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ABSTRACT 

 

 

Glyphosate is one of the most important and widely used herbicide in the world. While 

few weed species had evolved resistance in the two decades after glyphosate’s 

commercialization in 1974, an overreliance on glyphosate and lack of diversity in weed control 

methods following the introduction of glyphosate-resistant (GR) crops in 1996 has led to 

increased selection pressure on weeds to evolve resistance. In 2005, the first GR waterhemp 

(Amaranthus tuberculatus) population was identified. Waterhemp is perhaps the most 

economically threatening weed in the north central United States, with many populations 

evolving resistance to herbicides spanning multiple sites of action. Three potential mechanisms 

of resistance have been linked with GR waterhemp:  EPSPS gene amplification, EPSPS target-

site mutations, and reduced translocation. The objective of this research was to investigate the 

target-site-based mechanisms (EPSPS gene amplification and EPSPS mutations) of glyphosate 

resistance. Waterhemp populations were collected throughout Illinois and screened for 

glyphosate resistance and EPSPS gene amplification to address whether the mechanism could be 

used as a proxy for the resistance. The majority of the time, resistant populations had EPSPS 

gene amplification; however, populations without gene amplification were also found. In some 

populations, an EPSPS target-site mutation conferring a Pro106Ser substitution was associated 

with resistance, while in others neither of the target-site-based mechanisms was present. Further 

examination of the association between glyphosate resistance and EPSPS gene amplification was 

carried out via a multi-state study of GR waterhemp populations. Dose responses were 

performed at each location and survivors were tested for gene amplification. Four of five 

populations had EPSPS gene amplification, and one had no amplification but the Pro106Ser 

substitution instead. In populations with EPSPS gene amplification, copy number appeared to 
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increase in plants surviving increasing glyphosate rates. Given the incidence of the Pro106Ser 

mutation in both of these studies, an investigation of this mechanism was carried out to 

determine the degree to which it confers resistance. A glyphosate dose response carried out on a 

segregating F2 population containing the Pro106Ser substitution revealed that a 2- to 4-fold level 

of resistance is conferred. Gene amplification appears to be the primary mechanism of resistance 

in the majority of waterhemp populations, with the Pro106Ser substitution present in fewer 

populations and conferring a lower level of resistance. Results from the studies herein also 

suggest that additional mechanisms of resistance exist, either separately or in conjunction with 

the target-site mechanisms studied.  
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CHAPTER 1 
 

Introduction 

 

1.1 Glyphosate  

 Glyphosate (N-(phosphonomethyl)glycine) was first discovered at a Swiss 

pharmaceutical company by Dr. Henri Martin, but having no pharmaceutical use was never 

reported. Dr. John Franz of Monsanto Co. was the first to synthesize and test the compound as an 

herbicide in 1970. Glyphosate, as its isopropylamine salt, was first commercialized by Monsanto 

Co. as Roundup in 1974 (Duke and Powles 2008). It quickly grew in popularity and has since 

been considered one of the most ideal herbicides for a multitude of reasons. 

 

1.1.1 Mode of Action 

 The shikimic acid pathway, present in bacteria, fungi and the chloroplasts of plants, has 

been described as a “metabolic tree with many branches”, producing an extensive number of 

essential biochemical compounds including vitamins E and K, folic acid, ubiquinone, 

plastoquinone, the aromatic amino acids tryptophan, phenylalanine, and tyrosine, as well as 

many secondary metabolites (Bentley and Haslam 1990). Glyphosate inhibits EPSPS, the 

enzyme catalyzing the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from 

shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP), the sixth step in the shikimate 

pathway (Steinrücken and Amrhein 1980).  Glyphosate acts as a competitive inhibitor of EPSPS 

with respect to PEP and uncompetitvely with respect to S3P (Steinrücken and Amrhein 1980, 

Boocock and Coggins 1983), creating an enzyme : substrate : inhibitor complex, with glyphosate 



 2 

in place of PEP (Gruys et al. 1992). Blocking EPSPS activity prevents the synthesis of all 

downstream products and results in reduced feedback inhibition, causing a massive carbon flux 

into the shikimic acid pathway and leading to a buildup of shikimate (Duke and Powles 2008). 

While the exact method by which glyphosate leads to plant death remains somewhat unclear, 

most believe that a lack of aromatic amino acids preventing protein synthesis starves the plant to 

death. However, there is also evidence for plant death resulting from the massive carbon flux 

away from other essential pathways due to the deregulation of the shikimate pathway (Servaites 

1987, Siehl 1997, Duke and Powles 2008). 

 

1.1.2 Herbicide Characteristics  

One of the attributes that contributes largely to glyphosate’s effectiveness in killing plants 

is its excellent uptake and translocation. Glyphosate is quickly absorbed at plant surfaces 

(Caseley and Coupland 1985, Kirkwood et al. 2000) and after entering the sieve-tube element, 

travels through the phloem from source to sink, arriving at meristematic tissues in both roots and 

shoots (Sprankle et al. 1973, Dewey 1981, Gougler and Geiger 1981).  The slow mode of action 

in addition to the systemic nature of glyphosate makes it an especially efficient herbicide (Duke 

and Powles 2008), capable of killing plants that contact herbicides often miss, such as perennials 

and mature plants.  

Because the glyphosate target site is only present in some bacteria, fungi, and in plants, 

glyphosate has very low mammalian toxicity. It also has an excellent environmental profile, with 

little movement through the soil to groundwater, and a fairly short half-life in the soil as a result 

of microbial degradation (Duke and Powles 2008). In addition, glyphosate has a broad spectrum 

of activity; there have been no reports of any plants being naturally resistant to glyphosate, 
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although some are more tolerant than others. From an economic standpoint glyphosate is also 

ideal. For producers it is fairly inexpensive to synthesize. For consumers it provides excellent 

weed control at a very affordable price now that the patent has expired and generic forms are 

readily available. 

 

1.1.3 Glyphosate-Resistant Crop Technology 

 Glyphosate’s largest shortcoming was its non-selectivity. For the first two decades after 

its commercialization glyphosate was primarily used as a burndown herbicide to control weeds 

prior to planting or in situations where plant foliage could be avoided, as in orchards or 

vineyards (Duke and Powles 2008). Glyphosate-resistant (GR) crop technology was first 

commercialized in 1996 in soybeans and was accomplished using an insensitive EPSPS enzyme 

encoded by the CP4 gene isolated from Agrobacterium sp. The CP4-EPSPS has a high tolerance 

for glyphosate while maintaining a high affinity for PEP, allowing the shikimic acid pathway to 

proceed normally in plants with the CP4 insertion. The CP4 gene is now used in the majority of 

GR crops (Dill 2005). Within a decade of their release, 96% of all soybean and 61% of all maize 

planted in the United States were glyphosate resistant (Dill et al. 2008). 

 

1.2 Glyphosate Resistance in Weeds   

 Prior to the advent of GR crop technology, evolved glyphosate resistance in a weed 

species was thought to be highly unlikely since there were no cases of resistance yet, there was 

no evidence for glyphosate metabolism in plants, and it was thought that any mutation in EPSPS 

would likely result in such a heavy fitness penalty that resistance would never get a foothold 
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(Bradshaw et al. 1997). However, the first case of evolved glyphosate resistance was identified 

shortly after the introduction of GR crops in a population of ryegrass (Lolium rigidum) from an 

orchard in New South Wales, Australia at which multiple glyphosate applications had been made 

consecutively for 15 years (Powles et al. 1998).  With the commercialization of GR crop 

technology released in 1996 and the expiration of glyphosate’s patent in 2000, the use of 

glyphosate increased significantly, resulting in increased selection pressure on weeds to evolve 

resistance. Horseweed (Conyza canadensis) in 2000 was the first weed to evolve resistance in a 

GR crop (VanGessel 2001). Twenty-eight different weed species across 24 countries have now 

evolved resistance to glyphosate (Heap 2014).  

 

1.2.1 Target-Site-Based Mechanisms of Resistance 

A mutation in the EPSPS gene resulting in a proline to serine amino acid substitution at 

position 106 (P106S) was first found to be responsible for glyphosate resistance in Malaysian 

goosegrass (Eleusine indica) populations (Baerson et al. 2002). A threonine substitution for the 

same proline was also found to confer resistance in these goosegrass populations (Ng et al. 

2003). Subsequently, proline to threonine (P106T), proline to alanine (P106A), proline to serine 

(P106S), and proline to leucine (P106L) substitutions were discovered in populations of GR 

ryegrass (Lolium rigidum) (Wakelin and Preston 2006; Yu et al. 2007,  Simarmata and Penner 

2008, Kaundun et al. 2011). Proline to serine and proline to alanine substitutions have now been 

found in Italian ryegrass (Lolium multiflorum) (Perez-Jones et al. 2007, Jasieniuk et al. 2008). 

P106S mutations were recently identified in waterhemp (Amaranthus tuberculatus) (Bell et al. 

2013, Nandula et al. 2013), and junglerice (Echinochloa colona) (Alarcón-Reverte et al. 2013). 

Threonine substitutions have also recently been identified in sourgrass (Digitaria insularis) (de 
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Carvalho et al. 2012) and Sumatran fleabane (Conyza sumatrensis) (González-Torralva et al. 

2014). Further research into this mechanism of resistance has indicated that small amino acid 

substitutions at the analogous proline in E. coli result in a narrowing of the glyphosate-binding 

site of EPSPS, allowing the enzyme to maintain its catalytic efficiency with the substrate PEP, 

but discouraging binding with the larger inhibitor molecule, glyphosate (Healy-Fried et al. 2007). 

Questions regarding the potential fitness penalty of these proline 106 substitutions in higher 

plants have not yet been resolved, but many assume that mutations lowering the affinity of 

glyphosate for EPSPS will also decrease the affinity of PEP for EPSPS.  

An alternative mechanism of target-site-based glyphosate resistance was discovered in 

Palmer amaranth (Amaranthus palmeri) to be amplification of the EPSPS gene; resistant plants 

had between 5- and 160-fold more copies compared to sensitive plants (Gaines et al. 2010). 

Genomic EPSPS copy number was shown to be positively correlated with EPSPS transcript 

level, protein expression and protein activity (Gaines et al. 2010, Ribeiro et al. 2014). The 

production of extra functional EPSPS proteins in the resistant plant creates additional EPSPS 

target sites for both the substrate and inhibitor. In this way, the extra EPSPS enzymes act as a 

“molecular sponge”, soaking up glyphosate and allowing the shikimic acid pathway to proceed 

normally (Powles 2010). The mechanism of amplification in Palmer amaranth remains unclear, 

however research suggests the mechanism is DNA mediated (Gaines et al. 2013). EPSPS gene 

amplification has since been reported in waterhemp (Tranel et al. 2010), Italian ryegrass (Salas et 

al. 2012), kochia (Kochia scoparia) (Wiersma 2012), and spiny amaranth (Amaranthus spinosus) 

(Nandula et al. 2014). There is the potential for a fitness penalty among species with EPSPS gene 

amplification – the synthesis of additional EPSPS copies may alter carbon flux through other 

metabolic pathways, and the potential for transposon mediated amplification of the gene may 
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result in the disruption of other vital genes. While studies regarding the fitness of plants with 

EPSPS gene amplification have not yet been carried out in all species with this mechanism of 

resistance, studies in Palmer amaranth found no evidence of a fitness penalty in plants with 

elevated EPSPS copy number (Giacomini et al. 2014, Vila-Aiub et al. 2014) 

 

1.2.2 Non-Target-Site-Based Mechanisms of Resistance 

The first case of altered glyphosate translocation was found in ryegrass; instead of 

accumulating in the roots as in sensitive plants, glyphosate accumulated in the leaf tips of 

resistant plants (Lorraine-Colwill 2002). Altered translocation was also discovered in GR 

horseweed populations (Koger and Reddy 2005), and further examination of the mechanism of 

resistance was carried out using 31P NMR techniques, which revealed rapid vacuolar 

sequestration, preventing glyphosate entry into the phloem and therefore translocation to sink 

tissues throughout the plant (Ge et al. 2010). Vacuolar sequestration of glyphosate has now been 

confirmed in Lolium spp. as well (Ge et al. 2012). Restricted uptake has subsequently been 

suggested as a mechanism of glyphosate resistance in Palmer amaranth, waterhemp and 

johnsongrass (Sorghum halepense) (Vila-Aiub et al. 2012, Sammons and Gaines 2014). More 

recently, restricted entry into the chloroplast was hypothesized as the mechanism of glyphosate 

resistance in Desmanthus illinoensis; this mechanism has been described as perhaps the most 

potent of the glyphosate resistance mechanisms known to date (Sammons and Gaines 2014). An 

unusual type of non-target-site resistance has been observed in populations of giant ragweed 

(Ambrosia trifida). These plants treated with glyphosate show a hypersensitive response similar 

to that observed after pathogen attack, with rapid necrosis of herbicide-treated leaves and 
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resulting in reduced translocation to sink tissues, which allows regrowth from axillary meristems 

(Robertson 2010, Segobye 2013). 

 

1.3 Waterhemp  

Waterhemp (Amaranthus tuberculatus) is a dioecious weed species that, although native to 

Illinois (Sauer 1955), has only been a major pest for the past quarter of a century (Steckel 2007). 

Waterhemp is highly competitive with crops grown in the Midwest. It can reduce soybean yields 

up to 43% (Hager et al. 2002) and corn yields up to 74% with season long competition (Steckel 

and Sprague 2004). While chemical control has been able to keep most populations at bay in the 

past, the evolution of herbicide resistance and the potential for stacked resistances in waterhemp 

threatens the use of herbicides for effective waterhemp control.  

 

1.3.1 Waterhemp Biology 

A number of characteristics contribute to waterhemp’s success in competing with crops. 

Waterhemp is a summer annual, completing its entire life cycle at the same time as the crops 

grown in the Midwest allowing it to be highly competitive with crops. Emergence is prolonged 

throughout the growing season, with seedlings emerging in flushes from May to August 

(Hartzler et al. 1999). Waterhemp also uses the C4 photosynthetic pathway and therefore has a 

higher photosynthetic rate in situations with high light and high temperature and it has better 

water use efficiency. It has an indeterminate growth pattern and plant morphology may vary 

based on environmental conditions; however, when conditions are ideal, shoots may reach up to 

3 m in length (Costea et al. 2005) 
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Waterhemp is dioecious, having separate male and female plants. Male plants have 

flowers lacking gynoecium and only produce pollen, while female plants have flowers lacking 

androecium and are only capable of producing seed when pollinated by a male plant. This 

obligate outcrossing increases genetic diversity in the species, but may prevent the colonization 

of new areas if both sexes are not present, since isolated female plants are incapable of producing 

seed (Tranel and Trucco 2009). This disadvantage could be mediated by the fact that waterhemp 

is very efficiently wind pollinated with highly aerodynamic pollen grains that may travel more 

than 300 m from a male plant in ideal conditions (Costea et al. 2005). 

After successful pollination, a single female waterhemp plant may produce up to one 

million seeds (Steckel et al. 2003). Seeds are very small and lightweight and are easily dispersed 

by water, birds, animals and anthropomorphic activities like the movement of farm machinery or 

the use of manure and compost (Costea et al. 2005). Seed dormancy allows waterhemp seeds to 

form a persistent seed bank. One study found seeds germinating as many as 17 years after burial 

(Burnside et al. 1996) and others reported that 11% of seeds retain viability after four years of 

burial close to the soil surface (Buhler and Hartzler 2001).  

The above characteristics in combination with management styles adopted in the past few 

decades may have contributed to waterhemp’s invasion and spread in Midwest fields. While 

tillage would bury small seeds and prevent germination, the reduced tillage practices adopted in 

recent years have favored small-seeded species like waterhemp that germinate better when closer 

to the soil surface. More reliance on postemergence instead of preemergence herbicides may also 

have favored waterhemp’s invasion. Postemergence herbicides without soil residual activity are 

only capable of controlling weeds present at the time of spraying. However, waterhemp’s 
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prolonged emergence pattern makes it a difficult weed to control with a single postemergence 

application (Costea et al. 2005, Tranel and Trucco 2009). 

 

1.3.2 Herbicide Resistance 

 Waterhemp has a high propensity to evolve resistance and to date has evolved resistance 

to herbicides targeting six different sites of action including: acetolactate synthase (ALS), 

protoporphyrinogen oxidase (PPO), photosystem II (PSII), EPSPS, 4-hydroxyphenylpyruvate 

dioxygenase (HPPD) and, most recently, plant growth regulators (Heap 2014). Waterhemp 

populations with quad-stack and quint-stack resistance have recently been identified in Illinois 

and Missouri (Bell et al. 2013, Schultz et al. 2014, Heap 2014).  

 

1.4 Glyphosate Resistance in Waterhemp 

 The first reported cases of GR waterhemp were found in Missouri fields that had been 

planted with continuous GR soybean for at least six years with often more than one yearly 

glyphosate application (Legleiter and Bradley 2008). Since 2005, GR waterhemp has been 

documented in 15 states. 

 Several mechanisms of glyphosate resistance in waterhemp have been proposed in recent 

years. Gene amplification of the target-site gene EPSPS was observed in Missouri waterhemp 

populations by Bell et al. (2009). While believed to be associated with resistance, the extent to 

which elevated EPSPS copy number contributes to glyphosate resistance remains unknown (Bell 

et al. 2009, Tranel et al. 2010, Shaner et al. 2012). Bell et al. (2009) found plants with elevated 
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EPSPS copy number that were not resistant, suggesting that EPSPS gene amplification alone 

may not be sufficient to confer resistance.  

 A single nucleotide polymorphism replacing a thymine for cytosine in the EPSPS gene, 

resulting in a proline to serine amino acid substitution has also been identified in GR waterhemp 

populations (Bell et al. 2013, Nandula et al. 2013). However, questions remain regarding the 

relationship between the point mutation and glyphosate resistance in waterhemp. Nandula et al. 

(2013) found evidence for non-target-site-based mechanisms working in addition to the P106S 

substitution in a GR waterhemp population from Mississippi. These non-target-site mechanisms 

included a reduced absorption pattern 24 hours after treatment, and significantly lower 

glyphosate translocation out of treated leaves.  

 

1.5 Research Objectives 

 While preliminary reports recognize the presence of EPSPS gene amplification and a 

target-site mutation resulting in proline to serine substitution in populations of GR waterhemp, 

the extent to which they confer resistance remains somewhat unclear. The overarching goal of 

this research was to gain a better understanding of target-site-based mechanisms of glyphosate 

resistance in waterhemp.  

 The testing and confirmation of GR waterhemp populations is a valuable tool that may 

allow farmers to make more informed decisions regarding the management of their fields. 

However, whole-plant screening of waterhemp populations in the greenhouse is inefficient and 

rather tedious. The objective of the research described in Chapter 2 was, given the potentially 

uncertain relationship between EPSPS copy number and resistance level, to determine whether 

EPSPS gene amplification can be used as a proxy for glyphosate resistance. Populations 
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throughout the state of Illinois were collected, screened in the greenhouse for glyphosate 

resistance, and survivors were tested for EPSPS gene amplification. 

 To expand on previous studies of EPSPS gene amplification in waterhemp, the objective 

of the research described in Chapter 3 was to determine whether gene amplification is in fact 

associated with resistance and further to examine the relationship between copy number and 

glyphosate rate. Glyphosate dose response studies were carried out at sites with GR waterhemp. 

Survivors were sampled and tested for EPSPS gene amplification. A secondary objective of the 

research conducted in both Chapters 2 and 3 was to document the distribution of GR waterhemp 

populations as well as the mechanisms responsible for resistance.  

 The objective of the research in Chapter 4 was to further document the relationship 

between glyphosate resistance and the Pro106Ser substitution observed in waterhemp. A 

segregating population was created and dose response experiments were carried out on wild type, 

heterozygous, and homozygous plants with the target-site mutation in order to document the 

level of resistance conferred.  

 

1.6 Attributions 

 The waterhemp populations described in Chapter 2 were collected by Bryan Young, 

Gordon Roskamp, Patrick Tranel and Aaron Hager. Greenhouse screening of waterhemp 

populations was carried out in collaboration with Chenxi Wu. The primers used in qPCR for 

amplifying EPSPS were originally designed by Gaines et al. (2010) for use in Palmer amaranth. 

The primers used for amplification of the reference gene (encoding the large subunit of 

carbamoyl phosphate synthetase) were designed by Chance Riggins, who also optimized the 

qPCR assay for waterhemp used in Chapters 2 and 3. The Pro106Ser dCAPS assay described in 
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Chapters 2, 3, and 4 was designed by Chance Riggins as well. The material presented in Chapter 

2 was submitted for publication in Weed Technology in collaboration with Chenxi Wu, Chance 

Riggins, Aaron Hager, Bryan Young, Gordon Roskamp and Patrick Tranel.  

 The dose-response field studies conducted outside Illinois described in chapter 3 were 

performed by Kevin Bradley and colleagues from the University of Missouri, Greg Kruger and 

colleagues from the University of Nebraska-Lincoln, James Martin and colleagues from the 

University of Kentucky, and Dallas Peterson, Mithila Jugulam and colleagues from Kansas State 

University. Tissue samples were shipped to the University of Illinois, where I processed the 

samples. The Illinois dose responses from 2012 and 2013 were carried out with help from weed 

science staff at the University of Illinois, including Doug Maxwell and Lisa Gonzini. Mike Owen 

and colleagues at the University of Iowa completed a dose response in Iowa in 2012 which was 

used in part to design the 2013 study. Material presented in Chapter 3 will be submitted for 

publication in Weed Science in collaboration with Kevin Bradley, Greg Kruger, James Martin, 

Mike Owen, Dallas Peterson, Mithila Jugulam and Patrick Tranel. 

 Crosses for the pseudo-F2 population described in Chapter 4 were made by Jiaqi Guo, 

and the F1 population used in making the F2s was made by Sukhvinder Singh.  
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CHAPTER 2 

Association of EPSPS Gene Amplification with Glyphosate Resistance in Illinois 

Waterhemp (Amaranthus tuberculatus) Populations 

 

2.1 Abstract 

With the frequency of glyphosate-resistant waterhemp increasing throughout the 

Midwest, the identification of resistant populations has become important for managing this 

species. However, high-throughput screening for glyphosate resistance in the greenhouse is 

tedious and inefficient. Research was conducted to document the occurrence of glyphosate-

resistant waterhemp throughout the state of Illinois, and to determine whether a molecular assay 

for 5-enolypyruvyl-shikimate-3-phosphate synthase (EPSPS) gene amplification can be used as 

an alternative means to detect resistant populations. Populations throughout the state of Illinois 

were collected and screened for glyphosate resistance using a whole-plant assay in a greenhouse, 

and survivors were examined for EPSPS gene amplification. Of 80 populations screened, 22 

were glyphosate-resistant based on the greenhouse screen, and gene amplification was identified 

in 20 (91%) of the resistant populations. Although there are multiple mechanisms for glyphosate 

resistance in waterhemp, a molecular test for EPSPS gene amplification provides a rapid 

alternative for identification of glyphosate resistance in most populations.  

 

2.2 Introduction 

Glyphosate-resistant (GR) crops were first commercialized in 1996 and, within a decade, 

96% of all soybean [Glycine max (L.) Merr.] grown in the United States were GR, as well as 

61% of all maize (Zea mays L.) (Dill et al. 2008). The intensive use of glyphosate due to the 
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widespread adoption of GR crops increased selection for GR weeds. In 2000, horseweed 

[Conyza canadensis (L.) Cronq.] in GR soybean was the first reported weed to evolve resistance 

to glyphosate in a GR crop (VanGessel 2001). To date, 28 weed species worldwide have evolved 

resistance to glyphosate (Heap 2014). 

The first documented GR waterhemp population was identified in a Missouri field with a 

history of continuous GR soybean and multiple glyphosate applications per year (Legleiter and 

Bradley 2008). GR waterhemp has now spread throughout Missouri (Rosenbaum and Bradley 

2013; Schultz et al. 2014), Illinois (Riggins et al. 2012), and much of the central United States 

(Heap 2014). An investigation of the spread of glyphosate resistance from a single resistant 

population in Illinois suggests that independent selection events and long distance dispersal may 

be responsible for GR waterhemp evolution and spread (Liu et al. 2010).  

Glyphosate targets 5-enolypyruvyl-shikimate-3-phosphate synthase (EPSPS), an enzyme 

present in the chloroplasts of plants and in some bacteria. By blocking EPSPS activity, 

glyphosate ultimately prevents the synthesis of aromatic amino acids and all downstream 

products of the shikimic acid pathway. Currently identified mechanisms of weed resistance to 

glyphosate include reduced translocation (Lorraine-Colwill et al. 2003) most likely due to 

vacuolar sequestration (Ge et al. 2010), EPSPS point mutations (Baerson et al. 2002; Wakelin 

and Preston 2006) and EPSPS gene amplification (Gaines et al. 2010; Salas et al. 2012).  

Amplification of the EPSPS gene was first identified as a GR mechanism in Palmer 

amaranth [Amaranthus palmeri S. Wats.], a weed species closely related to waterhemp (Gaines 

et al. 2010). While the mechanism of EPSPS gene amplification remains unknown, it is believed 

to be DNA-mediated, as intron sequences are maintained in the amplified copies (Gaines et al. 

2013). Preliminary reports indicated that EPSPS gene amplification is present in waterhemp, but 
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the extent to which it contributes to glyphosate resistance was unclear (Bell et al. 2009; Shaner et 

al. 2011; Tranel et al. 2011). Subsequent reports have confirmed that gene amplification is 

associated with glyphosate resistance in waterhemp but also indicated that other mechanisms 

exist (Chatham et al. 2013). In addition to gene amplification, a Pro106Ser point mutation and 

reduced glyphosate translocation were found to confer resistance in some waterhemp populations 

(Bell et al. 2013; Nandula et al. 2013). 

Identification of resistant populations can help growers make more informed 

management decisions. However, high-throughput screening for resistance in the greenhouse is 

an inefficient use of time and resources. The primary objective of this research was to determine 

if EPSPS gene amplification could be used as a proxy for glyphosate resistance in waterhemp.  

This study also was conducted to determine the distribution of GR waterhemp in Illinois. 

