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ABSTRACT

We propose a new coding scheme for interference alignment in a single hop

fast fading wireless network with general message demands. For the X Chan-

nel, the Degrees of Freedom (DoF) region achievable by the scheme is shown

to touch a known outer bound at several points. For multiple multicast de-

mands we show that the achievable region is at least half of the cut-set bound

region. We also recover previous results of the K-user interference channel,

X channel and the multicast channel. The key innovation in our scheme

is the reduction of the vector space alignment problem to a combinatorial

arrangement problem.
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CHAPTER 1

INTRODUCTION

Interference in wireless networks can severely constrain the capacity of the

network. Some of the intereference management approaches traditionally

used in practice are the following:

Orthogonalize In many systems the strength of the interference is compa-

rable to the strength of the desired signals. In such instances, interfer-

ence is avoided by scheduling the transmissions such that no receiver

experiences interference. Such an orthogonalization – where spectrum

is divided among co-existing users in a cake-cutting fashion – is the ba-

sis for time or frequency division medium access schemes. Information

theoretically, a single-user AWGN channel has a capacity that can be

expressed as log(SNR) + o(log(SNR)), so that the channel has 1 degree

of freedom (DoF).1 In general, for a K-user interference channel each

user can get a sum rate of 1
K

log(SNR) + o(log(SNR)) or equivalently
1
K

DoF by using orthogonal access schemes. Thus in this method, a

cumulative DoF of 1 is divided among the users in a “cake-cutting”

fashion.

Treat as Noise If interference is weak compared to the signal strength, then

a natural approach is to treat interference as noise and use single-user

coding methods. This approach has been used in the frequency-reuse of

cellular systems for a long time. An information theoretic validation of

this approach can be found in [1–4]. A surprising result of the study is

that introducing structure into the interference signals does not improve

the performance in this regime.

Successive Decoding If interference is strong, then the interfering signal

can be decoded along with the desired signal. In the context of the

1A Gaussian channel has d degrees of freedom if the capacity can be expressed as
C(SNR) = d log(SNR) + o(log(SNR)). See section 2.2.
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two-user interference channel, this approach has been used in proving

capacity results in [5–7]. A tradeoff in this method is that the de-

codability of the interfering signals limits the communication rates of

the other users. This approach is less common in practice due to the

complexity of multi-user detection.

However, such schemes can be suboptimal and limit the maximum through-

put in the network. For over three decades information theorists have pur-

sued the capacity characterizations of interference channels. A special case of

the Han-Kobayashi scheme [6] has been shown in [1] to achieve the capacity

of the two-user interference channel to within one bit. There is increasing

interest in approximate capacity characterizations of wireless networks as a

means to understanding their performance limits. In particular, the high

SNR regime – where the local additive white Gaussian noise (AWGN) at

each node can be neglected relative to the signal and interference powers –

offers fundamental insights into optimal interference management schemes.

The DoF approach provides a capacity approximation whose accuracy ap-

proaches 100% in the high signal-to-noise ratio (SNR) regime. A network

has d DoF if and only if the capacity of the network can be expressed as

d log(SNR) + o(log(SNR)). Since each orthogonal (noninterfering) signalling

dimension contributes a rate of log(SNR) + o(log(SNR)), the DoF of a net-

work may be interpreted as the number of resolvable signal space dimen-

sions. Starting with the point-to-point mutliple-input and multiple-output

(MIMO) channel [8,9], the DoF have been characterized for MIMO multiple

access channel (MAC) [10], MIMO broadcast channel (BC) [11–13], two-user

MIMO interference channel [14], various distributed relay networks [15–17],

two-user MIMO X channel [18–22], and most recently the K-user interfer-

ence channel [23]. Cadambe and Jafar [23] show that for a broad class of

wireless networks, even when there are more than two interfering users, the

sum capacity (per user) is 1
2

log(SNR) + o(log(SNR)). A key to this result is

an achievable scheme called interference alignment.

Interference alignment (IA) is a relatively recent technique in which the

transmitted signals are coded in such a way that the interference at each

receiver is restricted to only a small number of dimensions, while keeping

the desired signals separable from interference. This allows simultaneous

communication of many interfering users over a small number of signaling
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dimensions (bandwidth). While it is currently in many sophisticated forms

across a variety of applications, the earliest application of IA can be found

in [24, 25] where the index coding problem was introduced. It was observed

again in the context of the X channel by Maddah-Ali et al. [20]. The idea was

crystallized by Jafar and Shamai in [22] before Cadambe and Jafar in [23]

introduced a mechanism to align an arbitrarily large number of interferers,

leading to the surprising conclusion that wireless networks are not essentially

interference limited.

The vector interference alignment schemes of [23] are applicable to time-

varying channels. Constant channels have been dealt with using the tech-

nique of real interference alignment [26–30]. The major difference between

vector interference alignment and real interference alignment is that the for-

mer relies on the linear vector-space independence, while the latter relies on

linear rational independence. Besides vector and real interference alignment

schemes, it is also possible to utilize the ergodicity of the channel states in

the so-called ergodic interference alignment scheme [31].

A majority of systems considered so far for interference alignment involve

only multiple unicast traffic, where each transmitted message is demanded

by only a single receiver. There are, however, wireless multicast applications

where a common message may be demanded by multiple receivers, e.g., in

a wireless video broadcasting. Such general message request sets have been

considered in [32] where each message is assumed to be requested by an equal

number of receivers. Ergodic IA was employed to derive an achievable sum

rate. A different but related effort is the study of the compound multiple-

input single-output broadcast channel [26, 33] where the channel between

the base station and the mobile user is drawn from a known discrete set.

However, the DoF region was not identified in [26]. A natural generalization

of the multiple unicasts scenario of [23] to multicast messages is provided

in [34]. However, they consider a model in which every transmitter has

only a single multicast message. The DoF region for networks with mulitple

multicast message demands have not yet been fully characterized.

In this thesis, we present an IA scheme that generalizes the scheme in [34]

for (i) multiple unicasts (also referred to as the X Channel), in which each

transmitter can have an independent message to each receiver and (ii) multi-

ple multicasts, in which each transmitter can have an independent multicast

message to each subset of receivers. For the case of multiple unicasts, we
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show that a region in the DoF outer bound given in [35] can be achieved.

We also show that our scheme can achieve a DoF of within 1/2 of the cut-set

bound in both cases, thus extending the result of [23] for multicast traffic.

This thesis is based on the results of [36].
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CHAPTER 2

SYSTEM MODEL

In this chapter, we explain our wireless system model followed by an intro-

duction to DoF.

2.1 General Model

Consider a single hop wireless network in which there are K transmitters

and K receivers, each having a single antenna. Assuming an ergodic and flat

fading, the input-output relation at the jth receiver at time-slot t is described

as

Yj(t) = Hj1(t)X1(t) + . . .+HjK(t)XK(t) + Zj(t), j = 1, . . . , K, (2.1)

where Hji(t) denotes the channel fade coefficient between transmitter i and

receiver j, Xi(t) the symbol transmitted by transmitter i, Yj(t) the sym-

bol received by receiver j and Zj(t) is the additive complex Gaussian noise

(AWGN) of unit variance. To avoid degenerate channel conditions, such as

all channel coefficients being equal, zero or infinity, we assume that the co-

efficients are drawn i.i.d. from a continuous distribution and the absolute

value of all channel coefficients bounded between a nonzero minimum and

a finite maximum value, 0 < Hmin ≤ |Hji(t)| ≤ Hmax < ∞. We also as-

sume that the causal channel state information is known globally, i.e. at

time slot τ each node knows all the elements of the set {Hji(t) : (j, i) ∈
{1, . . . , K}×{1, . . . , K}, t = 1, 2, . . . , τ}. Now, if we use a symbol expansion

of τsym time slots, then the input-output relation becomes

Yj(t
′) =

K∑
i=1

Hji(t
′)Xi(t

′) + Zj(t
′), j = 1, 2, . . . , K, (2.2)
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where Xi(t
′),Yi(t

′),Zj(t
′) are vectors of length τsym and Hji(t

′) is a diagonal

matrix of size τsym× τsym. Here t′ denotes the channel use index, for example

the jth entry of Xi(t
′) is the same as Xi((t

′ − 1) × τsym + j) and so on.

Throughout this thesis we restrict ourselves to the single antenna case.

