)

which can also be written point-wise as

(Γi(γ-i))(Ii) = argmin
ui

E
[
J
(
ξ, γ1(I1), . . . , γi-1(Ii-1), ui, γi+1(Ii+1), . . . , γM (IM )

)∣∣Ii, γ-i]. (3.3)

When γ-i = γ◦-i, the above best response yields the optimal strategy γ◦i , i.e. Γi(γ
◦
-i) = γ◦i . A

detailed explanation of this fact can be found in [71].

1In general, the best response yields a set of strategies rather than a unique one. We however provide this definition
in view of the problem defined later.
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A tuple of strategies γp = (γp1 , . . . , γ
p
M ) is said to be person-by-person optimal if they satisfy

J̄(γp) ≤ J̄(γp1 , . . . , γ
p
i-1, γi, γ

p
i+1, . . . , γ

p
M ) for all γi ∈ Ki

and for all i ∈ J . The above definition also implies that γp satisfies γpi = Γi(γ
p
-i) for i ∈ J .

Team decision problems can be viewed as game theoretic problems in which all players have the

same cost function, with person-by-person optimality accordingly being equivalent to the concept

of Nash equilibrium. Note that while a team optimal strategy is person-by-person optimal, the

converse may not hold in general.

Under the assumption of J being convex and continuously differentiable in ui for i ∈ J , it was

shown in [16] that a unique person-by-person optimal strategy exists, which is also the unique team

optimal solution.

3.3 Static Quadratic Team Problem Setup

Consider the quadratic cost function

J(ξ, u1, . . . , uM ) = uTZ(ξ)u+ 2uTd(ξ) + c(ξ) (3.4)

where u =


u1

...

uM

 ∈ Rm constitutes the player actions with m =
∑M

i=1mi. The cost matrices

Z(ξ)=


Z11(ξ) Z12(ξ) . . . Z1M (ξ)

Z21(ξ) Z22(ξ) . . . Z2M (ξ)
...

. . .
...

ZM1(ξ)ZM2(ξ) . . . ZMM (ξ)

 and d(ξ)=


d1(ξ)

...

dM (ξ)


are, respectively, symmetric matrix valued and vector valued functions of ξ, with partitioning

in compliance with that of u i.e. Zij(ξ) ∈ Rmi×mj and di(ξ) ∈ Rmi . ξ is the random state

which takes values in X and captures the underlying randomness of the system. The information

available to player i takes values in the set2 Ii and is a function of the state as Ii = ηi(ξ) where

ηi : X → Ii is a Borel measurable function. The decentralized information can then be defined as

Id := (I1, . . . , IM ) ∈ I1 × · · · × IM . This also allows us to define the notation γ(Id) :=

 γ1(I1)
...

γM (IM )

.

2We assume Ii to be a product of a finite set and a Euclidean space.
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The goal is to design strategies γi : Ii → Rmi for i ∈ J which minimize the following expected cost

J̄(γ1, . . . , γM ) = E[J(ξ, γ1(I1), . . . , γM (IM ))]. (3.5)

We further have the following assumption on the structure of the cost matrices

Assumption 5. (i) There exist positive constants a and ā satisfying

Prob{ aI � Z(ξ) � āI } = 1

implying that the matrix valued function Z(·) is bounded from above and strictly positive.

(ii) E
[
|d(ξ)|22

]
<∞ and E[|c(ξ)|] <∞.

Strategy Space The strategy for player i is a measurable function γi : Ii → Rmi defined on the

Hilbert space Ki equipped with the inner-product 〈α, β〉Ki := E
[
αT (Ii)β(Ii)

]
. Thus, a strategy

γi ∈ Ki satisfies ‖γi‖Ki := E
[
|γi(Ii)|22

] 1
2 < ∞. Such a definition for the space of strategies was

originally used for a static quadratic game problem in [72]. The total decentralized strategy is thus

defined over the Hilbert space K = K1 ⊕ · · · ⊕ KM with inner-product defined in the obvious way.

3.4 Operator Definitions

We define the operators Zij : Kj → Ki for i, j ∈ J as

(Zij(γj))(Ii) = E[Zij(ξ)γj(Ij)|Ii]. (3.6)

For i = j, the above can be rewritten as

(Zii(γi)) (Ii) = E[Zii(ξ)|Ii]γi(Ii).

Further, the operator Zii is self-adjoint and positive definite as evident from the following

〈γi,Ziiγi〉Ki = 〈Ziiγi, γi〉Ki = E
[
γTi (Ii)E[Zii(ξ)|Ii]γi(Ii)

]
(3.7)

= E
[
γTi (Ii)Zii(ξ)γi(Ii)

]
≥ a‖γi‖2Ki

Clearly, operator Zii is invertible on Ki and we can define the following

(Z-1
ii γi)(Ii) = (E[Zii(ξ)|Ii])-1 γi(Ii) and

(Z
1
2
iiγi)(Ii) = (E[Zii(ξ)|Ii])

1
2 γi(Ii).
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Further Z∗ij = Zji due to the following relation

〈γi,Zijγj〉Ki = E
[
γTi (Ii)E[Zij(ξ)γj(Ij)|Ii]

]
= E[γTi (Ii)Zij(ξ)γj(Ij)] (3.8)

= E
[
E[Zji(ξ)γi(Ii)|Ij ]Tγj(Ij)

]
= 〈Zjiγi, γj〉Kj

For the second equality, we take γi(Ii) inside the conditional expectation followed by using Lemma

1. We now define partitioned self-adjoint operator Z : K → K and its operation as
Z11 Z12 . . . Z1M

Z21 Z22 . . . Z2M

...
. . .

...

ZM1 ZM2 . . . ZMM


︸ ︷︷ ︸

=:Z


γ1

...

γM


︸ ︷︷ ︸
γ∈K

=


∑M

i=1 Z1iγi
...∑M

i=1 ZMiγi


︸ ︷︷ ︸

∈K

.

We define the mapping δi point-wise as δi(Ii) = E[di(ξ)|Ii] for i ∈ J . Due to Assumption 5(ii) it

can be shown that δi ∈ Ki. We combine these mappings into δ :=

 δ1
...

δM

 ∈ K. Further, we use 0

and I to denote the zero and identity operators in K1, . . . , KM and K.

Lemma 6. Z satisfies aI � Z � āI.

Proof. Since Z∗ij = Zji, it is clear that Z is self-adjoint. For positive-definiteness, we need to show

that Z has a lower and an upper bound. For this we evaluate the following

〈γ,Zγ〉K =

M∑
i=1

M∑
j=1

〈γi,Zijγj〉Ki = E
[
γ(Id)TZ(ξ)γ(Id)

]
which uses the relations from (3.7) and (3.8). The above inner-product along with Assumption 5(i)

leads to the result.

3.5 Team Optimality

Using the operator framework described in the previous sections, we now motivate the use of update

equations (in upcoming sections) for computing team optimal strategies. The necessary conditions

for team optimality in [16], when applied to the quadratic team problem under consideration,

results in

E[Zii(ξ)|Ii]γ◦i (Ii) +
∑
j 6=i

E[Zij(ξ)γ
◦
j (Ij)|Ii] + E[di(ξ)|Ii] = 0 (3.9)
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for i ∈ J a.e. in ξ. Here γ◦ ∈ K is the team optimal strategy which minimizes the expected cost

function in (3.5). The above can be written compactly using the operator notation as

Zγ◦ + δ = 0 or γ◦ = −Z-1δ. (3.10)

Here, the invertibility of Z on K is immediate from its positive-definiteness. However, evaluating

the above expression for team optimal strategy is hard in general due to difficulty in evaluating the

inverse of operator Z.

For a given γ ∈ K, we obtain the following expression for the expected cost

J̄(γ) = E
[
γ(Id)TZ(ξ)γ(Id) + 2γ(Id)Td(ξ) + c(ξ)

]
= E

 M∑
i=1

γi(Ii)TE
[ M∑
j=1

Zij(ξ)γj(Ij) + 2di(ξ)
∣∣Ii]
+ E[c(ξ)]

= E

 M∑
i=1

γi(Ii)T
 M∑
j=1

(Zijγj)(Ii) + 2δi(Ii)

+ E[c(ξ)]

= 〈γ,Zγ + 2δ〉K + E[c(ξ)]. (3.11)

When γ = γ◦, the above along with (3.10) yields the following expression for optimal cost

J̄(γ◦) = 〈γ◦, δ〉K + E[c(ξ)]. (3.12)

3.6 Best Response and Update Equations

The best response of player i to the strategies of other players γ-i = (γ1, . . . , γi-1, γi+1, . . . , γM ) is

defined using the operator Γi : K-i → Ki (where K-i = ⊕j 6=iKj) as in (3.2). For the quadratic

team setup considered here, this operator can be evaluated using the point-wise definition in (3.3),

as

(Γi(γ-i))(Ii) = argmin
ui

(
uTi E[Zii(ξ)|Ii]ui + 2uTi E

[∑
j 6=i

Zij(ξ)γj(Ij) + di
∣∣Ii]+ ci(Ii, γ-i)

)

with ci(Ii, γ-i) = E
[
c(ξ) +

∑
j 6=i
∑

l 6=i γj(Ij)TZjl(ξ)γl(Il)|Ii
]
. The cost function above as seen by

player i is quadratic and continuously differentiable in ui, with strict convexity being guaranteed

by E[Z(ξ)|Ii] � 0 almost surely. Thus, the above minimization can be solved by setting the partial

derivative of the quadratic cost with respect to ui to zero. This leads to the following affine operator
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definition for the best response

Γi(γ-i) = −Z-1
ii

∑
j 6=i

Zijγj + δi

 . (3.13)

Note that for any γ-i ∈ K-i, the above best response exists and is unique in Ki.
We now present the two update schemes: sequential and parallel, which serve as mechanisms

to compute the team optimal solution when they converge. In both the schemes we start with an

arbitrary initial strategy γ(0) ∈ K and at every stage use the best response mapping to update the

strategies. For both these schemes, we provide an operator description of the updates, which plays

a crucial role in subsequent section for proving their convergence.

Parallel Update: In this scheme, all player strategies are updated simultaneously at each stage

based on all strategies from the previous stage. The update equation for the strategy of i-th player

is given by

γ
(k+1)
i = Γi(γ

(k)
-i ) = −Z-1

ii

(∑
j 6=i

Zijγ
(k)
j + δi

)
. (3.14)

It is straightforward to see that the above can also be written as

γ(k+1) = Rpγ
(k) + rp (3.15)

with Rp := -D-1(Zl + Zu) ∈ L(K) and rp := -D-1δ ∈ K while using the definitions

Zl :=


0 . . . 0 0

Z21 0
...

. . .
...

ZM1 . . . ZM,M-1 0

, Zu :=


0 Z12 . . . Z1M

...
. . .

...
0 ZM-1,M

0 0 . . . 0


and D := diag(Z11,Z22, . . . ,ZMM ). Note that Zl = Z∗u.

Sequential Update: At each step of the iteration, player strategies are updated sequentially in

order from player 1 to M . The update equation for the i-th player is given by

γ
(k+1)
i = Γi(γ

(k+1)
1 , . . . , γ

(k+1)
i-1 , γ

(k)
i+1 , . . . , γ

(k)
M )

= −Z-1
ii

(∑
j<i

Zijγ
(k+1)
j +

∑
j>i

Zijγ
(k)
j + δi

)
(3.16)
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which is the best response to the most recent strategy of the other players. We can combine the

update equations above for all the players into a single equation as

γ(k+1) = Rsγ
(k) + rs (3.17)

with Rs := -(D + Zl)
-1Zu ∈ L(K) and rs := -(D + Zl)

-1δ ∈ K. The steps involved in obtaining

(3.17) from (3.16) are given below.

Derivation of Equation (3.17) for Sequential Update: We can rewrite the update equation

in (3.16) as 

γ
(k+1)
1 ...

γ
(k+1)
i-1

γ
(k+1)
i

γ
(k)
i+1..
.

γ
(k)
M


= D- 1

2 M̂iD
1
2



γ
(k+1)
1 ..

.

γ
(k+1)
i-1

γ
(k)
i

γ
(k)
i+1
.
..

γ
(k)
M


−

 0

Z-1
ii δi

0


︸ ︷︷ ︸

ri

(3.18)

where M̂i =

 I 0 0

-Mi1 . . . -Mi,i-1 0 -Mi,i+1 . . . -Mi,M

0 0 I

 (3.19)

with Mij = Z
- 1

2
ii ZijZ

- 1
2
jj being the (i, j) block of the partitioned operator M = D- 1

2 ZD- 1
2 . We

can combine the above update equations for all the players into the single equation in (3.17) with

Rs = D- 1
2 M̂M . . . M̂1D

1
2 and rs = −rM −

∑M-1
i=0 D- 1

2 M̂M . . . M̂i+1D
1
2 ri. We define operators

Ml = D- 1
2 ZlD

- 1
2 and Mu = D- 1

2 ZuD
- 1

2 consisting of the strict lower triangular and strict upper

triangular parts of M, respectively. Using a recursive argument starting from i = M to i = 1, we

can show that the first i-1 rows of (I + Ml)M̂M . . . M̂i match that of I + Ml while its last M-i+1

rows match that of -Mu. This observation leads to the relations M̂M . . . M̂1 = -(I+Ml)
-1Mu and

diag(0(M-1)×(M-1), I) +
M-1∑
i=1

M̂M . . . M̂i+1diag(0(i-1)×(i-1), I,0(M-i)×(M-i)) = (I+Ml)
-1

which then yield the simplified expressions Rs = -(D+Zl)
-1Zu and rs = -(D+Zl)

-1δ corresponding

to (3.17).

These update schemes along with appropriately chosen contraction conditions have been used for

quadratic game problems (see [70]), to provide a mechanism that converges to a Nash equilibrium.

The next remark says that the update equations presented here also apply to quadratic games (like

those considered in [72,73]).
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Remark 7. Consider a static quadratic game problem with the cost function corresponding to player

i being Ji(ξ, u1, . . . , uM ) = uTi Zii(ξ)ui + 2
∑

j 6=i u
T
i Zij(ξ)uj + 2dTi (ξ)ui with Prob{Zii(ξ) � aI} = 1

for i ∈ J . For this setup, if we use the operator definition (3.6), we obtain the same expressions

(3.17) and (3.15) for the sequential and parallel updates respectively. However note that unlike our

team formulation, in games it may be that Z∗l 6= Zu.

Some of the analysis performed in the subsequent subsections can also be applied to such game

problems. However we will not pursue this direction any further because the stronger results that

we obtain for team problems do not hold in general for game problems. In the next subsection, we

will show that for the quadratic team setup, sequential update scheme always converges to the team

optimal solution for general M -player scenario, while the parallel update scheme is guaranteed to

converge only for M = 2. It was previously known (see [20]) that these convergence results hold

for M = 2 under a non-stochastic setup.

3.7 Convergence of Update Schemes

In this subsection, we will examine the convergence of the two update schemes described earlier.

However due to the the guaranteed convergence of sequential update scheme, we will focus mainly

on this scheme. Before presenting the main result, we have a couple of useful lemmas. The following

lemma is similar to Lemma 4 but for an operator setting.

Lemma 8. Consider a Hilbert space H and an indexed sequence Ak ∈ L(H), k ∈ N0. If there

exists a sequence of positive-definite Xk for k ∈ N0 and positive constants a, b and ε satisfying

aI � Xk � bI and Xk+1 −AkXkA
∗
k � εI for k ∈ N0

then ‖Ak-1 . . .A0‖H→H ≤
√

b
a

(
1− ε

b

)k/2
.

Proof. The proof uses a standard Lyapunov type argument which we provide here completeness.

For any q ∈ H, the given inequalities yield a‖q‖2H ≤ 〈q,Xkq〉H ≤ b‖q‖2H and

〈q,Xk+1q〉H − 〈q,AkXkA
∗
kq〉H ≥ ε‖q‖

2
H ≥

ε

b
〈q,Xk+1q〉H

⇒ 〈q,AkXkA
∗
kq〉H ≤

(
1− ε

b

)
〈q,Xk+1q〉H

Using Ãk-1 := Ak-1 . . .A0, the above leads to〈
q, Ãk-1X0Ã

∗
k-1q

〉
H
≤
(

1− ε

b

)k
〈q,Xkq〉H ⇒ ‖Ã

∗
k-1q‖2H ≤

b

a

(
1− ε

b

)k
‖q‖2H
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Lemma 9. For a self-adjoint operator Z satisfying aI � Z � āI, its block lower triangular part

satisfies ‖D + Zl‖K→K ≤Mā and hence ‖(D + Zl)
-1‖K→K ≥ 1

Mā .

Proof. We have

‖D + Zl‖K→K ≤
M∑
i=1

∥∥∥∥∥∥
 Zii

...

ZMi

∥∥∥∥∥∥
Ki→Ki⊕···⊕KM

≤
M∑
i=1

∥∥∥∥∥∥
 Z1i

...

ZMi

∥∥∥∥∥∥
Ki→K

=
M∑
i=1

sup
α=(0,...,0,αi,0,...,0)6=0

‖Zα‖K
‖α‖K

≤ M sup
α 6=0

‖Zα‖K
‖α‖K

= Mā.

Following theorem is the main result of this chapter and proves that iterations in (3.17) converge

to the team optimal strategy and provides explicit bounds for convergence.

Theorem 10. Given γ(0) ∈ K and γ(k) defined by sequential update in (3.17), the following hold

(i) The sequence γ(k) converges in K to an element γ? = −Z-1δ, with the following exponential

bound on the rate

‖γ(k) − γ?‖K ≤
√
ā

a

{
1−

( a

Mā

)2
}k/2

‖γ(0) − γ?‖K. (3.20)

(ii) Given any γ ∈ K, the following inequality holds

a‖γ − γ?‖2K ≤ J̄(γ)− J̄(γ?) ≤ ā‖γ − γ?‖2K. (3.21)

Thus, if γ ∈ K and J̄(γ) ≤ J̄(γ?) then γ = γ?.

(iii) The sequence J̄(γ(k)) is non-increasing and converges to J̄(γ?) exponentially.

(iv) The element γ? is the unique solution in K of the equations

γi = Γiγ-i for i = 1, . . . ,M. (3.22)

Proof. We start by proving (i). For this, we first note the following relationships

(D + Zl)(Z
-1 −RsZ

-1R∗s)(D + Zl)
∗ = (Z− Zu)Z-1(Z− Zu)∗ − ZuZ

-1Z∗u = D.

The first equality above is obtained by using the relations D+Zl = Z−Zu and (D+Zl)Rs = -Zu.

The above leads to

Z-1 −RsZ
-1R∗s = (D + Zl)

-1D(D + Zl)
-∗ � a

M2ā2
I (3.23)
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The last inequality is due to Lemma 9 along with D � aI. Since 1
āI � Z-1 � 1

aI, we obtain the

following using Lemma 8

‖Rk
s‖K→K ≤

√
1/a

1/ā

(
1− a/(M2ā2)

1/a

)k/2
. (3.24)

The inequality implies that ‖Rk
s‖K→K is a contraction for sufficiently large k. Now using (3.17) we

have

γ(k) = Rk
sγ

(0) +
(
I + Rs + · · ·+ Rk-1

s

)
rs,

which along with the contraction of ‖Rk
s‖K→K allows us to show that γ(k) is a Cauchy sequence

and as k → ∞ has a limit in K, which we call γ?. We can further show that the optimal strategy

has the following expression

γ? = lim
k→∞

(
Rl
sγ

(0) +

k-1∑
l=0

Rl
srs

)
= (I−Rs)

-1rs = -
(
I + (D+Zl)

-1Zu
)-1

(D+Zl)
-1δ = -Z-1δ.

The earlier expression for γ(k) leads to

γ(k) − γ? = Rk
s(γ

(0) − γ?).

By taking the norm of the above and using the bound (3.24), we obtain the inequality in (3.20).

To prove (ii), we use (3.11) to obtain the following for any γ ∈ K

J̄(γ)− J̄(γ?) = 〈γ,Zγ+2δ〉K − 〈Zγ
?+2δ, δ〉K = 〈γ − γ?,Z(γ − γ?)〉K . (3.25)

The last equality uses γ? = −Z-1δ and the self-adjoint property of Z for intermediate steps. This

along with Lemma 6 leads to (3.21). Now, due to the lower bound obtained in (3.21), the optimality

of γ? along with its uniqueness in achieving the cost is established.

We now prove (iii). Due to the construction (3.16), we have

J̄(γ
(k+1)
1 , . . . , γ

(k+1)
i , γ

(k)
i+1 , . . . , γ

(k)
M ) ≤ J̄(γ

(k+1)
1 , . . . , γ

(k+1)
i-1 , γ

(k)
i , . . . , γ

(k)
M )

which translates to J̄(γ(k+1)) ≤ J̄(γ(k)), showing that the cost is non-increasing with the stages.