Waterhemp populations were obtained from counties throughout Illinois and screened for 

glyphosate resistance in the greenhouse. Surviving plants were evaluated to determine what 

percentage of resistant populations had EPSPS gene amplification.  

 

2.3 Materials and Methods 

2.3.1 Seed Collection 

Seeds were collected from one or more agronomic fields in each of 80 Illinois counties 

during late summer in 2010 to obtain a wide representation of waterhemp populations in the 

state. Our objective was to obtain GR populations; therefore, rather than randomly sampling 

fields, we targeted fields in which GR waterhemp was suspected. Consequently, soybean fields 

were preferentially sampled over cornfields (since glyphosate is more likely to be the primary or 

sole herbicide used in the former), and waterhemp plants that likely received an herbicide 
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application were sampled (e.g., plants that were growing in a sprayer skip or that may have 

emerged after application were avoided).  

From each field sampled, inflorescences from multiple female plants (typically five) were 

collected and pooled. Inflorescences were allowed to dry and seeds were threshed and stored at 4 

C.  Seeds obtained from a single field were designated as a population, and one population per 

county was arbitrarily selected for analysis. Prior to resistance screening, a subsample of seeds 

from each of the selected 80 populations was stratified to break seed dormancy. For 

stratification, seeds were first sterilized for 10 minutes in a 1:1 commercial bleach : deionized 

water solution. The seeds were then washed twice with deionized water, suspended in a 0.1% 

agarose solution, and stored at 4 C for at least 6 weeks prior to germination.  

 

2.3.2 Resistance Testing 

Germination, Planting, and Growth of Waterhemp 

Seeds were germinated in standard sterile petri dishes lined with filter paper and 

moistened with deionized water. Petri dishes were sealed with Parafilm (Pechiney Plastic 

Packaging, Menasha, WI 54952) to prevent evaporation and placed in a germination chamber 

(Conviron, 590 Berry St., Winnipeg, Manitoba, Canada R3H 0R9) set to 12-hr days at 35 C and 

12-hr nights at 15 C. After 48 hours, seedlings of uniform size were transplanted into cone-

tainers  (3.8 cm top diameter by 21 cm deep; Stuewe and Sons Inc., 31933 Rolland Dr, Tangen, 

OR 97389) filled with a 3:1:1:1 mixture of commercial potting mix (Sunshine Mix #1 / LC1, Sun 

Gro Horticulture, 770 Silver Street, Agawam, MA 01001) : soil : peat : sand. Plants were grown 

in a greenhouse set to 16-hr days with supplemental lighting to maintain a minimum of 800 µmol 

m-2 sec-1. Greenhouse experiments were not performed during the winter months when day 
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length was short; even with supplemental lighting plants often flowered early and glyphosate 

activity was inconsistent. Temperature in the greenhouse was kept at 28 to 30 C during the day 

and 24 to 26 C at night. Plants were fertilized as needed with a solid slow-release fertilizer 

(Scott’s Osmocote Classic 13-13-13, The Scotts Company, 1411 Scottslawn Rd., Marysville, OH 

43041).  

 

Herbicide Application and Resistance Evaluation 

Fourteen plants of uniform size (4 to 5 cm tall) were chosen from each population and 

treated with 1260 g ae ha-1 glyphosate (Roundup WeatherMax, Monsanto Company, 800 N. 

Lindbergh Blvd., St. Louis, MO 63167). A pool of waterhemp seed collected from multiple 

Illinois counties in 2003 was used as a glyphosate-sensitive control, and the MO1 population 

(Legleiter and Bradley 2008) was used as a glyphosate-resistant control. Plants from both 

negative and positive controls were included in each spray pass. Herbicide application was 

carried out using a moving-nozzle cabinet spray chamber equipped with a 80015 even flat fan 

nozzle (TeeJet Technologies, P.O. Box 7900, Wheaton, IL 60187) held approximately 46 cm 

above the plant canopy. The spray chamber was calibrated to deliver 187 L ha-1.  

At 14 DAT, individual plants were visually evaluated and rated as sensitive (no green 

tissue), intermediate (some green tissue but little or no new growth) or resistant (abundant new 

growth). A population was considered resistant if two or more resistant individuals were present 

among the 14 individuals, or if one resistant individual and two or more intermediate individuals 

were present. The experiment was repeated on all populations identified as resistant. Tissue 

samples were taken from plants categorized as resistant for molecular investigation of resistance 
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mechanisms. Tissue samples consisted of a single, newly emerging leaf, approximately 1 to 2 cm 

long.  

 

2.3.3 Examination of Resistance Mechanisms 

Sample Preparation 

DNA was extracted using the hexadecyltrimethylammonium bromide (CTAB) method 

previously described by Doyle and Doyle (1990) and was examined for quality and quantity 

using a spectrophotomer (NanoDrop 1000 Spectrophotometer, Thermo Fisher Scientific, 81 

Wyman St., Waltham, MA 02451). Samples were diluted to 10 ng µL-1 for all downstream 

applications. 

 

EPSPS Gene Amplification 

Quantitative real-time polymerase chain reaction (qPCR) was used to determine relative 

EPSPS gene copy number compared to a one-copy reference gene using methods described 

previously (Délye et al. 2014; Ma et al. 2013).  

 

Alternative Target-Site Resistance 

Resistant plants were screened for the point mutations resulting in the Pro106Ser 

substitution (Bell et al. 2013; Nandula et al. 2013) using a derived cleaved amplified 

polymorphic sequences (dCAPS) assay designed according to procedures described by Délye et 

al. (2014). A fragment containing codon 106 was amplified using the forward primer EPSf1 (5’-

ATG TTG GAC GCT CTC AGA ACT CTT GGT-3’) originally designed for qPCR (Gaines et 

al. 2010) and reverse primer eps106wt-R3 (5’-CTC CAG CAA CGG CAA CCG CAA CTG 
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TCC ATG-3’). The reverse primer was engineered to create a NcoI restriction site by substituting 

a cytosine for an adenine at the fourth nucleotide from the 3’ end of the primer.  The resulting 

PCR product was subjected to a restriction enzyme digest with Nco1 (New England BioLabs 

Inc., 240 County Road, Ipswich, MA 01938) and then fractionated on a 2% agarose gel 

containing 0.5 μg mL-1 ethidium bromide. Gels were visualized with ultraviolet light and results 

were compared to samples from known glyphosate-susceptible waterhemp plants.  

 

EPSPS Gene Sequencing 

A subset of samples with the Pro106Ser point mutation identified using the dCAPS assay 

was sequenced to confirm the accuracy of the assay. PCR products from primers EPSF1 and 

eps106wt-R3 were visualized with gel electrophoreses as described above to confirm the 

presence of the correct amplicon. The remaining PCR product was purified (E.Z.N.A. Cycle Pure 

Kit, Omega Bio-Tek, Inc., 400 Pinnacle Way, Suite 450, Norcross, GA 30071) and used in a 

sequencing reaction (BigDye Terminator v3.1 Cycle Sequencing Kit, Applied Biosystems Inc., 

850 Lincoln Centre Drive Foster City, CA 94404) using the EPSF1 primer. The resulting product 

was analyzed by the W.M. Keck Center for Comparative and Functional Genomics using an AB 

3730xl DNA analyzer (Applied Biosystems Inc.). EPSPS gene sequences were aligned to 

waterhemp sequences from glyphosate-susceptible lines in GenBank (FJ869881 and FJ869880) 

using MEGA6 (Tamura et al. 2013). 

 

2.4 Results and Discussion 

From 80 populations sampled throughout Illinois in 2010, 22 (28%) were identified as 

glyphosate resistant. All 22 populations were verified as resistant during the second screen. Our 
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observed frequency should not be taken as the probability that any one field in Illinois contains 

GR waterhemp because:  1) sampling was non-random and biased towards suspect GR 

populations; 2) the frequency of resistance varied across the state, with the majority of resistant 

populations coming from the southern part of the state (Figure 2.1); and 3) sampling was 

performed in 2010 and the frequency of GR waterhemp has likely increased.  

Because fields were targeted in which GR waterhemp was suspected, we were surprised 

that such a low percentage of the populations were, in fact, glyphosate resistant. That less than a 

third of the populations were confirmed as glyphosate resistant suggests that the appearance of 

waterhemp in fields near the end of the growing season more often than not was due to 

management practices rather than to glyphosate resistance. Alternatively, the low frequency of 

resistant populations found in this study may be due in part to the relatively conservative set of 

criteria used to differentiate between sensitive and resistant populations. These strict criteria 

were used to reduce the risk of falsely identifying resistant populations, but it may have excluded 

populations with low frequencies or low magnitudes of resistance. Our results are in contrast to 

those reported by Riggins et al. (2012), who found that at least two-thirds of waterhemp 

populations suspected of glyphosate resistance were truly resistant. In their study, however, 

growers – who had site history and management information on which to base their suspicions – 

submitted the samples. As we found in the present study, identifying GR waterhemp populations 

without such information is difficult. Rosenbaum and Bradley (2013) showed that signs of 

herbicide survival, such as stunting or excessive branching resulting from loss of the apical 

meristem, were strong indicators of glyphosate resistance. We did not use this criterion during 

our sampling.  
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The majority of waterhemp populations, 86%, were collected in soybean fields, while 

only 14% were collected in cornfields (Figure 2.1). All populations identified as resistant were 

collected from soybean fields. While this may be simply an artifact of the unequal collection of 

populations from corn and soybean fields, it may indicate that waterhemp escapes in soybean 

fields are more likely to be glyphosate resistant. There are fewer postemergence herbicide 

options to control waterhemp in soybean than in corn and, therefore, reliance on glyphosate in 

soybean is likely to be higher than in corn.  

Survivors from each of the resistant populations were screened for EPSPS gene 

amplification using qPCR. A threshold relative copy number was chosen based on a distribution 

of relative EPSPS gene copy numbers from sensitive controls used on each plate of qPCR in this 

study. The average copy number for sensitive controls was 0.98 and ranged from 0.60 to 1.87. 

The copy numbers from the sensitive controls were reciprocally transformed to normalize the 

data, and the copy number that was greater than 95% of the sensitive control values was rounded 

to the nearest tenth and set as the threshold. Samples with a copy number higher than this 

threshold, 1.4, were considered to have elevated EPSPS gene copy number. Results indicated 

that 91% of resistant populations had at least one survivor with gene amplification. Of these 

populations, all but two (from Saline and Pulaski Counties) were verified as having EPSPS gene 

amplification in the second screen. These two populations both had a relatively small proportion 

of plants with elevated EPSPS gene copy number in the first screen (Figure 2.2). Alternative 

resistance mechanisms may explain the discrepancy between the first and second screen. Only 

two resistant populations, from Schuyler and Mason counties, did not have elevated EPSPS gene 

copy number based on the threshold value used. This comprised only 9% of the resistant 

populations studied (Figure 2.2).  These results are consistent with previous findings that gene 
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amplification is associated with glyphosate resistance in multiple geographic locations (Chatham 

et al. 2012; Chatham et al. 2013). 

Of the resistant populations with EPSPS gene amplification, 7 had elevated copy number 

in every resistant plant sampled (Figure 2.2). The remaining 13 populations had elevated copy 

numbers in varying proportions of the total plants sampled. While it is possible that this is due to 

escapes (i.e., some of the survivors were not resistant), it is likely that some of the populations 

have an additional mechanism(s) of resistance. Chatham et al. (2012) also found a number of GR 

waterhemp plants without gene amplification.  

The average copy number of the plants with copy number above the threshold in each 

population was determined to look at the variation in copy number magnitude among 

populations. With the exception of the populations from Morgan and Bond counties, all 

populations had an average copy number above 3.0, with the highest average copy number at 8.6 

in the Lawrence County population. Morgan and Bond populations each had a relatively low 

proportion of plants with elevated copy number as well as a low average copy number among 

those that breached the threshold value. It is possible that these populations may not truly have 

EPSPS gene amplification; the plants with elevated copy number in these populations may fall 

within the 5% of sensitive plants with copy number above the set threshold value. Given the 

uncertainty of the presence of gene amplification in these two populations, a more conservative 

estimate of the false negative rate when using gene amplification as a proxy for glyphosate 

resistance would be 18%.  

Further investigation of alternative mechanisms of resistance was carried out using a 

dCAPS assay designed to detect the Pro106Ser subsitution resulting from a cytosine to thymine 

nucleotide change previously identified in waterhemp (Bell et al. 2013; Nandula et al. 2013). The 



 30 

assay employs the use of a restriction enzyme, NcoI, which cuts an amplified region of EPSPS 

without the mutation (i.e., the wild-type), producing a smaller DNA fragment that migrates faster 

during agarose gel electrophoresis. Since this assay recognizes the wild type genotype, it is 

possible that alternative amino acid substitutions resulting from a change to the first nucleotide 

of the proline codon, including alanine and threonine may also be recognized. Samples from the 

two populations without gene amplification, as well as samples from populations in which gene 

amplification was not present in all samples were tested using the assay. The Pro106Ser point 

mutation was found in the majority of samples from the Schuyler County population (Figure 

2.3). All samples with the mutation were heterozygous, but this is not surprising given that only 

43% of the Schuyler population survived glyphosate treatment. Using Hardy-Weinberg 

proportions (Andrews 2010), it can be determined that the EPSPS allele with serine at amino 

acid 106 will be mostly present in heterozygotes, with only about 1 in 17 plants expected to be 

homozygous for this allele. The Pro106Ser mutation was also found at a low frequency in several 

other populations. In the population from Lawrence County, the mutation was found in several 

resistant plants without gene amplification. The Pro106Ser mutation also showed up at a low 

frequency in GR individuals from the Madison, Jackson, and Morgan County populations. A 

subset of samples from the populations with the Pro106Ser mutation was chosen for sequencing, 

which confirmed the accuracy of the assay (Figure 2.3). Although the Pro106Ser mutation does 

appear to be associated with resistance, questions remain regarding the ability of the mutation to 

confer resistance. While Nandula et al. (2013) consistently found the mutation in all GR samples, 

Bell et al. (2013) observed mortality of some plants with the Pro106Ser mutation at higher 

glyphosate rates. Further investigation of the interplay between multiple mechanisms of 

resistance in the populations studied here may be worthwhile. For example, the discovery of 
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amplified EPSPS containing the Pro106Ser point mutation could provide information regarding 

the evolution of these resistance mechanisms. 

The results herein suggest that a third mechanism of glyphosate resistance may be acting 

in Illinois waterhemp populations. Assuming EPSPS gene amplification is the primary 

mechanism of resistance in Illinois waterhemp populations, the majority of resistant populations 

should have elevated EPSPS copy number in all resistant individuals. However, elevated EPSPS 

copy number was not found in all resistant individuals for the majority of the resistant 

populations with gene amplification (Figure 2.2). This suggests that the majority of the resistant 

populations found in Illinois may have multiple mechanisms of glyphosate resistance. Nandula et 

al. (2013) found non-target site resistance in a waterhemp population from Mississippi. Altered 

translocation and absorption is the only reported mechanism of glyphosate resistance not studied 

herein. Non-target-site-based mechanisms may be able to explain the resistant populations that 

did not have elevated copy number or the Pro106Ser mutation, as well as the large number of 

populations that had gene amplification present in some, but not all, resistant individuals. 

Translocation studies in addition to dose responses and genetic inheritance studies would be 

necessary to identify any alternative glyphosate resistance mechanisms working in these 

populations. 

This study suggests that EPSPS gene amplification is the primary mechanism of 

glyphosate resistance in waterhemp populations from Illinois, but that other mechanisms exist. 

While a more thorough, multi-year survey of glyphosate resistance throughout Illinois is 

necessary to more accurately describe the distribution and spread of GR waterhemp, the current 

study provides data to support the use and accuracy of various molecular tools for the 

identification of GR waterhemp in such studies. 
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2.7 Figures 

 

Figure 2.1: Map of Illinois counties from which populations were collected for screening. 

County colors refer to the crop planted in the field where the population was collected; symbols 

within each county indicate the resistance screening result for each population. 
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Figure 2.2: Proportion of plants with EPSPS gene amplification from glyphosate-resistant 

populations. Numbers to the right of each bar refer to the mean copy number of the plants with 

gene amplification in the population (i.e., plants within the population that did not have gene 

amplification were excluded from the mean calculation). Populations from Schuyler County and 

Mason County had no individuals with EPSPS gene amplification. 
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Figure 2.3: (A) Results of the dCAPS assay for the identification of the Pro106Ser point 

mutation in waterhemp showing samples of each possible genotype: homozygous with two 

proline alleles, heterozygous with one proline and one serine, and homozygous with two serine 

alleles. (B) Assay results from a subset of Schuyler County population samples, each of which 

was heterozygous with one proline allele and one serine allele. (C-E) Chromatograms showing 

the nucleotide sequence of codon 106 in each of the genotypes illustrated in (A): proline/proline 

(C), proline/serine (D), serine/serine (E). 
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CHAPTER 3 

A Multi-State Study of the Association Between Glyphosate Resistance and EPSPS Gene 

Amplification in Waterhemp (Amaranthus tuberculatus) 

 

3.1 Abstract 

 Waterhemp has become an increasingly problematic weed in the Midwest, having now 

evolved resistances to herbicides from six different site-of-action groups. Glyphosate-resistant 

waterhemp in the Midwest is especially concerning given the economic importance of 

glyphosate in corn and soybean production. Amplification of the target-site gene, EPSPS (5-

enolpyruvylshikimate-3-phosphate synthase) was found to be the mechanism of resistance in 

Palmer amaranth, a species closely related to waterhemp. Here, the relationship between 

glyphosate resistance and EPSPS gene amplification in waterhemp was investigated. Glyphosate 

dose responses were performed at field sites with glyphosate-resistant waterhemp in Illinois, 

Kansas, Kentucky, Missouri and Nebraska, and relative EPSPS copy number of survivors was 

determined via qPCR. Waterhemp control increased with increasing glyphosate rate at all 

locations but no population was completely controlled even at the highest rate (3360 g ae ha-1). 

EPSPS gene amplification was present in plants from four of five locations (IL, KS, MO and 

NE) and the proportion of plants with elevated copy number was generally higher in survivors 

from glyphosate-treated plots than in plants from the untreated control plots. Copy number 

magnitude varied by site, but an overall trend of increasing copy number with increasing rate 

was observed in populations with gene amplification, suggesting that waterhemp plants with 

more EPSPS copies are more resistant. Survivors from the KY population did not have elevated 

EPSPS copy number. Instead, resistance in this population was attributed to the EPSPS 
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Pro106Ser mutation. Results herein show a quantitative relationship between glyphosate 

resistance and EPSPS gene amplification in some waterhemp populations while highlighting that 

other mechanisms confer glyphosate resistance in waterhemp as well. 

 

3.2 Introduction 

Glyphosate was first commercialized in 1974 and has since been considered one of the 

most ideal herbicides. It has broad-spectrum control, good translocation combined with a slow 

mode of action, and low mammalian and environmental toxicity (Duke and Powles 2008). The 

addition of crop selectivity to this list endowed by glyphosate-resistant (GR) crop technology 

commercialized in 1996 has made glyphosate arguably the most economically important 

herbicide worldwide. However, the pandemic use of glyphosate that followed has led to intense 

selection pressure on weeds to evolve resistance. To date, 28 weeds across 24 countries have 

evolved resistance to glyphosate (Heap 2014). 

Few species have invaded agronomic fields and developed such a widespread distribution 

as quickly or efficiently as waterhemp. This success is due in part to waterhemp’s dioecious 

strategy of sexual reproduction, C4 photosynthetic pathway, prolonged emergence period, and 

propensity to evolve resistance (Tranel and Trucco 2009). In a production field setting, 

waterhemp competition can reduce soybean yields up to 43% (Hager et al. 2002), and season 

long competition in corn can reduce yields as much as 74% (Steckel and Sprague 2004). 

Glyphosate was the fourth of six herbicides with distinct sites of action to which waterhemp has 

evolved resistance. The first glyphosate-resistant waterhemp population was identified in a 

Missouri field with a history of continuous GR soybean and multiple yearly glyphosate 

applications (Legleiter and Bradley 2008). 
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Glyphosate inhibits EPSPS (enol-5-pyruvyl-shikimate-3-phosphate synthase), a key 

enzyme in the shikimic acid pathway. This inhibition of the shikimic acid pathway prevents the 

synthesis of aromatic amino acids and all downstream products. Blocking normal EPSPS activity 

has also been shown to reduce feedback inhibition in the shikimic acid pathway. This 

deregulation could result in a massive carbon flux away from other important cellular pathways 

to the shikimic acid pathway (Duke and Powles 2008). Weeds have developed a number of 

resistance mechanisms in an attempt to thwart glyphosate. Currently identified mechanisms of 

glyphosate resistance include reduced translocation (Lorraine-Colwill et al. 2003) which in most 

cases is likely due to vacuolar sequestration (Ge et al. 2010), target-site point mutations at 

Pro106 (Baerson et al. 2002; Wakelin and Preston 2006) and EPSPS gene amplification (Gaines 

et al. 2010; Salas et al. 2012; Wiersma et al. 2012).  

EPSPS gene amplification was first discovered in a weed closely related to waterhemp, 

Palmer amaranth (Gaines et al. 2010). Multiple studies in Palmer amaranth have demonstrated 

the positive correlation between glyphosate resistance and EPSPS genomic copy number, EPSPS 

transcript and protein expression, and EPSPS enzyme activity (Gaines et al. 2010; Ribeiro et al. 

2014). Additional EPSPS proteins resulting from multiple EPSPS gene copies allow the plant to 

survive in the presence of glyphosate since the herbicide becomes overwhelmed by a massive 

amount of target-site protein (Powles 2010). While the mechanism of gene amplification remains 

unknown, MITEs (miniature inverted-repeat transposable elements), a putative Ac (Activator) 

transposase, and repetitive sequence region were found to be associated with amplified EPSPS 

copies in GR Palmer amaranth individuals. Introns were also confirmed to be present in 

amplified gene copies, providing further evidence for a DNA-mediated mechanism of gene 

amplification (Gaines et al. 2013). Preliminary reports suggest that EPSPS gene amplification 
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may be associated with glyphosate resistance in waterhemp as well, (Bell et al. 2009; Tranel et 

al. 2011; Shaner et al. 2011). However, the extent to which elevated EPSPS copy number 

contributes to glyphosate resistance remains unclear.  In addition to EPSPS gene amplification as 

a potential mechanism of resistance, a Pro106Ser point mutation (Bell et al. 2013; Nandula et al. 

2013) and reduced glyphosate translocation were also found to confer resistance in some 

waterhemp populations (Nandula et al. 2013).   

While preliminary reports have linked glyphosate resistance and EPSPS gene 

amplification in waterhemp, the relationship between EPSPS copy number magnitude and 

glyphosate resistance under field conditions has not been examined. Is EPSPS gene amplification 

the primary GR mechanism in geographically diverse waterhemp populations? Do higher 

glyphosate rates select for plants with higher EPSPS gene copy numbers? With these questions 

in mind, the primary objective of this study was to determine EPSPS gene copy numbers in 

waterhemp plants surviving different rates of glyphosate at multiple field locations in the 

Midwest.  

 

3.3 Materials and Methods 

3.3.1 Field Studies 

Field studies were conducted in Douglas County, Illinois (IL), Franklin County, Kansas 

(KS), Hancock County, Kentucky (KY), Randolph County, Missouri (MO) and Dodge County, 

Nebraska (NE) at sites with suspected or confirmed GR waterhemp (Figure 3.1). Studies were set 

up as randomized complete block designs with 0x, 0.5x, 1x, 2x, and 4x rates of formulated 

glyphosate (1x = 840 g ae ha-1) in three or four replications. Rates were chosen based on the 

results of a pilot study performed on GR waterhemp populations in IL and Iowa (IA) the 
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previous year (Chatham et al. 2012). Herbicide applications were made in mid-June to mid-July 

2013 when the majority of waterhemp plants were 8 to 12 cm in height. Studies were carried out 

using standard small plot research procedures using pressurized CO2 backpack sprayers; 

however, specific application equipment and sprayer calibration varied by location. Plot sizes 

ranged from 10 to 20 m2, and were planted with either soybean or no crop. Two to four weeks 

after treatment, counts and/or visual observations of glyphosate activity were taken and leaf 

samples were obtained from at least four survivors in each plot (replication) for each treatment at 

each location. Leaf samples were taken from newly emerging leaves approximately 1 to 2 cm in 

length, stored at 4 C and shipped on ice to the University of Illinois. 

 

3.3.2 Examination of Resistance Mechanisms  

Sample preparation 

The CTAB (hexadecyltrimethylammonium bromide) DNA isolation method described 

previously by Doyle and Doyle (1990) was used to extract DNA from leaf samples. The 

concentration and purity of each sample was examined using a spectrophotometer (NanoDrop 

1000 Spectrophotometer, Thermo Fisher Scientific, 81 Wyman St., Waltham, MA 02451) and 

each was diluted to 10 ng μL-1 for all subsequent procedures. 

 

EPSPS Gene Amplification 

Samples were tested for elevated EPSPS copy number compared to a one-copy reference 

gene using quantitative real-time PCR as described previously (Ma et al. 2013, Délye et al. 

2014). A threshold EPSPS copy number value was set to the maximum relative copy number 

observed for any of the glyphosate-sensitive controls used in the study. Samples with a relative 
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EPSPS copy number above this threshold (1.5) were considered to have elevated copy number. 

All GR controls were consistently above the threshold.  

 

Alternative Target-Site Resistance 

Select samples without gene amplification were screened for the Pro106Ser mutation 

(Bell et al. 2013, Nandula et al. 2013) using a dCAPS assay designed according to methods 

described by Délye et al. (2014) and performed as described previously (Chatham et al. 

submitted). 

 

EPSPS Sequencing 

Several samples that tested positive for the Pro106Ser mutation using the dCAPS assay 

were sequenced to confirm the results. PCR was performed using primers EPSF1, originally 

designed for qPCR (Gaines et al. 2010), and eps106wt-R3, originally designed for use in the 

dCAPS assay mentioned above. After confirming the presence of the correct amplicon via 

agarose gel electrophoresis (1% agarose; 0.5 μg mL-1 ethidium bromide), the PCR product was 

purified (E.Z.N.A. Cycle Pure Kit, Omega Bio-Tek, Inc., 400 Pinnacle Way, Suite 450, 

Norcross, GA 30071) and sequenced (BigDye Terminator v3.1 Cycle Sequencing Kit, Applied 

Biosystems Inc., 850 Lincoln Centre Drive Foster City, CA 94404) with the EPSF1 primer. 