Remark : For the purpose of our results there is no fundamental need for

the signalling dimension to be time. A symbol expansion of τsym over time

slots, frequency slots or a time-frequency tuple if coding is performed in both

time and frequency, can all be thought of as being equivalent. Similarly it

is enough if the channel matrices Hji(t
′) commute with each other, without

the need for being diagonal. However, the ergodic nature of the channel

coefficients is an important assumption.

Depending on the traffic pattern, i.e., unicast, multicast etc., each trans-

mitter in 1, . . . , K can have one or many independent messages intended for

receivers in 1, . . . , K. In general for independent messages W1, . . . ,Wm with

the cardinality of ith message set being |Wi(P )| (for a transmitter power P )

and codewords of length τsym, the rates Ri = log |Wi(P )|
τsym

corresponding to the

messages are said to be achievable if the probability of error for the message

can be arbitrarily small by choosing an appropriately large τsym. The closure

of the set of all achievable rate tuples is called the capacity region.

2.2 Degrees of Freedom (DoF)

The DoF approximates the capacity region to within o(logP ) for transmis-

sion power P . Consider a point-to-point Gaussian channel

Y = HX +N,

where X and Y denote the input and the output symbols respectively, H

denotes the channel coefficient and N is the additive Gaussian noise (AWGN)

term. All symbols are in the complex field. Let us assume a power constraint

of P on the input, i.e., E[|X|2] ≤ P and let N be a circularly symmetric

complex Gaussian Nc(0, σ2). For such a channel, the capacity was shown by

Shannon to be

C = log

(
1 + P

|H|2

σ2

)
,
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units of information per channel use. Formally, we define the DoF metric η

for this channel as

η , lim
P→∞

C(P )

logP
= 1,

which can also be stated as C(P ) = η log(P ) + o(log(P )). Hence the DoF

metric is often referred to as the pre-log factor. Notice that the strength

of the channel gain H and the noise variance σ2 do not figure in the DoF,

since these quantities do not scale with the power P . For M parallel channels

Yi = HiXi+Ni, i = 1, . . . ,M with an average power P per channel, it is easy

to see that the total capacity is M log(P ) + o(log(P )) implying a DoF of M .

Note that the strength of the channels and the noise variance are irrelevant

as before. In this sense, we can think of DoF as the number of available

channels or signalling dimensions where 1 signalling dimension corresponds to

an interference-free AWGN channel with an SNR that increases proportional

to P as P →∞.

In general, for a multi-user Gaussian network with m messages W1, . . . ,Wm

and a power constraint of P per user, we can associate a DoF to each message

that is sent. Denoting the rate of the ith message by Ri(P ), the DoF region

is given by

D , {d = (d1, . . . , dm) ∈ Rm
+ : ∃(R1(P ), . . . , Rm(P )) ∈ C(P ),

such that di = lim
P→∞

Ri(P )

log(P )
, 1 ≤ i ≤ m}, (2.3)

where C(P ) is the capacity region of the network. A limitation of the DoF

metric is that it is defined for the scenario wherein all the users have the

same power constraint in dB scale up to an additive constant. To incorpo-

rate the diversity in the signal strengths, one can modify the definition in

equation (2.3) to create a metric called the generalized DoF [37], but for our

purpose the definition in equation (2.3) suffices.

2.3 Notation

For any k ∈ N, let [k] denote the set {1, . . . , k}. For any two matrices U and

V we let U ⊂ V mean the (column) subspace spanned by U is contained in
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the subspace spanned by V. Similarly U ≡ V means the subspace spanned

by both the matrices coincide.
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CHAPTER 3

PRELIMINARIES

In this chapter, we illustrate the IA principle through an example of the K-

user interference channel and also describe the mechanics of an asymptotic

alignment scheme adopted by [23].

3.1 K-User Interference Channel

The K-user interference channel consists of K transmitter nodes and K re-

ceiver nodes, where each transmitter can have a single message for the corre-

sponding receiver (formal definition in section 3.2.1). Consider the example

of K = 3. If at any time only one of the transmitters is on with the others

turned off, it can achieve a DoF of 1. Therefore by time-sharing we can

achieve a DoF of 1/3 for each user (more generally, we can achieve 1/K per

user if there are K users). Now, for illustration let us consider a symbol ex-

tension of 3, i.e., each codeword is of length 3. Suppose that user 1 transmits

over a space of dimension 2. Let the beamforming vectors corresponding

to the two-dimensional space be v1
1 and v2

1. Analogously let users 2 and 3

beamform along the one-dimensional spaces v2 and v3 respectively. We ar-

bitrarily set v2 to be the all-one’s vector 13×1. Let Hji denote the channel

matrix between transmitter i and receiver j. Then we are able to succesfully

decode at all the receivers if:

• At receiver 1, the interfering signals from users 2 and 3 are aligned:

H12v2 = H13v3 ⇒ v3 = (H13)
−1H1213×1.

Since now, we can zero-force the interference by projecting along vec-

tors orthogonal to H13v3 to recover the messages from user 1.

• At receiver 2, the interfering signals from users 1 and 3 are aligned.
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Since interference from user 1 is two-dimensional, suppose we are able

to align the signal from user 3 to one of the signals from user 1:

H23v3 = H21v
1
1 ⇒ v1

1 = (H21)
−1H23(H13)

−1H1213×1,

(in general the signal from user 3 could be aligned to any vector in the

two-dimensional subspace of user 1 at receiver 2).

• At receiver 3, the interfering signals from users 1 and 2 are aligned.

This is similar to the previous case:

H32v2 = H31v
2
1 ⇒ v2

1 = (H31)
−1H3213×1.

Thus if we choose the beamforming vectors as above, we are guaranteed a per

symbol DoF of 2/3 for user 1 and 1/3 each for users 2 and 3. This technique

in which the transmitted signals are beamformed in such a way that all the

interfering signals overlap and are contained within a fixed subspace at each

receiver is called interference alignment.

The above example guarantees a sum-DoF of 4/3 for the three-user in-

terference channel. While it is an improvement over time-sharing, it is still

suboptimal. In the following section we discuss the optimal scheme.

3.2 Alignment Scheme

In this section we will see an interference alignment scheme that can asymp-

totically achieve a sum-DoF of K/2 for the K-user interference channel. In

order to achieve a per user DoF of 1/2, we require the signal subspace and

the interference subspace to be of the same dimension at each receiver. How-

ever this problem is overconstrained and hence does not have a solution [23].

What is possible, though, is a scheme where most of the interfering signals are

aligned within a subspace while the receivers allow for an “overflow” space

for interfering signals that do not align perfectly. Under such a scheme, one

can show that the fraction of the overflow space in comparison to the signal

space diminishes as the symbol extension grows. Thus asymptotically we are

able to achieve a DoF of 1/2 per user. Equivalently, for any ε > 0, we can

find a sufficiently large symbol extension such that the DoF for each user is

10



within ε of 1/2. This scheme was proposed by Cadambe and Jafar in [23]

and has since gathered considerable attention. We explain this scheme in the

following sections as we will use it as a foundation for our alignment scheme

in chapter 4.

3.2.1 Channel Model

The K-user interference channel consists of K transmitters {1, . . . , K} and

K receivers {1, . . . , K} where each transmitter can have a message for the

corresponding receiver. As discussed in section 2.1, the channel output at

the jth receiver at time t is given by

Yj(t) =
K∑
i=1

Hji(t)Xi(t) + Zj(t), j = 1, 2, . . . , K, (3.1)

where Yj(t) is the output vector at the jth receiver, Xi(t) is the input vector

at transmitter i and Hji(t) is the channel fading matrix between transmitter

i and receiver j at tth channel use. Zj(t) is the additive noise assumed to

be independent and identically distributed (i.i.d) with zero mean and unit

variance at the jth receiver. The channel coefficients are assumed to be drawn

from a continuous distribution with their absolute values bounded between

a nonzero minimum value and a finite maximum. We also assume that the

channel knowledge is known globally at each time slot, i.e., Hji(t), ∀i, j ∈ [K]

is known to all the users at time t.