The upper bound in (3.21) allows us to show that J̄ is continuous at γ? with respect to ‖ · ‖K, since

for any ε > 0 we can set δ = 2āε2 to have ‖γ − γ◦‖K < ε ⇒ |J̄(γ) − J̄(γ◦)| < δ for all γ ∈ K.

We already know that starting from any γ(0) ∈ K, the iterations converge to γ? in K. This along

with the continuity of J̄ proves that J̄(γ(k)) converges to J̄(γ?). To show that this convergence is

exponential, we combine the right inequality in (3.21) along with (3.20).
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To show (iv), we note that equation (3.22) is same as γ = Rsγ + rs, whose unique fixed point

being γ? is immediate from (i).

Note that the team optimal strategy γ? obtained in the above theorem is same as γ◦ described

in Section 3.5. Further it is straightforward to verify that the conditions of optimality in (3.10) is

same as the equations in (3.22). Thus for static quadratic teams, the above theorem also provides

an alternative proof to [16] for existence and uniqueness of this team optimal strategy and the

necessary conditions associated with it. We point out that, for the case of M = 2, the contraction

property in (3.24) can also be proved by applying Schur complement formula to Z instead of the

using a Lyapunov argument as done here.

The next corollary shows that the players’ order at each stage of the update (3.17) can be changed

without affecting the exponential convergence.

Corollary 11. Let σk : J → J be a sequence of permutations on the player index set. Then, a

sequential update where player strategies are computed in the order σk(1), . . . , σk(M) at stage k,

converges to the team optimal strategy γ◦ and is bounded by the convergence rate in (3.20).

Proof. We first define the permutation operator Πσk : K → Kσk(1)⊕· · ·⊕Kσk(M) through

 γ1

...

γM

 7→
 γσk(1)

...

γσk(M)

. Then, we use the notation in (3.19) to define a stage-varying version of the operator

Rs in (3.17) as Rs,k := D- 1
2 Π∗σkM̂σk(M) . . . M̂σk(1)ΠσkD

1
2 at stage k. It can be shown that this

operator satisfies Xk+1 −Rs,kXkR
∗
s,k �

a
M2ā2 I with Xk = Z-1 resulting in ‖Rs,k-1 . . .Rs,0‖K→K ≤√

ā
a

(
1− a2

M2ā2

)k/2
using Lemma 8. Following steps similar to those in Theorem 10, the bound in

(3.20) can be obtained.

Note that in contrast to the above corollary, players’ ordering alters the convergence properties

in a game setting, observed for example in [74].

The convergence of the parallel update scheme for M = 2 can be examined by converting it to

a sequential update as summarized in the next remark. This connection between the convergence

properties of the parallel and sequential updates for M = 2 has been observed in [75].

Remark 12. For M = 2, the parallel update in (3.14) for player i at stages 2k and 2k + 1 can be

combined as γ
(2k+2)
i = ΓiΓ-iγ

(2k)
i which is same as the strategy after stage k of a sequential update

starting with same initial strategy γ
(0)
i .

For M > 2, as pointed out by [20], the parallel update scheme may fail to converge. This can be

seen by examining the following simple 3-player test case with ξ being empty i.e. a matrix team
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problem where observations are irrelevant.

Z(ξ) =

 1 0.9 0.9

0.9 1 0.9

0.9 0.9 1

, d(ξ) =

1

1

1

.

3.8 Numerical Simulation

The global convergence property developed in the previous section provides us with a mechanism

to compute the optimal strategy by sequentially applying the best response mappings. While such

a mechanism has been suggested in the past for both team and game problems, the generality of

the convergence property presented in the previous section allows us to apply this mechanism to a

wide range of setups. In order to demonstrate that this scheme can be effective to compute strate-

gies (which are otherwise hard to obtain), we present an example where strategies are computed

numerically.

Let us consider the following one-step scalar dynamics with two players

x+ = A(x) + u1 + u2, yi = x+ vi. (3.26)

with A(x) = −1b
x
10
c, x ∼ (0, X) and vi ∼ N (0, Vi). The information set for player i contains only

yi and the cost function is given by J(x, u1, u2) = Qx2
+ + R1u

2
1 + R2u

2
2. With ξ = (x, v1, v2), the

above results in di(ξ) = QA(x), c(ξ) = A(x)TQA(x) and

Zij(ξ) =

{
Ri +Q for i = j

Q otherwise

under the notation of previous section. The cost and noise parameters are chosen as below

Q = 1, R1 = 0.5, R2 = 0.1, V1 = 0.01, V2 = 0.5.

Since V1 < V2, Player 1 has more reliable observations than Player 2. However Player 1’s action

is penalized more than Player 2’s (R1 is larger than R2). With these parameters we find the

(approximate)r team optimal strategies by computing the following for sufficiently large k

γ
(k)
i = (ΓiΓ-i)

k(0) = (I + Γ̂i + Γ̂2
i + · · ·+ Γ̂k-1

i )(Γ̃iδ-i − Z-1
ii δi). (3.27)
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The above expression uses

(Γ̂iγi)(yi) = (Z-1
ii Zi,-iZ

-1
-i,-iZ-i,iγi)(yi) = qi E[E[γi(yi)|y-i]|yi]

(Γ̃iδ-i)(yi) = (Z-1
ii Zi,-iZ

-1
-i,-iδ-i)(yi) = qi E[E[A(x)|y-i]|yi]

with qi = Q2

(Ri+Q)(R-i+Q) . Each term in the summation (3.27) can be computed by numerically

integrating A(x) with the appropriate conditional distributions. The distribution associated with

each of these conditional expectations is a Gaussian with the mean being an affine function of yi.

Further details regarding this calculation are skipped.

We plot the strategies for two different prior distributions of x in Figure 3.1 and try to explain

the behavior qualitatively. One can expect that the players would try to cancel out as much of

A(x) as possible with −(u1 + u2) and thus the strategy of player i at yi = a would possibly be of

opposite sign as A(a). Though the exact values of the strategies would be in accordance with the

cost coefficients Q, R1 and R2 and how reliable the observations are. Due to the cost structure,

Player 2 applies a larger control action, while Player 1 applies a smaller action and tries to correct

Player 2’s action when possible. This correction is evident when there is a jump in A(x), which

Player 1 can detect more reliably and hence is more aggressive than Player 2. This reasoning seems

to hold well for values of x close to the mean (zero). However when x is far away from zero, the

prior distribution of x seems to have a strong effect. This is evident from the fact that Player 2’s

strategy holds the same sign as A(x) even though one moves away from the mean. For example,

the effect can be seen in the plot of γ2(y2) in Figure 3.1(b) for values of y2 around 10 to 13. This

implies that, Player 2 believes that the actual x is smaller than y2 (in absolute value) owing to

the prior distribution. In such scenarios, Player 1 tries to compensate for Player 2’s behaviour by

applying a larger control.
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(a) x ∼ N (0, 10)
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(b) x ∼ N (0, 1)

Figure 3.1: Plots showing A(x) vs x (dashed), γ1(y1) vs y1 (solid) and γ2(y2) vs y2 (dot-dashed)
for two different prior distributions of x
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3.9 Tools for Analytical Computation of Strategies

In this section we present some results using Theorem 10, which can be helpful in obtaining an

analytical expression for the team optimal strategy or approximations to it. These results will be

used in the forthcoming chapters to solve the static problems encountered in dynamic team setting.

First, we have the following result.

Corollary 13. Suppose subsets S1 ⊂ K1, S2 ⊂ K2, . . . , SM ⊂ KM are closed and let S := ⊕Mi=1Si.
If for each γ ∈ S, the condition Γiγ-i ∈ Si holds for all i ∈ J , then γ◦ ∈ S.

The proof of the above is straightforward, since the sequential update with a starting point

γ(0) ∈ S stays in S and ultimately converges to the team optimal solution. The above corollary

can be useful to isolate the structure of the strategy e.g. if one has a guess for the structure of the

optimal strategy. One could possibly gain intuition about such a structure by evaluating the steps

of sequential update for a few iterations with γ(0) = 0. If we have a structural description of the

strategy described by a subspace S, we may be able to write a set of linear equations using (3.10).

The unique solution to this set of equations is the team optimal solution. In particular, when S is

finite dimensional, we can obtain the team optimal solution directly as explained in the following

result.

Corollary 14. Suppose sets Si in Corollary 13 are finite dimensional subspaces with basis {ψil}
bi
l=1

for each i ∈ J . Then the optimal strategy can be obtained by solving the following set of linear

equations in the coefficients {ail}
bi
l=1 corresponding to the optimal strategy γ◦i =

∑bi
l=1 a

i
lψ
i
l

M∑
j=1

bj∑
p=1

ajp
〈
ψil ,Z

-1
ii Zijψ

j
p

〉
Ki

+
〈
ψil ,Z

-1
ii δi
〉
Ki

= 0

for l = 1, . . . , bi and i = 1, . . . ,M .

When S is infinite dimensional, the linear equations obtained through (3.10) may not be easily

solvable. However an approximation of the team optimal strategy may still be computable by using

a finite truncation of the sequential update iterations. We will apply all the ideas presented in this

subsection to a specific team application in the next section.
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Chapter 4

Static Teams with Local Parameter Knowledge

In this chapter we introduce a static problem where the underlying random variable comprises

of independent components x (state) and θ (parameter). Players have partial knowledge about

the parameter θ. We will consider the cases of both partial and full observations of x and obtain

corresponding team optimal strategies using techniques developed in previous chapter. The solution

developed here for the static problem will be helpful in later chapters to solve dynamic team

problems with local model information.

4.1 Setup

Consider a special case of M -player static quadratic team problem with random variable ξ =

(x, θ, v1, . . . , vM ). Here x is the random state assuming values in Rn and θ = (θ1, . . . , θM ) constitutes

the players’ local types or parameters with θi taking values in Θi which is assumed to be a product

of a Euclidean space and a finite set. The local types θi can be viewed as partial observations of

the global parameter θ, which collectively determine θ. The measurements available to players are

of the form

yi = Ci(θi)x+ vi for i ∈ J (4.1)

with vi being the measurement noise and Ci dependent only on the local type θi. Thus information

available to player i consists of the local types and measurements as

Ii = (θi, yi). (4.2)

We consider a quadratic cost function of the form

J(ξ, u1, . . . , uM ) = uTZ(θ)u+ 2uTY (θ)x+ c(x, θ) (4.3)

=
M∑
i=1

M∑
j=1

uTi Zij(θ)uj +
M∑
i=1

2uTi Yi(θ)x+ c(x, θ)
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which results in Zij(ξ), di(ξ) and c(ξ) of Chapter 3 to be written as Zij(θ), Yi(θ)x and c(x, θ)

respectively.

We further make the following assumptions for this problem

Assumption 15. (i) There exist positive constants a and ā such that aI � Z(θ) � āI for all

θ ∈ Θ = Θ1 × · · · ×ΘM

(ii) x ∼ N (x̄, X) and vi ∼ N (0, Vi) for i = 1, . . . ,M

(iii) x, v1, . . . , vM and θ are independent of each other

(iv) All players have complete knowledge of the maps Z(·), Y (·), c(·), {Ci(·)}Mi=1 and the underlying

statistics.

Strictly speaking, the matrix valued functions of types defined here are deterministic functions

and we should be using them with their arguments as Y (θ) or Ci(θi). In order to keep notation

compact, however we will sometimes treat them as random matrices without explicitly writing the

type arguments.

The following lemma lists some useful definitions and properties making use of linear estimation

theory.

Lemma 16. Consider the observation model in (4.1) and information structure (4.2).

(a) The distribution of the random vector x conditioned on local information of player i is given

by N (x̂i, X̂i) with

x̂i := E[x|Ii] = x̄+ Li(yi − Cix̄) and

X̂i := E[(x− x̂i)(x− x̂i)T |Ii] = (I − LiCi)X

where Li(θi) := XCTi (Vi+CiXC
T
i )-1 is the local Kalman gain.

(b) Define ei := yi − Cix̄ = Ci(x− x̄) + vi, then E[ei] = 0,

E[eie
T
j ] =

{
E[Vi + CiXC

T
i ] for i = j

E[CiXC
T
j ] for i 6= j

and E[xeTi ] = XEθi [CTi ]. As a result for G, a matrix valued function of θ of appropriate

dimension, we have

• E[Gei] = 0

• E[eTi Gei] = E[Tr(Geie
T
i )] = Tr

(
E[G(Vi+CiXC

T
i )]
)

• E[Gej |Ii] = E[GCj |θi]Liei for j 6= i
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Note that Li being a function of Ci, is also dependent on θi. However for simplicity, we choose

to suppress this dependence. The above lemma uses standard properties (see for example [76]),

and the proof is skipped. Note that the definitions above and those to follow use the same variable

to represent a random variable and the value it takes. Again, this is done to keep the notation

compact.

The previous lemma leads to

δi(Ii) = E[di(ξ)|Ii] = Ŷi(θi)x̂i = Ŷi(θi)(x̄+ Li(θi)ei)

where we have used Ŷi(θi) = E[Yi(θ)|θi]. The best response in (3.13) then evaluates point-wise to

the following

(
Γi(γ-i)

)
(Ii) = -Ẑi(θi)

-1

{
E
[∑
j 6=i

Zij(θ)γj(Ij)|Ii
]
+Ŷi(θi)x̂i

}
(4.4)

where Ẑi(θi) := E
[
Zii(θ)

∣∣θi].
4.2 Team Optimal Solution

We define the following subspaces of Ki

Zi := {γi ∈ Ki : γi = Ki(θi)x̄, Ki ∈ Rmi×ni }

Wi := {γi ∈ Ki : γi = Ki(θi)ei, Ki ∈ Rmi×ni }

with Ra×bi being the space of a × b dimensional matrix valued functions of local type θi. Using

the above, we define Z = Z1 × · · · × ZM and W = W1 × · · · × WM which are subspaces of K.

It can be verified that Z and W are orthogonal with respect to the inner-product 〈· , ·〉K due to

E[x̄TMi(θi)ei] = 0 for Mi ∈ Rn×ni . We can thus define the (internal) direct sum Z ⊕W.

Theorem 17. For the static team problem described by information and cost structures in (4.2)

and (4.3) respectively, the team optimal strategy γ◦ lies in the subspace Z ⊕W. More specifically

γ◦i (Ii) = Ks
i (θi)x̄+Ko

i (θi)ei (4.5)
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where Ks
i and Ko

i are obtained by solving the following equations

ẐiK
s
i x̄+

∑
j 6=i

E[ZijK
s
j |θi]x̄+ Ŷix̄ = 0 (4.6a)

ẐiK
o
i ei +

∑
j 6=i

E[ZijK
o
jCj |θi]Liei + ŶiLiei = 0 (4.6b)

for i = 1, . . . ,M . The resulting optimal expected cost is given by

J̄(γ◦) = x̄T

(
M∑
i=1

E[(Ks
i )TYi]

)
x̄+ E[c(x, θ)] +

M∑
i=1

Tr
(
E[(Ko

i )TYiLi(Vi+CiXC
T
i )]
)
. (4.7)

Proof. For any strategy γ ∈ Z⊕W, we can use (4.4) and Lemma 16 to verify that Γi(γ-i) ∈ Zi⊕Wi

holds for i = 1, . . . ,M . We can then use Corollary 13, to assert that the team optimal strategy γ◦

also lies in Z ⊕W. Since the optimal solution satisfies (3.10), we can project the corresponding

equation onto the two orthogonal subspaces as

PZ (Zγ◦ + δ) = 0, PW (Zγ◦ + δ) = 0.

where PZ and PW are projection operators on Z and W respectively. γ◦ being in Z ⊕W has the

structure (4.5) and upon substitution into the above equations we obtain (4.6). Note that these

equations may not have unique solutions for Ks
i and Ko

i , but the strategies that they describe in

spaces Z and W are unique in K.

We can evaluate the optimal cost using (3.12), with

〈γ◦, δ〉K =
M∑
i=1

E
[(
Ks
i (θi)x̄+Ko

i (θi)ei
)T
Ŷi(θi)

(
x̄+ Li(θi)ei

)]
=

M∑
i=1

(
x̄TE[Ks

i (θi)
T Ŷi(θi)]x̄+ E[eTi K

o
i (θi)

T Ŷi(θi)Li(θi)ei]
)
.

Using Lemmas 1 and 16(b), the above leads to (4.7).

We now have the following remark on the structure of optimal strategy.

Remark 18. The optimal strategy (4.5) consists of two components Ks
i (θi)x̄ and Ko

i (θi)ei added

together. The first component is the optimal decentralized full-state feedback strategy applied to the

expected value of the state and the second component is a corrective term based on local measure-

ment.
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4.3 Computing Strategies Through Sequential Update

When we have a finite number of types, the space Z ⊕W is finite dimensional. So we can follow

the description in Corollary 14 to reduce (4.6) to standard linear equations. For infinite types,

although the optimal solution (4.5) is guaranteed to exist, finding the exact strategy by solving

(4.6) may not always be possible. For such scenarios, computing an approximate solution through a

finite number of sequential updates could still be viable and we present the details in the following

theorem.

Theorem 19. For the static team problem described by cost and information structures in (4.3)

and (4.2) respectively, the following is an approximation to the team optimal strategy

γ
(k)
i (Ii) = K

s,(k)
i (θi)x̄+K

o,(k)
i (θi)ei (4.8)

obtained through recursions

K
s,(k+1)
i x̄ = -Ẑ-1

i

(
E
[∑
j<i

ZijK
s,(k+1)
j +

∑
j>i

ZijK
s,(k)
j

∣∣θi]+Ŷi)x̄

K
o,(k+1)
i ei = -Ẑ-1

i

(
E
[∑
j<i

ZijK
o,(k+1)
j Cj +

∑
j>i

ZijK
o,(k)
j Cj

∣∣θi]+ Ŷi

)
Liei (4.9)

K
s,(0)
i = 0, K

o,(0)
i = 0

computed in the order i = 1, . . . ,M at each stage. The resulting expected cost is bounded by

J̄(γ(k)) ≤ J̄(γ◦) +
ā2

a

(
1− a2

M2ā2

)k
‖γ◦‖2K (4.10)

Proof. The strategy in (4.8) is obtained by using the definition of sequential update in (3.16)

applied to the current setup, starting with γ(0) = 0. Theorem 10 being applicable here, the bound

for expected cost is obtained using (3.20) and (3.21).

4.4 Full State Knowledge

For the setup discussed in 4.1, we now look at the special case when the players observe the state

exactly i.e. yi = x for i ∈ J . The following theorem summarizes the result.
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Theorem 20. For the static team problem described by cost structure in (4.3) and information

structure Ii = (θi, x) for i ∈ J , the team optimal strategy γ◦ is given by

γ◦i (Ii) = Ks
i (θi)x (4.11)

where coefficients {Ks
i }i∈J are obtained by solving the following equations

ẐiK
s
i x+

∑
j 6=i

E[ZijK
s
j |θi]x+ Ŷix = 0 (4.12)

for i ∈ J . The resulting optimal expected cost is given by

J̄(γ◦) = xT

(
M∑
i=1

E[(Ks
i )TYi]

)
x+ E[c(x, θ)]. (4.13)

Further, an approximation to the team optimal strategy γ
(k)
i (Ii) = K

s,(k)
i (θi)x can be obtained

through recursions

K
s,(k+1)
i x = -Ẑ-1

i

(
E
[∑
j<i

ZijK
s,(k+1)
j +

∑
j>i

ZijK
s,(k)
j

∣∣θi]+Ŷi)x, K
s,(0)
i = 0 (4.14)

computed in the order i = 1, . . . ,M at each stage. The resulting expected cost is bounded by (4.10).

Proof. The best response in this case is given point-wise by the following

(
Γi(γ-i)

)
(Ii) = -Ẑ-1

i

{
E
[∑
j 6=i

Zijγj(Ij)|Ii
]
+Ŷix

}

Using Corollary 13, it can be verified that the optimal strategies have the structure (4.11). Upon

substitution into the optimality conditions (3.10), equations (4.12) are obtained. The optimal cost

can be computed as done in Theorem 17. The update equations (4.14) that converge to the optimal

strategy can be obtained in the same way as Theorem 19.

Note that since Equation (4.12) has to hold for all possible x ∈ Rn, the term x can be dropped

from the equation.