Products were further analyzed by the W. M.  Keck Center for Comparative and Functional 

Genomics using an AB 3730xl DNA analyzer (Applied Biosystems Inc.). Returned sequences 

were aligned to waterhemp EPSPS sequences from glyphosate-susceptible lines in GenBank 

(FJ869881 and FJ869880) with MEGA6 (Tamura et al. 2013). 
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3.3.3 Statistical Analysis 

Statistical analysis of the correlation between glyphosate rate and relative EPSPS copy 

number was carried out in R (v3.0.3) (R Core Team 2014) using bootstrapping of the correlation 

coefficient (r) with 99,999 resamples and treating location as a random effect. The resampled 

distributions were compared to the real copy number data to determine how many times the 

correlation coefficient from the original data set was observed by chance alone in the resampled 

distributions. 

 

3. 4 Results and Discussion 

3.4.1 Waterhemp Control  

Dose response studies confirmed the presence of GR waterhemp at each field location. 

Complete control was not seen in any of the plots at any of the locations, even with the highest 

glyphosate rate. Because of the variability among locations in how the experiments were 

conducted, the dose-response data were not statistically analyzed. However, visual inspection of 

the data (Figure 3.2) reveals a general trend of increasing waterhemp control with increasing 

glyphosate rate at all locations. This pattern of control with glyphosate has been seen previously 

with GR waterhemp (Legleiter and Bradley 2008; Patton et al. 2012).  

 

3.4.2 EPSPS Gene Amplification 

Copy number analysis revealed that EPSPS gene amplification was present at four (IL, 

KS, MO, NE) of the five locations studied (Figure 3.3). When a pilot study was conducted in 

2012, gene amplification was also observed at the same location in IL and at a location in IA 

(Chatham et al. 2012). Counting the IA location, EPSPS gene amplification was observed in five 
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of six locations investigated. Because the IA location was not included in 2013 (due to weather 

events) it is not discussed further, and the KY location, where EPSPS gene amplification was not 

observed, is discussed in a following section. 

Several surviving plants without EPSPS gene amplification were found at each 

glyphosate rate at each location (Figure 3.3). If EPSPS gene amplification is solely responsible 

for resistance in these populations, one would expect to see elevated EPSPS copy number in all 

plants surviving glyphosate, particularly at the higher glyphosate rates. While some survivors 

may have been escapes and not truly resistant, their presence at all four locations – and even at 

the highest rate – is difficult to ignore. Alternative mechanisms of resistance are a more likely 

explanation for these anomalies.  

To further examine whether EPSPS gene amplification is associated with resistance, a 

chi-square goodness of fit test was performed on the copy number data obtained from the four 

locations at which amplification was observed (Table 1). The proportion of plants with elevated 

copy number sampled from untreated control plots was used as the expected proportion and the 

proportion of plants with elevated copy number in all glyphosate treatments was used as the 

observed proportion. In IL, KS and NE, the proportion of surviving plants with elevated EPSPS 

copy number was significantly different from the untreated control (p<0.001), confirming that 

gene amplification is associated with glyphosate resistance in waterhemp. However, in Missouri, 

the proportion of plants with elevated copy number in the glyphosate treated plots was not 

statistically different from what was expected based on the untreated control (p=0.386). 

Although not statistically significant, the MO population does show a general trend of increasing 

copy number with rate (Fig. 3). The lack of significance here may be due to the high background 
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frequency of plants with elevated copy number in the population (75% based on plants from 

control plots).  

 An examination of the raw EPSPS copy number data revealed that copy number 

magnitude may vary by location (Figure 3.2), and the combined data for all treatments at each 

location (Figure 3.4a) showed an obvious difference in the copy number distributions for each 

population. The populations from IL, KS and MO clearly had individuals with EPSPS gene 

amplification; the average copy number of plants with gene amplification at these locations was 

4.1, 4.0, and 3.9, respectively. These averages are similar to those found in the original GR 

population (MO1) (Legleiter and Bradley 2008) in the first accounts of EPSPS gene 

amplification in waterhemp (Bell et al. 2009). However, the EPSPS copy number distribution 

from the NE population was distinct from those of the IL, KS and MO populations (Figure 3.4a). 

The magnitude of EPSPS copy number in NE was lower, with an average copy number of 2.1 

among plants with elevated EPSPS copy number.  

 Differences in background frequencies of plants with high EPSPS copy numbers (e.g., 

the MO population relative to other populations) and in the copy number magnitudes (e.g., the 

NE population relative to the other populations) could be explained by temporal differences in 

the GR evolutionary process at each location. Anecdotal reports indicate that the waterhemp 

populations at the IL and KS locations were identified as GR in 2010, whereas the MO 

population was suspected to be resistant several years prior and the NE population was not 

known to be resistant until 2012. Because resistance evolution is a gradual process, and because 

of varying lag times between observation and reporting of resistance, it is impossible to 

accurately chronologically compare resistance evolution at the different locations. Nevertheless, 

our EPSPS copy number data are consistent with a longer and shorter GR evolutionary history in 
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the MO and NE populations, respectively. For example, longer-term selection for glyphosate 

resistance in the MO population may have given this population more time to accumulate the 

gene amplification mechanism as well as any alternative mechanism that might confound the 

correlation between resistance and copy number.  

 Among the four populations that did have EPSPS gene amplification, a general trend of 

increasing copy number with increasing glyphosate rate was observed in the raw copy number 

data (Fig. 2).  This relationship is more clearly depicted when data are combined among 

populations with gene amplification (IL, KS, MO, and NE; Figure 3.4b). However an 

examination of the interaction between median relative EPSPS copy number and glyphosate rate 

for these four locations shows that, while this relationship exists, it seems to vary slightly by 

population (Figure 3.4c).  

 While a general trend of increasing copy number with increasing rate can be seen in the 

combined EPSPS copy number data (Figure 3.4b) and individually by location (Figures 3.3 and 

3.4c.), statistical characterization of the trend was not straightforward: the data set did not meet 

the assumptions required to perform parametric statistics. Both the original data and the linear 

model residuals were not normally distributed (Shapiro-Wilk p=2.2e-16, p=3.2e-14, 

respectively) and the variances were not equal among locations (Bartlett’s test, p=2.2e-16) or 

treatments (Bartlett’s test p=3.9e-6). These violations of the parametric ANOVA assumptions 

were also obvious from visual inspection of the data (Figures 3.4a and 3.4b). Combined with the 

unequal sample sizes, these results warranted a nonparametric statistical approach to analyze the 

data. A significant correlation was found between glyphosate rate and EPSPS copy number 

(r=0.3, p<0.001, 99999 resamples) in the combined data from the populations with EPSPS gene 

amplification.  These results indicate that gene amplification is associated with glyphosate 
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resistance in waterhemp and suggests that higher copy number survivors were present at higher 

rates. To further explore this hypothesis, bootstrapping was performed again on the combined 

data, without the data from control treatments in each state. The increase in copy number 

between the control and the first glyphosate treatment could have contributed largely to the 

observed r value. Without the 0x data, a smaller yet still significant correlation was observed 

(r=0.20, p<0.001, 99999 resamples), confirming that a quantitative relationship between EPSPS 

copy number and glyphosate rate exists in these populations. These results indicate that higher 

glyphosate rates select for individuals with higher average EPSPS copy number, suggesting that 

plants with more EPSPS copies have a higher level of resistance than those with fewer copies. 

Gaines et al. (2010) suggested that a similar pattern of increasing EPSPS copy number with 

increasing glyphosate rate exists in Palmer amaranth. 

 

3.4.3 KY Population 

There is a clear connection between EPSPS gene amplification and glyphosate resistance 

in several of the populations studied; however, there is also evidence for alternative resistance 

mechanisms. Since none of the survivors from the KY population had elevated copy number, the 

samples were screened with a dCAPS assay designed to detect the Pro106Ser mutation, which 

has previously been found to be associated with glyphosate resistance in waterhemp (Bell et al. 

2013, Nandula et al. 2013). This assay detects the wild type genotype and it is therefore possible 

that alternative substituting amino acids (alanine or leucine) also resulting from a change to the 

first nucleotide of the proline codon would be recognized. The Pro106Ser mutation was present 

in the KY population, and found in 69% percent of samples from the control plots. However, 

only 6% of plants from the control were homozygous for the mutation, with both alleles having 
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the serine substitution. At the 2x and 4x rates, 100% of survivors had the mutation, and at the 4x 

rate, 67% were homozygous for the mutation (Figure 3.5). The excellent relationship between 

glyphosate rate and the proportion of survivors with the mutation implies that the Pro106Ser 

point mutation is responsible for glyphosate resistance in the KY population. Individuals that 

survived glyphosate treatment but did not have elevated EPSPS copy number in the other 

locations were also examined, but the Pro106Ser mutation was not found in any of the samples. 

Several samples from the KY population of each genotype were sequenced and results confirmed 

that the Pro106Ser mutation was present and that the dCAPS assay was working correctly (data 

not shown).  

 

3.4.4 Alternative Mechanisms 

The only other known potential mechanism of glyphosate resistance in waterhemp not 

examined herein is altered translocation and/or uptake (Nandula et al. 2013). Examination of this 

mechanism would require whole plant specimens of the glyphosate survivors to examine. It is 

possible that altered translocation is present in some of the populations studied here. This might 

explain why some plants without gene amplification survived glyphosate treatment, especially at 

the higher rates. Multiple mechanisms of resistance in some of these populations may have 

confounded the results making examination of the relationship between EPSPS gene 

amplification and glyphosate resistance more difficult. Therefore, the correlation between rate 

and copy number may be underestimated here compared to a more homogeneous population 

with gene amplification as the only existing mechanism of glyphosate resistance. The potential 

for multiple resistance mechanisms may also have contributed to the lack of a significant chi-

square goodness of fit p-value in the MO population. 
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 In conclusion, results from this study confirm that an association between glyphosate 

resistance and EPSPS gene amplification exists in some waterhemp populations. Gene 

amplification was found in five of six populations studied (including the IA population in the 

2012 pilot study). Given the locations of the populations studied, EPSPS gene amplification 

appears to be a common and widespread mechanism of resistance (Figure 3.1). Survey studies 

carried out in Illinois and Missouri both found gene amplification present in the majority of GR 

waterhemp populations (Chatham et al. submitted, Schultz et al. submitted). Among populations 

with elevated EPSPS copy number, a positive correlation between copy number and level of 

resistance was observed. Copy number magnitude varied by location, but overall was 

significantly lower than copy numbers observed in Palmer amaranth. Not all the populations 

studied had gene amplification; the Pro106Ser mutation was found to be primarily responsible 

for resistance in the KY population. While gene amplification appears to be the primary 

mechanism of resistance in waterhemp, it is clear that other mechanisms exist. Further 

investigation of these mechanisms and their interplay when combined may be required to 

completely understand glyphosate resistance in waterhemp.  

 

3.5 Acknowledgements 

 We thank Aaron Hager and Doug Maxwell for assistance in carrying out the Illinois dose 

response study, and Chance Riggins for assistance with qPCR. The USDA National Institute of 

Food and Agriculture (Hatch project ILLU-802-923) provided partial funding for this research. 

 

 

 



 52 

3.6 Literature Cited 

Baerson SR, Rodriguez DJ, Tran M, Feng Y, Viest NA, Dill GM (2002) Glyphosate-resistant 

goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-

phosphate synthase. Plant Physiol 129:1265-1275 

Bell MS, Tranel PJ, Riggins CW (2009) Glyphosate resistance in waterhemp: inheritance and 

EPSPS copy number. Proc North Central Weed Sci Soc 100. 

http://www.ncwss.org/proceed/2009/Abstracts/100.pdf. Accessed June 25, 2014 

[Abstract] 

Bell MA, Hager AG, Tranel PJ (2013) Multiple resistance to herbicides from four site-of-action 

groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460-468 

Chatham LA, Riggins C, Owen MD, Tranel P (2012) Association of EPSPS gene amplification 

with glyphosate resistance in waterhemp. Proc North Central Weed Sci Soc 60. 

http://wssaabstracts.com/public/15/abstract-60.html. Accessed June 25, 2014 [Abstract] 

Chatham LA, Wu C, Riggins CW, Hager AG, Young BG, Roskamp GK, Tranel PJ (2014) 

Association of EPSPS gene amplification with glyphosate resistance in Illinois 

waterhemp (Amaranthus tuberculatus) populations. Weed Tech. submitted 

Délye C, Duhoux A, Pernin F, Riggins CW, Tranel PJ (2014) Research methods in weed 

science: molecular mechanisms of herbicide resistance. Weed Sci 62: In press  

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15 

Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319-

325 

 



 53 

Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, 

Tranel PJ, Culpepper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang J, 

Preston C, Leach JE, Westra P (2010) Gene amplification confers glyphosate resistance 

in Amaranthus palmeri. Proc Natl Acad Sci USA 107:1029-1034 

Gaines TA, Shaner DL, Ward SM, Leach JE, Preston C, Westra P (2011) Mechanism of 

resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J 

Agric Food Chem 59:5886-5889 

Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, 

Powles SB (2013) Identification of genetic elements associated with EPSPS gene 

amplification. PloS one 8(6): e65819 

Ge X, André d’ Avignon D, Ackerman JJH, Sammons RD (2010) Rapid vacuolar sequestration: 

the horseweed glyphosate resistance mechanism. Pest Manag Sci 66:345-348 

Hager AG, Wax LM, Stoller EW, Bollero GA (2002) Common waterhemp (Amaranthus rudis) 

interference in soybean. Weed Sci 50:607-610 

Heap IM (2014) International Survey of Herbicide Resistant Weeds. www.weedscience.org. 

Accessed May 15, 2014. 

Legleiter TR, Bradley KW (2008) Glyphosate and multiple herbicide resistance in common 

waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582-587 

Lorraine-Colwill DF, Powles SB, Hawkes TR, Hollinshead PH, Warner SAJ, Preston C, (2003) 

Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pestic 

Biochem Physiol 74:62-72 



 54 

Ma R, Kaundun SS, Tranel PJ, Riggins CW, McGinness DL, Hager AG, Hawkes T, McIndoes 

E, Riechers DE (2013) Distinct detoxification mechanisms confer resistance to 

mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363-377 

Nandula VK, Ray JD, Ribeiro DN, Pand Z, Reddy KN (2013) Glyphosate resistance in tall 

waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site 

and nontarget-site mechanisms. Weed Sci 61:374-383 

Patton BP, Witt W, Martin JR (2012) Multiple resistance issues within Kentucky waterhemp 

populations. Proc Weed Sci Soc Proc 176. http://wssaabstracts.com/public/9/abstract-

176.html. Accessed June 25, 2014 [Abstract] 

Powles SB (2010) Gene amplification delivers glyphosate-resistant weed evolution. Proc Natl 

Acad Sci USA 107:955-956 

R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing. http://www.R-project.org Accessed March 26, 

2014 

Ribeiro DN, Pan Z, Duke SO, Nandula VK, Baldwin BS, Shaw DR, Dayan FE (2014) 

Involvement of facultative apomixes in inheritance of EPSPS gene amplification in 

glyphosate-resistant Amaranthus palmeri. Planta 239:199-212 

Salas RA, Dayan FE, Pan Z, Watson SB, Dickson JW Scott RC Burgos NR (2012) EPSPS gene 

amplification in glyphosate-resistant Italian Ryegrass (Lolium perenne ssp. Multiflorum) 

from Arkansas, USA. Pest Manag Sci 68:1223-1230 

Schultz JL, Chatham LA, Riggins CW, Tranel PJ, Bradley KW (2014) Distribution of herbicide 

resistances and molecular mechanisms conferring resistance in Missouri waterhemp 

(Amaranthus tuberculatus) populations. Weed Sci. submitted 



 55 

Shaner DL, Lindenmeyer RB, Ostlie MH (2011) What have the mechanisms of resistance to 

glyphosate taught us?. Pest Manag Sci 68:3-9 

Steckel LE, Sprague CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. 

Weed Sci 52:359-364 

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary 

Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725-2729 

Tranel PJ, Trucco F (2009) 21st-century weed science: a call for Amaranthus genomics. Pages 

53–81 in Stewart Jr. CN ed Weedy and Invasive Plant Genomics. Ames, IA: Blackwell 

Tranel PJ, Riggins CW, Bell MS, Hager AG (2010) Herbicide resistances in Amaranthus 

tuberculatus: a call for new options. J Agric Food Chem 59: 5808-5812  

Wakelin AM, Preston C (2006) A target-site mutation is present in a glyphosate-resistant Lolium 

rigidum population. Weed Res 46:432-440 

Wiersma S, Chisholm S, Godar A, Stahlman P, Leach J, Westra P (2012) Gene amplification of 

EPSP synthase in glyphosate resistant Kochia scoparia. Proc Western Soc of Weed Sci 

128. http://wssaabstracts.com/public/12/abstract-128.html. Accessed June 25, 2014 

[Abstract] 

 

  



 56 

3.7 Table and Figures 

Table 3.1: Percentage of plants with elevated EPSPS copy number in the untreated control and 

glyphosate treatments for each population studied and the corresponding Chi-square goodness of 

fit p-values. 

  

Percentage of plants with elevated 

EPSPS copy number   

State 

 

Untreated 

 

Glyphosate 

 

χ2 p value 

Illinois 

 

32 

 

85 

 

<0.001 

Kansas 

 

31 

 

89 

 

<0.001 

Missouri 

 

75 

 

80 

 

0.386 

Nebraska 

 

45 

 

86 

 

<0.001 
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Figure 3.1: Map of the Midwest showing the locations of five glyphosate-resistant waterhemp 

populations investigated in this study plus an additional population (Iowa) included in a pilot 

study.  
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Figure 3.2: Results of the dose-response studies performed at each field location showing percent 

control with increasing glyphosate rate. Average percent control values are based on counts or 

visual observations of glyphosate activity and averaged for each rep at each location. (Data from 

Nebraska is not available) 
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Figure 3.3: Raw copy number data showing relative EPSPS copy number of each surviving plant 

at each glyphosate rate (g ae ha-1) in glyphosate-resistant populations from Illinois, Kansas, 

Kentucky, Missouri, and Nebraska. Relative EPSPS copy number data of three sensitive (-) and 

two resistant (+) controls are shown to the left of each graph. Solid vertical lines bound the copy 

number data from each glyphosate rate. Dashed lines represent the threshold EPSPS copy 

number value (1.5); samples with relative copy number above the threshold were considered to 

have EPSPS gene amplification.  
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Figure 3.4: (A) Violin plots combining a standard 

boxplot with a kernel density plot to represent the 

distributions of relative EPSPS copy number combined 

for all treatments of each population, (B) Violin plots 

representing the distributions of the relative EPSPS 

copy number data at each glyphosate treatment level for 

the populations in which gene amplification was 

present (IL, KS, MO, NE), (C) Median relative EPSPS 

copy number of each population at each glyphosate 

rate. 
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Figure 3.5: Percentage of survivors from the Kentucky population with the EPSPS Pro106Ser 

mutation at each glyphosate rate. PP individuals are homozygous with two proline alleles, SS 

individuals are homozygous with two serine alleles, and SP individuals are heterozygous.  
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CHAPTER 4 

Examination of the EPSPS Pro106Ser Amino Acid Substitution in Glyphosate-Resistant 

Waterhemp (Amaranthus tuberculatus) 

 

4.1 Abstract 

Glyphosate is the most frequently used herbicide in the world, but the evolution and rise 

of glyphosate-resistant weeds threatens the sustainability of this herbicide as an effective tool for 

weed control. In the Midwest U.S., glyphosate-resistant waterhemp (Amaranthus tuberculatus) 

poses a significant economic threat. Three mechanisms of resistance have been identified in 

waterhemp: reduced uptake and/or translocation, EPSPS gene amplification, and target-site-

based resistance via a Pro106Ser amino acid substitution. Two populations were recently 

identified with the Pro106Ser mutation, but questions remain regarding the extent to which the 

mutation confers resistance in these populations. Here we investigate the level of resistance 

endowed by the Pro106Ser substation in waterhemp. A segregating F2 population was created 

and progeny were screened for the mutation. A glyphosate dose response was then performed on 

individual genotypes, allowing for a comparison of genotypes as well as controlling for any 

differences in the background of the population. A 1:2:1 ratio of sensitive (PP) : heterozygous 

(SP) : homozygous (SS) was observed in the F2 population. Resistance level increased with the 

addition of each allele containing the mutation. Heterozygous individuals were 2- to 3-fold more 

resistant than individuals in the same population without the mutation and individuals with two 

mutated alleles were 3- to 4-fold more resistant. A moderate level of glyphosate resistance, 

similar to that seen in other species with the mutation, appears to be endowed by the EPSPS 

Pro106Ser substitution in waterhemp. 
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4.2 Introduction 

Glyphosate has been the most heavily used pesticide in the United States since 2001 

(Grube et al. 2011). Its popularity is due in part to the efficiency with which it controls a broad 

spectrum of weeds, its accessibility and positive environmental profile, and with the advent of 

glyphosate-resistant (GR) crop technology, its applicability in a range of agronomic settings 

(Duke and Powles 2008). GR crop varieties are now available for soybeans, corn, cotton, canola, 

sugarbeets, and alfalfa. While the adoption of GR crops did allow for a decrease in the use of 

more persistent and toxic herbicides in favor of glyphosate, the excessive use and lack of 

diversity in herbicide sites-of-action used has favored the evolution of glyphosate-resistant 

weeds (Fernandes-Cornejo et al. 2014). Fourteen species have evolved resistance to glyphosate 

in the U.S. and 29 have evolved resistance worldwide (Heap 2014). 

 Glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme 

in the shikimic acid pathway that catalyzes the formation of 5-enolpuruvylshikimate-3-phosphate 

(EPSP) from phosphoenolpyruvate (PEP) and shikimate-3-phosphate (S3P). The shikimate 

pathway is responsible for the synthesis of aromatic amino acids as well as a number of 

important biochemical intermediates. Controversy remains regarding the actual mechanism of 

plant death, but most assume that the lack of aromatic amino acids leads to the prevention of 

protein synthesis, essentially starving the plant to death. Others suggest that deregulation of the 

shikimic acid pathway leads to a massive carbon flux away from other vital pathways (Duke and 

Powles 2008). Weeds have evolved several mechanisms of evading glyphosate, including 

reduced translocation (Lorraine-Colwill et al. 2003) via vacuolar sequestration (Ge et al. 2010), 

target-site mutations (Baerson et al. 2002), and amplification of the target-site gene (Gaines et al. 

2010). 
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 The first target-site mutation conferring glyphosate resistance was found in goosegrass 

(Eleusine indica) to be a single nucleotide polymorphism (SNP) resulting in a proline to serine 

amino acid substitution (Baerson et al. 2002). Subsequently SNPs in the EPSPS gene resulting in 

the substitution of proline for alanine (Yu et al. 2007), threonine (Ng et al. 2003), or leucine 

(Kaundun et al. 2011) have been identified. Six weed species to date have evolved mutations 

resulting in a substitution at Pro106, most of which are monocot species including Lolium 

rigidum, Lolium multiflorum, Echinochloa colona, Eleusine indica, and Digitaria insularis. 

Waterhemp (Amaranthus tuberculatus) was the first dicot species to evolve a mutation in the 

glyphosate target-site gene (Bell et al. 2013, Nandula et al. 2013). Studies in E.coli suggest that 

amino acid substitutions at the Pro106 site narrow the EPSPS binding pocket. Therefore, binding 

of the larger glyphosate molecule becomes unfavorable, while binding of the smaller substrate, 

PEP, remains mostly unaltered allowing EPSPS to retain its catalytic activity (Healy-Fried et al. 

2007). Currently no studies examining the fitness of individuals with the Pro106Ser substitution 

have been reported in any weed species. However, enzyme kinetics of a Pro106Ser mutant 

created via site-directed mutagenesis of EPSPS in petunia showed a significant increase in 

Km(app)(PEP) from 5 μM in the wild type enzyme to 44 μM  in the mutant (Padgette et al. 2001). 

These results indicating a decrease in EPSPS affinity for PEP suggest that a fitness penalty may 

be associated with SNPs resulting in a substitution at Pro106. Although subsequent research on 

goosegrass EPSPS indicated that the loss in substrate affinity was not as severe as originally 

suspected (Baerson et al. 2002). 

 With the incidence of stacked herbicide resistance traits and the resulting lack of effective 

herbicide chemistries available, waterhemp (Amaranthus tuberculatus) may be one of the most 

economically threatening of all GR weeds. In this one species, there is evidence for three 
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different glyphosate resistance mechanisms. EPSPS gene amplification was the first mechanism 

to be suspected (Tranel 2010, Shaner et al. 2011). Subsequently, a target-site mutation resulting 

in a proline to serine amino acid substitution (Bell et al. 2013, Nandula et al. 2013), and altered 

translocation and / or uptake (Nandula et al. 2013) were identified as potential resistance 

mechanisms. However, questions remain regarding the extent to which the Pro106Ser mutation 

contributes to glyphosate resistance. While Nandula et al. consistently found the mutation 

conferring the Pro106Ser substitution in all GR plants and never in GS plants, the presence of 

both altered target-site-based and non-target-site-based mechanisms makes it difficult to 

determine the respective contributions of each mechanism. Bell et al. (2013) identified the 

Pro106Ser mutation in plants that did not survive a 3360 g ae ha-1 rate of glyphosate, suggesting 

that the mutation did not fully account for glyphosate resistance. The objective of this study was 

to determine the extent to which the Pro106Ser substitution confers glyphosate resistance in 

waterhemp. 

