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ABSTRACT 

IDENTIFICATION, REDUCED ORDER MODELING AND MODEL UP DATING OF 
NONLINEAR MECHANICAL SYSTEMS 

 

Mehmet Kurt, B.S., Bogazici University 
 

Directed by: Professor Alexander F. Vakakis 
                      Professor Lawrence A. Bergman 

 

In this dissertation, we propose a new method for global/local nonlinear system 

identification, reduced order modeling and nonlinear model updating, applicable to a 

broad class of dynamical systems. The global aspect of the approach is based on 

analyzing the free and forced dynamics of the system in the frequency-energy domain 

through the construction of free decay or steady-state frequency-energy plots (FEPs). The 

local aspect of the approach considers specific damped transitions and leads to low-

dimensional reduced order models that accurately reproduce these transitions.  The 

nonlinear model updating strategy is based on analyzing the system in the frequency-

energy domain by constructing Hamiltonian or forced and damped frequency-energy 

plots (FEPs). These plots depict the steady-state solutions of the systems based on their 

frequency-energy dependencies. The backbone branches, branches that correspond to 1:1 

resonances, are calculated analytically (for fewer DOFs) or numerically (e.g., shooting 

method). The system parameters are then characterized and updated by matching these 

backbone branches with the frequency-energy dependence of the given system by using 
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experimental/computational data. The main advantage of our approach is that we do not 

assume any type of nonlinearity model a priori, and the system model is updated solely 

based on numerical simulations and/or experimental results. As such, the approach is 

applicable to a broad class of nonlinear systems, including systems with strong 

nonlinearities and non-smooth effects, as will be shown in this dissertation.  For larger 

scale systems, model reduction techniques (e.g., Guyan reduction) are applied to 

construct reduced order models of the system to which the aforementioned methods are 

applied. 
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CHAPTER 1                                             

INTRODUCTION 

1.1 Motivation 

For centuries, much of our understanding of science was built on the idea that a 

natural system subjected to well-defined external conditions will follow a unique course and 

that a slight change in these external conditions will likewise cause a slight change in the 

response. This led the scientific community to imagine a linear world, which is, in fact, 

nonlinear.  

This line of thinking provides only a partial view of the natural world and cannot be used to 

accurately analyze complex systems. Consider the case of multi-physical systems. As these 

systems become more complex, potentially incorporating not only electrical and mechanical 

components but also biological and biomimetic elements, it is highly likely that their 

dynamics will be strongly nonlinear and nonstationary. Some examples include but are not 

limited to local buckling, plastic deformations, clearance and backlash, hysteresis, friction-

induced oscillations, and vibro-impact motions, which cannot be accurately modelled by 

linearized techniques. Moreover, in many multi-physics problems such as interfacial effects, 

thermal-induced oscillations, fluid-structure interactions, plasma physics, ocean-atmosphere 

system or sensor-tissue interactions, a physically-based parametric model of the system will 

not be known a priori. However, given the placement of a sufficiently dense set of sensors, 

measured time series recorded throughout the system will contain all of the information 

reflecting both nonlinearity and nonstationarity.  Hence, it is the analyst’s responsibility to be 

able to extract information about the dynamics directly from the measured time series. 



2 

 

Clearly, linear methods such as the classical Fourier Transform (FT) are not able to properly 

isolate and extract this information, especially in strongly nonlinear applications  (Vakakis 

2008; Lee et al. 2008)  where concepts such as "normal mode", "natural frequency", and 

"modal space" need to be carefully reconsidered, redefined and extended to nonlinear 

regimes.  

This discussion motivates the need to develop nonlinear system identification (NSI), reduced 

order modeling and nonlinear model updating methodologies that ideally would be as 

practical as experimental linear modal analysis, and applicable to a broad class of nonlinear 

systems, including systems with weak or strong nonlinearities having smooth or non-smooth 

characteristics and time-invariant or time-variant properties. Based on our previous 

discussion, we can conclude that some of the basic properties the method should possess are 

as follows:  

- It should be based on direct analysis of measured time series, since, as explained, they 

contain all necessary information about the underlying dynamics. 

- It should be physics-based, relying on a solid theoretical foundation. 

- It should be applicable to a broad class of dynamical systems, including those that are 

strongly nonlinear and nonstationary.  For instance, it should be able to analyze complex 

nonlinear resonance interactions, providing interpretation and modeling of such interactions. 

- It should address the dependence of the nonlinear dynamical response on the level and type 

of excitation, and its sensitivity to the initial conditions. 

Therefore, the focus of this dissertation will be to discuss the efforts towards developing such 

an NSI, reduced order modeling and nonlinear model updating approach of broad 

applicability.  
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1.2 Literature Review of Nonlinear System Identification  

Experimental modal analysis based on Fourier transforms (FTs) has been well 

established based on the assumption of linearity and stationarity of the measured signals (see, 

for example (Ewins 1984)) and system identification, modal analysis and reduced order 

modelling of linear dynamical systems have all been well documented (Ibrahim 1973; Ljung 

1987; Soderstrom and Stoica 1989; Ewins; Allemang and Brown 1998; Allemang and Phillips 

2004). In many practical situations, however, the measured data is likely to exhibit strong 

nonlinearity and nonstationarity, particularly when the tested systems involve nonlinearities 

due to complexity caused by multi-physical nonlinear interactions (Brandon 1998). In 

addition, FT-based methods are not able to properly isolate and extract nonlinearity and 

nonstationarity from the measured data, frequently misleading the less experienced analyst to 

wrong conclusions (for example, to misinterpret internal and combination resonances as 

natural frequencies). As a result, there is a need for an effective, straightforward, system 

identification and reduced-order modeling method for characterizing strongly nonlinear and 

nonstationary, complex, multi-component systems.  

Reviews of nonlinear system identification (NSI) and reduced-order modeling (ROM) 

methods are provided in works by (Kerschen et al. 2005; Kerschen et al. 2006; Worden and 

Tomlinson 2010). Typical nonparametric NSI methods include proper orthogonal 

decomposition (POD, also known as Karhunen-Loève decomposition) (Feeny and 

Kappagantu 1998; Kerschen and Golinval 2002; Bellizzi and Sampaio 2006; Allison, Miller, 

and Inman 2008), smooth orthogonal decomposition  (Chelidze and Zhou 2006), Volterra 

theory (Li and Billings 2011), Kalman filter (Mariani and Ghisi 2007), Bayesian approaches 

(Worden and Manson 2012; Tiboaca et al. 2014; Worden and Becker 2011; Worden and 

Hensman 2012) and so on. As for the methods of nonlinear parameter estimation, we mention 
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the restoring force surface method (Masri and Caughey 1979), NARMAX (Nonlinear Auto-

Regressive Moving Average models with eXogenous inputs) methods (Leontaritis and 

Billings 1985), harmonic balance method (Thothadri et al. 2003), methods based on Hilbert 

transform (Feldman 1994; Feldman 2006), subspace identification (Noël and Kerschen 2013) 

and others. The neural network approach is another popular nonparametric methodology for 

system identification and damage-detection. Several noteworthy works related to this 

approach were performed by (Liang, Feng, and Cooper 2001; Masri et al. 2000). 

POD has been employed to study system identification and nonlinear normal modes of a 

system of coupled beams (Ma, Azeez, and Vakakis 2000) and rods (Georgiou 2005), and in 

structural damage detection (Galvanetto, Surace, and Tassotti 2008). The method of POD has 

also been utilized to study chaotic vibrations of a 10-degree-of-freedom (DOF) impact 

oscillator and a flexible-beam impact oscillator, respectively, in (Cusumano and Bai 1993) 

and (Cusumano, Sharkady, and Kimble 1994). In these studies, the spatial structure of 

impacting responses under  harmonic excitation of the boundary was demonstrated to be close 

to what can be obtained by averaging over many impulse-response tests on the linear system 

(even though the system is strongly nonlinear). Moreover, POD was applied to model 

reduction of a vibro-impact (VI) rod (Ritto, Buezas, and Sampaio 2011) , and also to 

extracting dominant coherent structures of a VI beam from experimental time-series data 

(Azeez and Vakakis 2001) with the goal being to eventually derive low-dimensional ROMs 

through a Galerkin reconstruction process based on the extracted mode shape functions. 

(Clement et al. 2014) proposed a new a method named Sliding Window Proper Orthogonal 

Decomposition (SWPOD) combining POD and Continuous Gabor Transform (CGT) to 

extract the linear and nonlinear normal modes of weakly damped MDOF mechanical systems. 
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We note, however, that these techniques are only applicable to specific classes of dynamical 

systems; in addition, some functional form is assumed for modeling the system nonlinearity. 

Recently, a nonlinear system identification (NSI) method with broad applicability based on 

empirical mode decomposition (EMD (Huang et al. 1998)) was proposed by (Lee et al. 

2010a), which will be a focus of this dissertation. The key assumption of the methodology is 

that the measured time series can be decomposed in terms of a finite number of oscillating 

components that are in the form of fast monochromatic oscillations modulated by slow 

amplitudes. The empirical slow-flow model of the dynamics is obtained from EMD, and its 

correspondence with the analytical slow-flow model has been established (Lee, Tsakirtzis, et 

al. 2009) paving the way for constructing local nonlinear interaction models (NIMs (Lee, 

Tsakirtzis, et al. 2011)). 

1.3 Literature Review of Reduced Order Modeling and Model Updating 

Predictions from analytical and computational models are often called into question 

when they conflict with test results. Model updating concerns the correction of these models 

by processing and integrating dynamic response data from test structures (Mottershead and 

Friswell 1993). 

More specifically, finite element model updating  emerged in the 1990s as a topic thought to 

be very crucial for the design, construction and maintenance of mechanical systems and other 

engineering structures  (Friswell and Mottershead 1995). Reviews of existing FE model 

updating techniques are given in (Friswell and Mottershead 1995; Mottershead and Friswell 

1993; Hemez and Doebling 2001; Datta 2002). These give a clear overview of sensitivity-

based updating methods. Sensitivity-based FE model updating methods have been embraced 

for damage assessment  and structural health monitoring applications (e.g., (Teughels, Maeck, 
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and De Roeck 2002; Brownjohn et al. 2001; Link, Rohrmann, and Pietrzko 1996), but have 

been limited in application to linear systems. 