3.2.2 Interference Alignment Scheme

For the sake of simplicity we only consider the case of a three-user in-

tereference channel as before and show that the DoF tuple (d1, d2, d3) =

( n+1
2n+1

, n
2n+1

, n
2n+1

) is achievable ∀n ∈ N. This implies that

d1 + d2 + d3 = sup
n

3n+ 1

2n+ 1
=

3

2

lies in the DoF region since it is a closed set. To show this, let us consider a

symbol extension of 2n+1. Let Xk(t) be the vector transmitted by user k at

time slot t. The signal received by receiver j is given by equation (3.1). Since
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we are interested only in the DoF, we can assume that we are operating in

the high SNR regime and ignore the noise term. To prove that (d1, d2, d3) is

achievable in the original channel, we show that (d̃1, d̃2, d̃3) = (n+ 1, n, n) is

achievable over the extended channel. Let v
[m]
k ,m = 1, . . . ,M , be M linearly

independent beamforming vectors of user k, i.e.,

X1(t) =
n+1∑
m=1

x
[m]
1 (t)v

[m]
1 = V1X̃1(t) (3.2)

Xj(t) =
n∑

m=1

x
[m]
j (t)v

[m]
j = VjX̃j(t), j = 1, 2, (3.3)

where X̃j(t) corresponds to the message vector of user j. Now, ignoring

noise, the received signal at node j is

Yj(t) = Hj1V1X̃1(t) + Hj2V2X̃2(t) + Hj3V3X̃3(t). (3.4)

In order to be able to recover X1(t) (and hence X̃1(t)) at receiver 1, we

would like two things to happen: (i) the interfering signals X2 and X3 are

aligned in an n-dimensional subspace and (ii) the subspace spanned by V1 is

linearly independent of the above interference subspace. We can then zero-

force the interference and recover X1 by projecting along the n + 1 vectors

that are orthogonal to the interference subspace. Analogous conditions apply

at receiver 2 (respectively 3), but as the interference subspace from user 1

is larger than that from user 3 (respectively 2) the subspace from user 3

(respectively 2) must be entirely contained within the subspace from user 1.

Mathematically we would like:

H12V2 ≡ H13V3 (3.5)

H23V3 ⊂ H21V1 (3.6)

H32V2 ⊂ H31V1. (3.7)

12



Since the channel matrices Hji are modeled as generic, they have a full-rank

almost surely. Let

A = V1 (3.8)

B = (H21)
−1H23V3 (3.9)

C = (H31)
−1H32V2 (3.10)

T = H12(H21)
−1H23(H32)

−1H31(H13)
−1, (3.11)

then the conditions in equations (3.5)-(3.7) can equivalently be expressed as

B ≡ TC (3.12)

B ⊂ A (3.13)

C ⊂ A. (3.14)

In the following, we will construct the matrices A,B and C. Let w be the

(2n+ 1) length column vector of all 1’s. Construct A,B and C as

A =
[
w Tw T2w . . . Tnw

]
, (3.15)

B =
[
Tw T2w . . . Tnw

]
, (3.16)

C =
[
w Tw . . . Tn−1w

]
. (3.17)

It can then be easily verified that equations (3.15)-(3.17) satisfy the required

conditions in equations (3.12)-(3.14). The beamforming matrices V1,V2

and V3 can now be constructed from A,B,C and satisfy the alignment

constraints.

It only remains to be seen that condition (ii) is also satisfied at the re-

ceivers, i.e., the subspace spanned by the messages are linearly independent

of the interference subspaces. Let us consider receiver 1. The desired message

from transmitter 1 is received along H11V1 while the interference vectors are

aligned in the subspace H12V2. Therefore, in order to show that there are

n + 1 dimensions available in X1, we must show that the 2n + 1 by 2n + 1

matrix [
H11V1 H12V2

]
(3.18)

is full rank almost surely. We can show this using the random nature of the

channel matrices, but we refer to [23] for the proof.
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So far we have discussed the concept of interference alignment and have

seen an application of it to the K-user interference channel that can achieve

the optimal DoF. In the following chapters we extend the aforementioned

ideas and present a combinatorial alignment scheme for more general channel

models.

3.3 Asymptotic Alignment

The key problem in vector interference alignment is given an arbitrary num-

ber of linear transformations T1, . . . ,TN construct a matrix V such that

the spaces T1V, . . . ,TNV are all aligned, i.e., T1V ≡ T2V ≡ . . . ≡ TNV.

In the interference channel problem, the Ti’s corresponded to the channel

matrices and V represented the beamforming matrix. As was the case in

the K-user interference channel, this problem is overconstrained [37] and one

can only construct a V such that T1V ≈ T2V ≈ . . . ≈ TnV. This is done

as follows [37, section 4.6.2]. Let I , V ∪ T1V ∪ . . . ∪ TNV and w be an

arbitrary vector in Rn. Construct V as

Vn =

{
(T1)

α1(T2)
α2 . . . (TN)αNw, s.t.

N∑
i=1

αi ≤ n− 1, α1, . . . , αN ∈ Z+

}
.

It is easy to verify that TiVn ⊂ In and

|In|
|TiVn|

=
|In|
|Vn|

=
n+N

n
→ 1 as n→∞.

That is we can construct the beamforming matrix such that alignment hap-

pens asymptotically. A crucial assumption we need here is that the trans-

formation Ti’s should be commutative. This holds if we assume our channel

matrices to be diagonal. Note that the dimension of the space should grow

at least as fast as
(
n+N
N

)
= O(nN). The arbitrary vector w which was used

to evolve the space V is termed a base vector. Thus we are able to construct

a space V such that V ≈ TiV ∀i ∈ [N ].
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CHAPTER 4

X CHANNEL

The X channel (also called X network) represents the most general class

of non-multicast communication scenario possible in a single-hop wireless

network. A K-user X channel comprises of K transmitter-receiver pairs

wherein each transmitter can have an independent message to each receiver.

The input-output relation is described as in the K-user interference channel,

equation (3.1). A complete DoF region characterisation for this channel has

not yet been done. In [35] the authors present an outer bound for the DoF

region of the X channel as

Dout =

{
[(dij)] : ∀(m,n) ∈ [K]2,

K∑
q=1

dmq +
K∑
p=1

dpn − dmn ≤ 1

}
, (4.1)

where dij refers to the DoF of the message from transmitter i to receiver

j. One approach towards understanding the region better is to think of the

channel as being comprised of an union of several interference channels and

time-share over them.

In the approach that we follow, we show a stronger achievable region than

can be done by time-sharing. Further our scheme easily generalizes to mul-

ticast channels where time-sharing is suboptimal (chapter 5). We first illus-

trate the key ideas of our scheme by means of an example in section 4.1.

4.1 Relative Arrangement Problem

Let {X[1]
i , . . . ,X

[N ]
i } denote a set of N message vectors (of equal dimension)

from transmitter i for each transmitter in a K-user X channel. Each message

is meant for a particular receiver in [K] denoted by label(X
[l]
i ). Suppose

we use N base vectors (section 3.3) w1, . . . ,wN to evolve the beamforming
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matrices V
[1]
i , . . . ,V

[N ]
i respectively for each transmitter i ∈ [K]. Now, let

(X̃
[1]
i , . . . , X̃

[N ]
i ) denote a permutation of the set of messages of transmitter

i, such that the message X̃
[l]
i is beamformed using V

[l]
i , i.e.,

Xi(t) =
N∑
l=1

V
[l]
i X̃

[l]
i (t), (4.2)

is the signal transmitted by the ith user. A beamforming matrix V
[l]
i under-

goes the linear transformation V
[l]
i → HjiV

[l]
i when subjected to the channel

matrix Hji between transmitter i and receiver j. Now, suppose further that

V
[l]
i ’s have the following property.

Property 1. At each receiver j, the interference subspaces in the set {HjiV
[l]
i :

i ∈ [K], label(X̃
[l]
i ) 6= j} align with each other ∀ l ∈ [N ], while all the mes-

sage subspaces in {HjiV
[l]
i : i ∈ [K], l ∈ [N ] label(X̃

[l]
i ) = j} become linearly

independent to the interference spaces and to each other.

With this property the permutation of the messages become important. To

see this, consider a two-user X channel where transmitter 1 has the messages

{X[1]
1 ,X

[2]
1 } for receiver 1, the message {X[3]

1 } for receiver 2, while transmitter

2 has the message {X[1]
2 } for receiver 1 and the messages {X[2]

2 ,X
[3]
2 } for

receiver 2 as shown in Figure 4.1(a). Suppose user 1 transmits its messages

as

X1(t) = V
[1]
1 X

[1]
1 (t) + V

[2]
1 X

[2]
1 (t) + V

[3]
1 X

[3]
1 (t).

Now, consider the following two ways by which user 2 can transmit:

(i) X2(t) =V
[1]
2 X

[1]
2 (t) + V

[2]
2 X

[2]
2 (t) + V

[3]
2 X

[3]
2 (t)

(ii) X2(t) =V
[1]
2 X

[3]
2 (t) + V

[2]
2 X

[2]
2 (t) + V

[3]
2 X

[1]
2 (t).