   

4.3 Materials and Methods 

4.3.1 Creation of a Segregating Line 

Plants from the BCG population, previously identified as having the Pro106Ser 

substitution (Bell et al. 2013) were screened for glyphosate resistance. A GR BCG female was 

crossed with a glyphosate-sensitive (GS) MCR male from the original HPPD-resistant 

waterhemp population (Hausman et al. 2011). The progeny were screened with glyphosate to 

identify resistant individuals. Three surviving females and two surviving males were crossed to 

create three segregating pseudo-F2 lines. Inflorescences from each female were collected and 

dried at room temperature. Seeds were threshed and stored at 4 C. A subset of seeds from each 
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female were stratified prior to germination to help break seed dormancy. First, seeds were soaked 

in 1:1 commercial bleach : deionized water solution for 10 minutes to surface sterilize the seeds 

and aid in breaking down the seed coat. Seeds were then rinsed twice with deionized water and 

then suspended in 0.1% agarose. Seeds were stored at 4 C for at least 6 weeks prior to use. 

 

4.3.2 Screening for Pro106Ser Substitution 

 Newly emerging leaves approximately 1 to 2 cm in length were sampled from each plant 

used in the dose response (described below). DNA was extracted using a CTAB DNA extraction 

procedure essentially as described (Doyle and Doyle 1990). Samples were then screened for the 

Pro106Ser substitution using the dCAPS assay described previously (Chapter 2.3.3 Examination 

of Resistance Mechanisms). This assay detects the wild type; therefore it is possible that 

alternative amino acid substitutions (alanine and threonine) resulting from a single nucleotide 

polymorphism at the first nucleotide of the proline codon would be recognized. 

 

4.3.3 Glyphosate Dose Response 

Plant Culture  

Seeds were germinated on filter paper moistened with deionized water and fitted in 

standard petri dish lids. Petri dishes were sealed with Parafilm (Pechiney Plastic Packaging, 

Menasha, WI 54952) to maintain a moist environment for germination and placed in a 

germination chamber (Conviron, 590 Berry St., Winnipeg, Manitoba, Canada R3H 0R9) set to 

cycle through 12-hr days at 35 C and 12-hr nights at 15 C. Petri dishes were removed 48 hours 

later, or when emerged hypocotyls had extended approximately 1 to 2 mm from the seed coat. 

Germinated seedlings were transplanted into 27.8 cm x 54.5 cm x 6.2 cm flats fitted with plastic 
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inserts containing 96, 2.9 cm x 4.0 cm x 5.7 cm individual cells (T.O. Plastics, 830 County Road 

75, P.O. Box 37, Clearwater, MN 55320) filled with commercial potting mix (Sunshine Mix #1 / 

LC1, Sun Gro Horticulture, 770 Silver Street, Agawam, MA 01001). When plants reached 4 to 5 

cm in height, a uniform subset of plants was chosen and each was transplanted into a 10.8 cm x 

10.8 cm x 12.7 cm square plastic pot (Myers Industries Lawn  & Garden Group, 15200 Madison 

Rd., P.O. Box 738, Middlefield, OH 44062) containing approximately 950 ml of growth medium 

consisting of commercial potting mix (Sunshine Mix #1 / LC1): soil : peat : sand. Plants were 

grown in a greenhouse room set to 16-hr days, with supplemental lighting from mercury halide 

and sodium vapor lamps to maintain a minimum of 800 µmol m-2 sec-1. Temperature was 

maintained at 24 to 26 C at night and 28 to 30 C during the day.  Plants were fertilized with a 

complete slow-release fertilizer (Scott’s Osmocote Classic 13-13-13, The Scotts Company, 1411 

Scottslawn Rd., Marysville, OH 43041). 

 

Experimental Design 

Progeny from one of the F1 females used to make the F2 population were screened for 

glyphosate resistance and the response was compared to that of a GS control, ACR (Patzoldt et 

al. 2005), and a GR control, MO1 (Legleiter and Bradley 2008). These sensitive and resistant 

control populations were the same controls used in a previous study examining glyphosate 

resistance in the BCG population (Bell et al. 2013). The experiment was carried out as a 

completely randomized design, however the number of reps varied among the lines and 

genotypes studied. The first time the experiment was performed, plants were first genotyped and 

then placed into treatment groups prior to herbicide application. When the experiment was 

repeated, the number of F2 plants used at each treatment was chosen based on the proportion of 
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each genotype present in the population. Enough plants were used to ensure that a minimum of 

four plants of each genotype (PP, SP, SS) were present at each treatment level. The number of 

plants of each genotype ranged from as few as four to as many as 21 plants per treatment level in 

the second run. In both experiments, there were at least four reps per treatment. 

 

Herbicide Application and Data Collection 

When plants were 10 to 15 cm in height, glyphosate (Roundup WeatherMax, Monsanto 

Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167) was applied at rates of 0, 52.5, 105, 

210, 420, 1680, 3360, and 6720 g ae ha-1 with 2.5% (v/v) ammonium sulfate (AMS) in a 

moving-nozzle cabinet spray chamber. All rates were used for the BCG population, but the ACR 

population was not sprayed with the two highest rates (3360, 6720 g ha-1) and the MO1 

population was not sprayed with the two lowest rates (0, 52.5 g ha-1) The spray chamber was 

calibrated to deliver 187 L ha-1 and was equipped with a 80015 even flat fan nozzle (TeeJet 

Technologies, P.O. Box 7900, Wheaton, IL 60187) positioned approximately 46 cm above the 

plant canopy. At 15 days after treatment (DAT) plants were rated visually on a scale of 0 to 100, 

where 0 represents no visible injury or stunting of growth and 100 indicates plant death. At 16 

DAT aboveground biomass of plants was harvested and dried for at least five days at 65 C prior 

to recording dry weight.  

 

Comparison of Sensitive Controls 

Due to a limited availability of seed, ACR was used in place of MCR, the GS biotype 

used to create the F2 population. To account for any potential difference in glyphosate response 

of sensitive controls, a small-scale glyphosate dose response was performed on ACR and MCR. 
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Plants were grown as described previously and treated when they reached 10 to 15 cm in height.  

Glyphosate (Roundup WeatherMax,) was applied at rates of 0, 52.5, 105, 210, 420, 840 and 1680 

g ha-1 with 2.5% (v/v) ammonium sulfate (AMS).  Plants were rated visually at 16 DAT and dry 

weights were determined as described previously.  

 

4.3.4 Dose Response Statistical Analysis 

 Preliminary analysis of the visual data and dry weight data suggested no significant 

treatment by run interaction (α=0.05), therefore the data for each experimental run were pooled. 

Data were analyzed using a non-linear regression in the drc package (Analysis of dose-response 

curve data, Knezevic et al. 2007) in R (v3.0.1) (R Development Core Team 2013). A four-

parameter log-logistic equation 

y = c + 
d-c

1+exp{b[log(x)-log(GR50)]}
                                                    [1]  

(Seefeldt et al. 1995) was used to create the dose response model and determine the rate at which 

biomass was reduced by 50% compared to untreated controls. In this equation, y is the percent of 

control based on dry weight, x is the herbicide rate, c is the lower limit, d is the upper limit, and 

b is the slope of the curve.  

 

4.4 Results and Discussion 

 An examination of the proportion of each genotype present in the F2 population indicated 

that the Pro106Ser mutation likely follows a Mendelian pattern of inheritance. In the first run, 

271 plants were screened for the Pro106Ser mutation and 20% were wild type, 48% were 

heterozygous and 31% were homozygous for the mutation. In the second run 21% of plants were 

wild type with two proline alleles, 50% were heterozygous and 29% were homozygous for the 
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mutation of 379 screened. Chi-squared goodness of fit tests were performed to determine if the 

data deviated significantly from the typical Mendelian 1:2:1 ratio. A modestly significant p value 

(p=0.03, α=0.05) was observed for the data from the first run indicating that the observed 

percentages did deviate from the expected ratio. However, the p value for the data from the 

second run indicated no significant deviation (p=0.15, α=0.05). Progeny from the two other F1 

females included in the cross to create a segregating F2 line were screened for the Pro106Ser 

mutation. Results indicated that the observed percentages of each genotype did not significantly 

deviate from the expected (p=0.90, p=0.25, α=0.05).   

 Analysis of the dry weight data from each run of the experiment indicated that there was 

no significant interaction between treatment and run, so the data were pooled for the generation 

of dose response curves and for estimation of GR50s. The visual data results were very similar to 

the dry weight data, and the same patterns were evident in both. Visual inspection of the dose 

response curves (Figure 4.1) shows that individuals with at least one serine allele are resistant 

compared to the sensitive control (ACR) and the level of resistance also appears to increase with 

the addition of each serine allele. This suggests that the Pro106Ser substitution does confer some 

level of resistance to glyphosate. All genotypes from the BCG F2 population were resistant 

compared to ACR, but less resistant than MO1. This suggests that an additional mechanism of 

resistance was present in the original BCG or MCR population from which the F2s were made. 

This result echoes the conclusions made by Bell et al. (2013) who examined the original BCG 

population and concluded that the Pro106Ser mutation was not fully responsible for resistance. 

 GR50 values were generated for each line used in the dose response as well as R/S 

(resistant / sensitive) ratios using ACR or BCG F2 PP individuals as the sensitive controls (Table 

1). The R/S ratio for MO1 was 9.1, lower than previously observed in the original MO1 
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population (19-fold, Legleiter and Bradley 2008), but similar to the 6 to13-fold value observed 

by Bell et al. (2013). The glyphosate dose required for a 50% reduction in biomass for ACR was 

73 ± 9 g ha-1. Compared to ACR, plants heterozygous for the P106S substitution were 4.5-fold 

resistant, and homozygous plants were 6.6-fold resistant. These numbers are close to the 5-fold 

level of resistance found previously for this population (Bell et al. 2013) and in other waterhemp 

populations with the mutation (Nandula et al. 2013). However, compared to plants in the same F2 

population without the mutation, heterozygous plants were only 2.4-fold resistant and plants 

homozygous for the mutation were 3.5-fold resistant. This suggests that the Pro106Ser 

substitution may provide only a modest level of resistance and that some other supplementing 

mechanism of resistance is present in the population.  

 While ACR was the sensitive population originally compared to the BCG population 

(Bell et al. 2013) and the same used in this experiment, the difference in the observed level of 

resistance between ACR and the F2 individuals without the Pro106Ser substitution warranted a 

comparison of ACR with the original sensitive parent used to make the F2 population. Visual 

inspection of the dose response curve shows that the difference between the ACR and MCR 

curves is similar to the difference between the ACR and PP curves in the BCG F2 dose response 

curve (Figure 4.1 and 4.2). The wild type PP individuals of the BCG F2 line were 1.9-fold 

resistant compared to ACR, and the MCR population was 1.8-fold resistant compared ACR 

(Table 1). Given how close the difference in resistance levels is in these two separate 

experiments, it is likely that the MCR population has some glyphosate tolerance that was 

inherited by the BCG F2 population, explaining the difference in resistance level compared to the 

sensitive ACR control. However, these results differ from past examinations of this population. 

Bell et al. (2013) suspected that the Pro106Ser substitution was not singly responsible for 
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resistance in the BCG population, while here we found that the supplementing glyphosate 

tolerance was contributed by the MCR parent used to make the segregating F2 population. 

 Given the results of both dose response experiments, the mutation conferring a Pro106Ser 

substitution provides an approximately 2 to 4-fold level of resistance. R/S ratios calculated from 

the visual data fell within this same range (data not shown). These results are similar to 

resistance levels observed in other GR species with the Pro106Ser substitution primarily 

responsible for resistance. A 2 to 4-fold glyphosate resistance level was observed in greenhouse 

studies of GR goosegrass (Baerson et al. 2002) and E. coli cells expressing the EPSPS gene from 

resistant goosegrass populations showed a greater than 3-fold level of resistance compared to 

cells expressing EPSPS from sensitive plants. A 2- to 5-fold level of resistance was observed in a 

Lolium multiflorum population with the Pro106Ser substitution (Jasieniuk et al. 2008) and a 2- to 

3-fold resistance level was found in a Lolium rigidum population with a Pro106Thr substitution 

(Wakelin and Preston 2006). Many of the other populations identified with target-site resistance 

involving a substitution at Pro106 also have additional mechanisms of resistance making it 

difficult to determine the relative contribution of the target-site-based resistance mechanism 

(Sammons and Gaines 2014).  

 While waterhemp is the first dicot species to evolve target-site-based glyphosate 

resistance via a substitution at Pro106, the level of resistance seems to match closely to that 

observed previously in monocot species with the same mechanism of resistance. The presence of 

this mutation in waterhemp is particularly interesting given the widespread incidence of GR 

waterhemp populations with EPSPS gene amplification. While no studies have reported on the 

potential for a fitness penalty associated with the Pro106Ser substitution, the presence of 

multiple EPSPS copies may negate any disadvantages associated with acquiring the mutation. 
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EPSPS gene amplification may enable the evolution of the Pro106Ser substitution as well as 

other EPSPS mutations in populations that would have normally required a greater degree of 

selection. The combination of gene amplification and the Pro106Ser mutation in a single 

waterhemp population may prove interesting. The presence of the Pro106Ser substitution also 

presents the opportunity for the acquisition of additional mutations – specifically Thr101Ile. 

Jalaludin et al. (2013) reported the first case of an evolved double amino acid substitution in GR 

goosegrass containing the Pro106Ser mutation as well as the Thre101Ile mutation, the same 

mutations used to create the first GR maize varieties. Studies in E.coli suggest that the Thr101Ile 

mutation is unlikely to occur independently given the great increase in Km for PEP that results 

(Funke et al. 2009). However with increased glyphosate selection, weed species with the 

Pro106Ser substitution may acquire the additional Thr101Ile substitution to confer a greater level 

of resistance. Without proper management techniques, the GR waterhemp situation in the 

Midwest may quickly intensify. 
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4.6 Table and Figures 

Table 4.1: Glyphosate dose response results for the combined data of the F2 dose response and 

the dose response for the comparison of sensitive controls where MO1 represents the resistant 

control, ACR is the sensitive control. Individuals in the BCG F2 population without the 

Pro106Ser substitution are listed as PP, heterozygous individuals are listed as SP, and 

homozygous individuals in which both alleles carry the mutation are listed as SS. Results are 

based on dry weight of plants harvested 16 DAT. The glyphosate doses required to reduce 

biomass by 50% (GR50) were estimated using a four parameter log-logistic model. R/S (resistant 

/ sensitive) ratios are given using both ACR and PP individuals as the sensitive control.   

Experiment Population GR50 (g ae ha-1) R/S (ACR) ratio  
R/S (BCG-PP) 

ratio  

BCG Dose 

Response 

BCG - PP 138 ± 22 1.9 ± 0.38 1.0 

BCG - SP 328 ± 29 4.5 ± 0.70 2.4 ± 0.43 

BCG - SS 481 ± 44 6.6 ± 1.04 3.5 ± 0.63 

MO1 660 ± 99 9.1 ± 6.97 4.8 ± 1.03 

ACR 73 ± 9 1.0 0.5 ± 0.11 

Comparison of 

Sensitive Controls  

MCR 90 ± 15 1.8 ± 0.37   

ACR 50 ± 6 1.0   
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Figure 4.1: Dose response curve for the BCG F2 glyphosate dose response created using the four 

parameter log-logistic model. Points represent mean dry weight of plants harvested 16 DAT 

converted to a percent of the untreated control.  
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Figure 4.2: Dose response curve for the comparison of sensitive controls created using the four 

parameter log-logistic model. Points represent mean dry weight of plants harvested 16 DAT 

converted to a percent of the untreated control. 
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CHAPTER 5 

Concluding Remarks 

 

5.1 Summary and Conclusions  

 Glyphosate inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme 

in the shikimic acid pathway responsible for the synthesis of aromatic amino acids in addition to 

a number of important biochemical intermediates. No other herbicides act on this same site of 

action (SOA), making glyphosate unique and highly valuable. Glyphosate binds tightly to the 

soil, making it relatively environmentally benign and, since only plants, fungi and some bacteria 

have EPSPS, glyphosate has low mammalian toxicity. Glyphosate is economical, especially 

since the U.S. patent has expired and generics are readily available, and it is highly effective. 

Systemic in nature, glyphosate phloem loads and is transported throughout the plant to sink 

tissues. There are also no known plants with pathways that can effectively degrade glyphosate, 

giving it a broad spectrum of control. The potency endowed by these traits allows glyphosate to 

be highly effective on perennials and other large plants allowing for flexibility in application. 

With the commercialization of glyphosate-resistant (GR) crops in 1996, glyphosate added crop 

selectivity to its already outstanding herbicide profile, making it the most widely used, most 

economically important herbicide worldwide (Duke and Powles 2008).  

However, glyphosate may be too effective for its own good. The introduction of 

glyphosate, with its unique SOA presented an opportunity to increase diversity in weed control 

options and manage existing herbicide-resistant populations. Unfortunately the opposite 

happened upon the introduction of GR crops (Powles 2008). Many growers have abused the 

technology, relying solely on glyphosate for weed control, often using multiple applications per 
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year. Season after season, this overreliance on glyphosate and lack of diversity in management 

practices exerts tremendous selective pressure on weed species to evolve resistance.  

 Within two decades, waterhemp has grown from relative obscurity to become one of the 

most problematic weeds in the Midwest (Steckel 2007). It is extremely competitive with crop 

species and can dramatically reduce corn and soybean yields if not managed properly (Hager et 

al. 2002; Steckel and Sprague 2004). In 2005 the first GR waterhemp population was identified 

in a Missouri field that had been in continuous soybean production for at least six years and often 

treated with multiple applications of glyphosate (Legleiter and Bradley 2008). In subsequent 

years glyphosate resistance has spread throughout the Midwest; 15 states now have documented 

cases of GR waterhemp (Heap 2014). Despite the widespread occurrence of GR waterhemp 

throughout the Midwest, questions remain regarding the mechanism of resistance. Some have 

suggested that EPSPS gene amplification, the mechanism of glyphosate resistance in Palmer 

amaranth (Amaranthus palmeri), is also present in waterhemp, but the relationship between 

resistance and copy number has yet to be elucidated (Bell et al. 2009; Tranel et al. 2010; Shaner 

et al. 2012). Reduced translocation (Nandula et al. 2013) and a single nucleotide polymorphism 

in the EPSPS gene resulting in a Pro106Ser substation in the mature EPSPS protein (Bell et al. 

2013; Nandula et al. 2013) have been identified. Although in both populations containing the 

Pro106Ser substitution an additional mechanism of resistance was suspected making it difficult 

to thoroughly examine the extent to which the mutation confers resistance.  

 Results herein examine two potential target-site-based mechanisms of glyphosate 

resistance: 1) EPSPS gene amplification and 2) an EPSPS target-site mutation. Results presented 

in Chapter 2 showed that gene amplification was present in the majority of GR waterhemp 

populations sampled from Illinois, suggesting that elevated EPSPS copy number can be used as a 
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proxy for glyphosate resistance. The Pro106Ser substitution was identified in several of the 

sampled populations and some populations that were clearly resistant did not have either 

mechanism present. Chapter 3 looked deeper into the relationship between EPSPS gene 

amplification and glyphosate resistance. Results showed that when gene amplification was 

present, EPSPS copy number increased with increasing glyphosate dose. One of the populations 

studied did not have any evidence of gene amplification but instead had the Pro106Ser 

substitution, which was clearly responsible for resistance as complete selection for plants with 

the mutation was observed after the 1x rate. Chapters 2 and 3 both found evidence for the 

Pro106Ser substitution mentioned previously in the literature, so the research conducted in 

Chapter 4 was aimed at better understanding this mechanism and determining the level of 

resistance conferred. Results showed that, similar to monocot species with the same substitution, 

a moderate 2- to 4-fold level of resistance was conferred. Overall, EPSPS gene amplification 

appears to be the primary mechanism of glyphosate resistance in waterhemp, with some 

populations having a target-site Pro106Ser mutation conferring a more modest level of 

resistance. Substantial evidence for additional glyphosate resistance mechanisms was also 

obtained. In Chapter 2, resistant populations with neither gene amplification nor the Pro106Ser 

substitution were found. In Chapter 3, although each population had either gene amplification or 

the target-site mutation present, individual plants without gene amplification or the Pro106Ser 

substitution were found surviving at the highest glyphosate rates.  

 

5.2 Implications and Future Directions 

Waterhemp represents one of five weed species to have evolved EPSPS gene 

amplification. Others include Palmer amaranth (Gaines et al. 2010), the first identified, annual 
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ryegrass (Lolium multiflorum) (Salas et al. 2012), kochia (Kochia scoparia) (Wiersma 2012), and 

spiny amaranth (Amaranthus spinosus) (Nandula et al. 2014). Gene amplification was not 

anticipated as a possible mechanism of glyphosate resistance, but clearly the level of selection 

imparted on weed populations was strong enough to allow its evolution (Shaner et al. 2012). An 

obvious difference in the EPSPS gene duplication seen in these species is the variance in EPSPS 

copy number magnitude. Resistant Palmer amaranth populations have been identified with 40 to 

100 relative copies in Georgia (Gaines et al. 2010), 20 to 60 in North Carolina (Chandi et al. 

2012), and 33 to 59 in Mississippi (Ribeiro et al. 2014). Similar relative EPSPS copy number 

ranges have been seen in ryegrass, with 15 to 25 copies (Salas et al. 2012), and in spiny 

amaranth, with 33 to 37 copies (Nandula et al. 2014). In contrast, Kochia was found to have a 

relative copy number range of 3 to 9 (Wiersma 2012), and a population of Palmer amaranth from 

New Mexico had 2 to 8 relative EPSPS copies (Mohseni-Moghadam et al. 2013). These lower 

magnitude ranges are similar to those seen previously in waterhemp and in the research 

presented herein.  

The drastic difference in relative copy number between these species raises a number of 

questions. Firstly, are 2 or 3 relative EPSPS copies sufficient to confer resistance? The 

suggestion that alternative mechanisms exist in the populations studied in this research make this 

question difficult to address. One of the conclusions from Chapter 3 was that higher glyphosate 

rates selected for plants with a higher relative EPSPS copy number. Gaines et al. (2010) also 

suggested that additional EPSPS copies confer a higher level of resistance. However, if only a 

few copies are required for resistance in waterhemp, and more copies result in a more resistant 

plant (as is suggested herein and in the literature), how are these species with only a few copies 

capable of withstanding such high rates of glyphosate? The GR Palmer amaranth from Georgia 
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in which a 40 to 100 relative genomic copy number range was observed (Gaines et al. 2010), was 

found to be 6- to 8-fold resistant compared to a GS population (Culpepper et al. 2006), and the 

GR spiny amaranth population with 33 to 37 relative EPSPS copies was 5-fold resistant relative 

to a sensitive control (Nandula et al. 2014). The original GR waterhemp populations identified as 

having an average of 4 relative EPSPS copies (Bell et al. 2009), was found to be 9- to 19-fold 

resistant compared to a GS population. Could there be more to the equation than just EPSPS 

amplification for waterhemp, kochia and the New Mexico Palmer amaranth population? Another 

puzzling piece of evidence comes from studies of rigid ryegrass and Conyza spp. that found 2 to 

3-fold increases in EPSPS mRNA, but was not believed to be associated with resistance (Shaner 

et al. 2012). However, EPSPS mRNA expression and protein level were found to be positively 

correlated with EPSPS genomic copy number in kochia. This relationship has not yet been 

examined in waterhemp, but if the same holds true, the question of how some of these plants 

with only 2 to 3 copies survive is raised again. One explanation for these anomalies might be that 

a supplemental alternative resistance mechanism is acting in concert with gene amplification in 

these species. Future studies should examine gene amplification and resistance level conferred in 

these species side by side to better understand the manifestation of this mechanism across 

species. Future research efforts should also seek to identify and characterize any alternative 

mechanisms of resistance that may be present in waterhemp and then determine the effect on 

resistance level they may have in conjunction with gene amplification. 

 Furthermore, in species with tens of EPSPS copies, why did so many copies accumulate 

if only a few are needed, and by what evolutionary mechanism? The molecular mechanism of 

gene amplification may differ between the populations with high and low relative copy number 

ranges; examination of these mechanisms may prove insightful. Conversely if more copies are in 
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fact needed to survive higher levels of glyphosate, will EPSPS copy number in GR waterhemp 

populations increase to the levels observed in Palmer amaranth, annual ryegrass, and spiny 

amaranth? The results presented in Chapter 3 suggest that higher glyphosate rates select for 

plants with higher EPSPS copy numbers indicating that the higher the copy number, the higher 

the fitness of the individual. With more rounds of selection copy number may gradually increase 

in a population. We speculate that copy number magnitude may be a function of time and the 

rounds of selection experienced in Chapter 3. The Nebraska population which had lower overall 

copy number compared to the Illinois, Kansas and Missouri populations, was not suspected of 

glyphosate resistance until 2012, whereas the other populations were suspected resistant several 

years prior. The populations with higher copy number may have gone through more rounds of 

selection than the Nebraska population. This hypothesis that copy number magnitude is a product 

of the selection exerted however, is complicated by the possibility of alternative supplementing 

resistance mechanisms that may be present in the populations studied.  

The other mechanism of glyphosate resistance studied in this research is the EPSPS 

target-site mutation resulting in a Pro106Ser amino acid substitution. Results from the dose 

response indicated that a 2- to 4-fold level of resistance is conferred. This is a relatively low level 

of resistance, and this mechanism was passed over during the creation of GR crops because the 

level of resistance was too low (Shaner et al. 2012). In a weed species under glyphosate selection 

however, the fitness advantage is realized. Weak mutations may be able to thrive in situations 

where herbicides are applied at reduced rates or to plants that are too large. Even if the plant is 

severely stunted or damaged, so long as the mechanism allows plants to make seed and 

reproduce, the mechanism is successful (Shaner et al. 2012). It is possible that the improper use 

of glyphosate enabled the evolution of the Pro106Ser substitution in waterhemp.  
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While waterhemp populations with this low level of resistance might be managed by 

higher glyphosate rates, there is the potential for a dangerous combination of this mechanism 

with EPSPS gene amplification. Additional studies would be needed to determine the level of 

resistance conferred by plants with amplified EPSPS copies containing the SNP encoding the 

Pro106Ser mutation. When gene amplification was first identified in Palmer amaranth (Gaines et 

al. 2010), Powles (2010) warned about the potential for the evolution of a highly resistant EPSPS 

given the buffering capacity endowed by multiple EPSPS copies. Whether the Pro106Ser 

substitution results in a significant fitness penalty has not yet been determined in weed species. 