Data-driven modeling and updating is an increasingly important field in science and 

engineering.  There have been recent attempts to utilize this “data-driven” approach in model 

updating (e.g., (Jaishi and Ren 2005; Derkevorkian et al. 2014; Pokale and Gupta 2014)). 

Another model updating strategy, proposed by (Kerschen and Golinval 2004) for  nonlinear 

vibrating structures, is based on proper orthogonal decomposition and its nonlinear 

generalizations based on auto-associative neural networks. (Derkevorkian et al. 2014) used 

data from relatively large-scale experimental soil-foundation-superstructure interaction (SFSI) 

systems to develop reduced-order computational models for response prediction by 

employing trained neural networks. (Pokale and Gupta 2014) applied a particle filtering 

algorithm on the experimentally measured tip accelerations using Bayesian principles to 

estimate the changes in damping and flexural rigidity of the beam. Another Bayesian 

approach is proposed by (Jensen et al. 2014), wherein a Bayesian finite element model 

updating strategy using dynamic response data is employed for structural response prediction. 

Application of structural modification methods for data-driven modeling and updating are 

shown to be useful for large structures when the modifications remain local, i.e., when the 

nonlinearities in the system do not affect the global dynamics significantly (Kalaycıoğlu and 

Özgüven 2014). 

Techniques to construct reduced-order models (ROMs) have been developed primarily for 

linear models to reduce their size. Reviews of model reduction techniques exist in literature. 

However, these reviews mostly focus on methods from individual fields, i.e. on methods from 

structural dynamics (Roy Craig 2014; Klerk, Rixen, and Voormeeren 2008) , systems and 

control (Gugercin and Antoulas 2004; Bai 2002) or numerical mathematics (Freund 2003) 
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only. A review of reduced-order modeling (ROM) methods for nonlinear systems is provided 

in (Kerschen et al. 2006).  

Component mode synthesis (CMS) (Benfield and Hruda 1971; Hurty 1965), originally 

developed for linear systems, has been extended to nonlinear systems by using a nonlinear 

normal modes approach (NNM) (Apiwattanalunggarn, Shaw, and Pierre 2005) and also 

applied to systems with localized nonlinearities. (Kisa, Brandon, and Topcu 1998; Nataraj and 

Nelson 1989) 

Proper orthogonal decomposition (POD) has been used extensively for constructing ROMs of 

nonlinear systems. (Kerschen et al. 2005). POD was applied for model reduction of a vibro-

impact (VI) rod (Ritto, Buezas, and Sampaio 2011)  and also to extracting dominant coherent 

structures of a VI beam from experimental time-series data (Azeez and Vakakis 2001) to 

derive low-dimensional ROMs through a Galerkin reconstruction process based on the 

extracted mode shape functions. 

Other examples of approaches for ROM of nonlinear systems include the following:  (Krysl, 

Lall, and Marsden 2001) proposed an approach to the dimensional reduction of non-

linear finite element models of solids and structures based on Ritz approximation. Another 

technique for ROM of nonlinear systems is bi-linear normal modes, which represent the 

spatial coherences in the system dynamics with two sets of normal modes with special 

boundary conditions (Saito and Epureanu 2011); these have also been used for model 

reduction. (Zucca and Epureanu 2014). (Segalman 2007) developed a methodology of 

reduced order models for systems with local nonlinearities which used the augmentation of 

conventional basis functions with others having appropriate discontinuities at the locations of 

nonlinearity. (Mohammadali and Ahmadian 2014) proposed an exact condensation technique 

based on the harmonic balance method (HBM) in conjunction with the modal expansion 
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technique to convert the motion equations of such structural dynamic systems to a set of 

nonlinear algebraic equations that are considerably small.  

1.4 Proposed Methodology and Background Information 

In this dissertation, a new methodology for nonlinear system identification, reduced order 

modeling, and nonlinear model updating of a wide array of dynamical systems is proposed. 

The methodology has global and local components and relies on direct processing of 

measured time series. The central assumption of the method is that the measured dynamics 

can be decomposed in terms of slowly modulated fast oscillations, which is a reasonable 

assumption for non-chaotic measured data. The basic elements of the method are outlined 

below, although a detailed discussion of each aspect will be given in the next chapters. 

(i) Measure time series simultaneously from a number of sensors throughout the 

system under transient excitation, and perform EMD of the measured time series. 

Extract the intrinsic mode functions (IMFs) at each sensing location. Hilbert-

transform the computed IMFs to extract their instantaneous frequencies and 

compare them to wavelet transform (WT) spectra of the corresponding time series, 

thus determining the dominant IMFs and the corresponding fast frequencies in the 

dynamics at each sensing location. This will identify the basic time scales and the 

dimensionality of the dynamics. (local aspect of NSI). 

(ii)  Based on the correspondence between the measured dominant IMFs and the 

underlying slow-flow dynamics of the system (see discussion in Section 2), relate 

the slow components of the dominant IMFs to the slow flow dynamics (local 

aspect of NSI). 
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(iii)  Using the dominant IMFs reconstruct the time series and depict it in a frequency – 

energy plot (FEP) by superimposing its WT spectra; under the assumption of weak 

dissipation, this will reconstruct a portion of the FEP of the dynamics of the 

system under investigation; no a priori model is assumed for this reconstruction. 

(global aspect of NSI). 

(iv) Characterize and update the system parameters by matching the backbone 

branches of the FEPs with the frequency-energy dependence of the given system 

by using experimental/computational data. (nonlinear model updating). 

 

At this point, it will be useful to provide some definitions of certain of the strongly nonlinear 

dynamical phenomena that will be addressed in this work. Starting from the definition of 

internal resonance: This denotes a strongly nonlinear energy transfer phenomenon, whereby 

two structural modes (even widely spaced in the frequency domain) become coupled by the 

system nonlinearity and start exchanging energy between them giving rise to nonlinear beat 

phenomena (Manevich and Manevitch 2005). In linear systems nonlinear beating can occur 

only when two modes possess closely spaced natural frequencies, whereas in nonlinear 

systems this is not necessary. Due to internal resonances, mode-mixing or nonlinear modal 

interactions can occur, whereby, with varying energy, a certain structural mode starts 

interacting with another structural mode in the form of a beat phenomenon, until the former 

mode is completely  “transformed” to the latter. It follows that, when nonlinear mode mixing 

occurs, the dynamic response is composed of two (or more) structural modes coupled by the 

nonlinearity; depending on the frequencies of the "mixed modes” the overall response can be 

either time-periodic (for rational frequency ratios between modes) or quasi-periodic (for 

irrational frequency ratios) (Kerschen et al. 2008). 
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1.5 Organization 

The organization of this dissertation will be as follows: In Chapter 2, the basic 

elements of the global/local nonlinear system identification, reduced order modeling and 

nonlinear model updating methodology considered in this dissertation will be introduced and 

discussed.  Understanding and correctly utilizing these tools will prove to be crucial in the 

applications to be discussed later.                                                                  

In Chapter 3, the local aspects of the proposed NSI methodology will be discussed and three 

main applications of the methodology will be presented: The first application will explore the 

nonlinear and non-smooth dynamics of a vibro-impact beam (Section 3.2). Then, the local 

NSI methodology will be applied to studying the effects of frictional connections in the 

dynamics of a bolted beam assembly (Section 3.3).  As a final application, nonlinear system 

identification of a cantilever beam with an essentially (non-linearizable) nonlinear stiffness 

will be studied and the local NSI methodology will be extended to study strongly nonlinear 

beating phenomena (Section 3.4). 

In Chapter 4, the global aspects of the NSI methodology will be discussed and some 

improvements made to the global NSI procedure will be presented. Frequency-energy plots 

(FEPs) will be used to extract information about the nonlinear characteristics (e.g., location of 

the nonlinearity, nonlinearity order and coefficient) and the topology of dynamical systems 

(Section 4.2.1). Tracking the backbone branches of a 2-DOF system by simply using the 

experimental data will be demonstrated (Section 4.2.2). In Section 4.3, FEPs will be extended 

to study forced and damped systems and then applied to study the performance of an NES as a 

vibration absorber within predefined frequency ranges (Section 4.3.1.3) as well as the 

interesting and complicated dynamics of a 2-DOF system consisting of a grounded nonlinear 
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oscillator under harmonic forcing coupled to a light linear attachment under condition of 1:3 

resonance (Section 4.3.2). 

In Chapter 5, a novel nonlinear model updating strategy, which relies on analyzing the system 

in the frequency-energy domain by constructing Hamiltonian or forced and damped frequency 

– energy plots (FEPs) will be proposed, and two applications of the proposed methodology 

will be investigated. The first application will involve a system consisting of two cantilever 

beams, connected through an element which possesses softening/hardening behavior. By 

using the nonlinear model updating approach, the system will be modeled as a simple 2-DOF 

system, and the nonlinear connection will be identified (Section 5.2). The second application, 

a benchmark problem, consists of two cantilever beams connected through an “unknown” 

nonlinear element, will be studied using a similar approach (Section 5.3). Finally, in Chapter 

6, the main points of this dissertation will be summarized, and some suggestions for future 

work and applications will be discussed. 
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CHAPTER 2                                                               

BASIC ELEMENTS OF THE NONLINEAR SYSTEM 

IDENTIFICATION (NSI) AND MODEL UPDATING 

METHODOLOGY 

2.1 Slow Flow Dynamics (Lee et al. 2010a; Vakakis et al. 2011; Lee, Tsakirtzis, et al. 
2009; Lee, Tsakirtzis, et al. 2011) 

The slow-flow model of the dynamics of an �	degree-of-freedom (DOF) dynamical 

system (e.g., �� =  (�, "), � = {$, $� }&ℝ(), "&ℝ) is constructed by assuming that the dynamics 

possesses * distinct components at frequencies 1 N,...,ω ω , respectively, and expressing the 

response of each DOF as a summation of  independent components 

 (1) ( )( ) ( ) ... ( ), 1,...,N
k k kx t x t x t k n= + + =   (2.1) 

 

where ( ) ( )m
kx t  denotes the response of the +th coordinate of (2.1) associated with the basic 

frequency mω  with the ordering 1 ... Nω ω> > . We will denote these as fast frequencies of the 

problem. For each component of (2.1) we assign a new complex variable 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) � ,    1,mm m m m j t
k k m k k

Fast Flow
Slow Flow

t x t j x t t e m Nωψ ω ϕ
−

−

= + = = …ɺ
���

  (2.2) 

 

with , = (−1)./(, where a slow/fast partition of the dynamics in terms of the “slow” 

(complex) amplitude ( ) ( )m
k tϕ  and the ‘fast’ oscillation mj te ω  was assumed. That such a 

partition holds is a central assumption in our methodology. Obviously, such a slow/fast 

partition is by no means unique or universal; yet at this point we will restrict our analysis to 
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measured signals that can be decomposed as in (2.1-2.2). Substituting (2.1-2.2) into the 

equations of motion and performing * averaging operations with respect to each of the fast 

frequencies yields a set of n complex differential equations that provides the slow flow of the 

system 

 ( ) ( ) ( ){ }1
1, , ,        , ,  ,    1, ,N N

k k k C k nϕ ϕ ϕ ϕ ϕ ϕ= … = … ∈ = …ɺ k n kF    (2.3) 

 
The slow-flow (2.3) captures the slow modulations of the N harmonic components of each 

coordinate of the response. The number of fast frequencies, N, determines the dimensionality 

of the slow-flow.  