4.5 One-Stage Problem

We now further specialize the results of Theorem 17 to a problem with one-stage dynamics and

quadratic cost, while the information structure remaining the same.
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Corollary 21. Consider the following one stage dynamics

x+ = A(θ)x+
M∑
i=1

Bi(θ)ui + w (4.15)

yi = Ci(θi)x+ vi, for i = 1, . . . ,M

with w ∼ (0,W ) being independent of other random variables. The associated cost function is given

by

J(ξ, u1, . . . , uM ) = uTR(θ)u+ xT+S(θ)x+ (4.16)

with R(θ) � aI and R(θ) +Bi(θ)
TS(θ)Bi(θ) � āI for all θ ∈ Θ for positive constants a and ā. The

information structure here is same as (4.2) with identical assumptions on x, vi and θ as used in

Theorem 17. We then have the following expressions when adapted to the notation used in Chapter

3

ξ = (x, θ, w, v1, . . . , vM ), Zij(ξ) = Rij(θ) +BT
i (θ)S(θ)Bj(θ),

di(ξ) = BT
i (θ)S(θ) (A(θ)x+ w) , c(ξ) =

(
A(θ)x+ w

)T
S(θ)

(
A(θ)x+ w

)
.

Consequently, the team optimal solution is given by (4.5) and (4.6) with Yi(θ) = BT
i (θ)S(θ)A(θ)

and

E[c(x, θ)] = E[(Ax+ w)TS(Ax+ w)] = x̄TE[ATSA]x̄+ Tr(E[ATSA]X) + Tr(E[S]W ) (4.17)

Example We end this section with an example demonstrating the use of the previous theorem.

Consider the following one-stage scalar dynamics

x+ = Ax+ θ1u1 + u2

y1 = x+ v1, y2 = θ2x+ v2

and a quadratic cost x2
+ + uTRu which can be expanded as

[
u1

u2

]T[
R11+θ

2
1 R12+θ1

R21+θ1 R22+1

][
u1

u2

]
+ 2

[
u1

u2

]T[
θ1Ax

Ax

]
+A2x2

with R being independent of types. We assume that θ1 ∼ uniform(a, b) and θ2 ∼ Bernoulli(p) are

independent of each other. For this setup, we have Ẑ1 = R11 + θ2
1, Ẑ2 = R22, Ŷ1 = θ1A, Ŷ2 = A,
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C1 = 1, C2 = θ2 leading to the following

K
s,(k+1)
1 (θ1) = −(R12 + θ1)K

s,(k)
2 + θ1A

R11 + θ2
1

, θ1 ∈ [a, b] (4.18a)

K
s,(k+1)
2 (θ2) = −

∫ b

a

(R21 + θ1)K
s,(k+1)
1

(b− a)(R22 + 1)
dθ1−

A

R22 + 1
, θ2∈{0, 1} (4.18b)

K
o,(k+1)
1 (θ1) = −p(R12 + θ1)K

o,(k)
2 (1) + θ1A

R11 + θ2
1

L1, θ1 ∈ [a, b] (4.18c)

K
o,(k+1)
2 (1) = −

{∫ b

a

(R21 + θ1)K
o,(k+1)
1

(b− a)(R22+1)
dθ1 +

A

R22+1

}
L2(1) (4.18d)

Note that both K
s,(k)
1 and K

s,(k)
2 are not affected by p (also K

s,(k)
2 doesn’t depend on θ2). This is

because both these terms correspond to the state feedback law (see Remark 18) whereas parameter

θ2 (hence p) only affects the observation structure. Further, since L2(0) = 0 we have K
o,(k)
2 (0) = 0

from (4.9). In fact, from Equation (4.6b) we can deduce that Ko
2(0) = 0. This is understandable

(again with regards to Remark 18) because for θ2 = 0 the observation contains no additional

information.

With the following choice of parameters

a = −1, b = 0, X = 0.5, V1 = 0.2, V2 = 0.2

A = 2, R11 = R22 = 1, R12 = R21 = 0.7

we performed two simulations with p = 0.25 and p = 0.75 for 10 stages of the updates. The

strategy gains thus computed for Player 1 is plotted in Figure 4.1, and for Player 2 is given by

Ks
2(θ2) = −1.0903 (for all values of p and θ2), Ko

2(1) = −0.73387 for p = 0.25 andKo
2(1) = −0.74482

for p = 0.75.
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Figure 4.1: Strategy coefficients Ks
1 (solid), Ko

1 for p = 0.25 (dashed) and Ko
1 for p = 0.75

(dot-dashed) of player 1 plotted against θ1. Black lines indicate final strategies after k = 10
iterations, while lighter shades indicate strategies at intermediate steps of k = 1 and k = 2.
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Chapter 5

Dynamic Teams with Partially Nested Information Structure

In this section we will consider a partially nested information structure. A non-switched version

of this problem was introduced in [22], where the authors showed that under a partially nested

information structure, the decentralized LQG problem has affine team optimal strategies. The

approach there involved converting the corresponding dynamic problem to a static one and then

applying the result of [16] for static team problems.

Here we consider a M -player problem similar to that introduced in Section 4 with cost function

(4.3). However the observation model and information structure are different. But before we explain

them, let us define the set consisting of indices of all players’ whose actions affect the information

of player i as

φ̂i = {φi1, . . . , φipi}

where pi is the count of such players. Also define φi = φ̂i ∪ {i} and φ̄i = J \φi (set containing

indices of players not affecting the information of player i). To be able to enforce the partially

nested structure, we will assume following conditions on the index sets

(i) If j ∈ φ̂i then φ̂j ⊂ φ̂i,

(ii) If j ∈ φ̂i then i ∈ φ̄j .

The local measurement corresponding to player i is assumed to be

yi = Ci(θi)x+
∑
j∈φ̂i

Dij(θi)uj + vi (5.1)

whose coefficients depend on the local type θi. The above then describes the information available

to player i as

Ii = (ŷi, θ̃i) (5.2)

with ŷi :=
[
yT
φi1
. . . yT

φipi
yTi

]T
and θ̃i := (θφi1

, . . . , θφipi
, θi). To have a better understanding of the

above notation, let us consider an example with the following decision graph.
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1 2

3 4

5 6

φ̂1 = ∅, φ̂2 = ∅, φ̂3 = {1},
φ̂4 = {1, 2}, φ̂6 = {1, 2, 4},

φ̂5 = {1, 2, 3, 4}.

For this setup, the information available to each player is given by

I1 = (y1, θ1), I2 = (y2, θ2), I3 =

([
y1

y3

]
, θ1, θ3

)
,

I4 =

([
y1
y2
y4

]
, θ1, θ2, θ4

)
, I5 =

([
y1

.

.

.

y5

]
θ1, . . . , θ5

)
, I6 =

([
y1
y2
y4
y6

]
θ1, θ2, θ4, θ6

)
.

Note that the action of player j affecting the information of player i, could happen either because

Prob{Dij 6= 0} > 0 or through a series of players i1, . . . , ir (each from the set φ̂i) such that

Prob{Di1,j 6= 0, Di2,i1 6= 0, . . . , Di,ir 6= 0} > 0. (5.3)

The information structure described above in (5.2) is partially nested because Iφij , the information

corresponding to player φij is also available to player i. Since in a team problem as this, we can

assume that players have knowledge of all other players’ strategies, this also means that player i

can compute uφij
. As a result, the information structure in (5.2) is equivalent to

Îi = (ŷi, θ̃i, ûi) (5.4)

with ûi :=
[
uT
φi1
. . . uT

φipi
uTi

]T
.

Before presenting the main theorem of the section, we introduce some additional notation. We

define ei = yi −
∑

j∈φi Dij(θi)uj = Ci(θi)(x− x̄) + vi which can be computed by player i based on

its information. We also define Ŷi(θ̃i) = E[Yi|θ̃i],

C̃i(θ̃i) =


Cφi

1
(θφi

1
)

...

Cφi
pi

(θφi
pi

)

Ci(θi)

, D̃ij(θ̃i) =


Dφi

1,j
(θφi

1
)

...

Dφi
pi
,j(θφi

pi
)

Di,j(θi)

, ẽi =


eφi1
...

eφipi
ei

 .

ṽi :=
[
vT
φi1
. . . vT

φipi
vTi

]T
whose covariance matrix is given by Ṽi = diag(Vφi1

, . . . , Vφipi
, Vi).

Theorem 22. For a decentralized partially nested problem described by information structure (5.2)

and cost structure (4.3) along with Assumption 15, the team strategy which minimizes the expected
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value of the cost function is given by

γ◦i (Ii) = Ks
i (θ̃i)x̄+Ko

i (θ̃i)ẽj = Ks
i (θ̃i)x̄+

∑
j∈φi

Ko
ij(θ̃i)ej (5.5)

where Ko
i (θ̃i) =

[
Ko
i,φi

1
(θ̃i) . . . K

o
i,φi

pi

(θ̃i) K
o
ii(θ̃i)

]
. {Ks

i }i∈J and {Ko
i }i∈J are obtained by solving the

following equations ∑
j∈J

E[ZijK
s
j |θi]x̄+ Ŷix̄ = 0 (5.6a)

∑
j∈J

l∈φj∩φi

E[Zij |θ̃i]Ko
jlel+

∑
j∈φ̄i

l∈φj∩φ̄i

E[ZijK
o
jlCl|θ̃i]L̃iẽi + ŶiL̃iẽi = 0 (5.6b)

for i ∈ J with L̃i(θ̃i) = XC̃Ti (Ṽi + C̃iXC̃i)
-1. The resulting optimal expected cost is given by

J̄(γ◦) = x̄T

(
M∑
i=1

E[(Ks
i )TYi]

)
x̄+ E[c(x, θ)] +

M∑
i=1

Tr
(
E[(Ko

i )TYiL̃i(Ṽi + C̃iXC̃
T
i )]
)

(5.7)

Proof. We combine the measurements available to player i as

ŷi = C̃i(θ̃i)x+
∑
j∈φ̂i

D̃ij(θ̃i)uj + ṽi

Note that due to the explanation given in equation (5.3) and prior to it, we have D̃ij(θ̃i) 6= 0

for some θ̃i, for all j ∈ φ̂i. As explained earlier that information structures (5.2) and (5.4) are

equivalent, player i has access to {uj}j∈φ̂i and hence can compute the following exactly

ỹi := ŷi −
∑
j∈φ̂i

D̃ij(θ̃i)uj = C̃i(θ̃i)x+ ṽi.

This allows us to rewrite the dynamic information structure described in (5.2) by the equivalent

static information structure Ĩi = (ỹi, θ̃i). As a result we have a static problem very similar to the

one presented in Section 4. The main difference being that ṽi here is correlated among players. So

although we cannot use the result in Theorem 17, we can follow similar steps to obtain the optimal

control. For the above information structure, we can write relations similar to those in Lemma 16.

In particular we have E[x|Ii] = L̃iẽi and for any matrix valued function G

E[Gej |Ĩi] =

{
E[G|θ̃i]ej for j ∈ φi

E[GCj |θ̃i]L̃iẽi for j ∈ φ̄i

We can use the above to show that for strategies having a structure similar to (5.5), each player’s
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best response to others’ strategies retains the same structure. We can thereby use Corollary 13 to

obtain (5.5) and (5.6). Note that we could split (5.6) into two independent equations for the same

reasons presented in Theorem 17. Further, the optimal cost can be computed using

〈γ◦, δ〉K =
M∑
i=1

E
[(
Ks
i x̄+Ko

i ẽi
)T
Ŷi(x̄+ L̃iẽi)

]
added to E[c(x, θ)].

We point out that when the above problem is setup with players acting repeatedly over time,

obtaining the optimal controller involves solving linear equations over the entire time horizon.

However with additional structure on the problem, it may be possible to obtain a recursive solution

similar to [39,40,77].
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Chapter 6

Dynamic Teams with One-Step Delayed Information Sharing

In this section, we consider the M -player decentralized control of a discrete-time switched system

where individual controllers share their information with others after a delay of one time step. The

3-player case is pictured in Figure 6.1. Such a delayed information sharing structure can be applied

in several decentralized control scenarios where controllers are connected by fast communication

network so that they have access to local parameters instantaneously but can access the parameters

of the entire system after a small but non-zero delay.

6.1 Problem Description

We consider a linear time varying system controlled by M players having the following dynamics

xt+1 = At(θt)xt +

M∑
i=1

Bit(θt)uit + wt

yit = Cit(θit)xt + vit, for i = 1, . . . ,M (6.1)

Here xt ∈ Rn is the state of the system, uit ∈ Rmi and yit ∈ Rli are respectively the control input

and measurement of the i-th player at time t. We define yt =
[
yT1t . . . y

T
Mt

]T
and similarly introduce

ut and vt. The system matrices are functions of time varying random type θt = (θ1t, . . . , θMt) which

takes value in Θ = Θ1 × · · · × ΘM as in Chapter 4. Note that the single subscripts on θt, yt, ut

and vt correspond to time and is different from the notation used in prior chapters. We assume

that the player types are taken from a Markov process with known transitions P(θt|θt-1) and initial

distribution P(θ0). The initial state x0 ∼ N (x̄0, X0), (i.i.d.) process noise wt ∼ N (0,W ), players’

(i.i.d.) measurement noise vit ∼ N (0, Vi) and θt are assumed independent across time. Further, all

player have complete knowledge of the bounded mappings At(·), Bit(·) and Cit(·) for i = 1, . . . ,M

and all t, and the distributions of all underlying random variables. The information available to

player i at time t is given by

Iit = (Ict , yit, θit) (6.2)
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u2t

(θ3t, y3t)

(θ2t, y2t)

d
d

d

d

d

d

u1t (θ1t, y1t)

u3t

G(θ)

K3

K1

K2

Figure 6.1: System under consideration, shown here for three players. Parameter θit and
measurement yit are instantaneously available locally but with a delay (identified here with block
d) of one time step to the other players.

where Ict = (y0, . . . , yt-1, θ0, . . . , θt-1) for t > 0 and Ic0 = ∅ (a 0-tuple). Let us denote the decentralized

information at time t as Idt = (I1t, . . . , IMt).

Suppose the information available to player i at time t is Iit and takes values in the space Iit.
The strategy γit maps the information set of player i at time t to its control input as uit = γit(Iit)
and is considered on a Hilbert space Kit consisting of measurable functions satisfying ‖γit‖Kit :=

E
[
|γit(Iit)|22

∣∣ γt-1
] 1

2 <∞. The probability measure associated with the above expectation depends

on the choice of past strategies γt-1 = (γ0, . . . , γt-1), assumed to be known. Similar definitions of

the strategy space has been used in [78]. As in the static case, the inner-product associated with

Kit is defined as 〈α, β〉Kit := E[α(Iit)Tβ(Iit)|γt-1] and the decentralized strategy at time t is defined

on the Hilbert space Kt = K1t ⊕ · · · ⊕ KMt. For a decentralized strategy γt ∈ Kt at time t, we use

the notation γt(Idt ) =

 γ1t(I1t)
...

γMt(IMt)

.

We will consider the following finite N -step horizon quadratic cost function

JN (x0, u0, . . . , uN-1) = xTNQN (θN )xN +

N−1∑
t=0

{
xTt Qt(θt)xt +

M∑
i=1

M∑
j=1

uTitRij,t(θt)ujt

}
(6.3)

For all t, we assume that Qt(θt) ∈ S̄+ and Rt(θt) ∈ S+ with Rij,t(θt) being its (i, j)-th block. In

particular, we assume that Rt has a lower bound as Rt(θ) � atI for all θ ∈ Θ, and in similar sense

both Rt and Qt are bounded from above.

The main objective of the decentralized control problem is to find the decentralized control

strategy γ = (γ0, . . . , γN-1) which minimizes the expected cost

J̄(γ) = E
[
JN

(
x0, γ0(Id0), . . . , γN-1(IdN-1)

)]
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with the expectation taken over θ0, . . . , θN-1, w0, . . . , wN-1, v0, . . . , vN-1 and x0.

6.2 Multistage Solution

We now solve the multistep problem described in Section 6.1 using a dynamic programming ap-

proach. We denote the expected cost-to-go at time step t as Vt(Ict) which is a function of the common

information Ict . We will see in the forthcoming discussion that the optimal expected cost-to-go at

time t has the quadratic form

V◦t (Ict) = E[xTt Πt(θt-1)xt|Ict ] + ct(θ
t-1) = x̄Tt Πt(θt-1)x̄t + Tr(ΠtXt) + ct(θ

t-1) (6.4)

with Πt being a function of player types at t − 1 and ct dependent on the past types θt-1 :=

(θ0, . . . , θt-1) which is a part of the common information Ict . The quadratic structure allows us to

use the one-step result (obtained in Theorem 17) to solve the minimization problem at each step

of dynamic programming. Further the information structure (6.2) implies that the controllers have

access to all measurements, inputs and types until the previous step. This allows each controller

to use a centralized Kalman filter and have a common estimate x̄t of the state for the current time

step. The state covariance matrix Xt of the corresponding Kalman filter is obtained through a

forward propagating Riccati equation and depends on the past history of player types θt-1. The

controller which is linear in the measurements uses coefficient matrices obtained by solving a set of

linear equations dependent on both Πt+1 and Xt. We now present the main result of the section.

Theorem 23. For the system described by (6.1) and information structure (6.2), the optimal

control policy which minimizes the expected value of (6.3) is given by

γ◦it(Iit) = Ks
it(θ̃it)x̄t +Ko

it(θ̃it)eit (6.5)

with eit = yit − Cit(θit)x̄t, θ̃it = (θit, θt-1) and Ks
it, K

o
it given by the solution of following equations

E[Zii,t|θ̃it]Ks
itx̄t + E

[∑
j 6=i

Zij,tK
s
jt +BT

itΠt+1At
∣∣θ̃it]x̄t = 0

E[Zii,t|θ̃it]Ko
iteit + E

[∑
j 6=i

Zij,tK
o
jtCjt +BT

itΠt+1At
∣∣θ̃it]Liteit = 0

for i = 1, . . . ,M , with Lit(θit, θ
t-1) = XtC

T
it (Vi + CitXtC

T
it )
−1 and Zij,t(θt) = Rij,t + BT

itΠt+1Bjt.

Further, x̄t is obtained from a centralized Kalman filter estimate of the current state computable by

both players based on common information

x̄t = At-1x̄t-1 +Bt-1ut-1 +At-1L
c
t-1(yt-1 − Ct-1x̄t-1) (6.6)
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and Πt is obtained by a backward recursion1 as below

Πt(θt-1) := E[Qt + ATt Πt+1At|θt-1] +

M∑
i=1

E[(Ks
it)
TBT

itΠt+1At|θt-1] (6.7)

with terminal condition ΠN (θN-1) = E[QN |θN-1] and Lct(θ
t) = XtC

T
t (V + CtXtC

T
t )-1 being the

centralized Kalman gain. The state error covariance Xt is obtained by a forward recursion

Xt(θ
t-1) = ATt-1

(
Xt-1 − Lct-1Ct-1Xt-1

)
At-1+W (6.8)

initialized with X0, the covariance of x0. The resulting optimal expected cost is given by

J̄(γ◦) = x̄T0 Π0x̄0 + Tr(Π0X0) + c0 (6.9)

where ct is obtained by the backwards recursion

ct(θ
t-1) = E[ct+1(θt)|Ict ] + Tr(E[Πt+1|θt-1]W )− Tr

(
ΠtXt

)
+

M∑
i=1

Tr
(
E[(Ko

it)
TBT

itΠt+1AtLit(CitXtC
T
it + Vi)

T |θt-1]
)

(6.10)

with cN (θN-1) = 0.

Proof. Due to the one-step delayed information sharing, players have knowledge of all past system

matrices and inputs. Thus the distribution of xt conditioned on the common information Ict is

Gaussian and can be obtained through a centralized Kalman filter (after prediction but before

update step). The filter (associated with a Kalman gain Lct) has a mean x̄t obtained through the

update equation (6.6) and error covariance Xt obtained through a forward Riccati equation (6.8).

This serves as the prior distribution of the state for the corresponding time step of the dynamic

program. For a given choice of strategies γ = (γ0, . . . , γN-1) the expected cost-to-go is defined as

Vγt (Ict) = E

[
N−1∑
k=t

(
xTkQkxk + γk(Idk)TRkγk(Idk)

)
+ xTNQNxN

∣∣∣Ict
]

= E[xTt Qtxt + γt(Idt )TRtγt(Idt ) + Vγt+1(Ict+1)|Ict ] (6.11)

with VγN (IcN ) = E[xTNQN (θN )xN |IcN ]. The cost-to-go achieved by the optimal strategy is denoted by

V◦t which has the form (6.4) as we show next. We start with the terminal time t = N , the cost-to-go

here is V◦N (IcN ) = E[xTNQN (θN )xN |IcN ] which can be written as E[xTNΠN (θN-1)xN |IcN ] + cN (θN-1)

with ΠN (θN-1) = E[QN (θN )|IcN ] = E[QN (θN )|θN-1] and cN (θN-1) = 0. Now assuming structure

1At time t = 0, the conditioning is over an empty set of variables. Hence the expectation is taken with respect to
the initial distribution pi0. For the same reason Π0 and c0 are constants and don’t take any arguments.
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(6.4) for V◦t+1(Ict+1), we write the Bellman equation for dynamic programming

V◦t (Ict) = inf
γt∈Kt

E
[
xTt Qtxt + γt(Idt )TRtγt(Idt ) + V◦t+1(Ict+1)|Ict

]
= E[xTt Qtxt + ct+1(θt)|Ict ] + inf

γt∈Kt
E
[
γt(Idt )TRtγt(Idt ) + xTt+1Πt+1xt+1|Ict

]
= E[xTt Πt(θt-1)xt|Ict ] + ct(θ

t-1). (6.12)

In the second line above, the term ct+1 from V◦t+1 can be taken out of the infimization because it

doesn’t depend on the strategy γt. Now as described in [26,36], an important consequence of the one-

step sharing information structure is that the state (which would be (xt, θt) in their context) of the

system conditioned on the common information can be used as the information state for the dynamic

program. This conditional distribution has the simple structure P(xt, θt|Ict) = P(θt|θt-1)P(xt|Ict)
where the last term corresponds to a Gaussian distribution N (x̄t, Xt). Further the local information

of the players depend on the current state (xt) and parameters (θt) just as in the one stage case.