However if one does exist, gene amplification may provide a handle for the evolution of the 

Pro106Ser substitution, in addition to other mutations in the EPSPS gene that might not have 

evolved independently. Another serious implication of the Pro106Ser mutation is the possibility 

that a more highly resistant double mutant may evolve in response to increased selection 

pressure. The first case of an evolved double amino acid substitution in EPSPS was recently 

reported in goosegrass (Eleusine indica) (Jalaludin et al. 2013). The double mutation 

(abbreviated TIPS) results in a Thr102Ile substitution in addition to the already evolved 

Pro106Ser substitution. This combination of substitutions results in a highly glyphosate-resistant 

EPSPS and was the method used to create the first GR maize varieties. Alone, the Thr102Ile 

substitution results in a large increase in Km for the substrate phosphoenolpyruvate (PEP). In E. 

coli, Funke et al. (2009) observed a 9-fold increase in Km, suggesting that the evolution of this 

mutation on its own would be highly unfavorable. However the observed Km for the TIPS double 

mutant and the Pro106Ser mutation was only slightly reduced compared to wild type EPSPS. 

Funke et al. (2009) concluded that only the TIPS mutation would be sufficient to confer adequate 

glyphosate resistance while maintaining catalytic efficiency with PEP. While weed populations 
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were in fact able to develop resistance via a single mutation, these data suggest that the 

Thr101Ile substitution may only develop after the Pro106Ser given the drastic increase in Km it 

may cause independently (Sammons and Gaines 2014). With increased selection however, weed 

populations with the Pro106Ser mutation may be forced to take this route and accumulate 

additional mutations that confer a higher level of resistance. Jalaludin et al. (2013) found that 

78% of individuals in the double-mutant population survived the highest applied rate, 8640 g ae 

ha-1, which is more than ten times the labeled 1x rate.  

 Without diligent management practices, the current GR waterhemp situation may quickly 

escalate. The commercialization of glufosinate-resistant crops and synthetic auxin-resistant crops 

presents an opportunity to increase the diversity of herbicide sites-of-action used. If glufosinate 

and the synthetic auxins are used appropriately with their resistant crop varieties, by stacking 

with multiple other herbicide modes of action and applying at the recommended rates, producers 

may be able to stave off or at least stall the evolution of weeds resistant to herbicides with these 

modes of action. Hopefully much has been learned from the loss of glyphosate as an effective 

method of weed control in some situations and hopefully the same mistakes will not be repeated 

with these new herbicide-resistant crop technologies.  
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APPENDIX A 

A User’s Guide to High-Throughput Screening for Herbicide Resistance in Waterhemp 

 

A.1 Cone-tainers 

In order to achieve maximum screening efficiency, single waterhemp plants were grown 

in plastic cells 21 cm deep with a 3.8 cm top diameter, hereon referred to as cone-tainers (Ray 

Leach “Cone-tainer”TM single cell system; Stuewe and Sons Inc., 31933 Rolland Dr., Tangen, 

OR 97389; https://www.stuewe.com/products/rayleach.php). This cone-tainer size is referred to 

as the SC10 super; 98 of these will fit in a 7 cone x 14 cone arrangement in an RL98 rack.  

Cone-tainers come in three plastic varieties: black recycled (SC10R), white low-density 

(SC10L), and UV-stabilized (SC10U). In the early stages of waterhemp screening the white low-

density cone-tainers were used. Following a round of screening, the containers were washed with 

a large test tube brush and dipped in an oxidate solution. The oxidate solution must be requested; 

greenhouse staff will set up a sink containing the solution. This process is rather time consuming 

and inefficient. When the number of plants to be screened increased, the black recycled cone-

tainers were used instead and these were disposed of after each use. The RL98 racks are still 

reused. 

Cone-tainers and racks are provided by the Plant Care Facility (PCF) and are stocked in 

the PCF storeroom. One box of cone-tainers contains 1000 cells, enough to fill approximately ten 

racks full of cones. Given the high-throughput experiments often performed by members of the 

Tranel lab, one should notify the greenhouse staff in advance regarding the number of cone-

tainers that will be needed. An order should be placed with the greenhouse staff at least 1 to 2 

weeks prior to the start of the experiment. In an emergency, if one needs to use all or the 
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majority of the cones available in the storeroom, the greenhouse staff should be notified as soon 

as possible so they can place an order to restock for other greenhouse users. Racks are also 

provided by the greenhouse staff.  

 

A.2 Soil 

The media used to fill cone-tainers is a soil mix provided by the PCF called Weed Lite 

Mix. Weed Lite Mix is a 3:1:1:1 mix of commercial potting mix (Sunshine Mix #1 / LC1, Sun 

Gro Horticulture, 770 Silver Street, Agawam, MA 01001) : soil : peat : torpedo sand. Soil should 

be ordered at least a week prior to the start of an experiment. Soil will be delivered to the 1700 

hallway alcove. It can be used directly from the cart if used within a few days. However, the 

number of soil carts available is limited; they should not be used for long-term soil storage. Soil 

should be transferred to the two white soil tubs labeled Tranel Lab in the 1700 alcove. These 

each hold half of a cubic yard of soil. If requested during ordering, and there is space available, 

the PCF staff will often transfer the soil themselves to the white bins.  

The volume of each cone-tainer is 10 cubic inches. A large cart of soil is delivered in a 1 

cubic yard cart and a small cart is delivered in a half cubic yard cart. A half cubic yard of soil 

should fill about 24 racks of cone-tainers. However, this depends on how much the soil is 

compacted during filling and how full the cart is filled when the soil order is processed. 

Typically a half cart of soil will fill between 17 and 20 cone-tainer racks. Before ordering soil the 

experimenter should determine how many racks will be needed; making a layout is often helpful. 
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A.3 Filling Cone-tainers  

 While filling cone-tainers may seem like a fairly straightforward task, multiple rounds of 

trial and error have resulted in a detailed procedure for filling cone-tainers. In an effort to avoid 

excess soil on the greenhouse room floor, jumbo size cotton balls can be placed in the bottom of 

each cone prior to filling with soil. In the past, 400-count bags of White Cloud Jumbo Size 

Cotton Balls have been purchased from Walmart online. These can be ordered by Patty Sarver in 

AW-101 Turner Hall. One bag will fill about four racks of cone-tainers.  To do this, a rack 

should first be completely filled with cones. Cotton balls should be placed in each cone and then 

pushed to the bottom using a PCV pipe of sufficient length. Skipping this step may require more 

frequent sweeping and cleaning under the benches. 

After cotton balls have been placed in the bottom of each cone, one can begin to fill the 

cones with soil.  The entire rack should be placed in a white soil tub on a flattened area, so soil 

can be easily scooped into the cones without spilling an excessive amount on the floor. When all 

cones are full of soil, the filler should move cone by cone pushing one or two fingers into the soil 

to remove air pockets. Cones should then be topped off with an additional layer of soil, creating 

soil filled cones that are flush with the top of the container.  Soil will compact upon watering, 

leaving about a ¼” of space between the soil surface and the top of the container.   

At this point, a clean, empty rack should be placed on the cart that will be used to 

transport cones back to the greenhouse room. Cones can now be removed from the rack used for 

filling and placed into the clean rack. While tedious, this step ensures that no soil will be trapped 

between cones. Skipping this step and / or not using cotton balls in the bottom of each cone will 

result in an excessive amount of soil falling on the floor of the greenhouse room when the cones 

are placed under the overhead misters. Depending on desired planting date, adequate time should 
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be reserved for filling cone-tainers. Filled cones should be left under misters for at least two 

misting sessions (~ 24 hours) prior to planting in order to wet the soil.   

 

A.4 Germination  

Seeds should be stratified and stored at 4 C for at least 6 weeks prior to germination to 

sterilize, help break seed dormancy, and promote uniform germination. To do this, seeds should 

first be soaked in a 1:1 commercial bleach : deionized water solution with occasional vortexing. 

After removing the bleach solution, seeds should then be rinsed in deionized water twice for 10 

minutes to remove any residual bleach. Prior to germination for the experiment, it is often 

helpful to determine the germination rate by starting a small subset of seeds, especially if the 

experimenter is working with a population with limited or valuable seed. 

Materials needed for germination include: sterile petri dishes, filter paper, ddH2O, metal 

spatulas, parafilm, scissors, forceps, and gloves. Petri dishes should be labeled with the seed 

type, your name, and date. Two filter papers should be placed in the lid of each petri dish, and 

moistened with ddH2O, about 4 to 5ml is an appropriate amount. Using forceps or a metal 

spatula, the paper should be pressed down and smoothed to remove any air bubbles. Desired 

seeds should be placed on the wetted filter paper and spread around (Figure A.1a). Spreading the 

seeds will make picking up a single seed easier during transplanting. The bottom of the petri dish 

can then be used to cover the seeds. A strip of Parafilm (approximately 1 in) should be cut and 

stretched around the petri dish to seal in moisture (Figure A.1b). Plates should be placed in the 

germination chamber in room N315, Turner Hall (Figure A.2). If the experiment is not 

associated with the weed ecology group, approval to use the germination chamber should be 

obtained from Dr. Adam Davis prior to use. If the germination chamber is not available, seeds 
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have been shown to germinate with varied success in petri dishes placed on benches in the 

greenhouse room. Using the germination chamber, settings for waterhemp should be 35 C day, 

15 C night with 12-hour photoperiods (Figure A.3). A tray of water should always be placed in 

the bottom of the germination chamber to increase relative humidity.  After 48 hours, germinated 

seeds are ready for transplanting. 

 

A.5 Transplanting 

 Plastic labels, a permanent marker, metal spatulas, forceps, and germinated seeds should 

be taken to the greenhouse and pre-moistened, soil-filled cone-tainers should be transported to 

one of the workbenches in the main hall of the greenhouse. Before planting, labels with the 

appropriate seed name should be placed in the cones; making a layout first is often helpful 

(Figure A.4). Using a metal spatula, a small “divot” should be made in each cone-tainer to be 

planted in (Figure A.5). Forceps are then used to gently select a germinated seed and place it in 

the soil divot.  Seeds should be held very gently with forceps by the emerging hypocotyl. 

However, no squeezing of the forceps is often required since the moist germinated seedlings will 

often just stick to the forceps. While uniform seedlings should be chosen to help ensure 

uniformity of mature plants, an appropriate seed for transplanting should have a hypocotyl only 2 

to 3mm in length. Seedlings with longer hypocotyls are more prone to damage during 

transplanting.  After seeds have been placed in all divots, the metal spatula should be used to 

gently close the soil in around the seed so that only a very light layer of soil covers the seedling. 

Once an entire section of a specific population or seed line has been planted, the label should be 

turned around to indicate that those cones have already been planted.  
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 Because waterhemp often does not grow uniformly, extra seedlings should be 

transplanted. For the Illinois Statewide Survey Study, approximately two times as many 

germinated seedlings as needed were planted. However, the number of extra plants needed will 

depend on the population – if it is a population that has been used in the past, the experimenter 

should know about how many extra plants might be needed. The number of extra plants that 

might be needed should also be taken into consideration during germination. Appropriate 

positive and negative controls should also be planted at this time and with sufficient extra plants 

to achieve uniform control populations. Suggestions for positive and negative controls to be used 

for screening with various herbicides can be found in Table 1.  

 If all populations have germinated well, petri dishes can be disposed of by either 

autoclaving the fresh germinated seedlings or by throwing away the petri dishes after the 

seedlings have dried up and died. However, it is not uncommon for some populations to require 

additional germination time past the initial 48 hours. These petri dishes should be re-moistened, 

wrapped in Parafilm again, and returned to the germination chamber for another 24 hours.   

 

A.6 Plant Care 

 General information about growing waterhemp and performing experiments in the 

greenhouse can be found in Appendix A: A Practical Grower’s Guide to Experimentation on 

Waterhemp of Mike Bell’s Master’s thesis (available: http://hdl.handle.net/2142/18456). 

  

A.6.1 Fertilizing 

 Care should be taken to ensure that plants grown in cone-tainers receive adequate 

nutrients. Plants should be dark green in color with large leaves. Without adequate nutrients, 
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plants will become yellow-green in color, internode length will increase, leaves will tend to be 

smaller than average, and plants will be clearly stressed and may flower early (Figure A.6). 

Plants should be fertilized when emerged seedlings start to grow true leaves, when plants are 

close to spray height (4 to 5 cm) and again approximately one week after herbicide application. 

Each cone should receive about 10 to 15 slow-release pellets each time it is fertilized. In the past, 

slow release pellets have been mixed in with the soil prior to filling the cone-tainers. If this is 

done, plants will still likely need additional fertilizer at some point. A complete slow-release 

fertilizer (Scott’s Osmocote Classic 13-13-13, The Scotts Company, 1411 Scottslawn Rd., 

Marysville, OH 43041) has been used in the past. In all the cone-tainer experiments performed, 

there has never been a case of too much fertilizer applied. 

In case the plants do begin to look unhealthy, they should be fertilized as soon as possible 

with liquid fertilizer (20-20-20). This will be the fastest way to help plants recover. Fertilizer can 

be applied directly by the user with the Dosatron injector located in the 1600 hallway of the PCF 

(Figure A.7). Alternatively, one can ask the greenhouse staff for assistance in fertilizing the 

plants.  

 

A.6.2 Overhead Misting 

After planting, cone-tainer racks should be placed back on the benches with overhead 

misters (Figure A.8a). The misters should be set to mist for 30 minutes, twice daily. As the plants 

grow, the settings may need to be changed to increase the amount of time the misters are on to 45 

minutes. The appropriate misting time will allow the soil to dry between misting, but not allow 

wilting. The user can change the misting times, but one should contact a member of the 

greenhouse staff before using the mist controller for the first time (Figure A.8b). Prior to 
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spraying, it is important to move racks out from under the misters to ensure that plants are not 

wet for herbicide application. For this reason it is often helpful to know what times the misters 

turn on for each bench. 

 

A.7 Spraying  

 Plants should be sprayed when they reach 4 to 5 cm in height, or when they have 4 to 5 

true leaves (Figure A.9).  Prior to spraying, a fair amount of time should be spent organizing the 

plants using the extra plants grown for each population. Plants should be arranged so that each 

population to be sprayed is relatively uniform in size.  Populations are often grouped together 

with some space between populations to help prevent competition and shading. Once the 

populations have been made uniform, extra plants should be disposed of as soon as possible to 

make room for other experiments, especially given the large number of extra plants that are often 

needed. Given the variability between waterhemp populations, it is not uncommon to need to 

spray on multiple days in order to spray each population at the correct height and developmental 

stage. If spraying on several days, a tag should be put in each rack indicating the date it was 

sprayed. This helps the experimenter to know when each rack needs to be rated. After spraying, 

care should be taken to ensure that plants will not be immediately misted. The user may need to 

temporarily store the sprayed racks on other benches without misters. Alternatively, if no other 

cone-tainers are on the misting bench, the mist can be turned off temporarily. The user can do 

this after learning how to operate the spray box from a member of the greenhouse staff. 

Additional information on mixing herbicides and spraying can be found in Appendix C: 

Herbicides and Liquid Fertilizer Mixing Instructions of Mike Bell’s Master’s thesis (available: 

http://hdl.handle.net/2142/18456) 
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A.8 Rating 

Plants are usually rated 14 days after spraying. The scale in Table 2 gives a general idea 

of how plants should be rated. Example plants can be found in Figure A.10. Unfortunately, due 

to the variety of responses to different herbicides, this scale does not adequately describe all 

possible intermediate phenotypes. For glyphosate resistance screening there is often a wide range 

of intermediate plants that are not quite sensitive but not nearly as strong as the positive control 

or the 0x controls. An example of sensitive and resistant populations can be seen in Figure y. 

Due to the wide range of responses, it is very helpful to take pictures of each rack after rating. 

Populations can then be compared visually after all rounds have been completed. Pictures may 

also be useful when multiple experimenters have rated the plants, or when comparing to a 

previous lab member’s results (Figure A.11). Usually pictures are taken as an overhead shot of 

each rack. However, if plants are especially tall, side shots may be needed in order to see each 

individual. After rating and taking pictures, any tissue samples that might be needed from 

resistant or intermediate individuals should be taken. 

 

A.9 Disposal and Cleanup 

Once the experiment is over, plants should be disposed of quickly to free space for other 

experiments.  Plants should be clipped at the base and put in an autoclave bag. Later this plant 

material should be autoclaved and the bag placed inside an opaque black bag before being 

thrown away. Alternatively, if asked, the greenhouse staff will autoclave and dispose of the 

material. After all aboveground plant material has been removed, soil should be dumped from 

each cone-tainer into the “soil and plant material only” trash can provided by the greenhouse. 

The cones can be thrown in the regular “trash only” cans provided. Racks should be taken to the 
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hallway and placed in the dirty pot collection bins. The greenhouse staff will wash these and then 

restock them in the supplies room.  

 

A.10 Out-of-Season Experiments 

Waterhemp grows much faster in the summer months when the days are longer, than in 

the winter when days are shorter. It also tends to flower earlier in the winter months. In general, 

cone-tainer experiments should be avoided during times of the year when day length is the 

shortest (late November through early February). During the summer, the time required to reach 

spray height is much shorter, and the plants are usually much larger by two weeks after 

treatment. During the fall and spring, when days are somewhat shorter, it may take more time to 

reach spray height and the plants may not be as tall by rating time. During these times, one may 

notice that the plants lean towards the windows, the source of the strongest natural light. To 

avoid leaning plants, the experimenter should rotate the racks every several days.  

 

A.11 Literature Cited 
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A.12 Tables and Figures  

Table A.1 

Suggested sensitive and resistant controls for various herbicide resistance screening in 

waterhemp. 

 

Herbicide SOA used for Screening 
  

Sensitive Controls 
  

Resistant Controls 

  
ALS (e.g. Pursuit, Classic)  WCS1  ACR2 

  
EPSPS (e.g. WeatherMax, PowerMax)  WCS1, WT3, ACR2  MO14 

  
HPPD (e.g. Callisto, Laudis)  WCS1, WT3, ACR2  MCR5 

  
PPO (e.g. Cobra, Flexstar)  WCS1  ACR2 

  

PSII (e.g. Aatrex, Sencor)  WCS1, MO14  ACR2, MCR5 
    

1 WCS: Wayne County Sensitive (Patzoldt et al. 2005) 
2 ACR: Adams County Resistant (Patzoldt et al. 2005) 
3 WT: Wild Type – an assortment of seed from populations collected throughout the state in 

2003 
4 MO1: Missouri 1 (Legleiter and Bradley 2008) 
5 MCR: Mclean County Resistant (Hausman et al. 2011) – also, NH1 or NH2 (Nick Hausman 1 

and 2): progeny of MCR x MCR cross 
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Table A.2 

Herbicide resistance rating scale used for glyphosate resistance screening in cone-tainers. 

R / I / S Rating   Numeric   Criteria 

Sensitive (S) 
 

0 
 

Plant is completely dry, no live tissue left, no chance of 

regrowth 

Sensitive (S) 
 

1 
 

Plant has some live stem tissue but meristem and leaves are 

dead, no chance of regrowth 

Intermediate (I) 
 

2 
 

Plants are no longer erect, growth is severely stunted,  

obvious chlorosis or necrosis, plants may or may not 

continue growing 

Intermediate (I) 
 

3 
 

Growth is severely stunted but plants are upright and erect, 

some evidence of chlorosis or necrosis 

Resistant (R) 
 

4 
 

Plants are smaller in size than 0x controls, but otherwise 

appear unharmed, plants will continue growing 

Resistant (R)   5   
Plants are approximately the same size as the 0x controls, 

plants will continue growing 
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Figure A.1: A) Petri dish showing how seeds should be germinated, B) Petri dish wrapped in 

Parafilm and ready to be put in germination chamber. For this particular experiment, a large 

number of seeds were used because the germination rate was unknown and seed was not 

particularly valuable. 

  

A B 
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Figure A.2: Germination chamber located in room 315 Turner Hall. Water should be kept in the 

pan in the bottom of the chamber to increase humidity. 
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Figure A.3: Germination chamber screen showing correct settings for germinating waterhemp. 
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Figure A.4: Layout for planning cone-tainer experiments. This may be especially helpful for 

large-scale experiments.  
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Figure A.5: Cone-tainers ready for transplanting. Divots should be made in the soil of each cone. 

A seedling should then be placed in each and covered gently with a thin layer of soil.  
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Figure A.6: Results of an experiment growing waterhemp in cone-tainers with high (fertilized 

generously three times) and low amounts (fertilized once) of a complete slow-release fertilizer 

(13-13-13). Results show the importance of applying enough fertilizer. 
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Figure A.7: The Dosatron cart used for liquid fertilizer application. Users should ask for help 

from a member of the Plant Care Facility staff prior to operating for the first time. The 20-20-20 

concentrate option is what is normally used for waterhemp. 
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Figure A.8: The misting system used for watering cone-tainer experiments in room 1707 PCF. 

A) A misting bench with overhead irrigation. B) The mist controller located on the west side of 

1707 next to the faucet. 

A 

B 
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Figure A.9: A relatively uniform population of waterhemp, ready to be sprayed. Most of the 

plants in this photo have four true leaves, but some are starting to make their fourth and some are 

already making a fifth. Some variation is to be expected. 
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Figure A.10: Rating scale corresponding to Table 1. Plants in this picture were treated with 

glyphosate two weeks prior. Ratings of 0 and 1 are considered sensitive, 2 and 3 are considered 

intermediate, and 4 and 5 are resistant. While this scale provides a starting point for rating plants, 

the variability in injury symptoms for different herbicides and the wide range of intermediate 

responses (especially with glyphosate) should be taken into account when determining a rating 

scale. 
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Figure A.11: An example rack of plants from the Illinois Statewide Survey Study. Pictures were 

taken two weeks after treatment with glyphosate. A sensitive control population of seven plants 

is on the far left, followed by a sensitive population and two resistant populations, each of 

fourteen plants, and a resistant control population of seven. 
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APPENDIX B 

Annotated R Code Used for Statistical Analysis and Creation of Figures 

 

B.1 Introduction 

The following will include the R code used to analyze the data and to create the figures 

presented in this thesis, as well as informal annotation of the commands. Much of what is 

presented here was only possible because of NRES 598 - SAR: Practical Statistical Analysis with 

R taught by Dr. David Zaya. I am very grateful for the time and effort Dr. Zaya put into creating 

this class and for his enthusiasm and willingness to help. While this class was a starting point, 

there seems to be a steep learning curve for R. Much of the R troubleshooting required in the 

production of this thesis was carried out using trial and error in conjunction with online forums 

and various R help websites reached through Google searches. I’m sure there are some places in 

the following sections where I have done more than is needed to achieve the required result. That 

was all part of the learning process though! While the small amount of R code presented here 

doesn’t even scratch the surface of what R can do, my hope is that this might in some way aid 

future members of the Tranel Lab or any others who stumble upon this and may need to perform 

similar statistics.  

 

B.2 Basics 

Some of these figures and data analyses were originally made on a Mac and some on a 

PC, there may be some differences in the code used for running R on different platforms. The 

code in following sections was written and run in either R 3.0.3 on my PC or R 3.0.1 on my Mac 

(R Core Team 2014). While the data sets used throughout this appendix are not available to the 

reader, the majority of the code in this and the following sections should be able to be used 
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almost verbatim in R if an appropriate similar file is imported. All code is included, but the only 

output and figures included are those that may be helpful. Comments are provided for almost 

everything, but may become more condensed as the appendix progresses. Therefore, searching 

for a particular command of interest throughout the document may be helpful if using only select 

sections from this guide. 

 

B.2.1 Basic Code 

# <- comment character - R will not run anything in the line after "#" 

# A “#” is placed before all R text output included herein to indicate that the text 

is not a command. 

 

# The "<-" symbol is used for naming or assigning  

# For example: 

mydata<-read.csv("G:\\Thesis\\Multi-state\\Field control data.csv") 

# the file read from the location defined in the parentheses above is assigned the 

name of “mydata” 

 

# It may be helpful to have all code in one place, rather than typing directly into 

the R console 

# PC: File --> new script, this opens the R editor 

# Mac: File --> new document, opens the text editor in R (The editor on Macs is color-

coded. Colors can be changed under preferences, Syntax. The default colors (Figure 

B.1) were used for the code presented in this Appendix, but text color is not 

necessary for interpretation. 

#Figure B.1 

 

# Alternatively code can be written in a text editor outside of R and pasted into the 

R console 

 

# Shortcut to run a line of code from the open R editor (PC) or document (Mac) 

# PC: "ctrl r" 

# Mac: "command return" 

 

# Setting the working directory - helpful if working out of the same folder location 

for the whole R session 

# By doing this, a file can be read from its name only, the entire path doesn't need 

to be specified 

# PC 

setwd(G:\Thesis\Multi-state) 

#Mac 

setwd("/Volumes/USB20FD/Thesis/Multi-state") 

 

# Check what the working directory is set to 

getwd() 

 



 116 

# Importing data into R - data should be saved as .csv or .txt (This can be done from 

an excel sheet) 

# I am naming all these objects "data" - without naming them R would display the data, 

but wouldn't "remember it". By naming it we are able to continue accesing the data. 