2.2 Empirical Mode Decomposition (EMD) (Lee, Tsakirtzis, et al. 2009; Lee, Tsakirtzis, 
et al. 2011) 

The second element of the proposed methodology is empirical mode decomposition 

(EMD) combined with the Hilbert Transform, which has been used previously for analyzing 

nonstationary and nonlinear time series and for nonlinear system identification and damage 

detection of structures (Yang et al. 2003a; Yang et al. 2003b; Yang et al. 2004). This 

decomposition identifies the characteristic time scales of a measured oscillatory time series, is 

adaptive, highly efficient, and especially suitable for nonlinear and nonstationary processes. 

In particular, EMD decomposes a measured time series /0(") (following the previous 

notation, this is the response of the +th coordinate of the considered dynamical system) into a 

nearly orthogonal basis of oscillatory intrinsic mode functions (IMFs). These are nearly 

mono-component oscillatory modes embedded in a measured time series /0("), each with its 

own characteristic time scale (or fast frequency 12), whose linear superposition reconstructs 

the measured time series. (Lee et al. 2010b) applied the EMD method for reduced-order 

modeling of aeroelastic systems, whereas (Tsakirtzis et al. 2010) applied it to nonlinear 
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system identification of a linear continuum (rod) with a local essential stiffness nonlinearity. 

The EMD algorithm (denoted as the sifting algorithm) consists of the following steps: 

(i)   Identify all extrema of /0(") 
(ii) Interpolate minima and maxima of /0(") by spline approximations, forming two 

envelopes 324)(") and 3256("), respectively 

(iii) Compute the average curve 7(") = (324)(") + 3256("))/2 

(iv)  Extract the remainder 9(") = /0(")	– 7(") 
(v)  Apply steps (i)-(iv) repetitively until the residual 7(") becomes smaller than a 

prescribed tolerance ";< 
Once this criterion (through the sifting process) is met, the remainder 9(") ≡ 90(.)(") is 

regarded as the first, or highest-frequency, IMF of the measured time series. By subtracting 

this IMF from the original time series and applying the algorithm iteratively; that is to say, 

substituting  /0(") − ∑ 90(?)(")	2?@.  instead of /0(") in (i) above for each step m, we extract 

additional IMFs, so that the original signal /0(") is decomposed sequentially from high- to 

low-frequency into components as 

  

 ( ) ( ) ( )( ) ( 1) ( 1)

1

( ) ,       
K

l l l
k k k k

l

x t c t R t R t tol+ +

=

= + <∑   (2.4a) 

   
Hence, the original time series can be reconstructed by superposition of the K leading IMFs; 

however, only a subset of these IMFs is physically meaningful. A comparison of wavelet 

transforms of the original time series and the computed nearly mono-component IMFs is 

necessary to identify the dominant (i.e., physically-meaningful) IMFs. Given that EMD is 
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applied to a time series obtained from a physical coordinate of our dynamical system in 

Section 2.1, the decomposition in terms of dominant IMFs finally yields 

  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 ( )N
k k k kx t c t c t c t= + +…+   (2.4b) 

                                              

where 	90(2)(") is the Ath dominant nearly mono-component IMF of the response /0(") 
associated with the fast frequency 12.  

 

Figure 2.1 Step-by-step description of the EMD method 

 

Given that EMD is applied in an ad hoc manner, it has certain deficiencies, related to issues 

such as uniqueness of the EMD results, and lack of orthogonality between the computed IMFs 

(Vakakis et al. 2011). These issues can be addressed through the use of masking and mirror-

image signals (Lee, Tsakirtzis, et al. 2009; Lee, Tsakirtzis, et al. 2011) that lead to well-

decomposed, nearly mono-chromatic and orthogonal sets of IMFs. The resulting “step-by-

step” EMD method is summarized in Fig. 2.1. In short, instead of applying the EMD method 

all at once, we start by extracting the first IMF out of the given time signal, /0(") and treat 

each reminder as our new time signal. This can be summarized as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1(1)

( ) ( 1) ( ),

kk

mm m
k

k

m
k k k

t x t c t

t R

R

R t c t R t tol−

= −

= − <

⋮    (2.5) 
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A final issue concerns the lack of a theoretical foundation for the derived near-orthogonal 

basis of the IMFs, so the next element of the proposed NSI methodology needs to address this 

by providing a link between the theoretical slow flow discussed in Section 2.1 and the 

numerically derived IMFs discussed herein. 

2.3 Correspondence Between Theoretical and Empirical Slow Flows (Lee, Tsakirtzis, et 
al. 2011) 

To formulate the correspondence between slow flows and IMFs derived by EMD we shift the 

analysis to the complex plane. For the slow flow this was performed through relation (2.2) for 

the response /0 of the +th coordinate of the dynamical system. To perform a similar 

complexification of the dominant IMFs in (2.4b) we employ the Hilbert transform, 

complexifying the Ath IMF ( ) ( )m
kc t  of the measured signal ( )kx t  through the relation 

  

 ( ) ( ) ( )ˆ ( ) ( ) ( )m m m
k k kt c t j c tψ  ≡ +  �   (2.6) 

  

where �[ ]•  represents the Hilbert transform. This leads to estimates of the instantaneous 

amplitude and phase of the Ath IMF  

        

 { }2
1/22( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ( ) ( ) ( ) , tan ( ) ( ) ( )m m m m m m

k k k k k kA t c t c t t c t c tθ   = + =   � �   (2.7) 

          

from which the instantaneous frequency of the IMF is computed as ( ) ( )ˆˆ ( ) ( )m m
k kt tω θ= ɺ . This 

leads to the slow-fast representation of the complexified IMF (5) 

   

 
( ) ( )( ) ( )ˆˆ ( )( )( ) ( ) ( )

' '' '

ˆ ˆˆ ( ) ( ) ( )
m mm m

k kk k
j t tj t j tm m m

k k k

Fast componentSlow component

t A t e A t e e
θ ωθ ωψ
 − ≡ =

�	�	��			�			�
  (2.8) 
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We note that this is in the same form as the complexification (2.2) introduced in the slow flow 

construction in Section 2.1. This provides a direct way to relate the IMFs to the slow flow 

dynamics and physically interpret the dominant IMFs in terms of the slow flow dynamics. 

In summary, we relate the theoretical slow flow decomposition of Section 2.1 and the 

extracted IMFs by EMD of the response of the +th coordinate by the two expansions 

Slow flow:   

 (1) ( ) ( ) ( ) ( ) ( )

' '' '

( ) ( ) ... ( ), ( ) ( ) ( ) ( ) mj tN m m m m
k k k k k m k k

Fast componentSlow component

x t x t x t t x t j x t t eωψ ω ϕ= + + = + ≡ɺ
������

  (2.9a) 

EMD:  

x
k
(t) = c

k
(1)(t) + ...+ c

k
(N ) (t), ψ̂

k
(m) (t) ≡ c

k
(m) (t) + j � ( ) ( )m

kc t   = Â
k
(m) (t)e

j θ̂k
( m) (t )−ωk

(m)t





'Slow' component

� �			 �			
e jωk

(m)t

'Fast' component
�

     

Given that (2.9a) and (2.9b) represent identical expansions of the same measured time series it 

holds that ( )m
k mω ω≈  for 1,...,m N= , where N  is the number of dominant harmonic 

components in the slow flow decomposition of the dynamics (i.e., the dimensionality, or the 

number, of significant frequency-time scales in the dynamics).  This implies the 

correspondence between the theory and measurement (Lee, Tsakirtzis, et al. 2011) 

  

 ( ) ( )( ) ( ) , 1,..., , 1,...,m m
k k

Theory Measurement

x t c t k n m N→ = =
��� ���

  (2.10) 

 

  Noting that the complexification (2.6) is different than the corresponding 

complexification (2.2) for the slow flow analysis in Section 2.1, we introduce the alternative 

complexification  

 
( )ˆ̂

( )
( ) ( ) ( ) ( ) ( )

' ' ' '' ' ' '

ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )
m

mk
m m

j t t
j t j tm m m m m

k k m k k k

Fast part Fast partSlow part Slow part

t c t j c t t e A t e e
θ ωω ωψ ω ϕ
 −  = + ≡ =ɺ

��� ������ �			�			�
  (2.11) 

 

(2.9b) 



18 

 

Where 
( )ˆ̂

( )( ) ( )ˆˆ ˆˆ ( ) ( )
m

kj tm m
k kt A t e θψ = . In terms of the complexification (2.8) it holds that

( ) 1( ) ( )ˆˆ ˆ( ) ( )m m
k m kt j tψ ω ψ−= . We conclude that the correspondence between the theoretical and 

measured complexifications can be shown to be 
 

 
( )ˆ ( )( ) ( ) ( ) ( ) ( )

' '

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )
m

mkj t tm m m m m
k k m k k m k

Equivalence of slow complex amplitudes

t t j t t j A t e
θ ωψ ψ ω ψ ϕ ω
 −
 → = ⇒ →

�						�						�
  (2.12) 

 

  This final relation provides a physics-based theoretical foundation for EMD, whereby 

the dominant IMFs represent the underlying slow flow of the dynamics and, hence, capture all 

the important (multi-scale) dynamics. This correspondence between analytical and measured 

slow flows will be the foundation of the reduced-order modeling of the local dynamics. The 

standard EMD often cannot separate distinct frequency components, especially when these 

components are closely spaced to each other (that is, when their ratios are between 0.5 and 2). 