Thus for a given common past information, the minimization problem encountered above is same

as the one in the one-stage problem and can be solved by applying Corollary 21. This results

in strategies (6.5). The associated cost is obtained using (4.7) and (4.17), leading to the last

expression in (6.12) with expansions of Πt and ct given in (6.7) and (6.10) respectively. Thus

starting with the form (6.4) for V◦t+1, we recover same for V◦t , thus verifying the structure through

an inductive argument. Continuing in this manner until t = 0, we obtain the optimal cost for the

entire horizon.

In general ct(θ
t-1) (and hence c0) is hard to compute as it involves evaluating Xt at each time

for every possible sequence of past types. However it does not play any role in the computation of

the optimal strategies.

Remark 24. When the player types are independent in time, this assumption simplifies the solution

obtained in the previous theorem. The cost-to-go still has the same quadratic structure, but Πt is a

constant and does not depend on player types. The expression of the strategies remain the same as

(6.5). However Πt being independent of types, (6.7) reduces to a backwards recursion in matrices

rather than one in functions.

We end this section with a two-stage extension of the example presented in Section 4.5.

Example Consider the following scalar dynamics corresponding to system shown in Figure 6.2

xt+1 = Axt + θ1t u1t + u2t + wt, for t = 0, 1

y1t = xt + v1t, y2 = θ2t xt + v2t
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with OSD information sharing and a two-stage quadratic cost function given by

J2(x0, u0, u1) = x2
0 + x2

1 + x2
2 + uT0 Ru0 + uT1 Ru1

with R being independent of types. We assume that x0 ∼ N (x̄0, X0), wt ∼ N (0,W ), vit ∼ N (0, Vi),

θ1t ∼ uniform(a, b) and θ2t ∼ Bernoulli(p) are independent of each other and across all time stages.

G

K1

K2

θ2

×

u1

u2

y1

y2

θ1

Figure 6.2: Block diagram of a dynamic team problem with multiplicative uncertainties

With the following choice of the system variables

a = −1, b = 0, p = 0.25, X = 0.5, V1 = 0.2, V2 = 0.2

A = 2, R11 = R22 = 1, R12 = R21 = 0.7, W = 0.1

the strategies were computed using sequential update. For the backwards recursion, variables Π2,

{Ks
11,K

s
21}, Π1, {Ks

10,K
s
20}, Π0 were computed in the same order, with coefficients Ks

it obtained

using update equations similar to (4.18a),(4.18b). Using the forward recursion, state covariances

X1(0) and X1(1) are computed. Finally, Ko
10, Ko

20, Ko
11 and Ko

21 are computed using update

equations similar to (4.18c),(4.18d). The team optimal strategies thus computed are given below

and in Figure 6.3.

Ks
20(θ20) = −1.235 for θ20 = 0, 1, Ks

21(θ21) = −1.09 for θ21 = 0, 1,

Ko
20(1) = −0.863, Ko

21(1) =

{
−0.794 for θ20 = 0

−0.702 for θ20 = 1
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Figure 6.3: Plots showing player 1’s strategy coefficients as a function of local parameter θ1t at
different time instances.
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Chapter 7

Dynamic Teams with Full State Feedback and Local Parameters

In this chapter, we present a dynamic team problem with full state feedback, in order to minimize

a switched quadratic cost as in previous chapters. We assume that the parameters are independent

in time and solve both finite and infinite horizon versions of the problem. The finite horizon case

can be seen as a special case of the output feedback problem of Chapter 6. However, the controllers,

due to the availability of complete state information don’t find each other’s information about past

parameters helpful. So we do not consider any sharing of parameters in this chapter. For the

infinite horizon case, we additionally assume no process noise and obtain the optimal solution as

a limit of the finite horizon case. The steps involved in obtaining this result uses ideas developed

in [51]. In [51], a centralized control problem is considered with i.i.d. system/cost matrices and the

controller’s only knowledge about the underlying stochasticity being its statistics. Special cases of

the problem considered in this chapter were solved in [79] and [58].

7.1 Finite Horizon

Here we consider the following dynamics for a finite horizon of N time steps

xt+1 = At(θt)xt +
M∑
i=1

Bit(θt)uit + wt (7.1)

The information available to player i, common-information and decentralized information at time

t are given by

Iit = (Ict , θit), Ict = (x0, . . . , xt), Idt = (I1t, . . . , IMt). (7.2)

We assume that mappings At and Bit are bounded, and parameters θt are independent in time. The

strategy spaces Kit and Kt for i ∈ J , t ∈ N0 are defined from the above information variables in the

same way as done in Section 6.1. The next theorem presents the team optimal strategies for the

above setup, in order to minimize the expected value of cost function (6.3) with same boundedness

assumptions on Qt and Rt as before.
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Theorem 25. For the system described by (7.1) and information structure (7.2), the optimal

control policy which minimizes the expected value of (6.3) is given by

γ◦it(Iit) = Ks
it(θit)xt (7.3)

with Ks
it given by the solution of following equations

E[Zii,t|θit]Ks
itxt + E

[∑
j 6=i

Zij,tK
s
jt+B

T
i Πt+1At

∣∣θit]xt = 0

for i ∈ J , with Zij,t(θt) = Rij,t +BT
itΠt+1Bjt. Πt is obtained by a backward recursion as below

Πt = E[Qt +ATt Πt+1At] +
M∑
i=1

E[(Ks
it)
TBT

itΠt+1At] (7.4)

with terminal condition ΠN = E[QN ]. The resulting optimal cost is given by

J̄(γ◦) = xT0 Π0x0. (7.5)

The proof of the above theorem can be obtained by dynamic programming following steps similar

to the proof of Theorem 23. However the optimal expected cost-to-go for this setup at time t is

chosen as

V◦t (xt) = xTt Πtxt. (7.6)

Proof. For a given choice of strategies γ = (γ0, . . . , γN-1) the expected cost-to-go function is defined

as the following conditional expectation

Vγt (xt) = E

[
N−1∑
k=t

(
xTkQkxk + γk(Idk)TRkγk(Idk)

)
+ xTNQNxN

∣∣∣xt]
= E[xTt Qtxt + γt(Idt )TRtγt(Idt ) + Vγt+1(xt+1)|xt] (7.7)

with VγN (xN ) = xTNE[QN (θN )]xN . The cost-to-go achieved by the optimal strategy is denoted by

V◦t which has the form (7.6) and is shown next. Let us assume the structure (7.6) for V◦t+1(xt+1)

and write the Bellman equation for dynamic programming as below

V◦t (xt) = inf
γt∈Kt

E
[
xTt Qtxt + γt(Idt )TRtγt(Idt ) + V◦t+1(xt+1)

∣∣xt] with xt+1 = Atxt +Btγt(Idt )

= xTt E[Qt]xt + inf
γt∈Kt

E
[
γt(Idt )TRtγt(Idt ) + xTt+1Πt+1xt+1

∣∣xt] = xTt Πtxt. (7.8)

52



We start with the terminal time t = N , where the cost-to-go is V◦N (xN ) = xTNΠNxN with ΠN =

E[QN (θN )] and no player actions are involved. Then at time t = N − 1, the quadratic hypothesis

for V◦N is known to be true and the term within the conditional expectation above is not affected

by past player action and types owing to the conditioning on xt and independence of parameters.

Thus the minimization problem in the second line above is of the form encountered in Theorem

20. Consequently for t = N − 1, the optimal strategy can be obtained to be (7.3) using Theorem

20, while the quadratic structure for VN-1(xN-1) is also recovered with ΠN-1 defined as in (7.4).

This process can be continued in a backward recursive manner until t = 0, while at each stage

t ∈ {0, . . . , N − 2}, the optimal strategy can be evaluated in the same manner as described above

for t = N − 1. Finally at t = 0, the optimal cost for the entire horizon is obtained as in (7.5) with

backward recursions for Πt given in (7.4).

7.2 Infinite Horizon

We now consider the same dynamics as in (7.1), but with no process noise i.e. wt = 0.

xt+1 = A(θt)xt +

M∑
i=1

Bi(θt)uit. (7.9)

Here, parameters θt = (θ1t, . . . , θMt) ∈ Θ, are generated by an i.i.d. process, with joint distribution

of θt being F for each t ∈ N0 and known to all players. Further, mappings A(·) and Bi(·) are time

invariant and bounded.

The information set of the players is same as (7.2), but the cost function is now described by the

following limit

J̄(γ) = lim
N→∞

E
[
JN

(
x0, γ0(Id0), . . . , γN-1(IdN-1)

)]
(7.10)

where JN is defined below in the same way as (6.3)

JN (x0, u0, . . . , uN-1) = xTNQ(θN )xN +

N−1∑
t=0

{
xTt Q(θt)xt +

M∑
i=1

M∑
j=1

uTitRij(θt)ujt

}

but now the bounded mappings Q(·) and Rij(·) are also time invariant. We assume that Q(θ) � 0

and R(θ) � aI for all θ ∈ Θ and some a > 0. Define the corresponding means Q̄ := E[Q(θ)]

and R̄ := E[R(θ)] for θ ∼ F . Further, we have an assumption of mean square observability on Q

described later in (32).

The solution methodology closely follows that of [51] which considers a centralized optimal control

problem with stochastic system matrices. However, the differences between the problem considered
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here and in [51] are large enough to warrant us retracing the steps of the proof.

Before we proceed to solve the infinite horizon problem, we first introduce some definitions and

notations in the lines of [51]. Let us consider the autonomous system (for definition purposes)

shown below

xt+1 = H(θt)xt (7.11)

where H : Θ→ Rn×n is a time invariant mapping.

Definition 26. The system in (7.11) is said to be mean square stable when E[|xt|22]→ 0 as t→ 0

for any initial condition x0 ∈ Rn.

We denote D as the space coefficients L : Θ → Rm×n of the form L(θ) =

 L1(θ1)

...

LM (θM )

 with

Li : Θi → Rmi×n being functions of local parameters. Such an element L ∈ D describes linear

decentralized strategies dependent on current local parameters as

γit(Iit) = Li(θit)xt i ∈ J (7.12)

In this section, we will use L ∈ D to also refer to decentralized strategies of the above form.

For such a strategy, let us denote the closed loop system mapping as AL(·) which is defined as

AL(θ) := A(θ) +B(θ)L(θ) for θ ∼ F .

Definition 27. The system (7.9) is said to be mean square stabilizable by a decentralized control

if there exists feedback policy in D which renders the closed loop system mean square stable.

Since we seek the optimal decentralized controller which stabilizes the plant in mean square sense,

it is natural to have the following assumption on the plant.

Assumption 28. We assume that the system (7.9) is mean square stabilizable by a decentralized

control of the form (7.12).

One possible scenario where the above assumption holds is when the system (7.9) can be made

mean square stable by a single agent (possibly setting the input of the other to zero).

We now present a few notational descriptions, useful for the upcoming result. Let A : S̄n+ → S̄n+
be the linear transformation defined by

A(X) := E[H(θ)T XH(θ)] for θ ∼ F .

Ai(X) denotes the above operation repeated i times with the convention A0(X) = X. For a given

decentralized control L ∈ D, we define a similar map for the closed loop system as

AL(X) := E[AL(θ)TXAL(θ)] for θ ∼ F .
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We also define the linear transformation RL : S̄n+ → S̄n+ as follows

RL(X) := E
[
AL(θ)TXAL(θ) +Q(θ) + L(θ)TR(θ)L(θ)

]
(7.13)

= AL(X) + Q̄+ E
[
L(θ)TR(θ)L(θ)

]
for θ ∼ F

Let Ri
L(X) denote the above transformation being applied recursively i times. On comparing (7.13)

with (4.3), one can verify that xTRL(X)x has a structure similar to the expected value of the cost

in (4.3) with the following choice

Zij(θ) = Rij(θ) +Bi(θ)
TXBj(θ), Yi(θ) = Bi(θ)

TXA(θ)

and c(x, θ) = xT
(
Q(θ) +A(θ)TXA(θ)

)
x

when a control policy of L(θ)x is applied. Moreover from Theorem 20, we know that for a full state

feedback with local parameter knowledge, the corresponding static cost function can be minimized

by applying the decentralized control policy LX ∈ D which satisfies

E
[ M∑
j=1

(
Rij(θ) +Bi(θ)

TXBj(θ)
)
LXj (θj) +Bi(θ)

TXA(θ)
∣∣∣θi] = 0. (7.14)

Here we have used the notation LX(θ) =

 LX1 (θ1)

...

LXM (θM )

. The above equation above is obtained from

(4.12). The corresponding cost (optimal for the static problem) can be obtained using (4.13) and

is given by xTR◦(X)x, where R◦ : S̄n+ → S̄n+ is defined below

R◦(X) := RLX (X) = E[Q+ATXA+ (LX)TBTXA]. (7.15)

Thus we have R◦(X) � RL(X) for all X ∈ S̄+ and L ∈ D. Note that R◦ is a non-linear operator.

Remark 29. For the N -step finite horizon problem in Theorem 23 under a i.i.d. parameter setting,

xT0 (R◦)N (Q̄N )x0 represents its optimal cost.

Although in this section we assume a full-state feedback, for the purpose of the next definition,

consider the observation model

yt = C(θt)xt (7.16)

with yt ∈ Rl and C being a mapping from Θ to Rl×n.

Definition 30. A pair (C,H) corresponding to (7.11) and (7.16) is said to be mean square ob-

servable if there exists p > 0 such that E[|yt|22] = E[|C(θt)xt|22] = 0 for all t = 0, . . . , p − 1, implies

x0 = 0.
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The above definition results in the following equivalence as proved in [51, Theorem 3.5].

Lemma 31. (C,H) is mean square observable if and only if there exists a k ∈ Z+ such that∑k-1
τ=0 Aτ

0(CTC) � 0 (using definition CTC := E[C(θ)TC(θ)] for θ ∼ F)

With respect to the system (7.9) and cost (7.10), we now have the following assumption

Assumption 32. For Q
1
2 (θ) := Q(θ)

1
2 , it is assumed that (Q

1
2 , A) is mean square observable.

We now present the main result for the infinite horizon case.

Theorem 33. Consider the system (7.9) with information set (7.2) and cost function (7.10).

Under Assumption 28 and R � 0, the optimal decentralized control of form (7.12) is given by

γ◦i (Iit) = LPi (θit)xt (7.17)

where P ∈ S̄+ and LP are the solution to equations

P = E[Q+ATPA+ (LP )TBTPA] (7.18)

E
[ M∑
j=1

(Rij +BT
i PBj)L

P
j +BT

i PA
∣∣∣θi] = 0 for i ∈ J . (7.19)

Further with (Q
1
2 , A) being mean square observable, such a solution exists and is unique, and the

closed loop system is mean square stable. The corresponding optimal cost is given by xT0 Px0.

The proof of the above result relies on a series of lemmas which are developed next. The following

lemma is proved in [51] (by combining Lemma 2.2 and Theorem 3.2 of the reference).

Lemma 34. Consider the system in (7.11) and the equation

X = A(X) +W, W � 0 (7.20)

(a) If (7.11) is mean square stable then there exists a solution X � 0 to (7.20)

(b) Conversely if there exists a X � 0 and a W � 0 satisfying (7.20) then (7.11) is mean square

stable and X � 0

The following lemma enumerates some properties of the mapping defined in (7.15).

Lemma 35. (a) R◦(X) � 0 for all X ∈ S̄+

(b) For X,Y ∈ S̄+ with X � Y , we have R◦(X) � R◦(Y )

(c) For X,Y ∈ S̄+ with X � Y , we have (R◦)i(X) � (R◦)i(Y ) for i ∈ Z+

56



Proof. (a) This is straightforward from the definition of RL in (7.13), since Q(θ), R(θ) ∈ S̄+ and

that R◦(X) is obtained by setting L = LX .

(b) We have

R◦(X) = RLX (X) � RLY (X) � RLY (Y ) = R◦(Y ).

The first inequality uses the fact that LX is the optimal decentralized feedback gain for the

cost function corresponding to RL(X) and the second inequality follows from the linearity of

the mapping RLY (·).

(c) This is obtained by repeated application of part (b).

The following is adapted from [51] (by combining Theorem 3.2 and Lemma 3.2).

Lemma 36. Consider the system in (7.11) and the equation

X = A(X) + E[W (θ)] for θ ∼ F (7.21)

with W : Θ → S̄n+. Then the existence of a solution X ∈ S̄n+ and (W
1
2 , H) being mean square

observable implies that (7.11) is mean square stable and X � 0.

Lemma 37. Under assumptions R � 0 and (Q
1
2 , A) being mean square observable, we have ((Q̄+

E[LTRL])
1
2 , AL) to be mean square observable for all L ∈ D.

Proof. Using Lemma 31, we know that (Q
1
2 , A) being mean square observable implies the existence

of k ∈ Z+ such that
k−1∑
τ=0

Aτ
0(Q̄) = Rk

0(0) � 0

Again using Lemma 31, if
(
(Q̄+ E[LTRL])

1
2 , AL

)
is not mean square observable, then there exists

a non-zero initial condition x0 such that x0

(∑k−1
τ=0 Aτ

0(Q̄+ E[LTRL])
)
x0 = xT0 Rk

L(0)x0 = 0 for

all k ∈ Z+. This means that the corresponding expected cost is exactly zero. This under the

assumption of R � 0 implies that ut = L(θt)xt = 0 almost surely which means that xT0 Rk
L(0)x0 =

xT0 Rk
0(0)x0 = 0. This is a contradiction.

Lemma 38. Under Assumption 28 and R � 0 , the limit S = limk→∞(R◦)k(0) exists and satisfies

S = R◦(S). Further with (Q
1
2 , A) being mean square observable, this limit satisfies S � 0 and is

unique, and the closed loop system with control feedback LS is mean square stable.

Proof. By Lemma 35, part (a) we have R◦(0) � 0. Then by part (c) we have (R◦)k+1(0) �
(R◦)k(0) � 0 for k ∈ N0, implying that {(R◦)k(0)}k∈N0 is a non-decreasing sequence. By Assump-

tion 28 we know that there exists a decentralized control, say L̃ ∈ D which makes the closed loop
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mean square stable. Noting that Q̄+ E[L̃TRL̃] � 0 we can apply Lemma 34 to the corresponding

closed loop system to say that there exists a solution X̃ � 0 of the following

X̃ = AL̃(X̃) + Q̄+ E[L̃TRL̃]

Thus X̃ = Rk
L̃

(X̃) � (R◦)k(X̃) � (R◦)k(0). {(R◦)k(0)}k∈N0 being a non-decreasing sequence

bounded by X̃, by a monotone convergence theorem argument, it has a limit which we call S.

Since we find S by taking the limit of (R◦)k(0), it must satisfy S = R◦(S) � 0. This however

doesn’t guarantee a unique fixed point of S = R◦(S).

By Lemma 37, we know that
(

(Q̄+ E[LTRL])
1
2 , AL

)
is mean square observable for any L ∈ D.

In particular this is true when L = LS (defined using (7.14)). Now using Lemma 36 we know that

the closed loop system with control LS is mean square stable and S � 0. To show the uniqueness

of the solution S, we construct a sequence (R◦)k(S′) which starts at some S′ � 0 instead of 0. Now

(R◦)k(0) � (R◦)k(S′) � Rk
LS (S′) = Rk

LS (0) + Ak
LS (S′) � Rk

LS (S) + Ak
LS (S′) = S + Ak

LS (S′)

The first equality above is obtained by expanding out the terms in Rk
LS

(S′) using its definition.

As k → ∞, the leftmost expression converges to S while the term Ak
LS

(S′) in the rightmost

expression converges to 0 due to the mean square stability of closed loop system with control LS .

This establishes the fact that a sequence (R◦)k(S′) constructed with any initial S′ converges to S,

precluding the possibility of another fixed point.