# PC 

mydata<-read.csv("G:\\Thesis\\Multi-state\\Field control data.csv") 

mydata<-read.table("G:\\Thesis\\Multi-state\\Field control data.txt", header=TRUE) 

# Mac 

mydata<-read.csv("/Volumes/USB20FD/Thesis/Multi-state/Field control data.csv") 

mydata<-read.table("/Volumes/USB20FD/Thesis/Multi-state/Field control data.txt", 

header=TRUE) 

 

# If the working directory is already set to this folder though, the path doesn’t need 

to be specified 

mydata<-read.csv("Field control data.csv") 

mydata<-read.table("Field control data.txt", header=TRUE)  

# When reading in as a txt, must tell R if there are headers (column names) 

 

# An object stored in R can be viewed by typing its name 

Mydata 

# This displays the entire data set 

 

# To see the first few lines of the data - shows the names of each column and is good 

for see the format of the data 

head(mydata) 

#     State  Rate Pcontrol 

#1 Illinois 0.000     0.00 

#2 Illinois 0.375    46.53 

#3 Illinois 0.750    61.48 

#4 Illinois 1.500    75.97 

#5 Illinois 3.000    91.51 

#6   Kansas 0.000     0.00 

 

# To see the structure of the data 

str(mydata) 

#'data.frame': 25 obs. of  3 variables: 

# $ State   : Factor w/ 5 levels "Illinois","Kansas",..: 1 1 1 1 1 2 2 2 2 2 ... 

# $ Rate    : num  0 0.375 0.75 1.5 3 0 0.375 0.75 1.5 3 ... 

# $ Pcontrol: num  0 46.5 61.5 76 91.5 ... 

  

# Indexing:  

# To access only a specific row or column   

# What is in the 5th row and the 3rd column of the object “mydata”? 

mydata[5,3] 

 

 

 

# To look at a particular column you can call it as above 

# What is in all rows of the 3rd column? 

mydata[,3] 

#[1] 91.51 

 

# Or you can index based on the heading in the orginal file using "$" 

mydata$Pcontrol # Displays the "Pcontrol" column from the data set "mydata" 

# [1]  0.00 46.53 61.48 75.97 91.51  0.00 48.00 69.00 80.00 96.00  0.00 50.00 65.00 

#[14] 87.50 89.80  0.00 13.80 59.50 65.00 90.00  0.00  0.00  0.00  0.00  0.00 

 

# If only working with one data set, it is helpful to "attach" the data, this 

eliminates the need for "$" 

# If working with multiple data sets, it's easier not to attach and type the path each 

time (In this case it’s convenient to name the data sets something short) 

attach(mydata) 
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# Now you can call the 3rd column without specifying the data set to be used 

Pcontrol 

 

# Plot the data from the 3rd column 

plot(Pcontrol) 

 

# Make a boxplot of the data in the 3rd column 

boxplot(Pcontrol) 

 

# After making this second graph, the first disappears! 

# Use the following to open a new graphics window, otherwise every new graphic will 

replace the previous. Graphics will appear in the “active” graphics window only 

windows() # PC 

quartz() # Mac 

 

# Installing packages - After a program is installed once, there is no need to re-

install it in subsequent R sessions.  

install.packages("RColorBrewer") 

 

# Loading packages - In each R session, a package will have to be loaded prior to use 

with the library command 

library(RColorBrewer) 

 

# Getting help – You can find documentation on many things by typing a “?” followed by 

the function of interest: 

?attach 

?read.table 

?plot 

?library 

 

B.3 Statistical Analysis and Figures Presented in Chapter 2 

 The following will include code used in analyzing data from the Illinois statewide survey 

study and the code used to make the figures presented in Chapter 2. Figure 2.3 was not made in 

R and therefore is excluded. 

 

B.3.1 Code For Determining a Threshold Copy Number  

### Importing the copy number data for the sensitive plants and naming it "Sens" 

### Importing on a PC 

Sens<-read.table("G:\\Thesis\\Statewide Survey\\sensitives.txt", header=TRUE) 

### Importing on a Mac 

Sens<-read.table("/Volumes/USB20FD/Thesis/Statewide Survey/sensitives.txt", 

header=TRUE) 

 

### Showing the first few lines of my data set to see what the columns are called 

head(Sens) 

#     Sample Index Round xfold 

#1 sensitive     1     1  1.02 

#2 sensitive     2     1  1.00 

#3 sensitive     3     1  0.85 

#4 sensitive     4     1  0.60 
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#5 sensitive     5     3  1.31 

#6 sensitive     6     3  0.89 

 

### Making a histogram of the copy numbers to see if the data is normally distributed 

### breaks refers to “bins” on the x axis 

hist(Sens$xfold, breaks=20) 

 #Figure B.2 

 

 

### Make a boxplot of the copy number data 

boxplot(Sens$xfold) 

 #Figure B.3 

 

### Testing if the data is normal 

shapiro.test(Sens$xfold) 

# Shapiro-Wilk normality test 

# 

#data:  Sens$xfold 

#W = 0.8872, p-value = 9.78e-06 

 

### Reciprocal transformation on the data and naming the new transformed data set 
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“Sensrec” 

Sensrec<-1/(Sens$xfold) 

hist(Sensrec, breaks=20) 

 #Figure B.4 

 

shapiro.test(Sensrec) 

# Shapiro-Wilk normality test 

# 

#data:  Sensrec 

#W = 0.9796, p-value = 0.2931 

 

### Now the data is normal 

mean(Sensrec) 

#[1] 1.058181 

sd(Sensrec) 

#[1] 0.1881803 

  

### At what copy number are 90%, 95%, and 97% of the data below  

### Finding the nth percentile: 

 

quantile(Sensrec, c(.90,.95,.97)) 

#     90%      95%      97%  

#1.267427 1.379294 1.397590  

 

1/quantile(Sensrec, c(.90,.95,.97)) 

#    90%       95%       97%  

#0.7890000 0.7250086 0.7155175  

 

### The above has computed the points at which 90, 95, 97% of the data are above 

### Reciprocally transforming flips the data set 

 

quantile(Sensrec, c(.1,.05,.03)) 

#     10%        5%        3%  

#0.8459083 0.7698680 0.7278494  

 

1/quantile(Sensrec, c(.1,.05,.03)) 

#     10%       5%       3%  

#1.182161 1.298924 1.373911 

 

### A conservative cutoff point of 1.4 was chosen. Anything with a relative copy 

number above was considered to have elevated EPSPS copy number 

Histogram of Sensrec
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B.3.2 Map of Illinois Code 

### Installing the maps package - this only needs to be done once 

install.packages("maps") 

 

### Accessing the program after it's been installed. This needs to be done prior to 

use in each new R session 

library(maps) 

 

### Creating a map of Illinois counties: 

IL<-map("county", regions="illinois", plot=TRUE) 

 

### Adding the names of each county 

map.text("county", regions="illinois", cex=0.5, add=TRUE, col="black") 

### cex is the "character expansion", use this to control text size. The above command 

indicates that the text should be half the default size 

 #Figure B.5 

 

### Placing dots on the map using the locator function 

### “locator” allows you to click anywhere in the graphing window and returns the 

coordinates  

 

### Labeling resistant counties without gene amplification 

### This will create an object called "res" containing coordinates for four spots I 

click on the map just created 

### If not assigned a name(res<- ) the coordinates would be returned in the R console 

window and would not be saved  

res<-locator(4) 

#  X         x        y 

#1 1 -90.60242 40.16232 

#2 2 -89.90328 40.26820 

#3 3 -90.16374 39.71762 

#4 4 -89.43718 38.89175 

 

### Putting points in the places just clicked  

points(x=res$x, y=res$y, # must specify x and y coordinates for each point, here the x 

coordinates will be the column “x” of the object “res” 

pch=21, # the plotting character (?pch) 

col="black", bg="gray70", # specifying the color 

cex=1.4) # character expansion – relative size of each point 
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### Saving the point coordinates as a csv, otherwise these coordinates will be lost 

and I would have to re-click in all the counties again if returning in a different R 

session. Files will be saved in the current working directory. 

setwd("/Volumes/USB20FD/Thesis/Statewide Survey")# setting the working directory first 

write.csv(res,file="respoints.csv",col.names=TRUE) 

 

### Same as above for the other population types 

### Resistant counties w/ gene amplification 

resga<-locator(18) 

points(x=resga$x, y=resga$y, pch=21, col="black", bg="black", cex=1.4) 

 

### I didn't do a very good job clicking and one of my points was a bit off, you can 

index the data set and replace just a specific coordinate without having to re-click 

each county 

# Here the 10th set of coordinates is being changed slightly 

resga$y[10]<-37.25 

resga$x[10]<--89.15 

 

### Saving the dataset 

write.csv(resga,file="resgapoints.csv", col.names=TRUE) 

 

### Sensitive counties 

sen<-locator() 

### If you don't specify a number, you can click as many times as you want and then 

press "esc" to stop 

 

### Fixing a few points 

sen$x[35]<--90.72 

sen$y[35]<-39.32 

 

### Checking them - only plotting a point for coordinate set 35 

points(x=sen$x[35],y=sen$y[35]) 

 

### Plotting all sensitive county points 

points(x=sen$x, y=sen$y,pch=4, col="black",bg="gray100",cex=1.4) 

 

### Saving 

write.csv(sen,file="senpoints.csv", col.names=TRUE) 

 

#### Later, in a different R session #### 

# Because the locations determined using the locator function I the previous session 

were saved as csv files, they can be accessed again 

 

### Loading the maps program 

library(maps) 

 

### Setting the working directory 

setwd("/Volumes/USB20FD/Thesis/Statewide Survey") 

 

### Importing files created during the last session - no county clicking required! 

res<-read.csv("respoints.csv") 

resga<-read.csv("resgapoints.csv") 

sen<-read.csv("senpoints.csv") 

 

### this is what these data sets look like – just like the output from earlier 

### typing the name of an object displays it 

res 

#  X         x        y 

#1 1 -90.60242 40.16232 

#2 2 -89.90328 40.26820 

#3 3 -90.16374 39.71762 

#4 4 -89.43718 38.89175 
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### Coloring specific counties - first list them 

IL<-map("county", regions="illinois", plot=FALSE) 

IL$names 

### This prints a list that looks like: 

#[1] "illinois,adams"     "illinois,alexander" "illinois,bond"      

#[4] "illinois,boone"     "illinois,brown"     "illinois,bureau"   

 

### Based on this list specific counties can be colored 

### First make the starting blank map 

IL<-map("county", regions="illinois", plot=TRUE) 

 

### Soybean fields, numbers come from the list created above 

map("county", 

IL$names[c(1,2,3,5,6,11,13,14,15,20,23,24,25,26,28,29,30,32,33,34,36,37,38,39,41,43,44

,48,50,51,53,54,55,59,60,61,62,63,64,65,66,67,68,69,70,72,73,74,76,77,79,80,81,82,83,8

4,85,87,88,89,91,92,93,94,95,96,97,98,100,101)], fill=TRUE, add=TRUE, col="gray80", 

plot=TRUE) 

 

###Corn fields 

map("county", IL$names[c(7,8,10,21,31,40,46,52,57,75)], fill=TRUE, add=TRUE, 

col="gray50", plot=TRUE) 

#Figure B.6 

 

### For more information on the commands used above: 

?points 

?cex #Character expansion 

?pch #Plotting character 

 

### Now adding the points on top (from the csv files created earlier) 

points(x=res$x[res$X<3], y=res$y[res$X<3], pch=24,.col="black", bg="black", cex=1.0) 

points(x=resga$x, y=resga$y, pch=21, col="black", bg="black", cex=1.2) 

points(x=sen$x, y=sen$y,pch=22, col="black",bg="gray100",cex=1.2) 

 

### I needed to change a few counties to a different color - this is easy to do with 

indexing 

### Morgan county 

points(x=res$x[res$X==3], y=res$y[res$X==3],pch=21, col="black",bg="black",cex=1.2) 

# here a point is being plotted based on coordinates from the “x” column of the “res” 

object, but only when the “X” column of the “res” object is equal to 3. (In other 

words, the third set of coordinates only is being plotted) 
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### Bond county 

points(x=res$x[res$X==4], y=res$y[res$X==4],pch=21, col="black",bg="black",cex=1.2)

#Figure B.7 

 

### I chose to make the legend for figure 2.1 in powerpoint instead of in R, all other 

modifications seen in fig. 2.1 were also made in powerpoint   

 

 

B.3.3 Proportion Bar Graph Code 

### Importing the data set 

### PC 

Prop4<-read.table("G:\\Statewide Survey\\Thesis\\Proportion1.4.txt",header=TRUE) 

### Mac 

Prop4<-read.table("/Volumes/USB20FD/Thesis/Statewide 

Survey/Proportion1.4.txt",header=TRUE) 

 

### Installing and loading ggplot2 (only need to install the first time of use) 

install.packages("ggplot2") 

library(ggplot2) 

 

### ggplot2 is used here to produce a nice looking graph, for more information: 

?ggplot2 

 

### Print the first few lines of the data set 

head(Prop4) 

#  above total      prop    county meancopy 

#1    10    12 0.8333333 Alexander      3.5 

#2     1     7 0.1428571      Bond      1.4 

#3    15    15 1.0000000      Clay      3.4 

#4     4     5 0.8000000   Clinton      6.9 

#5    10    10 1.0000000   Fayette      5.2 

#6     8    10 0.8000000   Jackson      3.4 

 

 

### Making the graph using the data "Prop4" 

### aes (aesthetics) - county is on the x axis and proportion on the y axis 
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### geom_bar() - specifies that a bar graph should be drawn, other options include: 

geom_line(), geom_point, geom_polygon, geom_area, etc. 

ggplot(Prop4, aes(x=county,y=prop)) +  

 geom_bar() 

 #Figure B.8 

 

### For more information: 

?ggplot 

?aes 

?geom_bar  

 

### I want the counties to be ordered by proportion, and then by their mean copy 

number, not alphabetically (the default) 

### I'm defining a new object called "county1", which is ordered  

Prop4$county1<-factor(Prop4$county ,levels=Prop4$county[order(Prop4$prop, 

Prop4$meancopy)]) 

 

 

### Using county1 

ggplot(Prop4, aes(x=county1,y=prop)) +  

 geom_bar() 

#Figure B.9 
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### This doesn't look very nice though 

### Making the graph again, but changing a few settings  

ggplot(Prop4, aes(x=county1,y=prop)) +  

 geom_bar(width=0.75,colour="black",fill="gray",  

 stat="identity", position="dodge")+ # specifying how the bars should be drawn 

 coord_flip()+ # flipping the x and y axis 

 theme_bw()+ # changing the theme to black and white 

 theme(axis.line=element_line(colour="black"), # making axis black instead of gray 

 panel.grid.major=element_blank(), # removing other grid lines 

 panel.grid.minor=element_blank(), 

 panel.border=element_blank(), 

 panel.background=element_blank(), 

 axis.title.x=element_blank(), # removing axis titles 

 axis.title.y=element_blank(), 

 text=element_text(size=15)) # changing text size 

# More information ?ggplot2 

#Figure B.10 

 

 

### Labeling each bar with the mean copy number for that population (using geom_text) 

ggplot(Prop4, aes(x=county1,y=prop)) +  

 geom_bar(width=0.75,colour="black",fill="gray", stat="identity", 

position="dodge")+  

  coord_flip()+ 

 theme_bw()+ 

 theme(axis.line=element_line(colour="black"), 

 panel.grid.major=element_blank(), 

 panel.grid.minor=element_blank(), 

 panel.border=element_blank(), 

 panel.background=element_blank(), 

 axis.title.x=element_blank(), 

 axis.title.y=element_blank(), 

 text=element_text(size=15))+ 

 geom_text(aes(label=meancopy),size=5, hjust=-0.25, vjust=0.5) # applies text 

using the “meancopy” column, can adjust size and location 
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 #Figure B.11 

 

### Adding axis titles  

ggplot(Prop4, aes(x=county1,y=prop)) +  

 geom_bar(width=0.75,colour="black",fill=c("gray"), stat="identity", 

position="dodge")+ 

 coord_flip()+ 

 theme_bw()+ 

 xlab("Counties") + ylab("Proportion With Elevated Copy Number") +  

 theme(axis.line=element_line(colour="black"), 

 panel.grid.major=element_blank(), 

 panel.grid.minor=element_blank(), 

 panel.border=element_blank(), 

 panel.background=element_blank(), 

 text=element_text(size=15))+ 

 geom_text(aes(label=meancopy),size=5, hjust=-0.25, vjust=0.5) 

  

#Figure B.12 

 

 

 

 

3.5

1.4

3.4

6.9

5.2

3.4

3.2

8.6

4.5

3.6

5.5

1.6

3.1

3.4

3.4

6.3

3.1

5.2

3.9

3.9

Mason

Schuyler

Bond

Morgan

Marion

Pulaski

Saline

Lawrence

Union

Jackson

Clinton

Alexander

Massac

Madison

Pope

Moultrie

Johnson

Clay

Washington

Williamson

Fayette

Randolph

0.00 0.25 0.50 0.75 1.00

3.5

1.4

3.4

6.9

5.2

3.4

3.2

8.6

4.5

3.6

5.5

1.6

3.1

3.4

3.4

6.3

3.1

5.2

3.9

3.9

Mason

Schuyler

Bond

Morgan

Marion

Pulaski

Saline

Lawrence

Union

Jackson

Clinton

Alexander

Massac

Madison

Pope

Moultrie

Johnson

Clay

Washington

Williamson

Fayette

Randolph

0.00 0.25 0.50 0.75 1.00

Proportion With Elevated Copy Number

C
o

u
n

ti
e
s



 127 

B.4 Statistical Analysis and Figures Presented in Chapter 3 

 The following sub-sections will include the code used to analyze the data and create the 

figures for the multi-state study presented in Chapter 3. Figure 3.3 was created using Microsoft 

Excel and Powerpoint; its creation is not discussed here. 

 

B.4.1 Multi-State Data Analysis and Bootstrapping 

### Importing the data and naming it "FS13" 

FS13<-read.table("/Volumes/USB20FD/NRES 598/FS13.txt", header=T) 

 

### Examining the data 

summary(FS13) 

#   Treatment          State       Foldchange         Block     

# Min.   :0.000   Illinois: 94   Min.   : 0.388   G      : 34   

# 1st Qu.:0.375   Kansas  : 80   1st Qu.: 1.071   E      : 30   

# Median :0.750   Kentucky: 78   Median : 2.013   F      : 30   

# Mean   :1.109   Missouri: 80   Mean   : 2.520   L      : 25   

# 3rd Qu.:1.500   Nebraska:100   3rd Qu.: 3.410   M      : 25   

# Max.   :3.000                  Max.   :11.507   N      : 25   

#                                                 (Other):263   

 

head(FS13) # Looking at the first few lines of data 

#  Treatment    State Foldchange Block 

#1     0.375 Missouri      0.661     A 

#2     0.375 Missouri      2.726     A 

#3     0.375 Missouri      4.190     A 

#4     0.375 Missouri      3.152     A 

#5     0.375 Missouri      1.327     B 

#6     0.375 Missouri      4.492     B 

 

### Removing the Kentucky Population from the Dataset and calling the new object 

"FS13noKY". The KY population did not have gene amplification.  

FS13noKY <- FS13[FS13$State != "Kentucky",] 

### This can be read as “FS13noKY gets FS13 dataset when the state is NOT Kentucky” 

 

summary(FS13noKY) 

#   Treatment          State       Foldchange         Block     

# Min.   :0.000   Illinois: 94   Min.   : 0.467   G      : 34   

# 1st Qu.:0.375   Kansas  : 80   1st Qu.: 1.523   E      : 30   

# Median :0.750   Kentucky:  0   Median : 2.300   F      : 30   

# Mean   :1.112   Missouri: 80   Mean   : 2.896   L      : 25   

# 3rd Qu.:1.500   Nebraska:100   3rd Qu.: 3.871   M      : 25   

# Max.   :3.000                  Max.   :11.507   N      : 25   

#                                                 (Other):185   

 

### These files have a "block" factor, however I decided not to analyze block because 

there are so many levels (4-5 / location = ~25 different blocks) and it is unlikely 

that there will be a significant difference between blocks as all plots were located 

in the same area of the field.   

 

### Examining the Data 

 

### Getting the RColorBrewer Package, which has pre-made color schemes 

install.packages("RColorBrewer") 
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library(RColorBrewer) 

 

### For more information on RColorBrewer 

?RColorBrewer 

### To see all the color palettes 

display.brewer.all() 

 

### I want to see both of the following boxplots side by side 

par(mfcol = c(1, 2)) 

### This creates a graphing window that allows two graphs side by side, (1 Row, 2 

Columns). Then the code for two graphics can be run at once and they appear in the 

same graphing window 

 

### Boxplot of foldchange by location - all locations and treatments 

boxplot(FS13$Foldchange~FS13$State,  

cex.main=1.5, # change character expansion of title 

cex.axis=1.25, # change character expansion of axis 

col=brewer.pal(5,"Set2"), # color the boxes with 5 colors from the palette called Set2 

in RColorBrewer 

main="EPSPS Relative Fold Change by Location") # setting title 

 

### Boxplot of foldchange by Treatment - all locations and treatments 

boxplot(FS13$Foldchange~FS13$Treatment, cex.main=1.5, cex.lab=1.25,  

cex.axis=1.25,col=brewer.pal(5, "YlOrRd"), # character expansion of various elements 

of the grph and specifying the color scheme to use 

main="EPSPS Relative Fold Change by Treatment", # specifying the main title 

xlab="Glyphosate Rate (lbs a.e. / acre)") # specifying an x axis title 

#Figure B.13 

 

 

### Thed data is not normally distributed, but it is good to run a linear model and 

test the model assumptions anyway 

 

### Running a 2-way anova and calling the model "m1.full". Don't need to use the $, 

the data set to pull from is specified by "data=" in the model 

m1.full<-lm(Foldchange~State+Treatment+State:Treatment, data=FS13) 

 

### Looking at the results 

summary.aov(m1.full) 

#                 Df Sum Sq Mean Sq F value   Pr(>F)     

#State             4  408.7  102.19  43.646  < 2e-16 *** 

#Treatment         1   98.8   98.81  42.204 2.32e-10 *** 
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#State:Treatment   4   87.0   21.74   9.285 3.37e-07 *** 

#Residuals       422  988.0    2.34                      

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

### Plotting the model to visually examine normality and homogeneity of variances 

par(mfcol = c(2, 2)) 

### This creates a graphing window that allows four graphs in a 2 x 2 arrangement 

 

plot(m1.full) 

#Figure B.14 

 

### Making a histogram with to look at the distribution of data (color scheme is just 

to illustrate RColorBrewer schemes) 

hist(FS13$Foldchange, col=brewer.pal(13,"Spectral")) # 13 Colors from the RColorBrewer 

“Spectral” color scheme#Figure B.15 
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### Histograms by state 

par(mfcol = c(1,5)) # Makes a graphing window with 1 row and 5 columns 

hist(FS13$Foldchange[FS13$State=="Illinois"], col=brewer.pal(13, "Spectral"), 

xlab="Illinois", main="") 

hist(FS13$Foldchange[FS13$State=="Missouri"],col=brewer.pal(13,"Spectral"), 

xlab="Missouri", main="") 

hist(FS13$Foldchange[FS13$State=="Kentucky"],col=brewer.pal(13,"Spectral"), 

xlab="Kentucky", main="") 

hist(FS13$Foldchange[FS13$State=="Nebraska"],col=brewer.pal(13,"Spectral"), 

xlab="Nebraska", main="") 

hist(FS13$Foldchange[FS13$State=="Kansas"],col=brewer.pal(13,"Spectral"), 

xlab="Kansas", main="") 

#Figure B.16 

 

 

 

### Running tests to examine normality and homogeneity of variances 

shapiro.test(FS13$Foldchange)  

### p=2.2e-16 

### Data are not normally distributed  

 

m1.full$residuals 

shapiro.test(m1.full$residuals) 

### p=3.223e-14 

### Reject the null, residuals are not normally distributed 

 

bartlett.test(FS13$Foldchange, FS13$State) 

### p=2.2e-16 

### reject null - variances are not equal 

 

bartlett.test(FS13$Foldchange, FS13$Treatment) 

### p=4.919e-06 

### reject null - variances are not equal 

 

### These results suggest that a nonparametric approach is needed to analyze the data 

### A permutation test doesn't assume normality, but does assume similarity of 

variances. This makes fewer assumptions than a linear model though 

 

### Getting lmPerm package 

install.packages("lmPerm") 

library(lmPerm) 

 

### Hypotheses 

### H0= Neither state, treatment nor the interaction between state and treatment has 

an effect on fold change 

### HA= State, treatment and the interaction between state and treatment have an 
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effect on fold change 

 

### Permutation test 

m1perm<-aovp(Foldchange ~ State + Treatment + State:Treatment, data=FS13) 

summary(m1perm) 

#Component 1 : 

#                 Df R Sum Sq R Mean Sq Iter  Pr(Prob)     

#State             4   410.89   102.723 5000 < 2.2e-16 *** 

#Treatment         1    93.85    93.853 5000 < 2.2e-16 *** 

#State:Treatment   4    86.96    21.739 5000 < 2.2e-16 *** 

#Residuals       422   988.00     2.341                    

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

### Reject null - all three have an effect on fold change 

 

### What happens if KY (the clear outlier, with no gene amplification) is removed? 

m2perm<-aovp(Foldchange ~ State + Treatment + State:Treatment, data=FS13noKY) 

summary(m2perm) 

#Component 1 : 

#                 Df R Sum Sq R Mean Sq Iter  Pr(Prob)     

#State             3   131.84    43.947 5000 < 2.2e-16 *** 

#Treatment         1   122.59   122.593 5000 < 2.2e-16 *** 

#State:Treatment   3    63.89    21.297 5000 < 2.2e-16 *** 

#Residuals       346   985.55     2.848                    

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

### Bootstrapping ### 

 

### Bootstrapping the correlation coefficient to look at foldchange by treatment 

### All states combined except Kentucky, at all treatment levels 

 

### Defining a function that calculates the correlation coefficient 

findr<-function(f){ 

 cor(f, FS13noKY$Treatment) 

} 

 

### Determine how many observations there are in the data being used 

length(FS13noKY$Foldchange) 

#354 

 

faker<-numeric() #defining a vector called "faker", will be filled later 

fakedata<-numeric() #defining a vector called "fakedata", will be filled later 

 

### A “For” loop is used here for resampling many times 

### At least 99999 resamples should be used, but this takes a long time, so I used 999 

just to check to see if the code works 

 

for(i in 1:999){ 

 fakedata<-sample(FS13noKY$Foldchange, 354, replace=TRUE) 

 faker[i] <- findr(fakedata) 

} 

 

for(i in 1:99999){  

 fakedata<-sample(FS13noKY$Foldchange, 354, replace=TRUE) 

 faker[i] <- findr(fakedata) 

} 

 