However, the use of masking signals (Deering and Kaiser 2005), and heterodyning (Senroy 

and Suryanarayanan 2007) can greatly enhance EMD’s capacity to separate distinct frequency 

components.  

2.4 Reduced Order Models: Intrinsic Modal Oscillators – IMOs (Lee et al. 2010a; 
Vakakis et al. 2011; Lee, Tsakirtzis, et al. 2011) 

Based on the previous formulation and results one can construct local reduced-order models 

that capture the transient dynamics of the dynamical system. To this end, intrinsic modal 

oscillators (IMOs) were introduced in the form of forced linear oscillators that reproduce a 

measured time series over different time scales. Since many structural dynamics problems 

involve slowly-modulated oscillatory responses, a linear, damped oscillator with a forcing 

function containing all modal interactions and nonlinearity is an obvious candidate for 

reproducing the m-th dominant IMF in the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22 ,   1, , ,     1, ,m m m m m
k k m k m k kx t x t x t F t k n m Nλ ω ω+ + = = … = …ɺɺ ɺ   (2.13) 
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We note that this model is based on the central assumption that the fast frequencies of the 

measured time series are well-separated. The time-dependent forcing term can be written in 

terms of slow/fast partitions of all dominant fast frequencies in the general form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 21 (2) ( )( ) m Nm m j t j tj t j t N
k k k k kF t Re t e t e t e t eω ωω ω= Λ + Λ +…+ Λ +…+ Λ   (2.14) 

  

where the forcing amplitudes B0(2) are slowly varying complex modulations of the 

corresponding fast oscillations 3CDEF. However, we note that since the IMOs constitute a set 

of linear oscillators with well-separated natural frequencies, only forcing terms with fast 

frequencies identical to the natural frequencies of the IMOs can cause significant responses to 

the IMOs. It follows that the IMO equations simplify to 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }22 , 

1, , ,   1, ,

mm m m m m m j t
k k m k m k k kx t x t x t F t Re t e

k n m N

ωλ ω ω+ + = ≡ Λ

= … = …

ɺɺ ɺ
  (2.15) 

 

Using the complexification introduced in (2.2), we express 

 ( ) ( )
( ) ( ) ( ) ( )

2

m mm mj t j t
m k k

k
m

t e t e
x t

j

ω ωϕ ϕ
ω

−−
=   (2.16) 

 

and apply averaging with respect to the fast frequency 12 to compute the slowly varying 

complex forcing amplitude  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2m m m m
k k k m kt t tϕ λ ω ϕ Λ ≈ + 

ɺ   (2.17) 

 

Finally, we use the equivalence of slowly-varying analytical and experimental slow 

modulations (2.12), to express the forcing amplitudes in terms of quantities that can be 

directly identified by post-processing the measured time series 
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 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )22
m m

m mj t t j t tm m m m
k m k m

d
t j A t e j A t e

dt

θ ω θ ω
ω λ ω

   − −        Λ ≈ +  
  

  (2.18) 

   

In this relation the instantaneous amplitude and phase can be computed directly from the 

measured data using the correspondence (2.12) as G(2)(") = HIJ(2)(")H	 and  K(2)(") =
∠IJ(2)("). The damping ratio of the IMO is the only parameter that needs to be evaluated by 

minimizing the difference between the measured and reproduced time series based on (2.15). 

The complex forcing amplitudes ( ) ( )i
k tΛ  of the IMOs contain essential information about the 

slow-flow dynamics of the modal coordinates and nonlinear interactions between the multi-

scale dynamics. If we take the natural logarithm of the expression (2.17)’s amplitude, we 

obtain 

 ( ) ( ) ( )ln ( ) ( , , , ) , 1,..., , 1,...,i i i
k k k i i i i it C F t k N i Mλ ω ζ ζ ωΛ ≈ − = =   (2.19) 

 

In this notation iζ  is the modal damping of the M-th mode, iω  is the M-th modal (fast) 

frequency, iF  is the impulse amplitude acting at the M-th mode, and, ( )i
kλ  is the damping ratio 

of the M-th IMO of the response at the +-th sensing position. The real coefficient 

( ) ( )( , , , )i i
k k i i iC Fλ ω ζ  can be assumed to be constant with respect to time (in actuality it is an 

oscillatory function due to fast oscillatory components, but a low pass filter can remove these 

oscillations). It follows that linear temporal decay of the logarithm of the magnitude of the 

complex forcing amplitude of an IMO indicates linear dynamic behavior of that mode, with 

the corresponding rate of decay being approximately equal to the viscous modal damping 

ratio. Moreover, based on this finding, we may state that any deviation from linear decay of 

the temporal plot of the logarithm of the magnitude of the complex forcing of an IMO with 

respect to time is representative of nonlinear dynamical behavior of that mode. 
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Examples and applications of the outlined NSI methodology were given in (Lee et al. 2010a; 

Vakakis et al. 2011; Lee, Nucera, et al. 2009; Lee, Tsakirtzis, et al. 2011; Lee et al. 2010b; 

Tsakirtzis et al. 2010; Kurt et al. 2012; Eriten et al. 2013), together with a discussion of an 

additional component of the method involving global identification of the dynamics in the 

frequency – energy domain. Starting from the next Section we consider the main problem 

addressed in this work; namely, the study and identification of strongly nonlinear beat 

phenomena in a linear flexible beam with a strong nonlinearity at its free end, and discuss 

how the previous NSI methodology can be extended to account for this type of strongly 

nonlinear dynamics. 

2.5 Spatio-Temporal IMOs  

Spatio-temporal IMOs are the extensions of the reduced order model IMOs, discussed in 2.4, 

to the continuous spatial domain. Let’s consider the dynamical response of a system in the 

spatio-temporal domain and denote it as ( , )x tα . The response can be decomposed into its 

slowly varying amplitude and fast component as follows. 

 
1

( , ) ( , ) m

N
j t

m
m

x t W x t eωα
=

≈∑   (2.20) 

 

where ( , )mW x t is a slowly-varying amplitude satisfying the spatio-temporal IMO 

 
2

2
2

( , ) ( , )ˆ2 ( , ) Re ( , ) mj tm m
m m m m m

W x t W x t
W x t x t e

t t
ωζ ω ω∂ ∂

 + + ≈ Λ ∂ ∂
   (2.21) 

 

The nonlinear modal interaction term can be obtained in terms of the corresponding spatio-

temporal slow flow such that ˆ( , ) 2 ( , ) ( , )m m m m mx t x t x tϕ ζ ω ϕ Λ ≈ + 
ɺ
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( )ˆ ˆwhere ( , ) ( , )exp ( , ) , andm m m mx t A x t j x t tϕ θ ω = −
 

2 2ˆ ( , ) ( , ) [ ( , )] ,m m mA x t W x t W x t= + �  

[ ]1ˆ ( , ) tan [ ( , )] / ( , ) .m m mx t W x t W x tθ −= �  

By using spatio-temporal IMOs, one can obtain substantial information regarding the effects 

of the nonlinearities on the particular mode shapes. Since they depict the evolution of the 

mode shapes in the time domain, one can observe how the underlying linear mode shape 

changes as the system response become nonlinear. These properties make them useful tools in 

both local and global nonlinear system identification since the study of spatio-temporal IMOs 

reveals the time/energy level at which the nonlinear effects start to dominate the system 

response. 

2.6 Frequency-Energy Plots  

NNMs were defined as vibrations-in-unison of dynamical systems starting from the 

seminal works of Rosenberg (Rosenberg 1960; Rosenberg 1962), and were proposed in  

(Kerschen et al. 2009; Peeters et al. 2009) as a way to extend experimental modal analysis to 

the nonlinear regime. The appropriate graphical depiction of NNMs is key to their 

exploitation. In this dissertation, extensive use will be made of frequency-energy plots (FEPs) 

where the amplitude of a NNM is plotted as function of its (conserved) energy.   

A very useful feature of the FEP for system identification purposes is its relation to the 

transient dynamics of the corresponding weakly damped system. This is due to the fact that 

the effect on the dynamics of weak damping is parasitic. Instead of introducing “new” 

dynamics, it just causes transitions of the dynamics between branches of normal modes  

leading to multi-frequency nonlinear dynamical transitions. It follows that different initial or  
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forcing conditions may lead to drastically different transitions in the FEP. To construct the 

FEP, we compute the periodic orbits of the Hamiltonian system for different initial conditions. 

This can be done analytically for systems with few degrees-of-freedom (Kurt, Eriten, et al. 

2014b);  however, due to the complexity of the equations, advanced computational tools have 

been developed (e.g., shooting method (Peeters et al. 2009), harmonic balance method 

(Detroux et al. 2014)) to find NNMs. 

To have a basic understanding of the frequency-energy plots, we consider the 2-DOF system 

depicted in Figure 2.2a, which has the equations of motion 

 
3

1 1

3
2 2

( ) 0

( ) 0

nl

nl

m x k x k x v

m v k v k v x

+ + − =

+ + − =

ɺɺ

ɺɺ
  (2.22) 

 

where the system parameters are 3
1 2 1 21 kg,  2 N/m,  1 N/m,  1 N/mnlm m k k k= = = = = .  

In Figure 2.2b, we depict the FEP of the 2-DOF system, computed by NNMcont (Peeters et 

al. 2009). There are two branches of nonlinear normal modes for this system denoted as 

backbone branches. These branches are labeled N11 ∓ since they correspond to in-phase (+ 

sign) and out-of-phase (− sign) synchronous oscillations of the two masses of (2.22) with 

both degrees of freedom oscillating with identical frequencies; i.e., they satisfy the condition 

of 1:1 internal resonance between the two degrees of freedom of the system (2.22). The 

notation NA� ± denotes a time-periodic motion of system (2.22) with � being the number of 

half-waves in /, A the number of half-waves in P, both in a half-period of the response, and 

(±) denotes the in-phase or out-of-phase character of the oscillations. Note that, for low 

energies, the frequencies of the in-phase and out-of phase modes are almost constant, which 

correspond to the linear regimes.  



24 

 

 

Figure 2.2 (a) 2-DOF system consisting of two linear oscillators coupled with a nonlinear cubic spring 
(b) FEP of the 2-DOF system for parameters 3

1 2 1 21 kg,  2 N/m,  1 N/m,  1 N/mnlm m k k k= = = = = . 