Proof of Theorem 33. Having solved the finite horizon problem and noting that the corresponding

expected cost is given by (R◦)k(Q̄k), extension to the infinite horizon case involves setting k →∞.

However one needs to ensure that the corresponding limit exists and is independent of the terminal

cost matrix. This along with the mean square stability of the system was proved in Lemma 38.

We thus have optimal control policy (7.17) using the finite horizon result of Theorem 23 and the

corresponding optimal cost as xT0 Px0.

7.3 Computation of Team Optimal Strategy

In Theorem 33, equations (7.18) and (7.19) in variables P and LP are coupled and may be hard to

solve in general. However if (7.19) can be solved efficiently or the two equations can be decoupled,

then we can use (7.18) to find an approximate P by starting at an arbitrary guess P (0) and following

the recursions

P (k+1) = R◦(P (k)) (7.22)
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for sufficiently large k. The convergence of such a scheme was already established in the proof of

Lemma 38.

Equation (7.18) if used in its current form may lead to asymmetric P when LP is not computed

accurately. So we may use the relation E
[
(LP )T (R+BTPB)LP + (LP )TBTPA

]
= 0 obtained

from (7.19) to have the following equivalent form of (7.18)

P = E[Q+ATPA− (LP )T (R+BTPB)LP ] (7.23)

which guarantees P to be symmetric.

We next discuss a couple of special cases, where the iterative scheme suggested in (7.22) can be

easily applied.

Case I (Finite number of parameter values): If the parameters take a finite number of

values, Equation (7.19) can be written in the form of a standard finite dimensional linear equation.

We demonstrate this using the following example.

We consider a two player problem with each player having two possible local parameters described

by: Θ1 = {a, b}, Θ2 = {c, d}, Θ = {(a, c), (a, d), (b, c), (b, d)}
Since the parameters used for the two players use different alphabets, we use can follow following

the shorthand notations

pα1α2 := Prob{θ1 = α1, θ2 = α2} for α1 ∈ Θ1, α2 ∈ Θ2,

pαi := Prob{θi = αi} =
∑

α-i∈Θ-i

pα1α2 for αi ∈ Θi, i = 1, 2,

pαi|αj := Prob{θi = αi|θj = αj} =
pα1α2

pαj
for αi ∈ Θi, αj ∈ Θj , i 6= j.

For a given X ∈ Sn+, we denote R̃Xij (θ) = Rij(θ) +Bi(θ)
TXBj(θ). This allows us to write equation

(7.19) as


pc|aR̃

X
11(ac)+pd|aR̃

X
11(ad) 0 pc|aR̃

X
12(ac) pd|aR̃

X
12(ad)

0 pc|bR̃
X
11(bc)+pd|bR̃

X
11(bd) pc|bR̃

X
12(bc) pd|bR̃

X
12(bd)

pa|cR̃
X
21(ac) pb|cR̃

X
21(bc) pa|cR̃

X
22(ac)+pb|cR̃

X
22(bc) 0

pa|dR̃
X
21(ad) pb|dR̃

X
21(bd) 0 pa|dR̃

X
22(ad)+pb|dR̃

X
22(bd)



LX1 (a)

LX1 (b)

LX2 (c)

LX2 (d)



+


pc|aB1(ac)TXA(ac) + pd|aB1(ad)TXA(ad)

pc|bB1(bc)TXA(bc) + pd|bB1(bd)TXA(bd)

pa|cB2(ac)TXA(ac) + pb|cB2(bc)TXA(bc)

pa|dB2(ad)TXA(ad) + pb|dB2(bd)TXA(bd)

 = 0

which can be solved for the controller coefficients LX for all possible parameters by a simple matrix

inversion. Now starting with an arbitrary P (0) ∈ S̄n+, we use the following update equations, while
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using the above linear equations to obtain LP
(k)

from P (k).

P (k+1) =
∑

α1α2∈Θ

pα1α2

(
Q(α1α2) +A(α1α2)TP (k)A(α1α2)

−

[
LP

(k)

1

LP
(k)

2

]T (
R(α1α2) +B(α1α2)TP (k)B(α1α2)

)[LP (k)

1

LP
(k)

2

])
.

This process would converge to P corresponding to the optimal controller. This process described

for a two player, four parameter setting can easily be generalized to M players and any finite

number of parameters.

As a test case for this setup, we choose the following values

pac = 0.5, pad = 0.1, pbc = 0.1, pbd = 0.3,

Q(θ) = R(θ) = I for θ ∈ Θ

A(ac) =

[
0.2 -0.5

0 0

]
, A(ad) =

[
0 0

0.2 1.1

]
, A(bc) =

[
-0.1 -0.4

-0.5 0

]
, A(bd) =

[
1 -0.3

0.5 0.2

]

B(ac) =

[
0 0

0 -0.9

]
, B(ad) =

[
0 0.4

0.4 0

]
, B(bc) =

[
0 0

-1.7 0

]
, B(bd) =

[
0 1.7

0.4 0.1

]
.

We then obtain the following optimal controller

LP1 (a) =
[
-0.0269 -0.119

]
LP1 (b) =

[
-0.2262 -0.0171

]
LP2 (c) =

[
-0.0295 0.0738

]
LP2 (d) =

[
-0.4574 0.1664

]

with P =

[
2.349 −0.4256

-0.4256 1.7235

]
.

Case II: Here we make the following assumptions

• local parameters {θi}i∈J are independent of each other

• A does not dependent on parameters

• R is block diagonal

• Bi and Rii depend only on local parameter θi for each i ∈ J .

A similar setup was also considered in [79]. In this scenario, Equation (7.19) leads to

(Rii +BT
i PBi)L

P
i +BT

i P E
[∑
j 6=i

BjL
P
j

]
+BT

i PA = 0 for i ∈ J .
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If we define L̄Pi := E[BiL
P
i ] and B̂i := E[Bi(Rii +BT

i PBi)
-1BT

i ] then the above equations lead to
I B̂2P . . . B̂MP

B̂1P I . . . B̂MP
...

. . .
...

B̂1P B̂2P . . . I


︸ ︷︷ ︸

B̃


L̄P1
L̄P2
...

L̄PM

 = −


B̂1P

B̂2P
...

B̂MP


︸ ︷︷ ︸

P̃

A (7.24)

The above can be solved for L̄Pi for i ∈ J , which then gives

LPi (θi) = −
(
Rii +Bi(θi)

TPBi(θi)
)-1

Bi(θi)
TP
(∑
j 6=i

L̄Pj +A
)

With V :=

I...
I

, P̃d := diag(B̂1P, . . . , B̂MP ) and B̃, P̃ defined in (7.24), we have B̃ = I − P̃d +

P̃ V T , which leads to the following corresponding to (7.18)

P = Q+ATPA+
M∑
i=1

(L̄Pi )TPA = Q+ATPA−AT P̃ T B̃-TV PA

= Q+AT
(
I − P̃ T (I − P̃d + P̃ V T )-TV

)
PA = Q+AT

(
I + V T (I − P̃d)-1P̃

)-T
PA

= Q+ATP

(
I +

M∑
i=1

B̂iP (I − B̂iP )-1

)-1

A.

The equality in the second line above uses the identity in (2.1). The final expression above does not

depend on the player strategy and hence P can be easily computed by iterations similar to (7.22).

An example of a networked control system where this framework can be applied is shown in

Figure 7.1. Here the local parameter θit affects the input matrix Bi multiplicatively.

G

K1

K2

×

×

u1

u2

x

θ2

θ1

Figure 7.1: Example of a networked control system with full state feedback.
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Chapter 8

Decentralized Control of Switched Nested Systems

with `2-induced Norm Performance

8.1 Introduction

In this chapter, we are interested in decentralized control of nested systems with switched dynamics

as depicted in Figure 8.1. The system matrices of the linear plant switch within a finite set, with

the switching being governed by a parameter θ(t) generated by a finite-state automaton. The

controller has access to recent values of this parameter with a finite memory. Further the plant

and controller dynamics are restricted to be nested, representing a hierarchy of subsystems with a

unidirectional flow of information amongst them. Such a nested structure also corresponds to the

system matrices having a block lower triangular sparsity structure, which further translates to an

input-output mapping of the same sparsity structure as depicted in blocks of Figure 8.1. For this

setup, our goal is to stabilize the closed loop system while achieving a contractive induced `2 norm

performance.

 u1

...
uM

  y1

...
yM


1

2

3

G11 0 . . . 0
G21 G22 0

...
. . .

...
GM1GM2. . .GMM

K11 0 . . . 0
K21 K22 0

...
. . .

...
KM1KM2. . .KMM

θ(t)

(θ(t-L), . . . , θ(t))

Figure 8.1: Interconnection diagram showing the interaction of controller with plant

The H∞-type cost criteria of induced `2 norm, is also referred to as disturbance attenuation or

root-mean square gain in literature. In general, decentralized control of systems under H∞-type

cost criteria has been a challenging problem with a few notable results for the non-switched setup.

Some of the prior work include [80–82] where authors have considered systems distributed over
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lattices/graphs and synthesize controllers which assume the same topology as the plant. To be

able to extend the centralized synthesis scheme, these studies restrict the scaling matrices to be

of block diagonal structure with separate blocks corresponding to time and spatial updates. This

however leads only to sufficient conditions for existence of controllers. Recently, [83] considered

the decentralized control of continuous-time time-invariant systems with nested interconnection

structure. Although the interconnection topology is more restrictive than those considered in

[80–82], the conditions for existence of controllers are tight. Motivated by results in [83], a discrete-

time time-varying version of the corresponding result was solved in [84] using an operator theoretic

approach similar to [54]. Other recent studies which consider decentralized control of nested systems

include [39–41, 85], however for different performance criteria. In this chapter, we further develop

the ideas in [83, 84] and apply them towards control of a mode-dependent switched system using

a finite path dependent controller. The centralized version of these results were presented in [49],

which were further extended in [52] to also allow controller access to a finite number of future

parameters as well. To the author’s knowledge, the results presented here form the first such

exploration involving decentralized control of a switched system under an H∞ type performance

criteria.

This chapter is organized as follows. In Section 8.2, we describe the switched problem under

consideration while laying out necessary background and results regarding switched systems. In

Section 8.3, necessary conditions for existence of path-dependent controllers are developed which

upon use of a new result on completion of scaling matrices in Section 8.4, leads to the exact

conditions presented in Section 8.5. In Section 8.6, the controller synthesis procedure is described.

In Section 8.7, some possible variations of the switched result is presented. Finally, a numerical

example is provided in Section 8.8.

8.2 Switched Decentralized Control Problem

In this section, we describe the decentralized switched problem under consideration in this paper. In

the process, we also introduce some background and useful notations for switched systems. For the

class of systems encountered here, existing analysis results in the form of conditions for achieving

stability and performance are also provided.

8.2.1 Mode Dependent Switched Systems

Let us consider a switched system

x(t+ 1) = Aθ(t)x(t) +Bθ(t)w(t) (8.1)

z(t) = Cθ(t)x(t) +Dθ(t)w(t)
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where the system matrices depend on switching parameters θ(t) sequenced in time. Such a sys-

tem whose dynamics depend only on the current value of the switched parameter is called a

mode-dependent system. We assume that the switching parameters take values from a finite set

Θ = {1, . . . , ns} and the switching between these values in time is governed by a finite-state au-

tomata. The parameter sequences generated by such an automaton will be referred to as admissible

sequences. We denote the set of admissible sequences of length r ∈ N0 as Ar. Let us consider an

example where switching parameter θ(t) is governed by an automaton with 3 states Θ = {1, 2, 3}
as shown in Figure 8.2a. Here the directed edges indicate allowed switching transitions which occur

exactly once every time step. Thus1

A1 = Θ, A2 = {12, 13, 23, 33, 31},

A3 = {123, 131, 133, 231, 233, 312, 313, 331, 333}.

We denote a sequence of zero length as ∅ and adopt the convention A0 = {∅}.

1

2

3

(a)

12

31

23

13

33

(b)
Figure 8.2: (a) Example of switching automata, (b) Corresponding induced automata for memory
L = 1

8.2.2 Plant Description

For the decentralized control problem, we consider the following mode-dependent switched plant

x(t+1) = Aθ(t)x(t) +Bw
θ(t)w(t) +Bu

θ(t)u(t)

z(t) = Czθ(t)x(t) +Dzw
θ(t)w(t) +Dzu

θ(t)u(t) (8.2)

y(t) = Cyθ(t)x(t) +Dyw
θ(t)w(t)

with x(0) = 0. Here w(t) ∈ Rnw is the disturbance input, z(t) ∈ Rnz is the performance output,

u(t) ∈ Rnu is the control input and y(t) ∈ Rny is the measurement available to the controller. These

vectors, sequenced by t further define corresponding elements in ` similar to (2.2) and are denoted

1Ideally we should write the sequences as (1, 2, 3). However to save space we instead write such a sequence as 123
for path-dependent case.
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with the same name x, w and z. The states, inputs and outputs are partitioned as

x(t) =

 x1(t)
...

xM (t)

 , u(t) =

 u1(t)
...

uM (t)

 , y(t) =

 y1(t)
...

yM (t)


where xi(t) ∈ Rni , ui(t) ∈ Rnui and yi(t) ∈ Rn

y
i . Corresponding sequences xi, ui, yi in ` for i ∈ J

are also defined. The dimensions satisfy n =
∑M

i=1 ni, n
u =

∑M
i=1 n

u
i and ny =

∑M
i=1 n

y
i . We

introduce the tuple n̄ = (n1, . . . , nM ) and similarly define n̄u and n̄y. As described in Section 8.2.1,

the switching sequence (θ(0), θ(1), . . . ) is governed by a finite state automaton with θ(t) taking

values in a finite set Θ.

We define the space of block-lower triangular matrices of the form
H11 0 . . . 0
H21 H22 0

...
. . .

...
HM1HM2 . . . HMM


by S

(
(m1, . . . ,mM ), (k1, . . . , kM )

)
so that Hij ∈ Rmi×kj and Hij = 0 for i < j. For the system

(8.2), we have the following assumption which enforces the nested structure.

Assumption 39. We assume that Aφ ∈ S(n̄, n̄), Bw
φ ∈ S(n̄, n̄u) and Cyφ ∈ S(n̄y, n̄) for all φ ∈ Θ.

As a result, it is clear that the mappings xj 7→ xi, uj 7→ xi, xj 7→ yi and uj 7→ yi are all zero

operators for i < j and i, j ∈ J .

8.2.3 Path Dependent Systems and Induced Switching Sequence

Consider the switched system

x(t+1) = AΩ(t)x(t) +BΩ(t)w(t) (8.3)

z(t) = CΩ(t)x(t) +DΩ(t)w(t)

whose system matrices at time t depend on a switching path Ω(t) = (θ(t-L), . . . , θ(t)) ∈ AL+1

consisting of L + 1 recent values of the switching parameters. Such a system is referred to as a

finite-path dependent system with memory of length L. We can modify such systems to be mode-

dependent by introducing induced automata to reflect the path dependence (as previously suggested

in [56], [52]). This is done by assuming the induced automata state-space to be Θ̃ = AL+1 with

transitions governed by the original automata. Admissible sequences of length r in the induced

automata is denoted by ÃLr . It is not hard to verify that elements in ÃLr are equivalent to those

of Ar+L for r > 0. To explain this we consider a finite-path dependent system with memory 1,

governed by the same switching automaton as in Figure 8.2a. The induced automaton shown in
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Figure 8.2b has 5 states Θ̃ = A2, so the set containing admissible sequences of length 2 is given by

Ã1
2 = {(12, 23), (13, 31), (13, 33), (23, 31), (23, 33), (31, 12), (31, 13), (33, 31), (33, 33)}.

This is equivalent to A3 (denoted Ã1
2 ' A3).

For a sequence Φ = (α0, . . . , αr) ∈ ÃLr+1, there exists an equivalent sequence (β0, . . . , βr+L) ∈
Ar+L+1. Correspondingly, for r > 0, we define Φ̄,

¯
Φ ∈ Ar+L ' ÃLr , Φ† ∈ Θ̃ = AL+1 and Φ? ∈ Θ as

Φ̄ := (β1, . . . , βr+L) ' (α1, . . . , αr),

¯
Φ := (β0, . . . , βr+L-1) ' (α0, . . . , αr-1),

Φ† := (βr, . . . , βr+L) = αr, Φ? := βr+L.

For r = 0, these definitions reduce to

Φ̄ := (β1, . . . , βL),
¯
Φ := (β0, . . . , βL-1),

Φ† := (β0, . . . , βL), Φ? := βL.

However unlike r > 0, in this case AL is not equivalent to ÃL0 = {∅}.
When memory L = 0, which also corresponds to mode-dependent systems, Ã0

r coincides with

Ar. For a sequence Φ = (β0, . . . , βr) ∈ Ar+1 with r > 0, earlier definitions give

Φ̄ := (β1, . . . , βr),
¯
Φ := (β0, . . . , βr-1), Φ†= Φ? = βr.

For r = 0, Φ̄ =
¯
Φ = ∅ and Φ†= Φ? = β0.

The above definitions depend on the type of the sequence determined by length r and memory

L. To keep the notation simple, symbols used for sequences (eg. Φ, Ψ used later) do not carry this

information. However the exact set on which they are defined will be clearly specified.

8.2.4 System Analysis

Consider the following Linear Time Varying (LTV) system dynamics

x(t+1) = Atx(t) +Btw(t) (8.4)

z(t) = Ctx(t) +Dtw(t)

with x(0) = 0 and where x(t) ∈ Rn, w(t) ∈ Rnw and z(t) ∈ Rnz . Note that given w ∈ `, there is a

unique solution x ∈ `. The input to output mapping from `n
w

to `n
z

is denoted by w 7→ z. In this

chapter, we consider the performance criteria of a contractive induced `2 norm or ‖w 7→ z‖ < 1.

In this regard, we present the LTV version of the well known Kalman-Yakubovich-Popov (KYP)
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lemma (see [54]).

Lemma 40. The system (8.4) is exponentially stable and satisfies the performance criteria of

‖w 7→ z‖ < 1 if and only if there exist positive constants a, b and ε, and positive definite matrices

{Xt}t∈N0 satisfying a � Xt � bI and[
Xt 0

0 I

]
−

[
At Bt

CtDt

]T [
Xt+1 0

0 I

][
At Bt

CtDt

]
� εI

for each t ∈ N0.

We refer to Xt as scaling matrix.

Since switched systems introduced earlier are special cases of LTV systems, the definitions of

stability and performance criteria defined above apply to such systems as well. Analogous to

above KYP lemma, the next lemma presents conditions for stability and performance for switched

systems. This result was proved in [49] and extended to incorporate a look-ahead horizon in [52].

Lemma 41. The mode-dependent system (8.1) is exponentially stable and satisfies ‖w 7→ z‖ < 1

if and only if there exists an r ∈ N0 and a set of positive-definite matrices {XΨ}Ψ∈Ar satisfying[
X

¯
Φ 0

0 I

]
−

[
AΦ?BΦ?

CΦ?DΦ?

]T [
XΦ̄ 0

0 I

][
AΦ?BΦ?

CΦ?DΦ?

]
� 0

for all Φ ∈ Ar+1.

For the case of r = 0, the notation of Φ̄ =
¯
Φ = ∅ implies that XΦ̄ = X

¯
Φ = X∅, or that the scaling

matrices take the same value X∅ for any choice of switching path Φ ∈ A1. Also note that, the

number of inequalities in the above lemma is finite, unlike in Lemma 40; hence we don’t need to

explicitly specify the uniform bounds for the inequalities. Following lemma is an extension of the

above lemma to path-dependent systems.

Lemma 42. The finite-path dependent system (8.3) with a memory L ∈ N0 is exponentially stable

and satisfies ‖w 7→ z‖ < 1 if and only if there exists an r ∈ N0 and a set of positive-definite matrices

{XΨ}Ψ∈Ar+L satisfying [
X

¯
Φ 0

0 I

]
−

[
AΦ†BΦ†

CΦ†DΦ†

]T [
XΦ̄ 0

0 I

][
AΦ†BΦ†

CΦ†DΦ†

]
� 0 (8.5)

for all Φ ∈ ÃLr+1.

Note that the above lemma is immediate from Lemma 41 for r > 0, through the use of induced

switching automata. For the case of r = 0, the sufficiency part of the proof requires retracing the
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proof of Lemma 41 (see [49, 52]). For the necessity part, one can increase r to be greater than 0,

so that the above inequalities are satisfied for a large enough r.

Remark 43. Finite-path dependent systems with memory L1 ∈ N0 are also contained in the set

of finite-path dependent systems with memory L2 > L1. Also, suppose the system in (8.3) with

a memory L1 has positive-definite scaling matrices {XΨ}Ψ∈Ar1+L1
satisfying (8.5) for some r1 >

0. Then, we can alternatively choose a memory L2 = L1 + r′ and r2 = r1 − r′ for some non-

negative integer r′ ≤ r1 and use the same scaling matrices {XΨ}Ψ∈Ar2+L2
to describe the same set

of inequalities, and hence the same stability and performance properties.