### In each loop, R will resample 354 times with replacement from the specified data 

set to create a new resampled fake data set called "fakedata". Then R will determine 

the correlation coefficient for the fake data set. These fake r’s from each fake data 
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set will be stored in the “faker” vector. After completion of all loops, the "faker" 

vector will contain 999 r values, or 99999 r values (depending on how many times the 

loop is run) 

 

 

 

### Visualizing the distribution of fake r's with a histogram 

hist(faker) 

#Figure B.17 

 

 

### Finding r value in the original (real) data set. This is done two ways below – 

first with the cor function and then with the function I defined earlier. 

cor(FS13noKY$Foldchange, FS13noKY$Treatment) 

#[1] 0.3040766 

findr(FS13noKY$Foldchange) 

#[1] 0.3040766 

 

### How many times do we see an r value of 0.3040766 by chance alone? (How many times 

is an r value of this or larger observed in the distribution of fake r values? You can 

predict that the number will be pretty small given the histogram above since there 

aren’t many values past this point on the graph) 

sum(faker>0.3040766) 

#[1] 0 

 

### To calculate the P-value (this is why using 1 less than a round number makes 

things easy) 

(0+1)/(99999+1) 

#[1] 1e-05 

### According to this - gene amplification is associated with glyphosate resistance in 

waterhemp 

 

### Bootstrapping correlation coefficient to look at foldchange by treatment 

### Using all states combined except Kentucky, at treatments > 0 

### From 0 to 0.375 is really more of a categorical factor - no glyphosate compared to 

glyphosate treatment. By taking out the 0 rate I can learn more about the 

realationship between EPSPS foldchange and resistance 

### If the p value is no longer significant, this suggests that the relationship is 

qualitative (for example: populations in which gene amplification is associated with 

resistance but applying glyphosate at a higher rate does not select for higher copy 

number plants. (A plant with 3 copies will have the same fitness as a plant with 10 

copies under 4x glyphosate application) 
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### If the p value is still significant, this suggests that the relationship between 

EPSPS fold change and glyphosate resistance is quantitative in nature (for example: 
populations in which gene amplification is associated with resistance and higher rates 

select for plants with increasingly higher EPSPS copy number. (A plant with 3 copies 

will have lower fitness than a plant with 10 copies under 4x glyphosate application) 

 

### Defining new vectors that don't include the 0 treatment 

foldc<-c(FS13noKY$Foldchange[FS13noKY$Treatment>0]) 

treat<-c(FS13noKY$Treatment[FS13noKY$Treatment>0]) 

state<-c(FS13noKY$State[FS13noKY$Treatment>0]) 

 

### The difference in the data sets can be seen in the boxplots 

par(mfcol = c(1, 2)) 

### Boxplot showing foldchange by treatment for all states but KY, and all treatments 

boxplot(FS13noKY$Foldchange~FS13noKY$Treatment,  

col=brewer.pal(5,"YlGn"), #color boxes with 5 colors from the YlGn palette in 

RColorBrewer 

ylab="Fold change") #specify y axis label 

### Boxplot showing foldchange by treatment for all states but KY, and all treatments 

except 0 

boxplot(foldc~treat, 

col=brewer.pal(5,"RdPu"), #color boxes with 5 colors drawn from the RdPu palette in 

RColorBrewer 

ylab="Fold change") #specify y axis label 

#Figure B.18 

 

### Defining function again to find r using treatment values without 0x as the x  

findrnew<-function(f){ 

 cor(f, treat) 

} 

 

### Determine the length of the new data set 

length(foldc) 

#280 

 

faker1<-numeric() # defining new vectors for this round of boostrapping 

fakedata1<-numeric() 

 

for(i in 1:999){ 

 fakedata1<-sample(foldc, 280, replace=TRUE) 

 faker1[i] <- findrnew(fakedata1) 

} 
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for(i in 1:99999){ 

 fakedata1<-sample(foldc, 280, replace=TRUE) 

 faker1[i] <- findrnew(fakedata1) 

} 

 

### Looking at the distribution of fake r1 values 

hist(faker1) 

#Figure B.19 

 

### Finding the correlation coefficient for the original data set (w/o) the 0x 

glyphosate treatment 

findrnew(foldc) 

cor(foldc, treat) 

#[1] 0.1951253 

 

### How many times do we see an r1 of 0.1951253 by chance alone? (How many times is an 

r1 value of this or larger observed in the distribution of fake r1 values? Based on 

the histogram above, it looks there are a few fake r1 values above 0.19, but not very 

many) 

sum(faker1>0.1951253) 

#[1] 69 

 

### Calculating the p-value 

(69+1)/(99999+1) 

#[1] 7e-04 

 

### According to this, the relationship between glyphosate rate and relative EPSPS 

copy number is quantitative in nature. Copy number increases with increasing rate. 

### This bootstrapping can also be performed individually for each location to look at 

the relationship at specific locations (not shown) 

 

B.4.2 Map of Study Sites Code 

### Installing and Loading the maps package 

install.packages("maps") #only need to do this once 

library(maps) 

 

### Making a map of the states where dose responses were performed and calling it 

"multi" 

multi<-map('state', regions=c("illinois", "kansas","kentucky","missouri","nebraska", 
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"iowa")) 

#Figure B.20 

 

 

### Print the names associated with this map so I can refer to them later 

multi$names 

head(multi$names) # viewing just the first few in this list  

#[1] "illinois,adams"     "illinois,alexander" "illinois,bond"      

#[4] "illinois,boone"     "illinois,brown"     "illinois,bureau"   

 

### Making a map of the counties and coloring the ones were studies were performed 

multi<-map("county", regions=c("illinois", "kansas","kentucky","missouri","nebraska", 

"iowa")) 

map("county", multi$names[c(21,142,231,352,514,568)], #these numbers refer to those in 

the list made using "multi$names" 

fill=TRUE, add=TRUE, col="red", plot=TRUE) 

#Figure B.21 

 

### I want some frame of reference (mapping surrounding states) and I don't want all 

the counties drawn on the map 

### Mapping more counties 

map(database="state", 

regions=c("missouri","illinois","kansas","illinois","iowa","kentucky","nebraska","arka

nsas","indiana","south 

dakota","colorado","wyoming","tennessee","oklahoma","minnesota","wisconsin","ohio","mi

chigan","west virginia","virginia","north carolina"))
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#Figure B.22 

 

 

### Coloring specific counties 

map(database="state", 

regions=c("missouri","illinois","kansas","illinois","iowa","kentucky","nebraska","arka

nsas","indiana","south 

dakota","colorado","wyoming","tennessee","oklahoma","minnesota","wisconsin","ohio","mi

chigan","west virginia","virginia","north carolina")) 

map(database="county", 

regions=c("nebraska,dodge","illinois,douglas","kansas,franklin","kentucky,hancock","mi

ssouri,randolph","iowa,hamilton"), add=TRUE, fill=TRUE, col="red") 

#Figure B.23 

 

 

 

### Adding the names of each state to the map 

### To be sure that the text doesn't overlap the highlighted counties, use the locator 

tool - this will allow you to click any where in the graphing window and R will record 

the coordinates. Then text can be placed at those coordinates. 

### Here the coordinates are saved in an object called "locs"  

locs<-locator(6) #Must have the map open in the graphing window for this, curser will 

become a "+" in the graphing window. This will allow 6 clicks. 

 

### For unlimited clicks: 

locator() # Click as many times as needed, then press esc 

 

locs 

#$x 
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#[1] -89.41010 -93.76665 -98.83935 -85.47130 -92.33436 -99.85388 

# 

#$y 

#[1] 40.71604 41.61870 38.54963 37.19563 37.73723 41.57357 

 

### Saving these coordinates to a file so I can access them in future R sessions 

write.csv(locs,file="locs.csv",col.names=TRUE) 

 

### Reading the file back in later 

locs<-read.csv("/Volumes/USB20FD/Thesis/Multi-state/locs.csv") 

 

### Adding text to the map 

### Labels will be applied to the map in the order that the states were clicked on. I 

clicked on the states alphabetically 

text(locs$x, locs$y, 

labels=c("Illinois","Iowa","Kansas","Kentucky","Missouri","Nebraska")) 

 

#Figure B.24 

 

### This map was further edited in powerpoint to create the figure seen in Chapter 3 

 

B.4.3 Percent Control Ratings Plot Code 

### Importing the data and calling it "field" 

field<-read.table("/Volumes/USB20FD/Thesis/Multi-state/Field control data.txt", 

header=T) 

 

head(field) 

#     State  Rate Pcontrol 

#1 Illinois 0.000     0.00 

#2 Illinois 0.375    46.53 

#3 Illinois 0.750    61.48 

#4 Illinois 1.500    75.97 

#5 Illinois 3.000    91.51 

#6   Kansas 0.000     0.00 

 

### The rates are not metric - making a column within the “field” data set that 

contains all rates in metric 

field$RateM<-field$Rate*1120 

Illinois
Iowa

Kansas

Kentucky
Missouri

Nebraska
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### Now the data set has another column called RateM 

head(field) #viewing the first few rows 

#     State  Rate Pcontrol RateM 

#1 Illinois 0.000     0.00     0 

#2 Illinois 0.375    46.53   420 

#3 Illinois 0.750    61.48   840 

#4 Illinois 1.500    75.97  1680 

#5 Illinois 3.000    91.51  3360 

#6   Kansas 0.000     0.00     0 

 

### Making the graph 

par(mar=c(5,5,1,1)) # This changes the margins, par(mar=c(bottom, left, top, right)) 

 

### I use the interaction plot here just because it was easier for me to plot all 5 

states. This function plots the mean, but I only have 1 value for each state and rate. 

interaction.plot(field$RateM, field$State, field$Pcontrol) 

 
 

#Figure B.25 

### Changing some of the graphing parameters 

interaction.plot(field$RateM, field$State, field$Pcontrol, # plots the different 

states percent control values with increasing rate 

 cex.axis=1.6, # character expansion of the axis 

 type="b", # plots both lines and points (default is line only) 

 pch=c(15, 16, 17, 18, 8), # plotting character ?pch for options 

 cex.lab=1.6, # character expansion of the labels 

 lty=1, lwd=2, # line type and line width 

 legend=FALSE, # interaction.plot automatically makes a legend, but I want to make 

my own, default is legend=TRUE 

 ylab="Average Percent Control", 

 cex=1.5, # character expansion 

 xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1})), # this creates an exponent  

 ylim=c(0,100)) # changing the y axis range 
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 #Figure B.26 

 

### Adding a legend 

 

### Using locator to obtain coordinates on the graph where clicked 

locator(1) # allows one click on the graph made above and returns coordinates 

#$x 

#[1] 0.7393636 

# 

#$y 

#[1] 102.3467 

 

### Making the legend and placing it where I just clicked 

legend(0.7393636, 102.3467,  

legend=c("Illinois", "Kansas","Kentucky", "Missouri", "Nebraska"), # text listed in 

the legend 

cex=1.5, lwd=2, lty=1, pch=c(15, 16, 17, 18, 8)) # these paramaters should be exactly 

the same as those in the code used to make the graph 

 #Figure B.27 
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### I still haven't heard back from Nebraska about their percent control ratings - I 

put 0's in as placeholders originally, but now I want to remove this line since I 

don't have the correct values 

 

### Removing Nebraska - code is almost exactly the same 

par(mar=c(5,5,1,1)) 

interaction.plot(field$RateM[field$State!="Nebraska"], 

field$State[field$Stateo!="Nebraska"], field$Pcontrol[field$State!="Nebraska"],  

# indexing to plot all but Nebraska, field$RateM[field$Stateo!="Nebraska"] refers to 

"object RateM when the corresponding state is anything but Nebraska 

 cex.axis=1.6, type="b", pch=c(15, 16, 17, 18), #deleted the pch for Nebraska 

 cex.lab=1.6, lty=1, lwd=2, legend=FALSE, ylab="Average Percent Control", 

 cex=1.5, xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1})), ylim=c(0,100))  

legend(0.7393636, 102.3467, legend=c("Illinois", "Kansas","Kentucky", "Missouri"),  

cex=1.5, lwd=2, lty=1, pch=c(15, 16, 17, 18, 8))  

#Figure B.28 

 

B.4.4 Code For Figure 3.4 –Boxplots, Interaction Plots, and Violin Plots 

### Importing the data and calling it "FS13" 

FS13<-read.table("/Volumes/USB20FD/NRES 598/FS13.txt", header=T) 

 

### Examining the first few rows to see format and headings 

head(FS13) 

#  Treatment    State Foldchange Block 

#1     0.375 Missouri      0.661     A 

#2     0.375 Missouri      2.726     A 

#3     0.375 Missouri      4.190     A 

#4     0.375 Missouri      3.152     A 

#5     0.375 Missouri      1.327     B 

#6     0.375 Missouri      4.492     B 

 

### The rates aren't metric - adding another column to the data set with metric rates 

FS13$TreatmentM<-FS13$Treatment*1120 

head(FS13) 

#  Treatment    State Foldchange Block TreatmentM 

#1     0.375 Missouri      0.661     A        420 

#2     0.375 Missouri      2.726     A        420 

#3     0.375 Missouri      4.190     A        420 

#4     0.375 Missouri      3.152     A        420 

#5     0.375 Missouri      1.327     B        420 

#6     0.375 Missouri      4.492     B        420 
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### Making an interaction plot to see how the states behave at each rate 

par(mar=c(5,5,1,1)) #Changing the margins to allow for more room on the bottom and 

left side 

interaction.plot(FS13$TreatmentM, FS13$State, FS13$Foldchange,  

 fun=median, #plot using the function median (default is mean) 

 cex.axis=1.6, #character expansion of the axis 

 type="b", #type = both - plot both points and lines 

 cex.lab=1.6, #character expansion of the labels 

 lty=1, #line type 

 lwd=2, #line width 

 legend=FALSE, #default is TRUE, doing this so a legend can be added separatlely  

 ylab="Median Relative EPSPS Copy Number", #labeling the y axis 

 cex=1.5, #character expansion 

 pch=c(15, 16, 17, 18, 8), #plotting character 

 xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1})), #labeling the x axis using 

an exponent 

 ylim=c(0,5)) #setting the min and max for the y axis 

#Figure B.29 

 

### Adding a legend 

 

### Using locator to find the coordinates of a spot clicked in the graphing window 

locator(1) # Allows 1 click in the graphing window and returns coordinates 

#$x 

#[1] 0.7240777 

# 

#$y 

#[1] 5.151097 

 

### Putting the legend in the spot just clicked 

legend(0.7240777, 5.151097,  

legend=c("Illinois", "Kansas","Kentucky", "Missouri", "Nebraska"), 

cex=1.4, lwd=2, lty=1, pch=c(15, 16, 17, 18, 8)) # parameters in the legend should 

match those used to make the graph 

0
1

2
3

4
5

Glyphosate Rate (g ae ha
-1)

M
e
d

ia
n
 R

e
la

ti
v
e
 E

P
S

P
S

 C
o

p
y
 N

u
m

b
e
r

0 420 840 1680 3360



 142 

#Figure B.30 

 

 

### Making a boxplot - by state  

par(mar=c(5,5,1,1)) # setting margins 

boxplot(FS13$Foldchange~FS13$State, # making a boxplot showing copy number 

distributions of each state 

col=c("gray35"), # specifying color 

cex.main=1.5, cex.lab=1.4,cex.axis=1.4, # changing the character expansion 

xaxt="n", # removing the x axis, by default the full state names are displayed (what 

is in the data set), but they dont all fit on the x axis so I'll add my own names. 

ylab="Relative EPSPS Copy Number") # labeling the y axis 

 

# Adding x axis labels 

axis(1, at=1:5, labels=c("IL", "KS", "KY", "MO", "NE"), cex.axis=1.4) 

#Figure B.31 

 

### Making a boxplot with treatments - very similar to above 

par(mar=c(5,5,1,1))  

boxplot(FS13$Foldchange[FS13$State!="Kentucky"]~FS13$TreatmentM[FS13$State!="Kentucky"

],# showing the distribution of copy numbers at each rate, while removing all 

observations from Kentucky (Kentucky didn't have EPSPS gene amplification) 
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 col=c("gray35"), 

cex.main=1.5, cex.lab=1.4,cex.axis=1.4, 

ylab="Relative EPSPS Copy Number",  

xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1}))) 

#Figure B.32 

 

### Making Violin plots - These combine a boxplot with a kernal density plot 

 

### Installing and loading vioplot 

install.packages("vioplot") 

library(vioplot) 

 

### For more information on vioplot 

?vioplot 

 

### Making a violin plot 

vioplot(FS13$Foldchange, col="gray") 

### this only plots 1, not a different one for each state - to add all 5 a plot needs 

to first be called and then violin plots for each state can be added  

#Figure B.33 
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### Setting up the plotting window 

par(mar=c(5,5,1,1)) # setting the plot margins to allow more room on the bottom and 

side (order is(bottom, left, top, right)) 

plot(1,1, # will plot the point (1,1) 

xlim=c(0.5,5.5), # I'm going to have 5 states - this range will leave a little bit of 

extra space on each side 

ylim=range(FS13$Foldchange), # not sure what the y axis range should be, R can do that 

for me by telling it that the y axis should be the range of the foldchange values 

ylab="Relative EPSPS Copy Number", # labeling the y axis 

xlab="", # I don't want an xaxis, but R puts one by default - this prevents that 

xaxt="n", # This removes the x axis - I'll label it myself with the state 

abbreviations 

type="n", # There doesn't actually need to be a point at (1,1) - the purpose of this 

plot is just to make the plotting window. type="n" means nothing is actually plotted 

cex.main=1.5, # character expansion of main title 

cex.lab=1.4, # character expansion of labels 

cex.axis=1.4) # character expansion of axis 

#Figure B.34 

### Adding my own x axis labels, R would use what is in the data by default which is 

the full state name (These don’t fit very well.) 

axis(1, at=1:5, # place the labels where 1, 2, 3, 4, and 5 would have been 

labels=c("IL", "KS", "KY", "MO", "NE"), # specifying my labels 

cex.axis=1.4) #character expansion 

#Figure B.35 

 

### Now adding the violin plots for each state - must add these individually 

vioplot(FS13$Foldchange[FS13$State=="Illinois"], # plotting the foldchange 

distribution when the state is Illinois 

col="gray80", # color of kernal density plot 
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add=TRUE, # specify TRUE so that it can be added to the previously made plot window 

at=1, # add this plot where 1 would have been on the x axis 

rectCol="gray35") # color of the boxplot inside the density plot 

 

### Same, but with the other states 

vioplot(FS13$Foldchange[FS13$State=="Kansas"], col="gray80", add=TRUE, at=2, 

rectCol="gray35") 

vioplot(FS13$Foldchange[FS13$State=="Kentucky"], col="gray80", add=TRUE, at=3, 

rectCol="gray35") 

vioplot(FS13$Foldchange[FS13$State=="Missouri"], col="gray80", add=TRUE, at=4, 

rectCol="gray35") 

vioplot(FS13$Foldchange[FS13$State=="Nebraska"], col="gray80", add=TRUE, at=5, 

rectCol="gray35") 

#Figure B.36 

 

### I didn't like the dots in the middle of the boxplots - they don't look like 

typical boxplots. I also didn't like how thin they were. With the help of Google 

search I found something called "Vioplot2" - an updated code from Daniel Adler (author 

of vioplot) that allows lines at the median points instead of dots, and allows 

plotting the kernal density plot on a single side (code for vioplot2 available: 

https://gist.githubusercontent.com/mbjoseph/5852613/raw/eb6dbf8d79fc69982b6e45a72177d7

3dc549ecb3/vioplot2) 

 

### I just slightly altered this code to change the width of my boxplots (my 

alterations are marked with comments) 

vioplot2 <- function (x, ..., range = 1.5, h = NULL, ylim = NULL, names = NULL,  

                      horizontal = FALSE, col = "magenta", border = "black", lty = 1,  

                      lwd = 1, rectCol = "black", colMed = "white", pchMed = 19,  

                      at, add = FALSE, wex = 1, drawRect = TRUE, side="both")  

{ 

  datas <- list(x, ...) 

  n <- length(datas) 

  if (missing(at))  

    at <- 1:n 

  upper <- vector(mode = "numeric", length = n) 

  lower <- vector(mode = "numeric", length = n) 

  q1 <- vector(mode = "numeric", length = n) 

  q2 <- vector(mode = "numeric", length = n) 

  q3 <- vector(mode = "numeric", length = n) 

  med <- vector(mode = "numeric", length = n) 

  base <- vector(mode = "list", length = n) 

  height <- vector(mode = "list", length = n) 

  baserange <- c(Inf, -Inf) 
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  args <- list(display = "none") 

  radj <- ifelse(side == "right", 0, 1) 

  ladj <- ifelse(side == "left", 0, 1) 

  if (!(is.null(h)))  

    args <- c(args, h = h) 

  med.dens <- rep(NA, n) 

  for (i in 1:n) { 

    data <- datas[[i]] 

    data.min <- min(data) 

    data.max <- max(data) 

    q1[i] <- quantile(data, 0.25) 

    q2[i] <- quantile(data, 0.5) 

    q3[i] <- quantile(data, 0.75) 

    med[i] <- median(data) 

    iqd <- q3[i] - q1[i] 

    upper[i] <- min(q3[i] + range * iqd, data.max) 

    lower[i] <- max(q1[i] - range * iqd, data.min) 

    est.xlim <- c(min(lower[i], data.min), max(upper[i],  

                                               data.max)) 

    smout <- do.call("sm.density", c(list(data, xlim = est.xlim),  

                                     args)) 

    med.dat <- do.call("sm.density",  

                           c(list(data, xlim=est.xlim, 

                              eval.points=med[i], display = "none"))) 

    med.dens[i] <- med.dat$estimate 

    hscale <- 0.4/max(smout$estimate) * wex 

    base[[i]] <- smout$eval.points 

    height[[i]] <- smout$estimate * hscale 

    med.dens[i] <- med.dens[i] * hscale 

    t <- range(base[[i]]) 

    baserange[1] <- min(baserange[1], t[1]) 

    baserange[2] <- max(baserange[2], t[2]) 

  } 

  if (!add) { 

    xlim <- if (n == 1)  

      at + c(-0.5, 0.5) 

    else range(at) + min(diff(at))/2 * c(-1, 1) 

    if (is.null(ylim)) { 

      ylim <- baserange 

    } 

  } 

  if (is.null(names)) { 

    label <- 1:n 

  } 

  else { 

    label <- names 

  } 

  boxwidth <- 0.25 * wex # changed 0.05 to 0.25 to increase the width of the boxplots 

  if (!add)  

    plot.new() 

  if (!horizontal) { 

    if (!add) { 

      plot.window(xlim = xlim, ylim = ylim) 

      axis(2) 

      axis(1, at = at, label = label) 

    } 

    box() 

    for (i in 1:n) { 

      polygon(x = c(at[i] - radj*height[[i]], rev(at[i] + ladj*height[[i]])),  

              y = c(base[[i]], rev(base[[i]])), 

              col = col, border = border,  

              lty = lty, lwd = lwd) 

      if (drawRect) { 
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        lines(at[c(i, i)], c(lower[i], upper[i]), lwd = lwd,  

              lty = lty) 

        rect(at[i] - radj*boxwidth/2,  

             q1[i],  

             at[i] + ladj*boxwidth/2,  

             q3[i], col = rectCol) 

        # median line segment 

       lines(x = c(at[i] - 0.5*boxwidth, # changed this so that median lines only 

extend the width of the boxplot 

                at[i],  

             at[i] + 0.5*boxwidth[i]), # changed this so that median lines only extend 

the width of the boxplot  

 

                      y = rep(med[i],3)) 

      } 

    } 

  } 

  else { 

    if (!add) { 

      plot.window(xlim = ylim, ylim = xlim) 

      axis(1) 

      axis(2, at = at, label = label) 

    } 

    box() 

    for (i in 1:n) { 

      polygon(c(base[[i]], rev(base[[i]])),  

              c(at[i] - radj*height[[i]], rev(at[i] + ladj*height[[i]])),  

              col = col, border = border,  

              lty = lty, lwd = lwd) 

      if (drawRect) { 

        lines(c(lower[i], upper[i]), at[c(i, i)], lwd = lwd,  

              lty = lty) 

        rect(q1[i], at[i] - radj*boxwidth/2, q3[i], at[i] +  

               ladj*boxwidth/2, col = rectCol) 

        lines(y = c(at[i] - radj*med.dens[i],  

                    at[i],  

                    at[i] + ladj*med.dens[i]), 

              x = rep(med[i],3)) 

      } 

    } 

  } 

  invisible(list(upper = upper, lower = lower, median = med,  

                 q1 = q1, q3 = q3)) 

} 

 

 

### Now I can make the violin plots again using "vioplot2" instead of "vioplot" 

 

### Calling a plotting window 

par(mar=c(5,5,1,1))  

plot(1,1,xlim=c(0.5,5.5), ylim=range(FS13$Foldchange), ylab="Relative EPSPS Copy 

Number", xlab="", xaxt="n", type="n", cex.main=1.5, cex.lab=1.4, cex.axis=1.4)  

 

### Adding my own x axis labels 

axis(1, at=1:5, labels=c("IL", "KS", "KY", "MO", "NE"), cex.axis=1.4) 

 

### Now adding the violin plots for each state - must add these individually 

vioplot2(FS13$Foldchange[FS13$State=="Illinois"], col="gray80", add=TRUE, at=1, 

rectCol="gray35")  

vioplot2(FS13$Foldchange[FS13$State=="Kansas"], col="gray80", add=TRUE, at=2, 

rectCol="gray35") 

vioplot2(FS13$Foldchange[FS13$State=="Kentucky"], col="gray80", add=TRUE, at=3, 

rectCol="gray35") 
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vioplot2(FS13$Foldchange[FS13$State=="Missouri"], col="gray80", add=TRUE, at=4, 

rectCol="gray35") 

vioplot2(FS13$Foldchange[FS13$State=="Nebraska"], col="gray80", add=TRUE, at=5, 

rectCol="gray35") 

#Figure B.37 

 

### Violin plots of copy number by rate 

### This is almost exactly the same as previous, but now I've excluded KY 

 