 

 

 

 

 

 

 

(a) 

(b) 
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CHAPTER 3                                                                       

LOCAL ASPECTS OF THE NSI METHODOLOGY 

3.1 Introduction and Background Information  

In this chapter, the local aspects of the proposed NSI methodology will be discussed, and 

some applications of the methodology will be presented.  Different techniques are combined 

to formulate the local aspects of the proposed methodology, and these are shown in the chart 

of Figure 3.1. The basic elements of the local aspect of the methodology are: (i) construction 

of slow flow models (analytical part); (ii) empirical mode decomposition combined with 

Hilbert transform (numerical part); (iii) correspondence between the analytical and numerical 

parts; (iv) construction of local reduced-order models (IMOs) that capture the transient 

dynamics of the dynamical system. Note that these concepts were discussed in great detail in 

Chapter 2.   

 

Figure 3.1 General outline of the local NSI approach 
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Figure 3.1, represents the main steps for the application of the local NSI methodology. Since 

the proposed methodology promises to be solely based on direct analysis of measured time 

series, the application of the local aspect starts there as well. Then, through EMD, the time 

series is decomposed into nearly orthogonal modes, IMFs.  The next step is to construct 

intrinsic modal oscillators (IMOs), which were introduced in the form of forced linear 

oscillators that reproduce a measured time series over different time scales. By using the 

nonlinear modal interaction terms (see Section 2.4), one can obtain important information 

regarding the local dynamics of the system, such as central frequencies, equivalent damping 

values and mode shapes (by using spatio-temporal IMOs). 

As an example of a local NSI application of this methodology, we consider a two-DOF linear 

system of coupled oscillators, which provides us with the added advantage of comparing the 

methodology to linear modal analysis. The governing equations of motion are given by 

  

 1 2( ) ( ) ( ) ( ),  ( ) [ ( ) ( ))]Tt t t t t x t x t+ + = =ΜX CX KX F Xɺɺ ɺ   (3.1) 

 

where, M = 1

2

0

0

m

m

 
 
 

, K = 1

2

c c

c c

k k k

k k k

+ − 
 − + 

, and C =Q M +R K . Note that we assume 

proportional damping so that we can construct the real modal equations that will better 

illustrate the main motivation behind our technique. Indeed, transforming (3.1) to modal 

equations, we express this system as 

 ( )22  ,     1,2i i i i i i ir r f tr iζ ω ω+ + = =ɺɺ ɺ   (3.2) 

                   

where S4 = T
(DU + VDU( . Further, we assume that the natural frequencies of the system are 

nonzero and well separated. The modal responses are found to be 
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 ( ) ( )1/21 2

0

( ) sin ( ) sin( ( )) , 1 , 1,2i i i i i i

t
t t

i i di i di i di di i ir t A e t e f e t d iζ ω ζ ω ζ ω τω φ ω τ ω τ τ ω ω ζ− −−= + + − = − =∫   (3.3) 

Therefore, the responses of the system can be computed as the superposition of the two modal 

responses, so each response is the summation of the two distinct modes at different time 

scales (frequencies) of the dynamics; thus, application of EMD yields two IMFs, each 

corresponding to a modal response. For example, considering the response1( )x t , we may 

decomposed it as 

 (1) (2) (1) (2)
1 1 1 1 1( ) ( ) ( ) ( ) ( )x t x t x t c t c t= + ≈ +   (3.4) 

 

where ( )
1 ( )ix t  and ( )

1 ( ), 1,2ic t i =  are the M-th harmonic component and corresponding IMF, 

respectively, of the response 1( )x t  [with similar decomposition for 2( )x t ] with  

   

 

( )

( )

1 1 1 1

2 2 2 2

(1) (1) 11
1 1 1 1 1 1 1

1 01

(2) (2) 21
1 1 2 2 2 2 2

2 01

1
( ) ( ) sin ( ) sin( )

1
( ) ( ) sin ( ) sin( )

t
t

d d
d

t
t

d d
d

u
c t x t Ae t f t e d

m

u
c t x t A e t f t e d

m

ζ ω ζ ω τ

ζ ω ζ ω τ

ω φ τ ω τ τ
ω

ω φ τ ω τ τ
ω

− −

− −

 
≈ = + + − 

 

 
≈ = + + − 

 

∫

∫

  (3.5)       

 

and W4C 	are appropriately defined modal constants. At this point, we assume that system (3.1) 

is excited by impulses, X(") = YZ.[(") Z([(")\], and express the response 1( )x t  through 

the complexification-averaging approach discussed in section 2.1. To this end, we introduce 

the complex variables 

 
1

2

(1) (1) (1)
1 1 1 1

(2) (2) (2)
1 1 2 1

( ) ( ) ( )

( ) ( ) ( )

j t

j t

t e x t j x t

t e x t j x t

ω

ω

ϕ ω
ϕ ω

≡ +

≡ +

ɺ

ɺ
  (3.6) 

                                             

with , 1,2i iω =  the two ‘fast frequencies’ and ( )
1 ( ), 1,2i t iϕ =  the two slow amplitude 

modulations of the harmonic components. Substituting (3.6) into (3.1) and performing 
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averaging separately with respect to each of the two fast frequencies, we obtain the complex 

forcing amplitudes ( )
1 ( ), 1,2i t iΛ =  of the two corresponding IMOs, as explained in Section 

2.4. As in the majority of applications in structural dynamics, we assume that modal damping 

is small, giving that 1^4 ≈ 14. With the added assumption that the damping coefficients in the 

IMOs are much larger than the modal dampings, `.(4) ≫ S4 (this assumption is required in 

order to match the IMO responses with the extracted IMFs), we can approximate the forcing 

amplitudes ( )
1 ( ), 1,2i t iΛ =  as 

 

( ) ( ) ( ) ( )
1 1 1 1

(1) (1) (1)
1 1 1 1 1 1 1 1

(2) (2) (2)
1 1 1 2 2 2 2 2

( ) 2 ( ) ( ) , 1,2

ln ( ) ( , , , )

ln ( ) ( , , , )

i i i it t t i

t C F t

t C F t

ϕ λ ϕ

λ ω ζ ζ ω

λ ω ζ ζ ω

 Λ ≈ + = ⇒ 

Λ ≈ −

Λ ≈ −

ɺ

  (3.7) 

 

In these expressions the (real) coefficients (1)
1C  and (2)

1C  are functions that do not depend on 

time, which means that the slopes of the quantities ( )
1ln ( )i tΛ  are computed simply by the 

negative of the product of the modal damping and fast frequency of each mode. Note, 

however, that this result is based on the previous assumptions and under impulsive excitation 

of system (3.1). 

As a numerical example, we consider the parameters 

 
[ ]

1 2 1 21, 4 4, 1,

0.006, 0.002, ( ) 5 ( ) 0

c

T

k k k k k m m m

F t tα β δ

= = = = = = = =

= = =
  (3.8) 

 

The two harmonic components of the response /.(") are computed as 

 

 

( )

( )

1 1

2

(1) (1)
1 1

3(2) (2)
1 1

1
( ) ( ) sin sin( )

2

1
( ) ( ) sin 3

2

t t
d d

d

t
d

F
c t x t e t e t

m

c t x t e t
m

ζ ω ζ ω

ζ ω

ω ω
ω

ω

− −

−

 
≈ = + 

 

 ≈ =  

  (3.9) 
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In Figure 3.2, we depict the above monochromatic components together with their wavelet 

transforms. These can be regarded as the identified IMFs of the signal /.(") which, due to the 

simplicity of the linear system under consideration, are evaluated in closed form. Based on 

these IMFs we construct a set of IMOs in the form (2.15) with their forcing terms 

( )
1 ( ), 1,2i t iΛ =  evaluated in terms of the IMFs through relations (2.18). 

 

Figure 3.2 The two IMFs of the response /.("). 
 

Focusing on the complex amplitudes of the forcing terms of the IMOs in Figure 3.3, we 

compare the logarithms of their moduli ( )
1ln ( ) , 1,2i t iΛ =  to the analytical result (3.7), with 

the coefficients (1)
1C  and (2)

1C  selected to match the two results. We note that the slopes 

predicted by our analysis are in agreement with the actual plots of ( )
1ln ( )i tΛ , exhibiting 

linearly decaying behavior with superimposed small-amplitude oscillations; however, after 

these higher-frequency oscillations are averaged out, there is agreement between the two sets 

of results. Hence, the linearly decaying responses of ( )
1ln ( )i tΛ  provide clear signatures of the 
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linear dynamics of the system, so deviations from this behavior indicates the presence of 

nonlinear dynamical effects. 

 

Figure 3.3 Comparison of ( )
1ln ( ) , 1,2i t iΛ =

 
with the analytical prediction (18) for the response 

/.("). 

 

Figure 3.4 Exact and reconstructed (through IMOs) time series for the response /.("). 
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In Figure 3.4, we depict the exact signal /.(") and the reconstructed time series by 

superposition of the two IMO responses, indicating the capability of the method to reconstruct 

the given time series with no a priori assumptions about the system itself. Note that there is a 

slight mismatch between the reconstructed and exact time series at the beginning of the signal, 

but this discrepancy is dissipated quickly by the damping of the IMO when optimized 

properly.  