This is shown in Figures 4.1(b) and 4.1(c) respectively. Now assuming

property 1 holds, at receiver 1 the arrangement in Figure 4.1(b) shows that

all of H12V
[1]
2 , H12V

[2]
2 and H11V

[3]
1 contain an interfering signal (denoted by

ϕ in the figure) corresponding to a total of three interference dimensions. The

signals themselves occupy three dimensions (corresponding to the subspaces

H11V
[1]
1 ,H11V

[2]
1 and H12V

[3]
2 ). Therefore the DoF of the signal received

at 1 is 3/6. Similarly receiver 2 receives 3/6 DoF. Hence the sum-DoF of

this arrangement is 1. In the second arrangement however, Figure 4.1(c), at
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(a) (b) (c)

Figure 4.1: An example showing a message demand for a two-user X
channel and two possible permutations of the messages. (a) Message
demand matrix. (b) Arrangement i. (c) Arrangement ii. Here i denotes the
transmitter, j the receiver and wl’s denote the base vectors corresponding
to V[l]. The interfering messages for receiver 1 are shown in dotted-red
while the intended messages are shown in solid-green.

receiver 1 H12V
[2]
2 forms an interference subspace but interference subspaces

H11V
[3]
1 and H12V

[3]
2 align with each other (by property 1). Hence there are

only two interfering dimensions at receiver 1 yielding a receive DoF of 3/5.

Likewise for receiver 2. Therefore we get a sum-DoF of 6/5 in this case.

Clearly the way we start out with message arrangements dictates the ef-

ficiency of the communication scheme. This is precisely the problem we

address. In the sections that follow we describe how best to permute the

message tuples at each transmitter in order to achieve the optimal DoF.

4.2 Alignment Scheme

Let d = [dij]K×K ∈ [0, 1]K×K denote the DoF matrix, where the (i, j)th

entry dij refers to the DoF of the message from transmitter i to receiver j.

Since the vertices of the DoF region given in equation (4.1) are rational, we

consider only the achievability of points with rational coordinates. Let us first

consider those points d on the outer bound for which
∑K

j=1 d
i
j = D ∀i ∈ [K]

for some D ∈ R, i.e., the sum-DoF of the messages from each transmitter

are equal. We later consider the scheme for a general DoF point. Now for

any rational point d, let κ ∈ Z+ be such that n , κd has all integral entries,

i.e., nij ∈ Z ∀i, j ∈ [K] where nij = κdij. We interpret nij as the number of

messages from transmitter i to receiver j. Therefore, every transmitter has

a total of N = κD messages. In the scheme we propose, we show that such
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(a) (b) (c)

Figure 4.2: An example showing an optimal arrangement of messages for
the X channel with the given symmetric message demand. (a) DoF matrix
d. (b) Message demand matrix n. (c) Arrangement of the messages as an
array B. The red dotted lines show the interfering messages at receiver 1.

points on the boundary of the outer bound region given by equation (4.1)

are achievable. The following sections 4.2.1 and 4.2.2 are the two key steps

involved in the scheme. As before we ignore the additive noise in our model

and focus only on the interference since we are interested only in the DoF

characteristics.

4.2.1 Step 1: Combinatorial Message Alignment

Since each transmitter has N messages in total, let us use a set of N base

vectors W = {wi, 1 ≤ i ≤ N} (where wi’s are generic) in order to evolve the

beamforming matrices. Notice that the same set of base vectors is used in

all the transmitters. As discussed previously in section 4.1, the ultimate aim

here is to optimally assign each message to one of the beamforming matrices.

We view such an assignment of messages to beamforming matrices or equiv-

alently, to base vectors, as an array B where B(i, j) denotes the message

from transmitter i listed under base vector j. Figure 4.2(c) shows an ex-

ample assignment for K = 3, N = 10. We have listed only the message

labels (intended recipients of the message) and not the actual messages itself

in the assignment B because for any assignment of messages, exchanging of

messages having the same label does not change the performance.

Let us call a column a j-block (for j ∈ [K]) if all the entries of that column

have the label j. A column which is not a j-block for any j is called a φ-block.

Let Nj denote the number of j-blocks in B for j ∈ [K] and let Ij , N −Nj.

Proposition 1. For any point d in the outer bound region, equation (4.1),

18



such that the sum-DoF of messages from all transmitters are equal, there

exists an arrangement B such that

K∑
i′=1

ni
′

j + Ij ≤ κ ∀ j ∈ [K], (4.3)

where n, κ, Ij are as defined above.

Proof. Since d is within the outer bound region, we must have

K∑
i′=1

ni
′

j +
∑

j′∈[K]:j′ 6=j

nij′ ≤ κ ∀ j ∈ [K]. (4.4)

Let δ1 = mini{ni1 : 1 ≤ i ≤ K} be the smallest message to receiver 1 from a

transmitter. We first arrange δ1 of the ni1 messages from each transmitter i

together in δ1 columns. This implies I1 = N−δ1. In fact, I1 =
∑

j′∈[K]:j′ 6=1 n
i∗

j′

where i∗ is a transmitter having the largest number of interfering messages

or equivalently the smallest number of non-interfering messages for 1. As

such, we have I1 ≤
∑

j′∈[K]:j′ 6=1 n
i
j′ ∀i ∈ [K]. Therefore, from equation (4.4)

we get

K∑
i′=1

ni
′

1 + I1 ≤ κ. (4.5)

Now, we sequentially perform this operation for each receiver so that equa-

tion (4.3) holds. This is possible because,
∑K

j=1 δj ≤
∑K

j=1 n
i
j ≤ N since

δj ≤ nij ∀i ∈ [K] and hence the above operations require no more than

N = |W | columns. The remaining messages can be arbitrarily assigned to

any unassigned columns. The proposition follows.

Figure 4.2 shows an illustration of a K = 3 case. We scale the DoF

demand d with D = 0.5 shown in Figure 4.2(a) by κ = 20 to get the integral

message demand matrix n shown in Figure 4.2(b) and N = 10. As discussed

in the proof above, we arrange the label 1 messages to form the 1-blocks

in columns 1 and 2. Similarly we arrange the label 2 messages to form the

2-block in column 8 and the label 3 messages to form the 3-blocks in columns

9 and 10. The remaining messages are arbitrarily arranged. In the resulting

arrangement array B, we have N1 = 2, N2 = 1, N3 = 2 ⇒ I1 = 8, I2 =
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9, I3 = 8. As claimed by the proposition, we have
∑K

i′=1 n
i′
j + Ij ≤ 20 = κ for

j = 1, 2, 3.

4.2.2 Step 2: Evolution of Beamforming Matrices

The next step is to generate the beamforming matrices from the base vec-

tors. The subspaces are created such that they satisfy property 1, i.e., an

interfering message from a subspace remains within the subspace while a

non-interfering message becomes linearly independent to the subspace at the

receiver. This property, together with the previous combinatorial arrange-

ment of the messages allows us to achieve interference alignment. Let us use

a symbol expansion of τ = κt(λ + 1)K
2−K with κt = κ. Let V

[l]
i denote the

beamforming matrix associated with base vector wl for l ∈ [N ] at transmitter

i. Now, the evolution is done as

V
[l]
i =


 ∏

(m,n)∈[K]2

B(m,l)6=n

Hαnm
nm

wl :
αnm ∈ {0, . . . , λ} if m 6= i,

αnm ∈ {0, . . . , λ− 1} if m = i

 , (4.6)

i.e., for each V
[l]
i we use all the K2 channel matrices except those associated

with the messages listed under the base vector wl in B. In the following

proposition we show that constructing the beamforming matrices this way

guarantees alignment. The arguments we use in this section are based on the

results in [35] and [34].

Proposition 2. The set of beamforming matrices generated according to

equation (4.18) satisfies property 1.

Proof. The proof is as follows.

(1) Alignment of Interfering Messages: We first show that at every

receiver all the interfering vectors are aligned within a subspace. Let

V̂[l] ,


 ∏

(m,n)∈[K]2

B(m,l)6=n

Hαnm
nm

wl : αnm ∈ {0, . . . , λ}

 , (4.7)
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and

V̂(j) , [V̂[l] : l ∈ [N ],∃ i s.t. B(i, l) 6= j], (4.8)

where for matrices A,B, [A B] stands for the augmented matrix. Now for

any interference message coded via the matrix V
[l]
i it is easy to see that the

received signal space obeys

HjiV
[l]
i ⊂ V̂[l] ⊂ V̂(j),

since left multiplication by the channel matrix only increases the exponent

αji in the vectors of V
[l]
i by 1, and such vectors are already included in V̂[l].