### Making a new data set without KY and converting the treatment rates to metric 

FS13noKY <- FS13[FS13$State != "Kentucky",] 

FS13noKY$TreatmentM<-FS13noKY$Treatment*1120 

 

par(mar=c(5,5,1,1))  

plot(1,1, xlim=c(0.5,5.5), ylim=range(FS13$Foldchange), ylab="Relative EPSPS Copy 

Number", xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1})),xaxt="n", 

type="n",cex.main=1.5, cex.lab=1.4,cex.axis=1.4) 

axis(1, at=1:5, labels=c("0", "420", "840", "1680", "3360"), cex.axis=1.4) 

vioplot2(FS13noKY$Foldchange[FS13noKY$TreatmentM==0], col="gray80", add=TRUE, at=1, 

rectCol="gray35") 

vioplot2(FS13noKY$Foldchange[FS13noKY$TreatmentM==420], col="gray80", add=TRUE, at=2, 

rectCol="gray35") 

vioplot2(FS13noKY$Foldchange[FS13noKY$TreatmentM==840], col="gray80", add=TRUE, at=3, 

rectCol="gray35") 

vioplot2(FS13noKY$Foldchange[FS13noKY$TreatmentM==1680], col="gray80", add=TRUE, at=4, 

rectCol="gray35") 

vioplot2(FS13noKY$Foldchange[FS13noKY$TreatmentM==3360], col="gray80", add=TRUE, at=5, 

rectCol="gray35") 
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#Figure B.38 

 

 

B.4.5 Stacked Bar Graph of Pro106Ser Percentages 

### Importing the data and calling it "ProSer" 

ProSer<-read.table("/Volumes/USB20FD/NRES 598/ProSerPercentages.txt", header=T) 

 

### Installing and loading ggplot 

install.packages("ggplot2") #only need to do this once per R program 

library(ggplot2) 

 

### Looking at the first few rows of the data 

head(ProSer) 

#  treatment genotype percent 

#1        0x       PP   31.25 

#2        0x       SP   62.50 

#3        0x       SS    6.25 

#4      0.5x       PP   18.75 

#5      0.5x       SP   50.00 

#6      0.5x       SS   31.25 

 

### The treatment values aren't metric, this adds a column to the data set with the 

appropriate rates 

ProSer$treatmentM<-c(0,0,0,420,420,420,840,840,840,1680,1680,1680,3360,3360,3360) 

 

### Making the graph 

ggplot(data=ProSer, aes(x=treatmentM, y=percent))+ # Specifying what data set to use, 

and defining x and y axes 

geom_bar(aes(fill=genotype), stat="identity") # using a bar graph geometry 

(?geom_bar), and plotting bars filled based on genotype (this is what makes the graph 

stacked - there are multiple categories (PP, SP, SS) for each treatment) 
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#Figure B.39 

 

### I want to remove the spaces between the bars - there is space because the x axis 

is numeric: 

class(ProSer$treatmentM) 

#[1] "numeric" 

 

### To make ProSer$treatmentM a factor 

ProSer$treatmentM<-as.factor(ProSer$treatmentM) 

class(ProSer$treatmentM) 

#[1] "factor" 

 

### Plotting again 

ggplot(data=ProSer, aes(x=treatmentM, 

y=percent))+geom_bar(aes(fill=genotype),stat="identity")  

#Figure B.40 

 

### Changing some of the parameters 

ggplot(data=ProSer, aes(x=treatmentM, y=percent)) +  

geom_bar(aes(fill=genotype), stat="identity") +   

 xlab(expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1}))) + # Labeling the x axis 

 ylab("Percentage of Population")+ # Labeling the y axis 
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 scale_fill_brewer(palette="Greys") + # Using the gray palette from RColorBrewer 

 theme(plot.background=element_rect(fill="white"),  

 panel.background=element_rect(fill="white"), # Making background white 

 axis.text=element_text(colour="black"), # Making axis text black 

 text=element_text(size=20),# Changing font size  

 legend.position="bottom", # Positioning legend under graph 

 legend.title=element_blank()) # Remove legend title  

 #Figure B.41 

 

### I want to outline the bars, but not the legend 

### This makes the same graph as above 

ggplot(data=ProSer, aes(x=treatmentM, y=percent)) +  

geom_bar(aes(fill=genotype), stat="identity") +   

 xlab(expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1}))) +  

 ylab("Percentage of Population")+  

 scale_fill_brewer(palette="Greys") + 

 theme(plot.background=element_rect(fill="white"),  

 panel.background=element_rect(fill="white"),  

 axis.text=element_text(colour="black"),  

 text=element_text(size=20),  

 legend.position="bottom",  

 legend.title=element_blank()) +  

### This plots another graph over the top 

 geom_bar(aes(fill=genotype), stat="identity",  

 colour=c("black"), # with black outline 

 show_guide=FALSE) # and no legend (the legend from the above code remains) 

### ggplot2 for some reason puts a black slash through the boxes in the legend if the 

black outline is specified. I further edited this figure in powerpoint to add simple 

black boxes around the legend colors. 
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#Figure B.42 

 

  

B.5 Statistical Analysis and Figures Presented in Chapter 4 

 The following will contain the R code used to analyze the data and create the figures 

presented in Chapter 4. Much of this is modified from code provided by Dr. Adam Davis.   

 

B.5.1 Analysis of Dose Response Data and Creation of Dose Response Curves 

### Importing the combined data from both runs and calling it "DRcomb" 

DRcomb<-read.table("/Volumes/USB20FD/R/Dose Response - BCG/BCG-combined.txt", 

header=T) 

 

# Looking at the first few lines of the data 

head(DRcomb) 

#  INDEX Run REP Popn  Dose DryWt PcontrolD PcontrolD1 PcontrolV PcontrolV1 

#1     1   1   1  ACR   0.0  4.21 79.584121 0.79584121       100        1.0 

#2     2   1   1  ACR  52.5  2.83 53.497164 0.53497165        80        0.8 

#3     3   1   1  ACR 105.0  0.29  5.482042 0.05482042         0        0.0 

#4     4   1   1  ACR 210.0  0.56 10.586011 0.10586011        40        0.4 

#5     5   1   1  ACR 420.0  0.29  5.482042 0.05482042         0        0.0 

#6     6   1   1  ACR 840.0  0.12  2.268431 0.02268431         0        0.0 

 

### Determining whether the runs can actually be combined 

 

### Running a two-way anova (and naming the model "m1") to determine whether 

population, run or the interaction effect between them have a significant effect on 

the percent control data (based on dry weight) 

m1<-lm(DryWt~Popn+Run+ Popn:Run, data=DRcomb) 

 

### View the results 

summary.aov(m1) 

#             Df Sum Sq Mean Sq F value   Pr(>F)     

#Popn          4    354   88.53  12.535 8.03e-10 *** 
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#Run           1     25   25.20   3.568   0.0594 .   

#Popn:Run      4     53   13.34   1.888   0.1108     

#Residuals   636   4492    7.06                      

#--- 

#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

### There is no significant interaction effect between run and population - this means 

that the populations are behaving similarly across runs and the data from runs can be 

combined 

 

### Making an interaction plot to examine how each population behaves from run to run 

par(mar=c(5,5,5,10)) # setting the margins so I have room to put a legend on the right 

side 

interaction.plot(DRcomb$Run, DRcomb$Popn, DRcomb$DryWt,  

 col=c(1:5), # specify colors (5 default colors) 

 lty=1, lwd=3, # line type and line width 

 legend=FALSE, # prevents legend from being made, it can be made later with the 

legend command 

 ylab="median of DryWt", # labeling the y axis 

 xlab="Run", # labeling the x axis 

 cex=1.2) # character expansion 

 

### Adding the legend 

locator(1) # this allows you to click anywhere in the graphing window once - then R 

returns 1 set of x,y coordinates. locator() allows unlimited clicking, press esc to 

quit 

#$x 

#[1] 2.223273 

# 

#$y 

#[1] 3.223943 

par(xpd=TRUE) # allows plotting outside the plot area 

legend(2.223273,3.223942, # plotting the legend where just clicked 

legend=c("ACR", "MO1", "PP", "SP", "SS"), # text to go in the legend 

 lty=1, lwd=3, col=c(1:5), cex=1.2) # same parameters as above in plot so legend 

matches 

#Figure B.43 

 

### Installing and loading the drc package for analyzing dose responses 

install.packages("drc") # This only needs to be done once per R program 

library(drc)  
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### Creating the dose response model - four parameter log logistic model 

drcomb.m.dry<-drm(PcontrolD~Dose, Popn, data=DRcomb, 

fct=LL.4(names=c("b","lower","upper","ed50"))) 

 

### Viewing a summary of the model 

summary(drcomb.m.dry) 

#Model fitted: Log-logistic (ED50 as parameter) (4 parms) 

# 

#Parameter estimates: 

# 

#          Estimate Std. Error   t-value p-value 

#b:ACR       1.93448    0.47064   4.11035  0.0000 

#b:MO1       1.82483    0.45289   4.02931  0.0001 

#b:PP        1.61304    0.37223   4.33343  0.0000 

#b:SP        1.89887    0.26046   7.29045  0.0000 

#b:SS        2.41384    0.37282   6.47458  0.0000 

#lower:ACR   5.80290    3.88708   1.49287  0.1360 

#lower:MO1   7.98860    5.87935   1.35876  0.1747 

#lower:PP    5.18688    3.28588   1.57853  0.1149 

#lower:SP    8.00204    2.90527   2.75432  0.0061 

#lower:SS   13.93422    3.64134   3.82667  0.0001 

#upper:ACR 100.06113    5.57559  17.94627  0.0000 

#upper:MO1 100.78784    5.16477  19.51450  0.0000 

#upper:PP   97.57886    6.06948  16.07696  0.0000 

#upper:SP  105.21750    2.81003  37.44348  0.0000 

#upper:SS  111.43477    2.74212  40.63819  0.0000 

#ed50:ACR   72.59118    9.20860   7.88297  0.0000 

#ed50:MO1  660.42120   98.83000   6.68240  0.0000 

#ed50:PP   138.04746   21.56811   6.40054  0.0000 

#ed50:SP   327.90975   29.18373  11.23605  0.0000 

#ed50:SS   481.12970   44.25023  10.87293  0.0000 

# 

#Residual standard error: 

# 

#19.38802 (626 degrees of freedom) 

 

### Doing the same thing for the visual data 

drcomb.m.vis<-drm(DRcomb$PcontrolV~DRcomb$Dose, DRcomb$Popn, data=DRcomb, 

fct=LL.4(names=c("b","lower","upper","ed50"))) 

summary(drcomb.m.vis) 

 

### Calculating the ED values (Effective dose) for 10%, 50%, or 90% reduction in 

growth 

ED(drcomb.m.dry, c(10,50,90),interval="delta") 

ED(drcomb.m.vis, c(10,50,90),interval="delta") 

### Results look like . . .  

# 

#Estimated effective doses 

#(Delta method-based confidence interval(s)) 

# 

#        Estimate Std. Error     Lower    Upper 

#ACR:10   23.3132     7.1588    9.2549   37.371 

#ACR:50   72.5912     9.2086   54.5077   90.675 

#ACR:90  226.0300    68.0386   92.4184  359.642 

#MO1:10  198.1072    58.3011   83.6178  312.596 

#MO1:50  660.4212    98.8300  466.3427  854.500 

 

### More info 

?ED 

 

### Saving just the ED50 values - naming them "ED50dry" and "ED50vis" 

ED50dry<-ED(drcomb.m.dry, c(50),interval="delta",level=0.95) #level is the confidence 

interval level 
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ED50vis<-ED(drcomb.m.vis, c(50),interval="delta",level=0.95) 

 

### Dry Plot: named EDd 

EDd<-barplot(ED50dry[,1], # plotting all rows of column 1 from the ED50dry dataset 

generated previously 

col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), # these specific colors 

were chosen to be colorblind friendly (used for a seminar presentation) 

ylab="GR50", # labeling the y axis 

cex.lab=1.5, cex.main=1.75, cex.axis=1.5, # character expansion 

ylim=c(0,max(ED50dry[,1])+300), # setting the range for the y axis (depends on the 

ED50values), the maximum value will be the maximum value present in the first column 

of the ED50dry data + 300 - This "300" can be increased or decreased to better to fit 

the data if needed 

main="Dry Weight GR50 Values") # assigning a main title 

#Figure B.44 

 

### Adding Error bars 

segments(EDd, ED50dry[,3], EDd, ED50dry[,4], lwd=2) # draws a vertical line on the 

graph("EDd") based on columns 3 (lower) and 4 (upper) from the ED50dry data 

segments(EDd-0.1, ED50dry[,3], EDd+0.1, ED50dry[,3], lwd=2 ) # draws the bottom 

horizontal hash 

segments(EDd-0.1, ED50dry[,4], EDd+0.1, ED50dry[,4], lwd=2 ) # draws the upper 

horizontal hash 
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#Figure B.45 

 

### Putting it all together - doing the same thing with the visual data and plotting 

the dry and visual side by side 

 

par(mfcol = c(1, 2)) # makes a graphing window with spots for 2 graphs so the visual 

and dry graphs can go side by side in 1 window 

### dry weight plot (same as above) 

EDd<-barplot(ED50dry[,1], col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), 

ylab="GR50", cex.lab=1.5, cex.main=1.75, cex.axis=1.5, ylim=c(0,max(ED50dry[,1])+300), 

main="Dry Weight GR50 Values") 

segments(EDd, ED50dry[,3], EDd, ED50dry[,4], lwd=2) 

segments(EDd-0.1, ED50dry[,3], EDd+0.1, ED50dry[,3], lwd=2 ) 

segments(EDd-0.1, ED50dry[,4], EDd+0.1, ED50dry[,4], lwd=2 ) 

# visual data plot 

EDv<-barplot(ED50vis[,1], col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), 

ylab="GR50", cex.lab=1.5, cex.main=1.75, cex.axis=1.5, ylim=c(0,max(ED50vis[,1])+700), 

main="Dry Weight GR50 Values") 

segments(EDv, ED50vis[,3], EDv, ED50vis[,4], lwd=2) 

segments(EDv-0.1, ED50vis[,3], EDv+0.1, ED50vis[,3], lwd=2 ) 

segments(EDv-0.1, ED50vis[,4], EDv+0.1, ED50vis[,4], lwd=2 ) 

#Figure B.46 
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### Comparing resistance levels between lines 

 

### Computing the comparison and naming it "DryParm" 

DryParm<-compParm(drcomb.m.dry, "ed50") 

### Finding the reciprocal to obtain a number for every comparison 

1/DryParm[,1] 

 
### The new std errors are not calculated by taking the reciprocal, to get the correct 

standard error, perform a manual comparison 

# First get the ED50 values (naming them as an object called "ED50s") 

ED50s<-ED(drcomb.m.dry, c(50),interval="delta") 

#Estimated effective doses 

#(Delta method-based confidence interval(s)) 

# 

#       Estimate Std. Error    Lower   Upper 

#ACR:50  72.5912     9.2086  54.5077  90.675 

#MO1:50 660.4212    98.8300 466.3427 854.500 

#PP:50  138.0475    21.5681  95.6929 180.402 

#SP:50  327.9098    29.1837 270.5999 385.220 

#SS:50  481.1297    44.2502 394.2328 568.027 

 

### Perform a manual comparison using the ED50 values 

# MO1/ACR  

comped(c(660.4212,72.5912),c(98.8300,54.5077), log=FALSE, operator="/") 

# First set of numbers is the Estimate, second set is the Std. Errors 

# Example: comped(c(MO1 estimate, ACR estimate), c(MO1 Std. Error, ACR Std. Error), 

log=FALSE, operator="/") 

#Estimated ratio of effective doses 

# 

#    Estimate Std. Error   Lower Upper 

#[1,]   9.0978     6.9658 -4.5548 22.75 

 

### Calculating R/S ratios using ACR as the sensitive, but using indexing to call 

numbers from the table of ED50 values instead of typing in the actual numbers 

# ACR/ACR 

comped(c(ED50s[1,1],ED50s[1,1]),c(ED50s[1,2],ED50s[1,2]), log=FALSE, operator="/") 

# PP/ACR 

comped(c(ED50s[3,1],ED50s[1,1]),c(ED50s[3,2],ED50s[1,2]), log=FALSE, operator="/") 

# SP/ACR 

comped(c(ED50s[4,1],ED50s[1,1]),c(ED50s[4,2],ED50s[1,2]), log=FALSE, operator="/") 

# SS/ACR 

comped(c(ED50s[5,1],ED50s[1,1]),c(ED50s[5,2],ED50s[1,2]), log=FALSE, operator="/") 

 

### Calculating R/S ratios using PP as the sensitive 

# ACR/PP 

comped(c(ED50s[1,1],ED50s[3,1]),c(ED50s[1,2],ED50s[3,2]), log=FALSE, operator="/") 

# MO1/PP 

comped(c(ED50s[2,1],ED50s[3,1]),c(ED50s[2,2],ED50s[3,2]), log=FALSE, operator="/") 

# PP/PP 

comped(c(ED50s[3,1],ED50s[3,1]),c(ED50s[3,2],ED50s[3,2]), log=FALSE, operator="/") 

# SP/PP 

comped(c(ED50s[4,1],ED50s[3,1]),c(ED50s[4,2],ED50s[3,2]), log=FALSE, operator="/") 

# SS/PP 

comped(c(ED50s[5,1],ED50s[3,1]),c(ED50s[5,2],ED50s[3,2]), log=FALSE, operator="/") 

 

### Same thing as above but with the visual data (no manual comparisons shown) 

VisParm<-compParm(drcomb.m.vis, "ed50") 

1/VisParm[,1] 

 

### Plotting the Data - there are many ways, several examples follow 
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### Example 1 

plot(drcomb.m.dry, # plotting the model created above called drcomb.m.dry 

broken=FALSE, # no break in the x axis 

xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1})), #  labeling the x axis 

type="average", # will plot the averages 

ylab="Dry Weight (% of Control)", # labeling the y axis 

ylim=c(0,125), # setting the ranges of the y axis 

col=c("black"), # color of lines 

lty=c(1:6), # specifying line type 

xt=c(0,52.5,105,210,420,840,1680,3360,6720), #specifying the x axis values with rates 

used 

xttrim="FALSE", # don't trim the x axis values 

legend=FALSE, # no legend (will be made later) 

pch=c(0,1,2,5,6)) # plotting character 

legend("topright", # adding a legend in the top right corner of the plot area 

legend=c("ACR", "MO1", "PP", "SP", "SS"), # text for legend 

lty=c(1:6),pch=c(0,1,2,5,6), # same parameters as used for making the figure 

bty="n") # no box drawn around legend 

 #Figure B.47 

 

### Example 2 

plot(drcomb.m.dry, broken=FALSE, xlab = "Glyphosate (g ae / ha)", ylab = "% of 

control", type=c("none"), # will not plot any points - just lines 

ylim=c(0,125), 

col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), # colorblind friendly color 

scheme  

lty=(1), lwd=5, legend=FALSE, cex=1.5, cex.axis=1.5,cex.main=1.75, cex.lab=1.5) 

legend("topright",legend=c("ACR", "MO1", "PP", "SP", "SS"),  

 lty=1, lwd=5, col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), cex=1.5) 

# matching legend 
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 #Figure B.48 

 

### Example 3 

plot(drcomb.m.dry, broken=FALSE, xlab = "Glyphosate (g ae / ha)", ylab = "% of 

control", type=c("bars"), # plots error bars 

ylim=c(0,125), col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), # colorblind 

friendly color scheme  

lty=(1), lwd=2, legend=FALSE, cex=1.5, cex.axis=1.5,cex.main=1.75, cex.lab=1.5) 

legend("topright",legend=c("ACR", "MO1", "PP", "SP", "SS"),  

 lty=1, lwd=2, col=c("#000000","#E69F00","#56B4E9","#009E73", "#CC79A7"), cex=1.5) 

#Figure B.49 

 

### the levels=c("") command allows you to plot specific lines 

### the type=c("average", "obs", "none", "all", "bars") command changes graph type 

###### average = default 

###### obs = just plots the observations 

###### none = plots just the curves 

###### all = plots curves and all observations 

###### bars = plots error bars  
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### Example 4 - Only the BCG genotypes 

plot(drcomb.m.dry, broken=FALSE,  

level=c("PP","SP","SS"), 

xlab = "Glyphosate (g ae / ha)", ylab = "% of control", type="none", 

ylim=c(0,125), col=c("skyblue","dodgerblue","blue"),  

lty=(1), lwd=2, legend=FALSE, cex=1.2, cex.axis=1.5,cex.main=1.75, cex.lab=1.5) 

legend("topright",legend=c("PP", "SP", "SS"),  

 lty=1, lwd=2, col=c("skyblue","dodgerblue","blue"), cex=1.2, bty="n") 

#Figure B.50 

 

### More info: 

?plot.drc 

 

### The dose response performed on sensitive controls was analyzed very similarly to 

the BCG dose response above and therefore is minimally annotated 

 

### Importing data 

DR<-read.table("/Volumes/USB20FD/R/Dose Response - BCG/ACR_MCR_WCS.txt", header=T) 

head(DR) 

#  Popn Rep  Dose Vis Vis.1 Weight  PcontrolD PcontrolD1 PcontrolV PcontrolV1 

#1  ACR   1   0.0   0   100   5.94 1.00000000 100.000000       1.0        100 

#2  ACR   1  52.5  50    50   1.29 0.21717172  21.717172       0.5         50 

#3  ACR   1 105.0 100     0   0.59 0.09932660   9.932660       0.0          0 

#4  ACR   1 210.0  70    30   0.74 0.12457912  12.457912       0.3         30 

#5  ACR   1 420.0 100     0   0.35 0.05892256   5.892256       0.0          0 

#6  ACR   1 840.0 100     0   0.39 0.06565657   6.565657       0.0          0 

#  PcontrolDA PcontrolDA1 PcontrolVA PcontrolVA1 

#1 1.02149613  102.149613  1.0344828   103.44828 

#2 0.22184007   22.184007  0.5172414    51.72414 

#3 0.10146174   10.146174  0.0000000     0.00000 

#4 0.12725709   12.725709  0.3103448    31.03448 

#5 0.06018917    6.018917  0.0000000     0.00000 

#6 0.06706793    6.706793  0.0000000     0.00000 

 

### Computing dose response models (4 parameter log logistic) 

drdry<-drm(DR$PcontrolD1~DR$Dose, DR$Popn, data=DR, 

fct=LL.4(names=c("b","lower","upper","ed50"))) 

summary(drdry) 

 

drvis<-drm(DR$PcontrolV1~DR$Dose, DR$Popn, data=DR, 

fct=LL.4(names=c("b","lower","upper","ed50"))) 

summary(drvis) 
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### Computing ED values and Plotting 

ED(drdry, c(10,50,90),interval="delta", level=0.95) 

ED(drvis, c(10,50,90),interval="delta") 

 

par(mfcol = c(1, 2)) 

ED50dry<-ED(drdry, c(50),interval="delta",level=0.95) 

ED<-barplot(ED50dry[,1], col=c("Red", "Blue", "Black"), ylab="ED50",  

cex.lab=1.5, cex.main=1.75, cex.axis=1.5, ylim=c(0,200),  

main="Dry Weight ED50 Values") 

segments(ED, ED50dry[,3], ED, ED50dry[,4], lwd=2) 

segments(ED-0.1, ED50dry[,3], ED+0.1, ED50dry[,3], lwd=2 ) 

segments(ED-0.1, ED50dry[,4], ED+0.1, ED50dry[,4], lwd=2 ) 

ED50vis<-ED(drvis, c(50),interval="delta",level=0.95) 

EDv<-barplot(ED50vis[,1], col=c("Red", "Blue", "Black"), ylab="ED50",  

cex.lab=1.5, cex.main=1.75, cex.axis=1.5, ylim=c(0,500),  

main="Visual ED50 Values") 

segments(EDv, ED50vis[,3], EDv, ED50vis[,4], lwd=2) 

segments(EDv-0.1, ED50vis[,3], EDv+0.1, ED50vis[,3], lwd=2 ) 

segments(EDv-0.1, ED50vis[,4], EDv+0.1, ED50vis[,4], lwd=2 ) 

 

#Figure B.51 

 

### Finding R/S values 

dED50s<-ED(drdry, c(50),interval="delta") 

drycomp<-compParm(drdry, "ed50") 

1/drycomps[,1] 

 

### Manual comparison to get correct std. errors 

comped(c(dED50s[1,1],dED50s[1,1]),c(dED50s[1,2],dED50s[1,2]), log=FALSE, operator="/") 

comped(c(dED50s[2,1],dED50s[1,1]),c(dED50s[2,2],dED50s[1,2]), log=FALSE, operator="/") 

### Plotting the data 

par(mfcol = c(1, 2)) 

plot(drdry, broken=FALSE,  

main = "MCR ACR WCS Comparison - Dry Weight",  

xlab = "Dose (g ae / ha)", ylab = "% of control", type=c("none"), 

col =c("Red", "Blue", "Black"), lty=(1), pch=(15:19), ylim=c(0,110), lwd=4, 

cex.main=1.5, cex.lab=1.5) 

plot(drvis, broken=FALSE,  

main = "MCR ACR WCS Comparison - Visual Data",  

xlab = "Dose (g ae / ha)", ylab = "% of control", type=c("none"), 

col =c("Red", "Blue", "Black"), lty=(1), pch=(15:19), ylim=c(0,110), lwd=4, 

cex.main=1.5, cex.lab=1.5) 
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#Figure B.52 

 

### Plotting only MCR and ACR for Chapter 4 

plot(drdry, level = c("ACR","NH2"), broken=FALSE, 

xlab=expression("Glyphosate Rate"~(g ~ ae ~ ha^{-1})), type="average", 

ylab="Dry Weight (% of Control)",  

ylim=c(0,125),col=c("black"), lty=c(1,3), 

xt=c(0,52.5,105,210,420,840,1680,3360,6720),xttrim="FALSE", xlim=c(0,6720),legend = 

FALSE, pch=c(0,2)) 

legend("topright", legend=c("ACR", "MCR"), lty=c(1,3), bty="n",pch=c(0,2)) 

#Figure B.53 
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