In Section 3.2, we will study the application of our NSI methodology to non-smooth 

dynamics of a vibro-impact beam. We study the dynamics of a cantilever beam with two rigid 

stops of certain clearances by performing nonlinear system identification (NSI) based on the 

correspondence between analytical and empirical slow-flow dynamics. In Section 3.3, we 

move to study damping nonlinearities as we investigate the effects of frictional connections in 

the dynamics of a bolted beam assembly. Finally, in Section 3.4, we consider a linear 

cantilever beam attached to ground through a strongly nonlinear stiffness at its free boundary 

and identify the type of strongly nonlinear modal interactions in the dynamics of the system. 
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3.2 NSI of the Dynamics of a Vibro-Impact Beam (Kurt et al. 2012; H. Chen et al. 2014) 

3.2.1 Introduction and System Description 
 

In this section, we explore the nonlinear dynamics of a VI beam (whose setup is 

similar to that used in (Azeez and Vakakis 2001)) using this NSI method (Lee et al. 2010a) to 

reveal coherent structures (e.g., (Dawes 2010)) in terms of IMOs of strongly nonlinear 

dynamics due to vibro-impacts. Study of such systems will provide essential dynamical 

features of structures with defects in applications to structural health monitoring and damage 

detection (e.g., (Chati, Rand, and Mukherjee 1997; H. G. Chen, Yan, and Jiang 2007)). The 

dynamics of a cantilever beam with two rigid stops of certain clearances will be investigated 

by performing nonlinear system identification (NSI) based on the correspondence between 

analytical and empirical slow-flow dynamics. The NSI method in this work can proceed in 

two directions: One for the numerical data obtained from a reduced-order model by means of 

the assumed-modes method, and the other for experimental data measured at the same 

positions as indicated in the numerical simulations. This work focuses on the analysis of the 

numerical data, providing qualitative comparison with some experimental results. First, we 

perform empirical mode decomposition (EMD) on the acceleration responses at ten, almost 

evenly-spaced, spanwise positions along the beam leading to sets of intrinsic modal oscillators 

governing the vibro-impact dynamics at different time scales. In particular, the EMD analysis 

can separate nonsmooth effects caused by vibro-impacts between the beam and the rigid stops 

from the smooth (elastodynamic) response so that nonlinear modal interactions caused by 

vibro-impacts can be explored only with the remaining smooth components. Then, we 

establish nonlinear interaction models (NIMs) for the respective intrinsic modal oscillators, 

where the NIMs invoke slowly-varying forcing amplitudes that can be computed from 

empirical slow-flows. By comparing the spatio-temporal variations of nonlinear modal 
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interactions for the vibro-impact beam and the underlying linear model (i.e., the beam with no 

rigid constraints), we demonstrate that vibro-impacts significantly influence the lower 

frequency modes introducing spatial modal distortions, whereas the higher frequency modes 

tend to retain their linear dynamics between impacts. We compute the linear correlation 

coefficient as a measure of linear dependence between the slowly-varying complex forcing 

amplitudes for the linear and vibro-impact beams, and demonstrate that only the several 

lower-frequency modes are strongly influenced by vibro-impacts, capturing most of the 

essential nonlinear dynamics. These results demonstrate the efficacy of the proposed approach 

to analyze strongly nonlinear measured time-series.  

We consider the uniform, homogeneous cantilever beam (made of steel with density 

37850kg mρ = /  and Young’s modulus 200GPaE = ) depicted in Fig. 3.5, with dimensions 

1 311m 0 0446m 0 008mL h t× × = . × . × . , so that the cross-sectional area and the second moment 

of area with respect to thez axis are 4 23 57 10 mA −= . ×  and 9 41 9 10 mzzI −= . × , respectively 

(we refer to Fig. 3.5 for a definition of the system of axes). Table 3.1 summarizes the 

positions of the accelerometers 1x – 10x  along the beam span, the position of the laser 

displacement sensor LDSx , and the placement of the two symmetric rigid stop STPx  causing 

vibro-impacts. The leading ten natural frequencies (theoretical and experimental) / 2nω π  in 

Hz are listed in Table 3.2, with the corresponding normalized mode shape functions 

( ) 1 10n x L nφ / , = , , ,⋯  presented in Fig. 3.6  (Blevins 2001; Mane 2010).  
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Figure 3.5 Experimental setup for the VI beam: 1x – 10x , LDSx , and STPx  respectively denote the 

spanwise locations of the accelerometers, of the laser displacement sensors, and of the rigid stops. 
  

Table 3.1 Positions for the accelerometers, rigid stops and laser displacement sensors 

Positions 
(mm) 

1x   2x   3x   4x   5x   6x   7x   8x   9x   10x   STPx   LDSx    

131  263  395  527  657  787  917  1052  1215  1311  1185  1230   

 

Two clearance levels between the cantilever beam and the rigid stops are considered: namely, 

infinite clearance corresponding to the case of the linear cantilever beam, and 4mm clearance 

corresponding to the strongly nonlinear VI beam. Experimental procedures for measuring 

time series data involve (i) applying impulsive excitation ( )p t  of various magnitudes at 

position 3x  by means of an impact hammer, selecting an excitation frequency band by using 

several types of tips on the impact hammer (e.g., plastic, rubber and metal), and (ii) measuring 

the accelerations at 1x  through 10x  and the displacement at LDSx .  

In this work we utilize numerically generated acceleration signals from a reduced-order model 

based on the assumed-modes method, and such numerical solutions are updated and validated 

by the experimental measurement. That is, the beam was excited at each node with an impact 

hammer, and averages of four measurements were taken at each node; from the resulting 100 

transfer functions, the leading 10 mode shapes, modal damping factors, and natural 

frequencies were obtained and used to update the assumed-modes model. In the assumed-

modes method the analytical natural frequencies were replaced with the measured ones, and 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x LDSx

 x

 y
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 z
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 t
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numerically simulated time series were obtained by solving the reduced system of differential 

equations. Details of this computation can be found in (Mane 2010). 

Table 3.2 The leading 10 linear natural frequencies (in Hz) of the cantilever beam in Fig. 3.5 (cf. 
(Blevins 2001; Mane 2010)) 

 

 nω   
1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th   

 
 Theoretical  

3.8  23.8  66.6  130.5  215.7  322.2  450.0  599.1  769.5  961.2   

 Experimental  3.7  23.2  64.9  126.9  209.4  314.7  433.9  580.7  751.3  926.7   

 
 

 

Figure 3.6 The normalized mode shape functions ( )n x Lφ /  of a cantilever beam: The first ten modes 

are depicted, and the vertical dashed lines denote the positions for accelerometers. 
 

We remark that the 5th mode, with linearized natural frequency of 209 Hz, has a node at 9x , 

which is very close to the point of vibro-impact STPx . Furthermore, the impulsive excitation is 

applied at location3x , which is close to another node of the 5th mode. As shown below, this 

will affect the EMD analysis used for reconstructing the 5th mode at those particular points 

(i.e., the issues of observability) in the sense that the flexible dynamics of the beam at these 

locations is small and consequently is dominated by the vibro-impacts (non-smooth effects). 
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Similar observations apply for the 8th mode, which possesses a node near the excitation point 

( 3x ).  

3.2.2 Linear Beam  
 

By linear beam, we mean the cantilever beam in Fig. 3.5 without rigid stops (or with 

impacting boundaries at infinite clearance). Then, since the beam is homogeneous and 

uniform, we can assume that its transverse vibrations can be approximately governed by the 

Bernoulli-Euler beam model with the equation of motion 

 3( ) ( ) ( ) ( )zzAv x t EI v'''' x t p t x xρ δ, + , = −ɺɺ   (3.10) 

 

where ( )v x t,  denotes the displacement field for the beam in the transverse (y ) direction at 

( )x t,  (cf. Fig. 3.5); 0( ) ( )p t P tδ=  is the impulsive excitation at 0t = , where ( )tδ  and ( )xδ  

denote Dirac delta functions; and primes and overdots indicate partial differentiation with 

respect to x  and t , respectively. Then, the general solution for Eq. (3.10) can be written as  

 
1

( ) ( )e cos( )m mt
m m md m

m

v x t A x tζ ωφ ω θ
∞

−

=

, = −∑   (3.11) 

 

where 21md m mω ω ζ= − ; mω  is the natural frequency of the mth linear bending mode; mζ  is 

the modal damping factor (when viscous damping is assumed in the system); and ( )m xφ  is the 

normalized mode shape function for the mth mode (cf. Fig. 3.6). The corresponding 

acceleration can be written as   

 
1

( ) ( )  ( )e cos( )m mt
m mm md

m

a x t v x t x tA
ζ ωφ ω θ

∞
−

=

, , = −∑ɺɺ≜   (3.12) 

  

where 2
m m mAA ω=  and 1 22 tan [ 1 ]m m m mθ ζ ζθ −= + − / .  
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Figure 3.7 Wavelet and Fourier transforms of the acceleration for the linear beam at position 9x . 

Now we consider the acceleration response of the linear beam at 9x  depicted in Fig. 3.7. The 

wavelet and Fourier transforms clearly depict the ten dominant fast frequencies identified 

from experimental modal analysis in Table 3.2. As discussed before , the harmonic at 209 Hz 

appears negligible because the position 9x  is close to one of the nodes for the 5th mode. That 

is, we write  

 
10

9 9 9
1

( ) ( ) ( )e cos( )m mt
m mm m

m

a t a x t x tA
ζ ωφ ω θ−

=

≡ , ≈ −∑   (3.13) 

 

for small damping mζ . Therefore, by means of EMD analysis, we wish to obtain the relation 

between the acceleration time series and the intrinsic mode functions (IMFs) such that  

 
10 10

9 9 9
1 1

( ) ( ) ( )e cos( )m mt
m mm m m

m m

a t c a t x tA
ζ ωφ ω θ−

= =

≈ , ≈ −∑ ∑   (3.14) 
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where 9( )mc a t,  denotes the m-th IMF of the acceleration at position 9x  (and is usually 

associated with the m-th normal mode vibration that can be observed at the same position of 

the beam). Figure 3.7 depicts the ten dominant IMFs from the advanced EMD analysis 

algorithm introduced in (Lochak, Meunier, and Dumas 2013), demonstrating that the relation 

(3.14) is valid except for the 5th mode of the beam due to observability issues. For this kind 

of a linear response, one might get similar or even better decomposition with a typical 

bandwidth filter; however, we note that the results in Fig. 3.7 were obtained through an ad 

hoc method (i.e., EMD) without any artificial treatment.  