8.2.5 Synthesis Problem

For the plant (8.2), our goal is to design finite-dimensional finite-path dependent linear controller

with block lower triangular sparsity structure in order to stabilize the closed loop system and

achieve a performance of contractive induced `2 norm from disturbance w to performance output

z. We use the following state space representation for a finite-path dependent controller

xK(t+1) = AKΩ(t)x
K(t) +BK

Ω(t)y(t) (8.6)

u(t) = CKΩ(t)x
K(t) +DK

Ω(t)y(t).

For a controller with memory L, the above system matrices at time t depend on a switching

path given by Ω(t) = (θ(t-L), . . . , θ(t)) ∈ AL+1 consisting of L + 1 recent values of the plant’s

switching parameter. The controller state xK(t) ∈ RnK is partitioned as
[

(xK1 (t))T . . . (xKM (t))T
]T

with xKi (t) ∈ RnKi thus satisfying nK = nK1 + . . . +nKM . For given controller dimensions {nKi }Mi=1,

our objective is to design the above controller by determining a finite memory L and associated

structured controller matrices

AKΨ ∈ S(n̄K , n̄K), BK
Ψ ∈ S(n̄K , n̄y), (8.7)

CKΨ ∈ S(n̄u, n̄K), DK
Ψ ∈ S(n̄u, n̄y)

for every admissible sequence Ψ ∈ AL+1. Here we have used n̄K = (nK1 , . . . , n
K
M ). The resulting

controller has a y to u mapping with a lower triangular sparsity structure as depicted in Figure 8.1.

8.3 Necessary Conditions for Existence of Controller

This section is devoted to developing necessary conditions for existence of a finite-path dependent

synthesis. But first we describe the closed loop system and define notations associated with it. We

also present a lemma useful for eliminating controller matrices from the closed loop KYP inequality.
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8.3.1 Closed Loop System

While using a path-dependent controller of memory L (as described in (8.6)) with system (8.2),

it is clear that the closed-loop system is also path-dependent with memory L. In particular, the

closed loop has the following dynamics

xC(t+1) = ACΩ(t)x
C(t) +BC

Ω(t)w(t) (8.8)

z(t) = CCΩ(t)x
C(t) +DC

Ω(t)w(t)

with xC(t) =

[
x(t)

xK(t)

]
. At time t, the closed-loop system matrices ACΩ(t), B

C
Ω(t), C

C
Ω(t) and DC

Ω(t)

depend on the same switching sequence Ω(t) = (θ(t-L), . . . , θ(t)) ∈ AL+1 as the controller in (8.6).

For all possible Ψ ∈ AL+1, we can write the closed-loop system matrices as an affine combination

of the controller matrices as QCΨ :=

[
ACΨ BC

Ψ

CCΨ DC
Ψ

]
=

AΨ?+B
u
Ψ?
DK

ΨC
y
Ψ?
Bu

Ψ?
CKΨ Bw

Ψ?
+Bu

Ψ?
DK

ΨD
yw
Ψ?

BK
ΨC

y
Ψ AKΨ BK

ΨD
yw
Ψ?

CzΨ?+D
zu
Ψ?
DK

ΨC
y
Ψ?
Dzu

Ψ?
CKΨ Dzw

Ψ?
+Dzu

Ψ?
DK

ΨD
yw
Ψ?

.
It is well-known that the above can be written as

QCΨ = RΨ? + (UCΨ?)
TQKΨV

C
Ψ? (8.9)

with QKΨ =

[
AKΨ BK

Ψ

CKΨ DK
Ψ

]
representing the unknown controller matrices, and the following defined for

φ ∈ Θ

Rφ =

Aφ 0 Bw
φ

0 0 0

Czφ 0Dzw
φ

, (UCφ )T =

0 Bu
φ

I 0

0Dzu
φ

, V C
φ =

[
0 I 0

Cyφ 0Dyw
φ

]
.

The matrix QKΨ being structured, can be written as a linear combination of unstructured ones as

described by the following relation2

QKΨ =
M∑
i=1

[
Ē
K
i-1

0 Ē
u
i-1

]
Qi,Ψ

[
EKi 0

0 Eyi

]T
(8.10)

2Note that the decomposition (8.10) is not unique. However existence of QKΨ implies the existence of {Qi,Ψ}i∈J
and vice-versa.
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where Qi,Ψ ∈ R((nKi +nui )+...+(nKM+nuM ))×((nK1 +ny1)+...+(nKi +nyi )) are unstructured and matrices E•i and Ē
•
i

(• can be replaced with K, u or y) are defined using

E•i =

[
In•1+...+n•i

0

]
, Ē

•
i =

[
0

In•i+1+...+n•M

]

for i ∈ J̄ . Note that these satisfy (Ē
•
i
T )⊥ = E•i and (E•i

T )⊥ = Ē
•
i . We can thus write (8.9) as

QCΨ = RΨ? +
M∑
i=1

(UCi,Ψ?)
TQi,ΨV

C
i,Ψ? (8.11)

with

UCi,φ :=

[
Ē
K
i-1

0 Ē
u
i-1

]T
UCφ =

[
0 (Ē

K
i-1)

T 0

(Ē
u
i-1)T (Bu

φ)
T 0 (Ē

u
i-1)

T (Dzu
φ )T

]
,

V C
i,φ :=

[
EKi 0

0 Eyi

]T
V C
φ =

[
0 (EKi )T 0

(Eyi )TCyφ 0 (Eyi )TDyw
φ

]

for φ ∈ Θ and i ∈ J . Note that UC1,φ = UCφ and V C
M,φ = V C

φ .

The following matrices (through their image spaces) describe the kernels of the above matrices

(UCi,φ)⊥ =

N
u,x
i-1,φ 0

0 EKi-1

Nu,z
i-1,φ 0

 , (V C
i,φ)⊥ =

N
y,x
i,φ 0

0 Ē
K
i

Ny,w
i,φ 0

 .
which further use the following definitions

Ny
i,φ =

[
Ny,x
i,φ

Ny,w
i,φ

]
=
[

(Eyi )
TCyφ (Eyi )

TDyw
φ

]
⊥
,

Nu
i,φ =

[
Nu,x
i,φ

Nu,z
i,φ

]
=
[

(Ē
u
i )
T (Bu

φ)
T (Ē

u
i )
T (Dzu

φ )T
]
⊥

with the row-dimensions of Ny,x
i,φ , Ny,w

i,φ , Nu,x
i,φ , Nu,z

i,φ , Ny
i,φ and Nu

i,φ being n, nw, n, nz, n+ nw and

n+ nz respectively. Also Ny
0,φ = I and Nu

M,φ = I.

With respect to Lemma 42, the closed loop scaling matrices are denoted by XC
Ψ ∈ Sn+nK+ , defined

for each Ψ ∈ Ar+L and some appropriately chosen r ∈ N0. These matrices are partitioned into

plant and controller sections as

XC
Ψ =

[
XΨ XGK

Ψ

(XGK
Ψ )T XK

Ψ

]
, (XC

Ψ )-1 =

[
YΨ Y GK

Ψ

(Y GK
Ψ )T Y K

Ψ

]
(8.12)
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with XΨ, YΨ ∈ Sn+, XGK
Ψ , Y GK

Ψ ∈ Rn×nK and XK
Ψ , Y

K
Ψ ∈ SnK+ . We further define the following for

i ∈ J̄

Zi,Ψ :=
{
XΨ −XGK

Ψ Ē
K
i

(
(Ē

K
i )TXK

Ψ Ē
K
i

)-1
(XGK

Ψ Ē
K
i )T

}-1

=YΨ − Y GK
Ψ EKi

(
(EKi )T Y K

Ψ EKi
)-1

(Y GK
Ψ EKi )T (8.13)

while noting that Z0,Ψ = YΨ and ZN,Ψ = X-1
Ψ . The equality above is as a result of Lemma 62 in

appendix. Also, note that Zi,Ψ is the (1, 1) block of the inverse of XC
i,Ψ, or alternatively Z-1

i,Ψ is the

(1, 1) block of the inverse of Y C
i,Ψ, which are defined below

XC
i,Ψ :=

[
XΨ XGK

Ψ Ē
K
i

Ē
K
i )T (XGK

Ψ )T (Ē
K
i )TXK

Ψ Ē
K
i

]
, Y C

i,Ψ :=

[
YΨ Y GKΨ EKi

(EKi )T (Y GKΨ )T (EKi )TY KΨ EKi

]
. (8.14)

8.3.2 Elimination Lemma

Before we proceed to the controller synthesis, we develop a lemma to eliminate structured matrices

in this subsection.

Lemma 44. Consider W ∈ Sn, matrices S0 = 0, PM+1 = 0, {Pi}Mi=1 and {Si}Mi=1 each with column

dimension n, satisfying

Ker(P1) ⊂ Ker(P2) ⊂ · · · ⊂ Ker(PM ),

and full column rank matrices {Ni}Mi=0 satisfying Im(Ni) = Ker(S0) ∩ · · · ∩ Ker(Si-1) for i ∈ J .

Then the following hold.

(i) The inequality

W +

M∑
i=1

(
P Ti QiSi + STi Q

T
i Pi

)
� 0 (8.15)

in the unstructured variables {Qi}Mi=1 has a solution if and only if W is positive-definite on

the subspaces Ker(S0) ∩ · · · ∩Ker(Si) ∩Ker(Pi+1) for i ∈ J̄ .

(ii) Further, if a solution exists {Qi}Mi=1 can be constructed by recursively solving the following

inequalities

NT
i

(
W +

M∑
j=i

(
P Tj QjSj + STj Q

T
j Pj

))
Ni � 0 (8.16)

in the order i = M, . . . , 1.
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The above lemma is from [86, Theorem 2], which was further used in [83] to solve a decentralized

control problem in continuous-time. For the discrete-time setting, we present the following lemma

while making use of Lemma 44(i).

Lemma 45. Given Z ∈ Sn+, H ∈ Sm+ , R ∈ Rn×m, and matrices {Ui}Mi=1 and {Vi}Mi=1 with column

dimensions n and m respectively, satisfying

Ker(U1) ⊂ Ker(U2) ⊂ · · · ⊂ Ker(UM )

and Ker(V1) ⊃ Ker(V2) ⊃ · · · ⊃ Ker(VM ),

the inequality

Z −
(
R+

M∑
i=1

UTi QiVi

)T
H
(
R+

M∑
i=1

UTi QiVi

)
� 0 (8.17)

in the unstructured variables {Qi}Mi=1 has a solution if and only if the following hold[
Ui+1⊥ 0

0 Vi⊥

]T [
H-1 R

RT Z

][
Ui+1⊥ 0

0 Vi⊥

]
� 0 (8.18)

for i = 0, . . . ,M . Here we have additional definitions of V0⊥ = I and UM+1⊥ = I.

Proof. Using the Schur compliment formula, we can write (8.17) equivalently in the form of (8.15)

with

W =

[
H-1 R

RT Z

]
, Pi =

[
Ui 0

]
and Si =

[
0 Vi

]
.

Further Pi⊥ =

[
Ui⊥ 0

0 I

]
, Si⊥ =

[
I 0

0 Vi⊥

]
and

[
Pi+1

Si

]
⊥

=

[
Ui+1 0

0 Vi

]
⊥

=

[
Ui+1⊥ 0

0 Vi⊥

]
whose columns

also form the basis of the space Ker(Si)∩Ker(Pi+1). Having the above definitions in place, we can

use Lemma 44 to show the equivalence between (8.18) and (8.17).

8.3.3 Necessary Conditions

The next lemma develops a necessary condition for existence of the controller by using Lemmas 42

and 45.

Lemma 46. Consider the system (8.2) along with the structural description in Assumption 39.

There exists a finite path dependent controller (8.6) structured as (8.7) which stabilizes this system if

and only if there exist an L ∈ N0 and positive-definite {XC
Ψ}Ψ∈AL such that corresponding {Zi,Ψ}Mi=0
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(defined by (8.12) and (8.13)) satisfy

[•]T


Zi,̄Φ 0 AΦ? B

w
Φ?

0 I CzΦ?
Dzw

Φ?

ATΦ?
(CzΦ?

)T Z-1
i,
¯
Φ 0

(BwΦ?
)T (Dzw

Φ?
)T 0 I


[
Nu
i,Φ?

0

0 Ny
i,Φ?

]
� 0 for all i ∈ J̄ and Φ ∈ AL+1. (8.19)

Proof. (=⇒) Given a finite path dependent controller with memory L′ as QKΨ =

[
AKΨ BK

Ψ

CKΨ DK
Ψ

]
for

Ψ ∈ AL′+1 that stabilizes the plant and achieves contractive performance, we can construct the

closed loop system with memory L′ using (8.8) and (8.9). Since the closed loop is stable and

contractive, using Lemma 42, we know that there exist an r ∈ N0 and positive-definite scaling

matrices {XC
Ψ}Ψ∈Ar+L′ satisfying[

XC

¯
Φ 0

0 I

]
− (QCΦ†)

T

[
XC

Φ̄
0

0 I

]
QCΦ† � 0 (8.20)

for all Φ ∈ ÃL′r+1. Substituting expansion (8.11) into the above, we get a set of inequalities in

unstructured controller variables {Qi,Ψ}i∈J ,Ψ∈AL′+1 in addition to the scaling matrices. We next

eliminate these controller matrices from the above inequalities using Lemma 45. This however can

be done only3 for the case of r = 0. So we extend the controller/closed loop memory to L = L′+ r

(see Remark 43) and make the sequence length of scaling matrices in (8.20) to be zero. Now

applying Lemma 45, we know that (8.20) implies the existence of L ∈ N0 and positive-definite

{XC
Ψ}Ψ∈AL such that the following is satisfied for all i ∈ J̄ and Φ ∈ ÃL1 ' AL+1

[
(UCi+1,Φ?

)⊥ 0

0 (V C
i,Φ?

)⊥

]T 
(XC

Φ̄
)-1 0

0 I
RΦ?

RTΦ?
XC

¯
Φ 0

0 I


[

(UCi+1,Φ?
)⊥ 0

0 (V C
i,Φ?

)⊥

]
� 0. (8.21)

Upon use of definitions in Section 8.3.1, we note that (8.21) is same as

[•]T



YΦ̄ Y GK
Φ̄

0 AΦ? 0 BwΦ?

(Y GK
Φ̄

)T Y K
Φ̄

0 0 0 0

0 0 I CzΦ?
0 Dzw

Φ?

ATΦ?
0 (CzΦ?

)T X
¯
Φ XGK

¯
Φ 0

0 0 0 (XGK

¯
Φ )T XK

¯
Φ 0

(BwΦ?
)T 0 (Dzw

Φ?
)T 0 0 I





Nu,x
i,Φ?

0 0 0

0 EKi 0 0

Nu,z
i,Φ?

0 0 0

0 0 Ny,x
i,Φ?

0

0 0 0 Ē
K
i

0 0 Ny,w
i,Φ?

0


�0.

3For r > 0, direct elimination using Lemma 45 is not feasible because the unknown matrix Qi,Ψ for a particular
Ψ ∈ AL′+1 appears in multiple inequalities of (8.20).
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Further, the above is equivalent to

[•]T



YΦ̄ 0 Y GK
Φ̄

AΦ? BwΦ?
0

0 I 0 CzΦ?
Dzw

Φ?
0

(Y GK
Φ̄

)T 0 Y K
Φ̄

0 0 0

(AΦ?
)T (CzΦ?

)T 0 X
¯
Φ 0 XGK

¯
Φ

(BwΦ?
)T (Dzw

Φ?
)T 0 0 I 0

0 0 0 (XGK

¯
Φ )T 0 XK

¯
Φ





Nu,x
i,Φ?

0 0 0

Nu,z
i,Φ?

0 0 0

0 EKi 0 0

0 0 Ny,x
i,Φ?

0

0 0 Ny,w
i,Φ?

0

0 0 0 Ē
K
i


�0,

which can be seen by multiplying permutation matrices diag

([
I 00
00I
0I 0

]
,

[
I 00
00I
0I 0

])
between the products.

Using Schur complement formula twice, followed by relations defined in (8.13), the above inequality

(hence also (8.21)) can be shown to be equivalent to (8.19).

(⇐=) The proof follows the same steps as in the converse direction but in the reverse order.

Note that the step involving the use of elimination lemma leading to inequality (8.20) proves the

existence a controller of memory L.

In the previous lemma, we obtained inequalities which are necessary for the existence of the

controller. However, they are not sufficient because for some L, the existence of {Zi,Ψ}i∈J doesn’t

directly imply the existence of a XC
Ψ for each Ψ ∈ AL. Additional conditions that ensure sufficiency

will be developed in the next section. Also, the inequalities (8.19) are not linear in {Zi,Ψ}i∈J ,Ψ∈AL .

Towards the goal of obtaining linear inequalities, the next lemma defines a factorization which was

originally performed in [83] for a similar context.

Lemma 47. For a symmetric matrix X =

[
X1 X2

XT
2 X3

]
with invertible X1 ∈ Sm1, X2 ∈ Rm1×m2

and X3 ∈ Sm2, we can define the triple {Za, Zb, Zc} with Za ∈ Sm1, Zb ∈ Rm1×m2 and Zc ∈ Sm2,

related to X by the following bijective mapping

Za = X-1
1 , Zb = -X-1

1 X2, Zc = X3 −XT
2 X

-1
1 X2.

The triple then defines the following unique factorization

X =

[
I 0

-(Zb)T Zc

][
Za Zb

0 I

]-1

. (8.22)

Further X � 0 if and only if Za � 0 and Zc � 0.

In view of this lemma, for positive-definite {Zi,Ψ}i∈J̄ ,Ψ∈AL we define the following associated
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matrices

Zai,Ψ := (ETi Zi,ΨEi)
-1, Zbi,Ψ := -Zai,Ψ(ETi Zi,ΨĒi), (8.23)

Zci,Ψ := Ē
T
i Zi,ΨĒi − (ETi Zi,ΨĒi)

T (ETi Zi,ΨEi)
-1ETi Zi,ΨĒi.

for i ∈ J̄ and Ψ ∈ AL. Note that Zc0,Ψ = YΨ and ZaM,Ψ = XΨ, while Za0,Ψ, Zb0,Ψ, ZbM,Ψ and ZcM,Ψ

have at least one of their dimensions as zero. Since Zi,Ψ ∈ Sn+, using the above relations it can be

verified that Zai,Ψ ∈ Sn1+...+ni
+ , Zbi,Ψ ∈ R(n1+...+ni)×(ni+1+...+nM ), and Zci,Ψ ∈ Sni+1+...+nM+ for i ∈ J̄ . These

matrices define the following factorization similar to (8.22)

Zi,Ψ = Z li,Ψ(Zui,Ψ)-1 = (Zui,Ψ)-T (Z li,Ψ)T (8.24)

with Z li,Ψ =

[
I 0

-(Zbi,Ψ)T Zci,Ψ

]
and Zui,Ψ =

[
Zai,Ψ Z

b
i,Ψ

0 I

]
. (8.25)

Note that Z li,Ψ and Zui,Ψ are invertible due to positive-definiteness of Zci,Ψ and Zai,Ψ respectively.

We now use the factorization in (8.24) and corresponding change of variables to convert the

inequalities in Lemma 46 to be linear in the new variables.

Lemma 48. Given positive-definite matrices {XC
Ψ}Ψ∈AL, define associated {Zi,Ψ}i∈J̄ ,Ψ∈AL and

{Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J̄ ,Ψ∈AL using (8.13) and (8.23). Then the inequality (8.19) is equivalent to the

following inequalities linear in variables {Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J̄ ,Ψ∈AL

[
Nu
i,Φ?

0

0 Ny
i,Φ?

]T


(Zu
i,̄Φ

)TZ l
i,̄Φ

0 (Zu
i,̄Φ

)TAΦ?Z
l
i,
¯
Φ (Zu

i,̄Φ
)TBw

Φ?

0 I CzΦ?Z
l
i,
¯
Φ Dzw

Φ?

· · (Zui,
¯
Φ)TZ li,

¯
Φ 0

· · 0 I


[
Nu
i,Φ?

0

0 Ny
i,Φ?

]
� 0 (8.26)

for all i ∈ J̄ and Φ ∈ AL+1.

Remark 49. The above inequalities are linear in the variables due to the following simplifications:

(Zui,Ψ)TZ li,Ψ = (Z li,Ψ)TZui,Ψ =

[
Zai,Ψ 0

0 Zci,Ψ

]
for Ψ ∈ AL and

(Zu
i,̄Φ

)TAΦ?Z
l
i,
¯
Φ =

[
Za
i,̄Φ
Ã11
i,Φ?

0

(Zb
i,̄Φ

)T Ã11
i,Φ?