In other words, our construction ensures that all the interfering messages in

column l of B are aligned at the receivers for each l. Such a columnwise

alignment implies a global alignment of all the interfering messages within

a subspace. Hence we conclude that for any receiver j ∈ [K], the interfer-

ence component is contained within the subspace V̂(j). We now proceed to

show linear independence between the signal and interference spaces at the

receiver.

(2) Linear Independence of Signal and Interference: Let Ŝ(j) denote

the space formed by the beamforming matrices corresponding to the message

signals at receiver j

Ŝ(j) = [HjiV
[l]
i : B(i, l) = j], (4.9)

so that if Ŝ(j) and V̂(j) are linearly independent, then V̂(j) can be zero-

forced to retrieve the information of the messages in Ŝ(j). Let Λ(j) denote

the combined space

Λ(j) = [Ŝ(j) V̂(j)].

For example, Λ(1) in Figure 4.2(c) above is given by

Λ(1) = [Ŝ(1) V̂(1)]

= [H11V
[1]
1 H11V

[2]
1 H12V

[1]
2 . . . H12V

[7]
2

H13V
[1]
3 H13V

[2]
3 H13V

[3]
3 V̂[3] . . . V̂[10]].
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Note that V
[l]
i is of dimension κ(λ + 1)K

2−K by κλK−1(λ + 1)K
2−2K+1 while

V̂[l] is κ(λ + 1)K
2−K by κ(λ + 1)K

2−K . Therefore Λ(j) is a tall matrix.

Since all channel matrices are assumed to be diagonal, each element of Λ(j)

is a monomial term of several random variables. For instance, the (r, c)th

element, for any (r, c), of any matrix block of Ŝ(j) (equation (4.9)) is given

by

[HjiV
[l]
i ]r,c = Hji(r)

∏
(m,n)∈[K]2

B(m,l)6=n

(Hnm(r))αnmwl(r),

where the exponents αnm are as given in equation (4.18) and Hnm(r) refers to

the rth element of the diagonal matrix Hnm. Similarly the (r, c)th element

of any matrix block comprising V̂(j) (equation (4.8)) is also a monomial

term of a similar form. Hence by [35, Lemma 1], Λ(j) will be of full-rank

if we can show that the different monomial terms either involve statistically

independent random variables or they involve the same random variables

with different exponents. We show this in several steps. For any row in

Λ(j):

1. Monomials within the same matrix block HjiV
[l]
i have different expo-

nents (by construction).

2. Between two matrix blocks corresponding to messages HjiV
[l]
i and

Hji′V
[l′]
i′ :

• If l = l′ then i 6= i′, i.e., the premultiplying channel matrices Hji

and Hji′ are different. Also for such matrix blocks, the channel

matrices are not involved in the construction of the beamforming

matrix.

• If i = i′ then l 6= l′, i.e., the beamforming matrices used are

different. Recall that the beamforming matrices use statistically

independent base vectors.

3. Between two matrix blocks corresponding to interference V̂[l] and V̂[l′],

l 6= l′:

• The base vectors are different.

4. Between a message matrix block and an interference matrix block

HjiV
[l]
i and V̂[l′]):
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• If l 6= l′ then they have to use different base vectors.

• If l = l′ then the monomials contain terms from the channel matrix

Hji in the message block but not in the interference block.

And between any two rows the associated random variables are different.

Thus in Λ(j) (i) each term is a monomial in a set of random variables (we

can take this set to be all the random variables involved in the construction:

all channel matrix elements and also base vector elements); (ii) the random

variables involved in different rows are different; (iii) monomials in the same

row do not have the same exponent tuple. Hence by the argument used in [34]

and [35, Lemma 1] we conclude that Λ(j) has full-rank almost surely.

With property 1 being true, looking back at the message assignment algo-

rithm of section 4.2.1, we see that a j-block is an interference block for all

receivers except j, a φ-block is an interference block for all the receivers and

Ij counts the number of interference blocks for receiver j. What we have

ensured is that all the interfering messages at receiver j are aligned under

the largest interfering message for receiver j.

Since the message blocks in Λ(j), j ∈ [K] with a dimension of κ ∗ (λ +

1)K
2−K by (λ)K−1(λ+ 1)K

2−2K+1 have full-column rank, asymptotically [37]

we can expect a DoF of

|HjiV
[l]
i |

τ
= lim

λ→∞

(λ)K−1(λ+ 1)K
2−2K+1

κ ∗ (λ+ 1)K2−K =
1

κ
,

for each message X̃
[l]
i (t) or equivalently a sum-DoF of nij/κ = dij for each

source-destination pair. It is crucial to note that we are able to use a

time expansion with a scaling of κt = κ because our arrangement satis-

fied proposition 1. For any other arrangement of B, it is possible that

maxj{
∑K

i′=1 n
i′
j + Ij} is larger than κ in which case Λ(j) would no longer

be full-rank for all j. Therefore any DoF point in the outer bound given

by equation (4.1) with equal sum-DoF is achievable. We now discuss more

general DoF points followed by a converse theorem.
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(a) (b) (c)

Figure 4.3: An example showing the arrangement for a general message
demand in the X channel. (a) Message DoF matrix d. (b) Message demand
matrix n. (c) Arrangement of the messages as an array B.

4.3 Achievable Region

So far we have been looking at the simple case where
∑K

j=1 d
i
j = D ∀i ∈ [K]

for some D ∈ R. We now explain the scheme for a general message demand.

Consider any rational point d ∈ [0, 1]K×K . As before, we scale it by a positive

integer κ such that

n = κd ∈ ZK×K . (4.10)

Let N = maxi
∑K

j=1 n
i
j. We follow the two steps outlined in sections 4.2.1

and 4.2.2.

Combinatorial Arrangement: It is clear that we need at least N base

vectors since there are N messages from the transmitter having the largest

row-sum. The main problem now is to efficiently arrange the messages. In

section 4.2, we solved this problem for the case where the row-sums are

all equal. This meant all the rows in n had exactly N messages. But in

general there could be some transmitters which have fewer (i.e., lower rate)

messages than others. This translates to the presence of blanks in the array

B, i.e., there could exist base vectors that are not used by any message

from a transmitter. Our aim here is to minimize (or bound) the maximum

signal plus interference dimension at the receivers as in proposition 1. We

have illustrated this problem for the example of a K = 3 user X network in

Figure 4.3.

Consider the array B with N columns and K rows. As before, we call a

column a j-block, j ∈ [K] if all the entries in that column either have the

label j or are blank. Such a block would be an interference block for all

receivers except j. A column in which there are at least two messages with
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different labels is called a φ-block, i.e., it is an interference block for all the

receivers j ∈ [K]. Let Ns denote the number of s-blocks, s ∈ [K] ∪ {φ}, in

B and let Ij , N −Nj, j ∈ [K]. For the illustration in Figure 4.3(c) we have

N1 = 2, N2 = 2, N3 = 4, Nφ = 1, i.e., two 1-blocks, four 3-blocks etc.

We first show that for any feasible arrangement B the number of interfer-

ence blocks Ij’s is bounded from below.

Proposition 3. Let B be any arrangement of messages corresponding to a

DoF demand of d. Then for any s ⊆ [K], s 6= {} it is necessary that

∑
j:j∈s

Ij ≥ (|s| − 1)N + max
i

{∑
j:j∈sc

nij

}
. (4.11)

Further, for any (I1, . . . , IK) satisfying the above there exists an arrangement

of messages B with those many interference blocks.