We establish the reduced-order model (ROM) for the acceleration in Fig. 3.7 for the linear 

beam dynamics at 9x  in terms of intrinsic modal oscillators (IMOs). That is, we write the 

IMO corresponding to each IMF, where 1 10m = , ,⋯ , and the instantaneous slowly-varying 

envelope and phase of the m-th IMF are computed as 2 2
9 9ˆ ( ) ( ) [ ( )]m mm t c a t H c a tA = , + ,  and 

[ ]1
9 9ˆ ( ) tan [ ( )] ( )m m mm t H c a t c a t tωθ −= , / , − , respectively. Since the slowly-varying complex 

forcing amplitude ( )m tΛ  is computed from the time series (or IMF) in an effort to match the 

solution ( )mx t  of the IMO with the corresponding IMF, we write 9( ) ( )m mx t c a t≈ ,  after 

validating the IMO. During this process the damping factor ˆ0 1
mζ< <  is chosen such as to 

minimize the error between ( )mx t  and 9( )mc a t, . Then, the original response can be 

reconstructed as the sum of all IMO solutions; that is, via the expression  

 
10 10

9 9
1 1

( ) ( ) ( )m m
m m

a t x t c a t
= =

≈ ≈ ,∑ ∑   (3.15) 

   

Figure 3.9 compares the 10th / 5th IMFs with the corresponding IMO solutions, which exhibit 

good agreement.  
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Finally, we consider the physical meaning of the complex-valued forcing function ( )m tΛ  for 

the mth IMO of the linear problem, whereas it is known to be associated with nonlinear 

modal interactions in nonlinear dynamical systems. In our linear beam problem, the slowly-

varying envelope ̂ ( )m tA  and phase ̂ ( )m tθ  in Eq. (3.11) can be identified from Eq. (3.14) as 

 9 ˆˆ ( ) ( )e ( ) constantm mt
m mmm mt x tAA

ζ ωφ θθ
−= , = − =   (3.16) 

 

Then, the slow-flow variable can be expressed as    

 2
9 9( ) ( )e e ( ) ( )e em m m m m mj jt ta t

m mm m m m m mmt j x t j xA A
ζ ω ωθ θϕ ω φ ζ ω φϕ− −− −≈ ⇒ ≈ −ɺ   (3.17)  

 

If ˆ
mm

ζζ =  (i.e., the damping factor in the IMO is the same as the modal damping factor 

identified from experimental modal analysis and carries a direct physical meaning), then we 

can easily show that ( ) 0m tΛ ≈ . This approach is feasible and reasonable, because the 

resulting reduced-order model will be the same as that obtained from standard linear modal 

analysis with 1 10mx m, = , , ,⋯  being the modal coordinates.  Furthermore, the solution for the 

IMO will appear as a free damped response, which may naturally retrieve the relation in 

Eq. (3.14). However, as is the case for many other nonlinear system identification methods 

where it is of more interest to check whether the proposed parametric model is able to 

reproduce the measured (or simulated) dynamics, the damping factor in the IMO is not 

necessarily the same as the physical one (i.e., ˆ
mm

ζζ ≠ , in general). In this case, the complex 

forcing amplitude ( )m tΛ  can be expressed as   

 2
9

ˆ( ) ( ) ( )e em m mj t
mm m m mm

t j xA
ζ ωθζ ω φζ − −Λ ≈ −   (3.18) 
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Figure 3.8 The 10 dominant IMFs extracted from the acceleration response in Fig. 3: (a) through (j) 
sequentially depict the 10th to 1st IMFs, respectively. 
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Figure 3.9 Comparison of the IMFs in Fig. 4 with their corresponding IMO solutions: (a) 10th 
IMF; (b) 5th IMF 

The absolute value of Eq. (3.18) is a monotonically and exponentially decaying function; and 

yet, such a forcing function will not generate any modal interactions (consistent with a linear 

system). Nonetheless, the solution for the IMO, which is strongly driven by the forcing 

( )e )mj t
m t ωΛ  because ˆ mm

ζζ ≫ , can be approximated by the IMF in Eq. (3.14). Similar 

discussions can be made not only for the response at position 9x , but also for those at all other 

positions along the linear beam.  

3.2.3 Vibro-impact (VI) Beam  

In this section we consider the cantilever beam in Fig. 3.5 but with the two symmetric rigid 

stops of 4mm clearance at position STPx . If the displacement ( ) 4mmSTPv x t| , |< , then the 

dynamics of the beam is linear. Whenever the beam displacement ( ) 4mmSTPv x t| , |= , then a 

vibro-impact occurs applying a new impact load equal to ( ) ( )STPp t x xδ −  as well as causing 

energy dissipation due to impact. Mathematically speaking, the nonsmoothness due to the 

vibro-impacts means that the displacement response is of class 0C  (i.e., continuous but not 

continuously differentiable).  
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For this strongly nonlinear, nonsmooth dynamical system, there is no closed-form solution 

available in general. Furthermore, such a VI dynamical system may possess a very 

complicated topological structure of periodic orbits even in the simplest model with two  

degrees of freedom (e.g., see (Lee, Nucera, et al. 2009)). This is mainly because nonsmooth 

dynamical systems may involve certain behaviors such as grazing bifurcations (Nordmark 

2001) and even chaotic dynamics (Cusumano, Sharkady, and Kimble 1994). We wish to 

characterize such complicated nonlinear dynamics of the VI beam by applying the proposed 

NSI method.  

As in the linear beam problem, we consider the acceleration signal at 9x  depicted in Fig. 3.10, 

where the effects of vibro-impacts generate multiple broadband perturbations in the wavelet 

transforms. In particular, comparing the Fourier transforms of the linear beam response 

(dashed line) with that of the VI beam, this broadband excitation of the beam due to vibro-

impacts is observed. Figure 3.11a depicts the numerically computed displacement and the 

corresponding impact load on the beam at STPx , to identify the instants of impact (i.e., the time 

instants when the beam displacement at STPx  reaches the thresholds 4mm± ).  
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Figure 3.10 Wavelet and Fourier transforms of the acceleration for the VI beam at 9x x=  (The Fourier 

transform in Fig. 3.7 is superimposed as a dashed line to illustrate the effects of vibro-impacts in 
frequency domain). 

 

 

Figure 3.11 Depiction of the vibro-impacts: (a) the displacement response of the VI beam simulated at 
position xSTP and its corresponding impact loads on the beam from the rigid stops; (b) the nonsmooth 
component of the acceleration in Fig. 3.10 is decomposed via EMD analysis (Note that the dashed 
lines at t = tk , k = 1, . . . , 13 imply the impact instants identified from the impact force, p(t)) 

          
 

It was shown in  (Lee, Nucera, et al. 2009) that the nonlinear modal interactions due to vibro-

impacts are purely due to the smooth parts of the VI dynamics, whereas the non-smooth parts 

tend to create frequency-energy relations involving numerical artifacts. Such numerical 

artifacts can lead to wrong conclusions regarding the nonlinear resonances involved in the 

nonlinear modal interactions between the measured IMFs. Furthermore, it was demonstrated 
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that the smooth parts of the VI dynamics can be obtained by separating out the 

nonsmoothness by means of EMD analysis (Lee, Nucera, et al. 2009) . Typically, the 

nonsmooth part is computed as the first IMF with the help of masking and mirror-image 

signals (Deering and Kaiser 2005). The characteristics of the nonsmooth IMF were explored 

in previous works by relating them to Fourier series expansions of saw-tooth wave signals 

(Lee, Chen, et al. 2011) , and also by a partial-differential-equation-based sifting process 

(Deléchelle, Lemoine, and Niang 2005)  noting that EMD acts, in essence, as a dyadic filter 

bank.  

Figure 3.11b depicts such a nonsmooth IMF for the acceleration signal in Fig. 3.10. 

Superposition of the impact instants identified from Fig. 3.11a illustrates that the isolated 

nonsmoothness agrees reasonably well with the time instants of the vibro-impacts. We note 

that the numerical displacement was calculated from the reduced-order model through the 

assumed-modes method, which means that some other modes higher than 10th may need to be 

included to get a better match between the numerical simulations and experimental 

measurements. Some quantitative discrepancies prevail after 0.2 seconds with the current 

reduced-order model.  
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Figure 3.12 The 10 dominant IMFs extracted from the acceleration response in Fig. 3.10: a through j 
sequentially depict the 10th to 1st IMFs, respectively (Note that the dashed lines imply the impact 
instants identified in Fig. 3.11) 
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Figure 3.14 Comparison of the reconstructed acceleration from the 10 IMO solutions plus the 
nonsmooth IMF with the original response in Fig. 3.10 

  

EMD is then applied to the remaining smooth part of the acceleration signal after subtracting 

the nonsmooth IMF in Fig. 3.11b from the original acceleration in Fig. 3.10. The ten 

dominant IMFs are depicted in Fig. 3.12. By superimposing the vertical dashed line at each 

impact instant identified from Fig. 3.11a, one can at least qualitatively observe the effects of 

vibro-impacts on each IMF at position 9x . For example, vibro-impacts seem to directly 

influence higher IMFs (above the 5th). Indeed, considering these higher frequency IMFs, we 

note linear dynamical behavior between consecutive vibro-impacts, in the form of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5000

0

5000

Time (s)

a
(x

9
,t

)

 

 

Original Reconstructed

 

 

 

 

(b) (a) 

0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

3000

Time (s)

 

 
c10(a9, t) IMO

 

 

 

 

0 0.2 0.4 0.6 0.8 1
−50

0

50

Time (s)

 

 
c5(a9, t) IMO

 

 

 

 

Figure 3.13 Comparison of the IMFs in Fig. 3.12 with their corresponding IMO solutions: (a) 10th IMF; 
(b) 5th IMF 
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exponentially decaying damped responses. On the other hand, lower IMFs do not seem to 

exhibit such straightforward patterns implying that these IMFs may undergo more strongly 

nonlinear modal interactions. These aspects will be explored further in the context of the 

nonlinear modal interaction terms of the corresponding IMOs.  

As in the linear beam, we can also establish a nonlinear interaction model (NIM) for the IMFs 

obtained in Fig. 3.12 in terms of a set of IMOs. Computing the nonlinear modal interaction 

forcing ( )m tΛ  from each IMF by means of the slow-flow correspondence, we solve for the 

ten IMOs,  respectively. Figure 3.13 compares the IMFs with the corresponding IMO 

solutions for 10th and 5th IMFs, and shows good agreement. We sum all IMO solutions to 

reconstruct the original signal, and these exhibit a nearly perfect match as depicted in Fig. 

3.14. That is, the NIM we established has been validated so that it can be used to study the 

nonlinear dynamics of the VI beam (at position 9x ) as an alternative reduced-order model.  

Understanding the physical meaning of the slowly-varying complex forcing amplitude ( )m tΛ  

in the ROM (or NIM for the VI beam) is essential, because the response obtained from the 

IMO in the ROM is strongly dictated by this nonhomogeneous forcing term whereas the 

influence from the homogeneous part of the ROM is minimal. In other words, the ROM will 

predict linear (nonlinear) responses if the slowly-varying forcing term ( )m tΛ  exhibits linear 

(nonlinear) behaviors.  