+Ã21
i,Φ?

-Ã22
i,Φ?

(Zbi,
¯
Φ)T Ã22

i,Φ?
Zci,

¯
Φ

]
for Φ ∈ AL+1

with Ã11
i,Φ?

= ETi AΦ?Ei, Ã
21
i,Φ?

= Ē
T
i AΦ?Ei and Ã22

i,Φ?
= Ē

T
i AΦ?Ēi.

Proof of Lemma 48. Using Lemma 61 in appendix we have the inequality (8.19) being equivalent
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to the following for all i ∈ J̄ and Φ ∈ AL+1(
(Wi,Φ?Si,Φ)⊥

)T
STi,ΦHi,ΦSi,Φ(Wi,Φ?Si,Φ)⊥ � 0

with Hi,Φ =


Zi,̄Φ 0 AΦ?

BwΦ?

0 I CzΦ?
Dzw

Φ?· · Z-1
i,
¯
Φ 0

· · 0 I

, Si,Φ = diag(Zui,̄Φ, I, Z
l
i,
¯
Φ, I)

and Wi,Φ? =

[
(Ē

u
i )
T(BuΦ?

)T (Ē
u
i )
T(Dzu

Φ?
)T 0 0

0 0 (Eyi )
TCyΦ?

(Eyi )
TDyw

Φ?

]
.

Using the relations (Eyi )TCyΦ?Z
l
i,
¯
Φ = (Eyi )

TCyΦ? and (Ē
u
i )
T (Bu

Φ?
)TZu

i,̄Φ
= (Ē

u
i )
T (Bu

Φ?
T, we haveWi,Φ?Si,Φ =

Wi,Φ?. Further along with (8.24), the above inequality leads to inequality (8.26).

8.4 Completion of Scaling Matrices

First we have the following well known result for completing matrices.

Lemma 50. Given matrices R1, S1 ∈ Sn+ and a positive integer nK, there exists matrices R2, S2 ∈
Rn×nK and R3, S3 ∈ SnK+ satisfying

R :=

[
R1 R2

RT2 R3

]
� 0 and

[
S1 S2

ST2 S3

]
=

[
R1 R2

RT2 R3

]-1

if and only if

[
R1 I

I S1

]
� 0 and rank

[
R1 I

I S1

]
≤ n+nK .

The above rank condition is always satisfied for nK ≥ n. Further if the above conditions are

satisfied, the unknown matrices can be constructed such that σ̄(R) ≤ σ̄(R1)+σ̄
1
2 (R1-S

-1
1 )+1 and

σ̄(S) ≤ σ̄(S1)
(
1+σ̄

1
2 (R1-S

-1
1 )
)2
+1.

For the proof and a possible construction, see for example [64, Lemma 7.9]. For the norm bounds

see [81].

In the previous lemma, the known subsections R1 and S1, of the larger matrix R and its inverse

were of the same dimensions. The next lemma extends this result for the case when these dimensions

are not the same.

Lemma 51. Given matrices R11 ∈ Sn+ and S1 =

[
S11 S12

ST12 S22

]
∈ Sn+m

+ such that S11 ∈ Sn+. Then for

a positive integer nK , there exists matrices R12 ∈ Rn×m, R22 ∈ Sm+ , R13, S13 ∈ Rn×nK , R23, S23 ∈
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Rm×nK and R33, S33 ∈ SnK+ satisfying

R :=

R11 R12 R13

RT12 R22 R23

RT13 R
T
23 R33

 � 0 and S := R-1 =

S11 S12 S13

ST12 S22 S23

ST13 S
T
23 S33


if and only if

[
R11 I

I S̄-1
11

]
� 0 and rank

[
R11 I

I S̄-1
11

]
≤ n+nK (8.27)

where S̄11 = (S11−S12S
-1
22S

T
12)-1. The above rank condition is always satisfied for nK ≥ n. Further

if the above conditions are satisfied, the unknown matrices can be constructed such that σ̄(R) ≤
σ̄(S-1

1 ) +
(
1 + σ̄

1
2 (R11-S̄11)

)2
and σ̄(S) ≤ σ̄(S1)

(
1 + σ̄

1
2 (R11-S̄11)

)2
+ 1.

Proof. Let us define the matrices

R1 =

[
R11 R12

RT12 R22

]
, R2 =

[
R13

R23

]
, R3 = R33,

S̄12 ∈ Rn×m and S̄22 ∈ Sm+ so that

[
S̄11 S̄12

S̄T12 S̄22

]
= S-1

1 .

Since S1 � 0 and due to the following relation[
R1 I

I S1

]
=

[
I S-1

1

0 I

][
R1-S

-1
1 0

0 S1

][
I 0

S-1
1 I

]

we have

[
R1 I

I S1

]
� 0 ⇔ R1 − S-1

1 � 0 (8.28)

and rank

[
R1 I

I S1

]
= n+m+ rank(R1 − S-1

1 ). (8.29)

Also note the following expansion

R1 − S-1
1 =

[
R11 − (S11-S12S

-1
22S

T
12)-1 R12-S̄12

RT12-S̄
T
12 R22-S̄22

]
. (8.30)

We now provide the main arguments of the proof.

(=⇒) From Lemma 50, we know that R � 0 and S � 0 implies

[
R1 I

I S1

]
� 0 and rank

[
R1 I

I S1

]
≤

n+m+nK . Using (8.28) and (8.30), this further implies

R1 − S-1
1 � 0 ⇒ R11-(S11-S12S

-1
22S

T
12)-1 � 0
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Using a Schur complement argument again, the above is same as the matrix inequality in (8.27).

Using (8.29) and (8.30), we have rank
(
R11 − (S11-S12S

-1
22S

T
12)-1

)
≤ rank(R1 − S-1

1 ) ≤ nK . Using a

property similar to (8.29), we can arrive at the rank condition in (8.27) from above.

(⇐=) This part of the proof is constructive. If we assume that R1 is known completely, then by

combining Lemma 50 with (8.28)-(8.30) we know that the matrices R and S can be completed iff

R1 − S-1
1 � 0 and rank(R1 − S-1

1 ) ≤ nK .

So we can instead focus on the problem of completing the matrix R1 which satisfy the above

conditions. The expansion (8.30) suggests that choosing R12 = S̄12 and R22 = S̄22 would result

in R1 − S-1
1 = diag

(
R11-S̄11, 0

)
. From (8.27), it is clear that the above conditions are satisfied.

Thereafter, we can complete the remaining blocks of R by following steps in [64, Lemma 7.9]:

choose R3 = I and R2 such that R1 − S-1
1 = R2R

T
2 . This is same as setting R33 = I, R23 = 0 and

choosing R13 such that R11-S̄11 = R13R
T
13. Finally obtain the unknown blocks of S by inverting

the constructed R.

The norm bounds can be found for the above construction by separating the sub-blocks of R and

S followed by using triangular and sub-multiplicative inequalities. In the process, we make use of

relations σ̄(R2) = σ̄
1
2 (R1-S

-1
1 ), σ̄(R1-S

-1
1 ) = σ̄(R11-S̄11) and σ̄(R1) ≤ σ̄(S-1

1 ) + σ̄(R11-S̄11).

We now utilize the previous lemma to provide necessary and sufficient conditions for completion

of the closed loop scaling operator {XC
Ψ}Ψ∈AL given partial information about it.

Lemma 52. Given positive-definite matrices {Zi,Ψ}i∈J̄ ,Ψ∈AL, we can construct positive-definite

{XC
Ψ}Ψ∈AL satisfying (8.12) and (8.13) iff[

Z-1
i,Ψ I

I Zi-1,Ψ

]
� 0, rank

[
Z-1
i,Ψ I

I Zi-1,Ψ

]
≤ n+nKi (8.31)

for all i ∈ J and Ψ ∈ AL. Further the above rank conditions are always satisfied for nKi ≥ n.

Proof. We will use matrices {Zi,Ψ}i∈J̄ to construct XC
Ψ for each Ψ ∈ AL, as shown in the following

steps

• First, we construct Y C
1,Ψ (defined in (8.14)) using Z0,Ψ = YΨ and Z1,Ψ. We do this pointwise

using Lemma 50, which yields the following condition for completion[
Z-1

1,Ψ I

I Z0,Ψ

]
� 0, rank

[
Z-1

1,Ψ I

I Z0,Ψ

]
≤ n+nK1 ∀Ψ ∈ AL.

A possible construction can be found in [64, Lemma 7.9].
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• We construct Y C
i,Ψ in a recursive manner in the order i = 2, . . . , N . For this, we use Lemma

51 with R11 = Z-1
i,Ψ and S1 = Y C

i-1,Ψ to complete the matrix S = Y C
i,Ψ � 0. This can be done

iff following conditions are satisfied[
Z-1
i,Ψ I

I Zi-1,Ψ

]
� 0, rank

[
Z-1
i,Ψ I

I Zi-1,Ψ

]
≤ n+nKi

Note the use of relation (8.13) for index i-1 while using Lemma 51. A possible construction

is given in the proof of Lemma 51.

After performing the above steps, we are left with Y C
N,Ψ which is same as Y C

Ψ for Ψ ∈ AL. Since

the above steps use ‘if and only if’ arguments, the converse direction of the proof also holds.

Remark 53. In the previous lemma, the completed matrices satisfy the norm bounds

σ̄(Y C
i,Ψ) ≤ σ̄(Y C

i-1,Ψ)
(
1 + σ̄(Z-1

i,Ψ-Z
-1
i-1,Ψ)

1
2
)2

+ 1

σ̄
(
(Y C
i,Ψ)-1

)
≤ σ̄

(
(Y C
i-1,Ψ)-1

)
+
(
1 + σ̄(Z-1

i,Ψ-Z
-1
i-1,Ψ)

1
2
)2

for i = 2, . . . ,M with σ̄(Y C
1,Ψ) ≤ σ̄(YΨ) + σ̄(YΨ-Z1,Ψ)

1
2 + 1 and σ̄

(
(Y C

1,Ψ)-1
)
≤ σ̄(Z-1

1,Ψ)
(
1 +

σ̄(YΨ-Z1,Ψ)
1
2

)2
+ 1.

8.5 Exact Conditions for Existence of Controller Synthesis

We now present the main result of the paper.

Theorem 54. Consider the mode-dependent system (8.2) along with the structural description in

Assumption 39. There exists a synthesis of a finite-path dependent controller (8.6) which

(i) is structured as (8.7),

(ii) has dimensions {nKi }Mi=1,

(iii) stabilizes the plant, and

(iv) achieves closed loop performance ‖w 7→ z‖ < 1

iff there exist an L ∈ N0 and block-diagonal operators {Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J̄ ,Ψ∈AL satisfying the

following

Zai,Ψ � 0, Zci,Ψ � 0 for all i ∈ J̄ ,Ψ ∈ AL, (8.32a)
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[•]T


(Zu

i,̄Φ
)TZl

i,̄Φ
0 (Zu

i,̄Φ
)TAΦ?

Zli,
¯
Φ (Zu

i,̄Φ
)TBwΦ?

0 I CzΦ?
Zli,

¯
Φ Dzw

Φ?

· · (Zui,Ψ)TZli,Ψ 0

· · 0 I

[Nu
i,Φ?

0

0 Ny
i,Φ?

]
� 0 for all i ∈ J̄ ,Φ ∈ AL+1, (8.32b)

[
(Zui,Ψ)TZ li,Ψ (Z li,Ψ)TZui-1,Ψ

(Zui-1,Ψ)TZ li,Ψ (Zui-1,Ψ)TZ li-1,Ψ

]
� 0 and (8.32c)

rank

[
(Zui,Ψ)TZ li,Ψ (Z li,Ψ)TZui-1,Ψ

(Zui-1,Ψ)TZ li,Ψ (Zui-1,Ψ)TZ li-1,Ψ

]
≤ n+nKi for all Ψ ∈ AL and i ∈ J . (8.32d)

where Z li,Ψ and Zui,Ψ are defined using Zai,Ψ, Zbi,Ψ and Zci,Ψ as in (8.25). Further, rank conditions

above are always satisfied when nKi ≥ n, leaving us with LMIs (8.32a)-(8.32c).

We have already verified in Remark 49 that all elements in the above inequalities are affine in

constituent variables. The only additional term encountered here is

(Z li,Ψ)TZui-1,Ψ = diag(Zai-1,Ψ, Ini , Z
c
i,Ψ) +

[
0Zbi-1,Ψ

0 0

]
−

[
0Zbi,Ψ
0 0

]

which is also affine.

Proof of Theorem 54. (⇐=) Let there be {Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J̄ ,Ψ∈AL satisfying (8.32a)-(8.32d). We

can then use relations in (8.23) to obtain corresponding positive-definite matrices {Zi,Ψ}i∈J̄ ,Ψ∈AL .

Now using definitions (8.25) and the transformation[
Z li,Ψ 0

0 Zui-1,Ψ

]T[
Z-1
i,Ψ I

I Zi-1,Ψ

][
Z li,Ψ 0

0 Zui-1,Ψ

]
=

[
(Zui,Ψ)TZ li,Ψ (Z li,Ψ)TZui-1,Ψ

(Zui-1,Ψ)TZ li,Ψ (Zui-1,Ψ)TZ li-1,Ψ

]

it is clear that (8.32c) and (8.32d) imply that Zi,Ψ and Zi-1,Ψ satisfy (8.31) for each i ∈ J and

Ψ ∈ AL. Thus Lemma 52 can be applied to construct XC
Ψ satisfying (8.12) and (8.13). Now using

Lemma 48 along with (8.32b), we know that inequalities in (8.19) are satisfied. Finally we can

apply Lemma 46 to argue the existence of a desired controller.

(=⇒) This part of the proof retraces the above steps in the backwards direction. However Lemma

52 is not applied directly, but through steps contained in it.
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8.6 Controller Synthesis

In this section, we discuss the decentralized controller synthesis using the scaling matrices obtained

earlier. We first start with the following lemma motivated by [87], [88, Lemma 5.2] applicable for

centralized controller synthesis.

Lemma 55. Given Z ∈ Sn+, H ∈ Sm+ , R ∈ Rn×m, and matrices U and V with column dimensions

n and m respectively, satisfying

V T
⊥ (Z −RTHR)V⊥ � 0 and

UT⊥(H-1 −RZ-1RT )U⊥ � 0, (8.33)

we can construct Q satisfying the inequality[
H-1 R+ UTQV

· Z

]
� 0 (8.34)

as Q =
(
UT|| U

T
)† (
−W T

23 +W T
13W

-1
11W12

) (
V V||

)†
(8.35)

where Wij := HT
i WHj for i, j ∈ {1, 2, 3} with following commensurately partitioned matrices

W =

[
H-1 R

RT Z

]
, H1 =

[
U⊥ 0

0 V⊥

]
, H2 =

[
0

V||

]
, H3 =

[
U||

0

]
.

Proof of the above lemma uses ideas similar to [87, Lemma 3.1], and is given here for completeness.

Proof. Using P =
[
U 0
]

and S =
[

0 V
]

each with column dimension n+m, we write (8.34) as

W + P TQS + STQP � 0.

Note that H1, H2 and H3 are full column rank matrices satisfyig Im(H1) = Ker(P ) ∩ Ker(S),

Im
[
H1 H2

]
= Ker(P ) and Im

[
H1 H3

]
= Ker(S). Also H :=

[
H1 H2 H3

]
is square and non-

singular. Since we are free to choose Q and, PH2 = UU|| and SH3 = V V|| being of full column

rank, it can be seen that J := HT
3 P

TQSH2 is freely assignable. Post- and pre-multiplying inequality
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(8.34) with H and its transpose, we haveW11 W12 W13

· W22 W23 + JT

· · W33

 � 0.

Using Schur complement formula, the above is further equivalent to[
W22-W

T
12W

-1
11W12 W23+J

T-W T
12W

-1
11W13

· W33-W
T
13W

-1
11W13

]
� 0.

Since the diagonal blocks of the above matrix are equivalent to (8.33) (upon use of Schur complement

formula and invertibility of
[
U⊥ U||

]
and

[
V⊥ V||

]
), we can choose J = −W32 + W T

13W
-1
11W12 to

satisfy the above inequality. From this, the choice of Q in (8.35) is immediate.

Note that in above lemma, the matrices U⊥, U||, V⊥, V|| can be computed using the SVD of U

and V . In this case, the pseudo-inverses in (8.35) can be written directly by inspection.

The next theorem presents an algebraic method for construction of a finite-path dependent

controller with memory L and dimensions nKi = n for i ∈ J . But first let us consider the following

alternative expansion of the closed loop matrices similar to (8.9):

QCΨ = RΨ? +

M∑
i=1

(UCi,Ψ?)
T Q̃

K
i,ΨṼ

C
i,Ψ? (8.36)

with Ṽ
C
i,Ψ? =

[
0 (eKi )T 0

(eyi )
TCyΨ? 0 (eyi )

TDyw
Ψ?

]
,

Q̃
K
i,Ψ=

[
Ē
K
i-1

0 Ē
u
i-1

]T
QKΨ

[
eKi 0

0 eyi

]
and e•i =

 0(n•1+...+n
•
i-1)×n•i

In•i
0(n•i+1+...+n

•
M )×n•i

.
Note that Q̃

K
i,Ψ consists of the i-th block columns of lower-triangular parts of AKΨ , BK

Ψ , CKΨ , DK
Ψ .

In (8.9), the controller was decomposed into {Qi,Ψ}Mi=1 containing redundancies, which did not

affect the existence conditions as we eliminated these controller matrices. However for synthesis,

we choose the above decomposition, which eliminates such redundancies and keeps the number of

variables to the minimum. For Ṽ
C
, defined above, we can verify that

Ker(Ṽ
C
1,Ψ?) ∩ · · · ∩Ker(Ṽ

C
i,Ψ?) = Ker(V C

i,Ψ?) (8.37)

for i ∈ J .
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Theorem 56. Given matrices {Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J ,Ψ∈AL satisfying (8.32a)-(8.32c), corresponding

{XC
Ψ}Ψ∈AL obtained using (8.12) and (8.13) can be used to obtain the following LMIdiag((XC

Φ̄
)-1, I)

(
RΦ?+

∑M
j=i(U

C
j,Φ?

)T Q̃
K
j,ΦṼ

C
j,Φ?

)
(V C
i-1,Φ?

)⊥

· (V C
i-1,Φ?

)T⊥diag(XC

¯
Φ , I)(V C

i-1,Φ?
)⊥

�0 (8.38)

in variable Q̃
K
i,Φ for each Φ ∈ AL+1, and solved in the order i = M, . . . , 1. Further this can be done

point-wise for each i ∈ J and Φ ∈ AL+1 using (8.35) in Lemma 55 by choosing

Q = Q̃
K
i,Φ, U = UCi,Φ?, V = Ṽ

C
i,Φ?(V

C
i-1,Φ?)⊥

H = diag(XC
Φ̄ , I), Z = (V C

i-1,Φ?)
T
⊥diag(XC

¯
Φ , I)(V C

i-1,Φ?)⊥

R =
(
RΦ?+

M∑
j=i+1

(UCj,Φ?)
T Q̃

K
j,ΦṼ

C
j,Φ?

)
(V C
i-1,Φ?)⊥. (8.39)

Proof. With {Zai,Ψ, Zbi,Ψ, Zci,Ψ}i∈J ,Ψ∈AL we can construct scaling matrices {XC
Ψ}Ψ∈AL using steps in

proof of Theorem 54. Now use Lemma 44 with the following choice

W =

[
diag((XC

Φ̄
)-1, I) RΦ?

RTΦ? diag(XC

¯
Φ , I)

]
,

Qi = Q̃
K
i,Φ, Pi =

[
UCi,Φ? 0

]
and Si =

[
0 Ṽ

C
i,Φ?

]
.

so that corresponding inequality (8.15) is same as the KYP type inequality (8.5) for the closed loop

and is already known to hold for some choice of controller from Theorem 54. Thus Lemma 44(i)

along with (8.37) implies that (8.21) holds. The above definitions along with (8.37) yield

Ni =

S1...

Si


⊥

=

0 Ṽ
C
1,Φ?...
...

0 Ṽ
C
i,Φ?


⊥

=

[
I 0

0 (V C
i,Φ?

)⊥

]
.

corresponding to Lemma 44, which further leads to (8.38) using inequality (8.16) in Lemma 44(ii).

The use of Lemma 55 with the choice (8.39) to solve for Q̃
K
i,Φ in (8.38) requires us to show that

corresponding inequalities (8.33) are satisfied. This is indeed true, because the inequalities in (8.33)

for i = M correspond to (8.21) with i = M and i = M − 1. For any other i = k, inequalities in

(8.33) correspond to (8.21) with i = k−1 and (8.38) with i = k+1. Note that in intermediate steps

we use Schur complement formula, the following property obtained using Lemma 60 and relation

(8.37)

Im
(
V C
k-1,Φ?