Proof. Consider any message assignment array B for DoF demand d (and

the corresponding n = κd). Note that B is of dimension K rows by N =

κmaxi{
∑

j d
i
j} columns. Then in any s-block of B the entry for transmitter

i (ith row), ∀i, is either a message labeled i or a blank space, since placing

any other message in that position would no longer make it an s-block. As

such, we can lower bound the number of blank entries in each row as follows:

K∑
j=1

(Nj − nij)+ ≤ N −
K∑
j=1

nij, ∀i ∈ [K], (4.12)

where (x)+ denotes max{0, x}. Now removing the (.)+ gives the following

2K − 1 equations for each transmitter i and each set s ⊆ [K], s 6= {},

∑
j:j∈s

(Nj − nij) ≤ N −
K∑
j=1

nij

⇒
∑
j:j∈s

Nj ≤ N −
K∑
j=1

nij +
∑
j:j∈s

nij. (4.13)
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Combining all such equations from each transmitter i, we get for every s

∑
j:j∈s

Nj ≤ min
i

{
N −

K∑
j=1

nij +
∑
j:j∈s

nij

}

⇒
∑
j:j∈s

Nj ≤ min
i

{
N −

∑
j:j∈sc

nij

}

⇒
∑
j:j∈s

Nj ≤ N −max
i

{∑
j:j∈sc

nij

}
. (4.14)

Since Ij = N −Nj substituting for Nj above yields for all s

∑
j:j∈s

(N − Ij) ≤ N −max
i

{∑
j:j∈sc

nij

}

⇒
∑
j:j∈s

Ij ≥ (|s| − 1)N + max
i

{∑
j:j∈sc

nij

}
, (4.15)

where |s| above refers to the cardinality of the set s. In other words, the

number of interference blocks for every receiver is lower bounded.

Now, for DoF demand d consider any (I1, . . . , IK) satisfying equation (4.15).

It is easy to see that this implies the Nj’s (= N − Ij) satisfy equation (4.14).

In particular, setting s = [K] in equation (4.14) we get∑
j∈[K]

Nj ≤ N. (4.16)

Therefore, we can align N1 blocks of label 1 messages (or blanks), N2 blocks

of label 2 messages and so on in a greedy fashion without exceeding the

total number of columns N (similar to the symmetric case in proposition 1).

Hence we conclude that for every (I1, . . . , IK) satisfying equation (4.11) there

exists an arrangement array B with those parameters. This completes the

proof.

Further discussion on the optimal arrangement possible has been deferred

to sections 4.3.1 and 4.3.2. We now briefly discuss the evolution of the

beamforming matrices for any arrangement B (with possible blank entries).
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Evolution of Beamforming Matrices: Consider an arbitrary arrange-

ment of messages B, with K rows and N ′ columns, corresponding to a mes-

sage demand matrix n (= κd). Since the arrangement is arbitrary N ′ need

not be equal to N = κmaxi
∑

j d
i
j. We would like to show that evolution of

the beamforming matrices such that property 1 (with N ′ instead of N) holds

can be done even in this case. In order to do that, we first fill in the blank

entries in B with arbitrary labels to create an augmented array B′. Then,

for a symbol extenstion of τsym = κt(λ+ 1)K
2−K where we set

κt = max
j∈[K]
{
∑
i∈[K]

nij + Ij}, (4.17)

(where Ij’s are with respect to B and not B′) the beamforming matrix V
[l]
i

associated with base vector wl for l ∈ [N ′] at transmitter i is generated as

in section 4.2.2

V
[l]
i =


 ∏

(m,n)∈[K]2

B(m,l)6=n

Hαnm
nm

wl :
αnm ∈ {0, . . . , λ} if m 6= i,

αnm ∈ {0, . . . , λ− 1} if m = i

 . (4.18)

We treated the blank entries as arbitrary message labels only to ensure equal

dimension among the generated subspaces. Equivalently we can decrease the

λ used in the evolution of each V
[l]
i depending on the number of blank entries

in column i to achieve the same effect. Notice that, by populating the blanks,

the resulting array B′ looks exactly like that obtained for the symmetric case

of section 4.2. As such if we set all the message vectors corresponding to the

extra labels added to B as all-zero vectors, then we can essentially reuse the

proof of proposition 2 to show that property 1 holds for the augmented array

B. Thus we have the following proposition.

Proposition 4. For an arbitrary message arrangement B, with N ′ columns,

corresponding to a general message demand n, generating the beamforming

matrices as above ensures that:

1. At each receiver j, the interference subspaces in the set {HjiV
[l]
i : i ∈

[K], label(X̃
[l]
i ) 6= {j, φ}} align with each other ∀ l ∈ [N ′].

2. All the message subspaces in {HjiV
[l]
i : i ∈ [K], l ∈ [N ], label(X̃

[l]
i ) =

j} become linearly independent to the interference spaces and to each
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other.

Notice that property 4 alone is not sufficient to prove achievability of any

DoF point d. In section 4.2.2 we saw that the dimension of each subspace

corresponding to a base vector was (λ+ 1)K
2−K while the total dimension of

the signal space was given by κt(λ+1)K
2−K with κt = κ. This yielded a DoF

of 1/κ per message in a subspace. In general, we have a per message DoF

of 1/κt resulting in the DoF point κd/κt. Hence on the one hand we want

the space to have a small enough dimension (i.e., small κt) to offer a large

DoF for the messages; on the other hand the space should be large enough to

accommodate all the linearly independent messages and interference at each

receiver, i.e.,

κt ≥ max
j∈[K]
{
∑
i∈[K]

nij + Ij}. (4.19)

For example, if we started out with the integer message assignment n from

Figure 4.3(b) then we would need to have a κt ≥ 13 in order for the messages

and interference to be linearly independent. This yields the DoF shown in

Figure 4.3(a). Hence for a given DoF demand d an optimal arrangement B

is one that minimizes κt

B = arg min
B∈B

max
j∈[K]
{
∑
i∈[K]

nij + Ij}, (4.20)

where B denotes the set of all possible array arrangements. In the following

sections we address this issue of optimal arrangement. We first derive and

outer bound for our scheme in section 4.3.1 and then later in section 4.3.2

we show that every point in this outer bound is achivable, thus completely

characterizing the achievable region of our scheme.

4.3.1 Outer Bound

We now derive an outer bound for our scheme. Note that because proposi-

tion 4 holds for arbitrary arrangements we take the evolution of the beam-

forming matrices for granted. The following proposition establishes an outer

bound based on the message arrangement.
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Proposition 5. The DoF region specified by

(|s| − 1)D + max
i

{∑
j:j∈sc

dij

}
+
∑
i,j
j∈s
i∈[K]

dij ≤ |s|, (4.21)

∀s ⊆ [K], s 6= {} where D = maxi
∑

j∈[K] d
i
j constitutes an outer bound for

the achievable region of our scheme.

Proof. For any DoF demand d achievable by our scheme, consider an optimal

arrangement B. We retain the usual meanings for κ, nij, Ij, N etc. Then using

proposition 3 and equation (4.19) we have ∀s ⊆ [K], s 6= {}

(|s| − 1)N + max
i

{∑
j:j∈sc

nij

}
+
∑
i,j
j∈s
i∈[K]

nij ≤
∑
j:j∈s

Ij +
∑
i,j
j∈s
i∈[K]

nij (4.22)

=
∑
j:j∈s

Ij +
∑
i∈[K]

nij

 (4.23)

≤ |s|κt. (4.24)

Since d in the achievable region of our scheme, in the optimal arrangement B

we must have κt ≤ κ, where κt is given by equation (4.17), for otherwise the

achieved DoF κd/κt is stricly less than d. The case of κt < κ corresponds to

d being in the interior of the achievable region. For any d in the boundary

of the achievable region, we must have κt = κ. Hence, dividing both sides of

equation (4.24) by κt = κ, we get the required result.

Next, we show that any point in this outer bound region is in fact achiev-

able.

4.3.2 Converse

Let d be any point in the DoF outer bound region in equation (4.21) and

n = κd be the corresponding message demand matrix. From the discussion

previously in this section we know that d is achievable by our scheme if

there exists an arrangement B such that κt ≤ κ for that arrangement. From
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equation (4.17) we need to show the existence of an arrangement B such that

κt = max
j∈[K]

Ij +
∑
i

i∈[K]

nij

 ≤ κ. (4.25)

If we show such an existence, then together with proposition 5 we get the

following theorem.

Theorem 1. The DoF region of the X channel achievable by our IA scheme

is given by

R =

d : (|s| − 1)D + max
i

{∑
j:j∈sc

dij

}
+
∑
i,j
j∈s
i∈[K]

dij ≤ |s|, ∀s ⊆ [K], s 6= {}

 ,

(4.26)

where D denotes maxi
∑

j∈[K] d
i
j.

Proof. We now prove the existence claim of equation (4.25). For any d

(n = κd) in the outer bound in equation (4.21) consider the set

S =

(I1, . . . , IK) ∈ ZK : max
i

{ ∑
j′:j′ 6=j

nij′

}
≤ Ij ≤ κ−

∑
i:i∈[K]

nij

 . (4.27)

Since d is in the outer bound, setting s to be singleton sets in equation (4.21)

we get that the K-dimensional cuboidal region S is non-empty. Consider the

corner point of the cuboid (I∗1 , . . . , I
∗
K) where

I∗j = κ−
∑
i:i∈[K]

nij, j ∈ [K]. (4.28)

Clearly for this choice of Ij’s equation (4.25) is met. Now, for any s ⊆ [K],
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we have ∑
j:j∈s

I∗j = |s|κ−
∑
j:j∈s

∑
i:i∈[K]

nij (4.29)

= |s|κ−
∑
i,j
j∈s
i∈[K]

nij (4.30)

≥ (|s| − 1)N + max
i

{∑
j:j∈sc

nij

}
, (4.31)

where the last inequality follows from equation (4.21). Thus (I∗1 , . . . , I
∗
K)

satisfies equation (4.11). Hence by proposition 3 we conclude that there exists

an arrangement B with the interference blocks satisfying equation (4.25).

This proves that every point in our outer bound region, equation (4.21), is

achievable. The theorem follows.

We have presented here an inner bound for the achievable DoF region for

the X network. We see that the inner bound touches the outer bound at

points where the row-sums are equal. In fact, for the two-user case both the

regions coincide. In chapter 5 we discuss alignment with multicast message

demands.
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CHAPTER 5

MULTIPLE MULTICAST CHANNEL

5.1 Channel Model

In chapter 4 we presented a scheme for the most general non-multicast com-

munication scenario. We now extend it to the most general multicast model.

Consider a single hop wireless network with K transmitters and K receivers,

each having a single antenna. Each transmitter i in 1, . . . , K can have inde-

pendent multicast messages to one or many subsets of receivers. We call such

a network a generalized multiple multicast network. An interference align-

ment scheme for a network in which each transmitter has a single multicast

message has been presented in [34]. They show an achievable region

D =

d ∈ RK
+ :

∑
k∈Mj

dk + max
i∈Mc

j

(di) ≤M, ∀1 ≤ j ≤ K

 , (5.1)

where M denotes the number of antennas and Mj denotes the set of users

whose multicast receiver set includes receiver j. The scheme that we present

extends this result to include multiple multicasts from each user. The channel

input-output relation is as in the interference channel case equation (3.1).

We retain the assumptions made on the channel matrices and channel state

information as before.

Let s(j), j = 1, . . . , 2K − 1 be an ordering of {s : s ∈ 2[K], s 6= φ}, the set

of all possible receiver sets for a multicast message from transmitter i, into

sets of increasing cardinality (for sets with same cardinality we order them

arbitrarily). Let d = [dis(j)] denote a point in the DoF region of this network.

In section 5.2, we first present an algorithm for interference alignment in this

network. We will then see some performance guarantees for the scheme.

32



5.2 Alignment Scheme

The key ideas involved here are similar to the X channel case of chapter 4.

Let, n = [nis(j)] = [dis(j)]× κ, where κ ∈ N is chosen such that nis(j) ∈ Z ∀j ∈
{1, . . . , 2K−1}. As discussed in section 4.1, the problem here is to efficiently

assign messages to beamforming matrices at each transmitter such that the

DoF is maximized. Letting D = maxi
∑

s∈2[K] dis, we use N = κD number of

randomly generated (and generic) beamforming matrices at each transmitter.

5.2.1 Combinatorial Message Alignment

We have N base vectors and at most N messages from each transmitter

i = 1, . . . , K to be arranged. Let us label the messages by their recepient

set, i.e., all the nis messages will have the label s and so on. We view the

arrangement of messages under the base vectors as an array B where B(i, j)

denotes the message from transmitter i listed under base-vector j. Let us

suppose we arrange multicast messages labeled s1, s2, . . . , sK from transmit-

ters 1, 2, . . . , K respectively, in column l of B. Now, let us assume that the

evolution of the beamforming matrices can be done such that at any receiver

the interfering messages in a column of B are all aligned while the message

signals become linearly independent, analogous to proposition 4 and prop-

erty 1. This means that at the jth receiver, for any j ∈ [K], the subspace

corresponding to the lth beamforming matrix V̂[l] would contain interference

if j is not in at least one of the si, i ∈ [K]. We call such a column in the ar-

rangement of messages B as a “
⋂
i si block”. An s-block is not an interference

block only for receivers j ∈ s, i.e., all the messages in an s-block would be

desired messages at every receiver j ∈ s. Notice that, this implies an s-block

is also an r-block if r ⊂ s. Hence maximizing the number of s-blocks with

j ∈ s in our arrangement would reduce the number of interference blocks Ij

for receiver j. Letting Ns denote the number of s-blocks in an arrangement

of messages, we have

Ij = N −
∑
s⊆[K]
j∈s

Ns. (5.2)

An example arrangement for the message demand shown in Figure 5.1 can
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Figure 5.1: Message demand matrix n.

Figure 5.2: Message arrangement as an array B. The block labels are also
shown at the bottom of each column.

be seen in Figure 5.2. As before, in equation (4.17), the symbol extension

parameter κt is given by

κt = max
j∈[K]

Ij +
∑
i∈[K]

∑
s⊆[K]
j∈s

nis

 (5.3)

=N + max
j∈[K]


∑
i∈[K]

∑
s⊆[K]
j∈s

nis −
∑
s⊆[K]
j∈s

Ns

 , (5.4)

and a DoF point d is achievable by our scheme if and only if there exists an

arrangement B having a κt ≤ κ. It is also clear that for s ⊆ [K], we must

have

Ns ≤ min
i


∑
r∈[K]
r⊇s

nir

 . (5.5)

Using equations (5.4) and (5.5) it is possible to derive an analytic outer

bound for the scheme similar to proposition 5. We do not discuss this,

instead we present a weaker but more interesting inner bound for the scheme

in section 5.2.4. The best possible arrangement for a given d can, however,

be posed as an integer optimization problem. In the following we illustrate
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Figure 5.3: Schematic diagram showing the transfer of messages in array B.

this for a K = 3 user case.

5.2.2 Optimal Arrangement for K = 3

In this section, we present the combinatorial arrangement for the generalized

multiple multicast as an integer optimization problem for the K = 3 user

case. This can easily be extended to the many user case. From equation (5.3)

the best arrangement is

B = arg min
B∈B

max
j∈[K]


∑
i∈[K]

∑
s⊆[K]
j∈s

nis −
∑
s⊆[K]
j∈s

Ns

 , (5.6)

where B denotes the set of all arrangement arrays. Consider any DoF point

d and n = κd for a three-user multicast channel. The message labels in this

case belong to the set {1, 2, 3, 12, 13, 23, 123}. Now, since a message with

label s can be used to form an s′ block for any s′ ⊆ s, we let the variables

sis′ denote the number of label 123 messages of transmitter i that are used

to form s′ blocks, s′ ⊂ {1, 2, 3}, in B. Similarly, let pis′ , q
i
s′ and ris′ denote

the number of label 12, 13 and 23 messages respectively that are transferred

to their subsets. This is schematically represented in Figure 5.3. The circles

denote the labels of the messages, while the arrows indicate the number of

messages that have been transferred. For example, in the arrangement shown

in Figure 5.2 we have s12 = 3 since out of the four messages labeled 123 for

user 1 (n1
123 = 4 in Figure 5.1) we have used three of them to create 2-blocks.

Similarly q11 = 2. The rest of the transfer variables for user 1 are zero.
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Under such a scenario, once we have transferred the required number of

messages, we cannot have a greater number of s-blocks than the total number

of messages in circle s. Specifically, for every node s ∈ {1, 2, 3, 12, 13, 23, 123}
and for every transmitter i ∈ {1, 2, 3}, we must have

nis + {number of messages received} − {number of messages sent} ≥ Ns.

Hence for the seven nodes, we get the following for i = 1, 2, 3:

ni123 −
∑

r⊂{1,2,3}

sir −N123 ≥ 0

ni12 + si12 − pi1 − pi2 −N12 ≥ 0

ni13 + si13 − qi1 − qi3 −N13 ≥ 0

ni23 + si23 − ri2 − ri3 −N23 ≥ 0

ni1 + si1 + pi1 + qi1 −N1 ≥ 0

ni2 + si2 + pi2 + ri2 −N2 ≥ 0

ni3 + si3 + qi3 + ri3 −N3 ≥ 0,

(5.7)

where the number of blocks are given by

N123 = min
i
{ni123}

N12 = min
i
{ni12 + si12}

N23 = min
i
{ni23 + si23}

N13 = min
i
{ni13 + si13}

N1 = min
i
{ni1 + si1 + pi1 + qi1}

N2 = min
i
{ni2 + si2 + pi2 + ri2}

N3 = min
i
{ni3 + si3 + qi3 + ri3}.