(
Ṽ
C
k,Φ?(V

C
k-1,Φ?)⊥

)
⊥

)
= Im

(
(V C
k,Φ?)⊥

)
.
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The controller QKΦ =

[
AKΦ BK

Φ

CKΦ DK
Φ

]
structured as (8.7) can be can be constructed from {Q̃Ki,Φ}i∈J

as

QKΦ =

M∑
i=1

[
Ē
K
i-1

0 Ē
u
i-1

]
Q̃
K
i,Φ

[
eKi 0

0 eyi

]T
for all Φ ∈ AL+1. (8.40)

Remark 57. An alternative to the synthesis procedure described above is to solve the following

LMI in the structured controller matrices QKΦ point-wise for Φ ∈ AL+1[
diag((XC

Φ̄
)-1, I) RΦ?+(UCΦ?)

TQKΦ V
C

Φ?

(RΦ?+(UCΦ?)
TQKΦ V

C
Φ?

)T diag(XC

¯
Φ , I)

]
� 0. (8.41)

Remark 58. If a closed loop performance of ‖w 7→ z‖ < γ is sought, Theorem 54 can be updated

to have Czφ, Cyφ, Dzw
φ , Dzu

φ and Dyw
φ scaled by 1

γ for all φ ∈ Θ. The controller obtained for this

modified system using the procedure above, can be used to find the desired controller by scaling BK
Ψ

and DK
Ψ with 1

γ for all Ψ.

In order to find a controller having a near optimal performance, we can use a bisection algorithm.

The performance level γ generated at each step of the bisection algorithm can be used to check

the feasibility LMIs (8.32a)-(8.32c) for a system obtained by making the substitutions described in

Remark 58. Thereafter, for the smallest γ which solves the feasibility LMIs, corresponding scaling

matrices can be used to synthesize the structured controller using Theorem 56 and (8.40).

8.7 Possible Variations in the Setup

8.7.1 Nested LTI Systems

For a linear time invariant (LTI) formulation, we can obtain existence and synthesis results similar

to Theorem 54 and Theorem 56 by simply choosing an automaton with one element (ns = 1) having

a self-loop. As a result, for any memory length L, there exists only one sequence in AL+1 implying

that the controller is time-invariant and there is a single scaling matrix. Since the size L doesn’t

play any role, we can simply choose L = 0 in Theorem 54 and adopt the same conditions. We

would then arrive at the following result.

Theorem 59. Consider a time-invariant system4 (8.2) along with the structural description in

Assumption 39. There exists a synthesis of a structured controller (8.6)-(8.7) with dimensions

4This is done by choosing ns = 1 which implies a single possibility for θ(t) and induced sequences constructed
with it. So we can ignore the switching subscripts altogether in this theorem.
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{nKi }Mi=1 which stabilizes the plant and achieves closed loop performance ‖w 7→ z‖ < 1 if and only

if there exist matrices {Zai , Zbi , Zci }Mi=1 satisfying the following

Zai � 0, Zci � 0 and (8.42)

[
Nu
i 0

0 Ny
i

]T 
(Zui )TZ li 0 (Zui )TAZ li (Zui )TBw

0 I CzZ
l
i Dzw

(Z li)
TATZui (Z li)

TCTz (Zui )TZ li 0

BT
wZ

u
i DT

zw 0 I


[
Nu
i 0

0 Ny
i

]
� 0 for i ∈ J̄ , (8.43)

[
(Zui )TZ li (Z li)

TZui-1

(Zui-1)TZ li (Zui-1)TZ li-1

]
� 0 and (8.44)

rank

[
(Zui )TZ li (Z li)

TZui-1

(Zui-1)TZ li (Zui-1)TZ li-1

]
≤ n+ nKi for i ∈ J . (8.45)

Further, the above rank conditions are always satisfied when nKi ≥ n, leaving us with LMIs (8.42)-

(8.44).

Note that the above LTI result was also presented in [84, Thoerem 10]. In that reference, an

LTV version of the results described here was solved using operator theoretic representations.

The solution to the LTI problem as described in Theorem 59 was then obtained by an averaging

argument.

8.7.2 Extensions

We point out that the synthesis conditions and procedure presented in this chapter can be extended

to more general setting of non-regular switching sequences and include a finite look-ahead horizon

i.e. controller has knowledge of future modes of pre-defined length. For background on these topics,

see [52] in the context of centralized control.

Extensions to control of Markovian jump linear systems where the switching sequence is generated

by a Markov chain instead of an automaton, to achieve almost sure performance (as described

in [49, Section 4]) can also be achieved.
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8.8 Example

Let us consider a two player example with dynamics (8.2) and 3-mode switching automaton as

shown in Figure 8.2a. The corresponding system matrices are chosen as

A1 = A2 =

[
1.4 0

0.2 1.4

]
, A3 =

[
0.7 0

0.2 0.7

]
, Bu

1 = Bu
2 =

[
0 0

0 1

]
, Bu

3 =

[
1 0

0 0

]
,

Cy1 = Cy2 = diag(1, 0), Cy3 = I2, D
zu
1 = Dzu

2 =
[

0 1
]
, Dzu

3 =
[

4 0
]
,

and the following defined for φ ∈ {1, 2, 3}

Bw
φ =

[
1

1

]
, Dyw

φ =

[
0

1

]
, Czφ =

[
0.5 2

]
, Dzw

φ = 0.5.

Here we have chosen dimensions n1 = n2 = nu1 = nu2 = ny1 = ny2 = nz = nw = 1.

For different memory lengths, the above system was examined with nKi = 2 for i ∈ J . Using a

bisection algorithm, the smallest performance level γ (see Remark 58) satisfying conditions in in

Theorem 54 was found. The values thus obtained are tabulated below along with corresponding

performance obtained for a centralized controller.

Memory 0 1 2 3 4 5

Decentralized ∞ 5.468 3.663 3.606 3.604 3.604

Centralized ∞ 5.461 3.634 3.561 3.561 3.561

For zero memory length, the system is not stabilizable, resulting in infinite induced norm. For the

above example, there is very little difference in the performance of centralized and decentralized

control.

Here, changing Cy3 to diag(0, 1) doesn’t affect the centralized performance. However the decen-

tralized performance gain increases to 13.278 for L = 1, . . . , 5.

8.9 Appendix

We present a few useful lemmas here.

Lemma 60. Consider matrices W and P with identical column dimensions. Define V such that

Im(V ) = Ker(W ) ∩Ker(P ). Then Im(V ) = Im(P⊥(WP⊥)⊥).

Proof. First we prove Im(V ) ⊂ Im(P⊥(WP⊥)⊥). Consider non-zero x ∈ Im(V ), this implies x ∈
Ker(W ) and x ∈ Ker(P ) = Im(P⊥). Thus there exists a non-zero z such that x = P⊥z. Since

Wx = WP⊥z = 0 we must have z ∈ Ker(WP⊥). Thus x ∈ Im(P⊥(WP⊥)⊥).
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Now we prove Im(P⊥(WP⊥)⊥) ⊂ Im(V ). Consider non-zero x ∈ Im(P⊥(WP⊥)⊥). Clearly

x ∈ Im(P⊥) = Ker(P ). Also there exists non-zero z such that x = P⊥(WP⊥)⊥z. Clearly Wx =

WP⊥(WP⊥)⊥z = 0. We have thus proved that x is an element of both Ker(W ) and Ker(P )

implying that x ∈ Im(V ).

Lemma 61. Consider W ∈ Rm×k, H ∈ Rk×k and S ∈ Rk×k with H being symmetric and S being

invertible. Then, we have

W T
⊥HW⊥ � 0 if and only if (WS)T⊥(STHS)(WS)⊥ � 0

The proof is immediate from Lemma 60 by setting P = 0, V = W⊥ and P⊥ = S.

Lemma 62. Consider the following symmetric positive-definite matrices partitioned with identical

block dimensions

R =

R11 R12 R13

RT12 R22 R23

RT13 R
T
23 R33

 S =

S11 S12 S13

ST12 S22 S23

ST13 S
T
23 S33


and satisfying R = S-1. Then we have

R11 −R13R
-1
33R

T
13 = (S11 − S12S

-1
22S

T
12)-1. (8.46)

Proof. We use block matrix inversion formula. First consider the inverse of a sub-block of S = R-1

as [
S11 S12

ST12 S22

]-1

=

[
R11 R12

RT12 R22

]
−

[
R13

R23

]
R-1

33

[
RT13 R

T
23

]
.

The (1, 1) block of the above leads to (8.46).
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Chapter 9

Conclusions

This dissertation explored the decentralized control of linear switched parameter systems and pre-

sented the controller design techniques for a few different setups varying in performance criteria,

switching architecture and information/parameter availability to controllers.

We first considered the static quadratic team problem in Chapter 3 and using an operator theo-

retic framework showed that the sequential update scheme convergences exponentially to the team

optimal solution and provided bounds for the convergence rate. Consequently, such an update

scheme can be used as a mechanism for obtaining the team optimal strategies, while the rate

bounds can be helpful in choosing a cost function with suitable convergence properties. An ex-

ample of a static team problem leading to nonlinear strategies is presented to demonstrate this.

The convergence result also provides us with tools which may help us to comment on the struc-

ture of the team optimal strategies. The use of these tools was demonstrated by solving a static

stochastic-parameter decision problem in Chapter 4.

In Chapters 5-7, we presented three separate dynamic switched decentralized control problems

with players having partial access to the stochastic parameters. The problem in Chapter 5 involved

a partially nested information structure where the optimal control was obtained by converting the

dynamic problem into the static stochastic-parameter problem solve in Chapter 4. In Chapter 6, the

setup comprised of a one-step delayed information sharing pattern where the stochastic parameters

form a Markov process. The optimal strategies were obtained through dynamic programming while

invoking the results of the one-step stochastic-parameter problem at each stage. In Chapter 7, we

looked at a full state feedback problem with parameters being independent in time and obtained

the optimal control for both finite and infinite horizon cases. For all these dynamic problems,

the resulting optimal strategies were found to be affine in locally available measurements with

parameter dependent coefficients. In general, these chapters have demonstrated how a certain

class of decentralized problems can be extended to their switched counterparts, and there is a good

scope of broadening the class of problems where similar techniques can be applied to obtain optimal

control for switched versions of decentralized systems.

Finally in Chapter 8, we considered a dynamic switched problem with nested information struc-

ture under `2-induced norm performance criteria. For a mode dependent nested mode-dependent

plant, we presented the exact conditions for existence of a nested finite-path dependent controller
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synthesis. These are in the form of coupled LMIs and rank conditions (which can be dropped for

large enough controller dimensions). Once these conditions are solved for some memory length, we

can construct the closed loop scaling matrices by a matrix completion developed here, followed by

synthesis of controller using efficiently solvable algebraic expressions. It can be noted that solving

a decentralized control problem with controllers having access to nested parameters, instead of a

common parameter as studied here, appears challenging.

9.1 Possible Future Directions

We now list some directions where the ideas presented in this dissertation can be extended towards.

1. In Chapter 3, the study of convergence properties of update schemes was geared towards

static team problems with quadratic cost function. The next obvious question is whether

the techniques developed here can be extended to more general convex cost functions. In

particular, we may note that in [18], authors have shown that stationarity conditions in [16]

hold under more relaxed conditions. Even for the case of quadratic cost, [18, Example 1]

presents a scenario where the cost coefficients are unbounded. Thus, it would be interesting

to explore whether the assumption of bounded cost can be relaxed in a similar way and

still maintain convergence of update schemes (possibly starting with initial strategies yielding

finite expected cost).

2. In the examples presented in Chapters 3 and 4, the effects of discretizing the parameter space

was assumed to be negligible. Studying the effects of such discretization on the convergence

and the error in cost can be helpful in determining a desired level of discretization especially

in numerically intensive problems.

3. In Chapter 5, the optimal controller obtained for the dynamic team problem with PN infor-

mation structure involves solving a set of linear equations in the strategy coefficients for all

the players. For PN problems, with dynamics evolving over time, such a solution may be

computationally intractable for large time horizons. One may assume additional structure on

the problem, for example consider switched versions of the problems considered in [38–40,77],

and investigate whether a Riccati type recursive solution analogous to their non-switched

counterparts can be obtained to compute the optimal strategy.

4. An iterative scheme was suggested in Theorem 19 for computation of arbitrarily close approx-

imations of team optimal strategies. This scheme can also be applied towards the dynamic

problem with OSD information pattern in Chapter 6. However, finding bounds on the con-

vergence rate and cost error is a challenging problem and it is desirable to be able to obtain

such bounds based on the cost and system matrices.
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5. In Chapter 7, we examined an infinite horizon problem under full-state feedback and i.i.d. pa-

rameters; from this a number of possible explorations arise naturally. These include obtaining

exact conditions for decentralized stabilizability under this information structure. One would

also like to consider infinite horizon problems with output feedback, either with OSD or PN

information structure. The techniques used here do not extent directly to these scenarios.

Also the numerical scheme presented in Section 7.3 for infinite parameters requires further ex-

ploration. Since it involves alternating between iterations in the strategies and updating P , it

will be interesting to see what effects the errors in strategy iterations have on the convergence

of this process.

6. In Theorem 56, we provided a direct algebraic method for synthesis of decentralized controller.

Such a synthesis can also be performed by solving LMIs in either (8.41) or (8.38) through

SDP. We may note (through a simple complexity analysis counting the number of variables

and constraints) that these synthesis LMIs are are computationally more demanding than the

feasibility LMIs (8.32a)-(8.32c). Although the computational time of the algebraic synthesis

method (in Theorem 56) seems to be much faster than the LMI schemes, a more rigorous

analysis is required to compare their numerical robustness. For example, one might expect

the single stage LMI in (8.41) to achieve numerical convergence more often than the stage-

wise LMIs in (8.38); as in the later, it is possible that some initial stage solutions may lead to

ill-conditioned problems in the later stages. One may also implement other synthesis schemes

in literature as [89] (which claim better numerical stability for centralized control) applied at

each stage of Theorem 56.
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[30] R. Bansal and T. Başar, “Stochastic teams with nonclassical information revisited: When is
an affine law optimal?” IEEE Transactions on Automatic Control, vol. 32, no. 6, pp. 554–559,
1987.

[31] M. Rotkowitz, “Linear controllers are uniformly optimal for the witsenhausen counterexam-
ple,” in Proceedings of IEEE Conference on Decision and Control, Dec 2006, pp. 553–558.

[32] L. Lessard, “Optimal control of a fully decentralized quadratic regulator,” in Proceedings of
the Allerton Conference, 2012, pp. 48–54.

[33] B. Kurtaran and R. Sivan, “Linear-quadratic-gaussian control with one-step-delay sharing
pattern,” IEEE Transactions on Automatic Control, vol. 19, no. 5, pp. 571–574, 1974.

[34] J. Sandell, N. and M. Athans, “Solution of some nonclassical LQG stochastic decision prob-
lems,” IEEE Transactions on Automatic Control, vol. 19, no. 2, pp. 108 – 116, Apr 1974.

[35] M. Toda and M. Aoki, “Second-guessing technique for stochastic linear regulator problems
with delayed information sharing,” IEEE Transactions on Automatic Control, vol. 20, no. 2,
pp. 260 – 262, Apr 1975.

[36] P. Varaiya and J. Walrand, “On delayed sharing patterns,” IEEE Transactions on Automatic
Control, vol. 23, no. 3, pp. 443–445, 1978.

[37] C.-H. Fan, J. Speyer, and C. Jaensch, “Centralized and decentralized solutions of the linear-
exponential-gaussian problem,” IEEE Transactions on Automatic Control, vol. 39, no. 10, pp.
1986–2003, 1994.

[38] J. Swigart and S. Lall, “An explicit dynamic programming solution for a decentralized two-
player optimal linear-quadratic regulator,” in Proceedings of mathematical theory of networks
and systems, 2010.

[39] P. Shah and P. A. Parrilo, “H2-optimal decentralized control over posets: A state space solution
for state-feedback,” in Proceedings of IEEE Conference on Decision and Control, 2010, pp.
6722–6727.

[40] J. Swigart, “Optimal controller synthesis for decentralized systems,” Ph.D. dissertation, Stan-
ford University, 2010.

[41] L. Lessard and S. Lall, “Optimal controller synthesis for the decentralized two-player problem
with output feedback,” in Proceedings of American Control Conference, 2012, pp. 6314–6321.

[42] M. Rotkowitz and S. Lall, “A characterization of convex problems in decentralized control*,”
IEEE Transactions on Automatic Control, vol. 51, no. 2, pp. 274–286, Feb. 2006.

[43] M. Rotkowitz, “On information structures, convexity, and linear optimality,” in Proceedings
of IEEE Conference on Decision and Control, Dec 2008, pp. 1642–1647.

[44] D. Liberzon and A. Morse, “Basic problems in stability and design of switched systems,”
Control Systems, IEEE, vol. 19, no. 5, pp. 59–70, Oct 1999.

93



[45] O. L. V. Costa and M. Fragoso, “Discrete-time LQ-optimal control problems for infinite markov
jump parameter systems,” IEEE Transactions on Automatic Control, vol. 40, no. 12, pp. 2076–
2088, 1995.

[46] H. Chizeck and Y. Ji, “Optimal quadratic control of jump linear systems with gaussian noise
in discrete-time,” in Proceedings of IEEE Conference on Decision and Control, 1988, pp. 1989–
1993 vol.3.

[47] J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic analysis and control of real-time
systems with random time delays,” Automatica, vol. 34, no. 1, pp. 57 – 64, 1998.

[48] H. Chan and U. Ozguner, “Optimal control of systems over a communication network with
queues via a jump system approach,” in Control Applications, 1995., Proceedings of the 4th
IEEE Conference on, 1995, pp. 1148–1153.

[49] J. Lee and G. Dullerud, “Optimal disturbance attenuation for discrete time switched and
markovian jump linear systems,” SIAM Journal on Control and Optimization, vol. 45, no. 4,
pp. 1329–1358, 2006.

[50] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman
filtering with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1453–1464, 2004.

[51] W. De Koning, “Infinite horizon optimal control of linear discrete time systems with stochastic
parameters,” Automatica, vol. 18, no. 4, pp. 443–453, 1982.

[52] R. Essick, J. W. Lee, and G. Dullerud, “Control of linear switched systems with receding
horizon modal information,” IEEE Transactions on Automatic Control, to appear.

[53] P. Seiler and R. Sengupta, “A bounded real lemma for jump systems,” IEEE Transactions on
Automatic Control, vol. 48, no. 9, pp. 1651–1654, Sept 2003.

[54] G. E. Dullerud and S. Lall, “A new approach for analysis and synthesis of time-varying sys-
tems,” IEEE Transactions on Automatic Control, vol. 44, no. 8, pp. 1486–1497, 1999.

[55] O. Costa and M. Fragoso, “Stability results for discrete-time linear systems with markovian
jumping parameters,” Journal of Mathematical Analysis and Applications, vol. 179, no. 1, pp.
154 – 178, 1993.

[56] J. W. Lee and G. E. Dullerud, “Uniform stabilization of discrete-time switched and markovian
jump linear systems,” Automatica, vol. 42, no. 2, pp. 205 – 218, 2006.

[57] J. Xiong, V. A. Ugrinovskii, and I. R. Petersen, “Local mode dependent decentralized stabi-
lization of uncertain markovian jump large-scale systems,” IEEE Transactions on Automatic
Control, vol. 54, no. 11, pp. 2632–2637, 2009.

[58] F. Farokhi and K. H. Johansson, “Limited model information control design for linear discrete-
time systems with stochastic parameters,” in Proceedings of IEEE Conference on Decision and
Control, 2012, pp. 855–861.

94



[59] N. Elia, “Remote stabilization over fading channels,” System & Control Letters, vol. 54, no. 3,
pp. 237 – 249, 2005.

[60] S. Tatikonda and S. Mitter, “Control over noisy channels,” IEEE Transactions on Automatic
Control, vol. 49, no. 7, pp. 1196–1201, July 2004.

[61] A. Sahai, “Anytime information theory,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2001.

[62] C. Hadjicostis and R. Touri, “Feedback control utilizing packet dropping network links,” in
Proceedings of IEEE Conference on Decision and Control, vol. 2, Dec 2002, pp. 1205–1210
vol.2.

[63] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System
and Control Theory, ser. Studies in Applied Mathematics. Philadelphia, PA: SIAM, June
1994, vol. 15.

[64] G. E. Dullerud and F. Paganini, A course in robust control theory. Springer New York, 2000,
vol. 6.

[65] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polynomial algorithms in convex pro-
gramming. SIAM, 1994, vol. 13.

[66] “http://cvxr.com/cvx/.”

[67] M. C. Grant and S. P. Boyd, “The CVX users guide release 2.0,” 2014.

[68] “http://www.mathworks.com/products/matlab/.”
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