(5.8)
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With this we can pose our problem as

minimize max
j∈[K]


∑
i∈[K]

∑
s⊆[K]
j∈s

nis −
∑
s⊆[K]
j∈s

Ns

 , (5.9)

subject to the contraints given by equation (5.7) and all variables pis, q
i
s, r

i
s,∀i, s

belong to non-negative integers.

5.2.3 Evolution of the Signal Subspaces

Once we have fixed an arrangement of messages B, the evolution of the

beamforming matrices are done in a way similar to the X channel case.

Let us first consider the case of equal sum-DoF from the transmitters, i.e.,∑
s⊆[K] d

i
s = D, ∀i for some constant D. This means B with K rows and

N = κD columns does not have any blank entries. For a symbol expansion

of τ = κt(λ+1)(K
2−K) where κt is as in equation (5.3), let us denote the set of

base vectors by W = {wl, 1 ≤ l ≤ N}. The entries of wl are independent and

identically drawn from some continuous distribution. We also assume that

the absolute value of the entries are bounded between a positive minimum

and a finite maximum value. As before we let the base vector wl be associated

with a beamforming matrix V
[l]
i for user i. For each V

[l]
i we use all the

K2 channel matrices except those associated with the messages listed under

column l in B, i.e.,

V
[l]
i =


 ∏

(m,n)∈[K]2

n/∈B(m,l)

Hαnm
nm

wl :
αnm ∈ {0, . . . , λl} if m 6= i,

αnm ∈ {0, . . . , λl − 1} if m = i

 . (5.10)

Notice that here the number of channel matrices associated with the mes-

sages in the lth column of B (i.e., |{(m,n) ∈ [K]2 : n ∈ B(m, l)}|) can be

anywhere from K (all message labels are singleton sets in the column) to K2

(all messages have the label [K]). Since the number of matrices available

to do the evolution can be fewer than K2 − K, we increase the maximum

exponent λl in equation (5.10) in order to maintain the rank of V[l]. Suppose

the message B(i, l) from transmitter i under base-vector wl is an interference
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to K − |B(i, l)| receivers. Then there will be K2 −
∑K

i=1 |B(i, l)| number of

channel matrices associated with that base vector. Since we want a total

subspace of dimension (λ+ 1)(K
2−K) we require,

(λ+ 1)(K
2−K) = (λl + 1)K

2−
∑K

i=1 |B(i,l)|

⇒ λl = (λ+ 1)

(
K2−K

K2−
∑K

i=1
|B(i,l)|

)
− 1, (5.11)

for K2 −
∑K

i=1 |B(i, l)| 6= 0. In the case when K2 −
∑K

i=1 |B(i, l)| = 0,

we can generate a generic rank (λ + 1)(K
2−K) matrix. As before, for any

interfering message from transmitter i to receiver j, the message vector is

left-multiplied by the channel matrix between i and j. Since we have included

such matrices in our beamforming design, the interfering messages are aligned

column wise. Further, any desired messages originating from the transmitters

become linearly independent to the interference subspace and to each other at

the receiver, since the (generic) channel matrix corresponding to the message

is not involved in the subspace creation. Hence the signal and interference

spaces are linearly independent at the receivers. By the same argument we

used in section 4.2.2 we can conclude that the space of received vectors Λ(j)

is full-rank at every receiver j.

The message blocks in Λ(j) have a dimension of κ ∗ (λl + 1)K
2−
∑K

i′=1 |B(i′,l)|

by (λl)
K−|B(i,l)|(λl + 1)K

2−
∑K

i′=1 |B(i′,l)|−K+|B(i,l)| and have full-column rank for

j ∈ [K]. Hence asymptotically [37] we can expect a DoF of

|HjiV
[l]
i |

τ
= lim

λ→∞

(λl)
K−|B(i,l)|(λl + 1)K

2−
∑K

i′=1 |B(i′,l)|−K+|B(i,l)|

κ ∗ (λl + 1)K
2−
∑K

i′=1 |B(i′,l)|
=

1

κ
,

corresponding to each message X̃
[l]
i (t) or equivalently a sum-DoF of nij/κ =

dij for each source-destination pair. Therefore in the asymptotic case the

interfering messages lie within V[l] at the receiver with probabilty 1. Thus

we achieve interference alignment.

We have given an explicit beamforming matrix evolution algorithm for the

case when the row-sums are equal. In the case where the row-sums are not

equal, we can adopt a similar strategy as in section 4.3. That is, we first

fill in all the blank spots (if any) of B with arbitrary message labels to form

B′. We then evolve the beamforming matrices as in the equal sum-DoF case

given by equation (5.10). A crucial difference is that we can now use the κt
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(equation (5.3)) corresponding to B rather than that of B′. Hence we can

conclude the following.

Proposition 6. For any message arrangement B with N columns, corre-

sponding to a general multiple multicast message demand n, generating the

beamforming matrices as above ensures that:

1. At each receiver j, the interference subspaces in the set {HjiV
[l]
i : i ∈

[K], label(X̃
[l]
i ) 6= {j, φ}} align with each other ∀l ∈ [N ].

2. All the message subspaces in {HjiV
[l]
i : i ∈ [K], l ∈ [N ], j ∈ label(X̃

[l]
i )}

become linearly independent to the interference spaces and to each other

∀l ∈ [N ].

For an achievable DoF demand d, there is an arrangement B where κt

is less than or equal to κ. In section 5.2.4 we give an inner bound for the

scheme.

5.2.4 Inner Bound

One of the interesting results of [23] is that they show a constant DoF of

1/2 per user is achievable in a K-user interference channel irrespective of the

number of users K. So far the validity of such a result for multicast channels

has not yet been established. In this section we show that 1/2 of the cut-set

bound is achievable even for general message demands.

Proposition 7. For a K-user multiple multicast network as defined in sec-

tion 5.1, the following DoF region is achievable,

∑
s⊆[K]
j∈s

K∑
i=1

dis ≤
1

2
∀j ∈ [K] (5.12)

∑
s⊆[K]

dis ≤
1

2
∀i ∈ [K]. (5.13)

Proof. For a DoF demand d ∈ [0, 1]K×K with a scaling of κ, we saw in

section 5.2.1 that we use maxi(
∑

j d
i
s(j)) ∗ κ = N number of base vectors.

Consider an arrangement of messages B with Ij number of interfering blocks
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at receiver j. Then d is achievable if (equation (5.3)),

∑
s⊆[K]
j∈s

K∑
i=1

nis + Ij ≤ κ ∀j ∈ [K]. (5.14)

However, by our scheme it is clear that Ij ≤ N , no matter how we do the

message arrangement. Hence if,

∑
s⊆[K]
j∈s

K∑
i=1

nis +N ≤ κ ∀j ∈ [K], (5.15)

or equivalently,

∑
s⊆[K]
j∈s

K∑
i=1

dis + max
i

(
∑
s⊆[K]

dis) ≤ 1 ∀j ∈ [K], (5.16)

then d is achievable. Specifically, if

∑
s⊆[K]
j∈s

K∑
i=1

dis ≤
1

2
∀j ∈ [K] (5.17)

∑
s⊆[K]

dis ≤
1

2
∀i ∈ [K], (5.18)

then d is achievable.

This shows that our scheme comes within 1
2

of the cut-set bound. Since

the X channel and multiple multicast channels are only a special case of the

above generalized multiple multicast channel, this inner bound holds even in

those cases.
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CHAPTER 6

CONCLUSION

We have presented a novel interference alignment scheme that simplifies the

problem of interference alignment to a combinatorial problem in networks

with general message demands. This framework allows us to easily see the

DoF region for simpler networks like the K-user interference network. We

have focused on two main message demand scenarios: the X network and

the generalized multiple multicast network. For the X network we have

shown that the achievable region of our scheme touches the previously known

outer bound. For a general multiple multicast network, we have presented

the alignment problem as an integer optimization problem. We have also

extended the result of achievability of half of the cut-set bound to general

multicast networks. A key challenge that still remains is to devise alignment

schemes that are practical to implement. Given the tremendous scope for

interference alignment, this is perhaps the most important problem to be

solved.
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