Now the physical meaning of ( ) 1 10m ka t m kΛ , , , = , , ,⋯  in the nonlinear dynamics of the VI 

beam can be explored by being compared with that for the linear beam. We first note that the 

magnitude of 9( )m a tΛ ,  for all m for the linear beam appears as almost a straight line in a 

logarithmic scale (cf. Fig. 3.15), which would make sense due to the analytical consideration 

in Eq. (3.14). 
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Figure 3.15 Comparison of the slowly-varying forcing functions 9( )m a tΛ , : (a) 10m=  (i.e., 10th 

IMO) and (b) 4m=  (i.e., 4th IMO). Note that the dashed line simply the impact instants identified in 
Fig. 7 

  

Similarly, 9( )m a t| Λ , |  for the VI beam can also exhibit the linearity with the same slope on 

average in a logarithmic scale as in the case of the linear beam, but such linear pattern appears 

only in between impact instants and, in particular, when 6m≥  (cf. Fig. 3.13a for the 10th 

IMO). The trajectory of 10 9( )a tΛ ,  in the complex plane for the linear beam appears as a 

single, monotonic, decaying pattern (i.e., time-like behavior in a logarithmic scale), which 

implies no modal coupling or interactions in the ROM. The trajectory of 10 9( )a tΛ ,  for the VI 

beam also exhibit such monotonic behaviors but only in between vibro-impacts denoted by 

the intervals  1 2nI n, = , ,⋯, and the role of impacts is to cause phase shifts of slowly-varying 

forcing 10 9( )a tΛ ,  at the impact instants. On the other hand, the slowly-varying complex 

forcing function for the 4th IMO of the VI beam does not exhibit any linearity but only 
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slowly-varying wavy envelope regardless of vibro-impacts (cf. Fig. 3.11b). Such wavy 

patterns in the plot of 4 9( )a t| Λ , |  indicate that certain modal interactions occur through 

nonlinear resonant conditions such as internal resonance or resonance capture (Dawes 2010). 

Also, nonlinear modal interactions can be evidenced by the spiral (or non-time-like) patterns 

of the trajectory in the complex plane. 

 

Figure 3.16 Linear correlation coefficient (%) between the slowly-varying forcing functions 

( ) 1 10m ka t m kΛ , , , = , ,⋯ , where m and k  denote the mode number and accelerometer position, 

respectively, of the linear and VI beams. We note that the thick solid (dashed) lines denote the 
boundary for 90% (80%) correlation. 

From these two typical examples, we may conjecture the following: Whereas the higher IMOs 

(i.e., the IMOs associated with higher frequency components) tend to maintain their linear 

dynamics in between impacts (although the overall dynamics is strongly nonlinear), the lower 

IMOs exhibit strongly nonlinear modal interactions independent of vibro-impact patterns. The 

role of vibro-impacts is just to exert broadband impulsive excitations on the linear beam 

causing instantaneous phase shifts for the higher IMOs. In addition, since the overall response 

should be damped out due to the viscous damping, vibro-impacts feed some amount of energy 
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to certain IMOs, while extracting some from the other ones; or they simply dissipate energy 

from all IMOs.  

To verify this conjecture we first compute the Pearson’s linear correlation coefficient for the 

slowly-varying complex forcing amplitudes ( ) 1 10m ka t m kΛ , , , = , , ,⋯  of all IMOs for the 

linear and VI beams at all the positions along the beam. This correlation coefficient is widely 

utilized in statistics as a measure of the linear dependence between two variables, and a 

MATLAB command ‘corm’ was used in this work. Figure 3.16 depicts the interpolated 

contour map of the absolute value of the linear correlation coefficient for each mode number 

along the beam span. Note that by ‘mode number’ m in Fig. 3.16 we mean the IMO which is 

associated with the mth linear mode; and hence there is no such continuous distribution with 

respect to the vertical axis. From these simple calculations, we find that the IMOs higher than 

the 4th possess strong linear dependence (linear correlation coefficient higher above 90%) 

between the linear and VI responses of the beam, regardless of the position along the beam. 

Again, it is noted that the low correlation for the 3rd, 5th, 7th and 9th IMOs at the midspan of 

the beam is due to the fact that the position is very close to one of the nodes for the respective 

linear modes. Similar things can be addressed for those for the 5th and 7th IMOs at position 

9x , and for the 8th IMO at position 8x . Therefore, the aforementioned conjecture is 

confirmed by means of the linear correlation coefficients between ( )m ka tΛ ,  (and hence the 

corresponding IMO responses) for the linear and VI beams confirms. That is, vibro-impacts 

do not alter much the linear dynamics for the higher modes (typically, higher than 4th), but 

rather significantly affect the lower modes creating strongly nonlinear modal interactions. 

This result agrees with Cusumano’s previous work (Cusumano, Sharkady, and Kimble 1994), 

where the topological characterization of the spatial structure of the VI beam vibrations was 

studied by means of the two-point spatial correlation (i.e., correlation dimension)  
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Figure 3.17 The spanwise magnitudes of nonlinear modal interaction for the VI beam: (a) through (j) 
sequentially depict the 10th to 1st IMFs, respectively (Note that the logarithm with base 10 is taken for 

( )m ka tΛ ,  and that the sections at ,  1, 9nt t n= = … , denote some of the impact instants identified in 

Fig. 3.10) 
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and the POD. In particular, the estimate for the correlation dimension of the VI dynamics was 

obtained lower than but near 4, which dictates that the low-dimensional model can capture the 

overall complicated, chaotic-like VI beam dynamics. Furthermore, if such complicated 

dynamics can be captured by low-dimensional model with several lower IMOs, then energy 

transfers (or cascades) from the higher to the lower modes through certain nonlinear modal 

interactions such as internal resonances can be responsible.  

While the linear correlation coefficient provides excellent physical insights to the VI beam 

dynamics, we note that it should be a static, global measure; that is, it does not contain any 

possible temporal variations (or propagations, or localization) of the vibro-impacts. Moreover, 

it cannot suggest useful information, particularly when the IMF for the linear beam 

corresponds to the linear mode which possesses a node near the measurement position. Hence, 

we construct different types of map for the spatio-temporal variations of 

( ) 1 10m ka t m k| Λ , |, , = , ,⋯ , which are depicted in Fig. 3.17 for all the IMOs. We note that, 

since the position 5x  is very close to one of the nodes for the 5th, 7th and 9th linear modes, 

the meaningful IMFs were not obtained creating discontinuous surface plots in Figs. 3.17 (b), 

(d) and (f), respectively. Linear logarithmic decrements of ( )m ka t| Λ , |  in time in between 

vibro-impacts evidences that linear dynamics of the VI beam prevails for the higher IMOs 

than the 3rd (cf. Figs. 3.17(a)–(g)). On the other hand, we can still confirm that the lower 

modes than the 4th are significantly influenced by vibro-impacts (cf. Figs. 3.17(h)–(j)). That 

is, strong wavy, wrinkling spatio-temporal distributions of ( )m ka t| Λ , |  can be observed from 

the 3-dimensional surface plot, as compared to the almost flat distributions of ( )m ka t| Λ , |  with 

simultaneous occurrences of spikes due to vibro-impacts for the higher IMOs. The lower 

IMOs also appear as high-frequency, smudged images of recurrent nested contours in the 2-



53 

 

dimension projection, and accordingly, the impact patterns associated with vibro-impacts are 

hard to read and no longer simultaneous.  

Finally, we remark that not all the higher IMOs behave completely linear in between vibro-

impacts. Whereas the spatio-temporal variations of ( )m ka t| Λ , |  for the 9th and 10th IMOs are 

almost globally linear (evidenced by the formation of nearly rectangular strips of the contour 

plot on the ( )x t,  plane, neglecting changes of their absolute magnitude), those for the 4th–8th 

IMOs manifest spatially-localized nonlinear behavior, in particular, at position 9x  where 

vibro-impacts from the rigid stops can strongly affect the beam dynamics. The slowly-varying 

complex forcing at positions 3x  and 8x  for the 8th IMO, and at position 4x  for the 5th IMO 

also demonstrate spatially-localized nonlinear effects on the VI beam. Furthermore, the 7th 

IMO exhibits even temporal localization of nonlinear dynamics in between the impact instants 

11t  and 13t  in Fig. 3.17(d).  

3.2.4 Comparison with results of experimental data analysis 

In this section, we compare the NSI results of the numerical data in the previous section with 

experimental measurements for the VI beam. Note that comparisons in this section will 

remain qualitative, because the impulsive excitation by an impact hammer for the experiments 

was different from that for the numerical data. That is, a plastic cap was put on the impact 

hammer for experiments, whereas an aluminum tip was considered in the numerical 

simulations. Use of such plastic cap on the impact hammer will limit the frequency band for 

excitation (typically with a cut-off frequency around 1,000Hz), whereas an aluminum tip will 

broaden the excitation bandwidth (typically with a cut-off frequency around 1,200Hz). A 

more complete NSI analysis on the experimental data is discussed in a companion paper (H. 
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Chen et al. 2014), so here we provide only a qualitative comparison between computational 

and experimental results. 

The procedures for NSI of the experimental VI beam responses are the same as those for the 

numerical data. We perform EMD analysis on the ten acceleration measurements respectively 

at the ten positions (1x  through 10x ) along the beam span. For the purpose of comparison, NSI 

of the acceleration at 9x  is our first interest in this section. The 10th and 5th IMFs of this 

experimental acceleration response are depicted in Figs. 3.18 (a) and (b), respectively. 

Comparing them with those depicted in Fig. 3.12, we find qualitative similarity. That is, the 

10th IMF exhibits multiple exponential decays initiated at every vibro-impact, whereas the 

5th IMF seems to exhibit strong nonlinear modal interactions. Indeed, this observation is 

qualitatively consistent with that for the numerical data.  
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Figure 3.19 Comparison of the reconstructed acceleration from the ten (smooth) IMO solutions with 

the original response measured at position 9x . 

 

 

Figure 3.20 The spatio-temporal variations of 9( )m a tΛ , the VI beam from experimental measurements 

(a) 10m=  (i.e., 10th IMO) and (b) 5m=  (i.e., 5th IMO). 

 
 
Then, we establish a nonlinear interaction model (NIM) as a set of IMOs, whose solutions are 

verified and validated to match the respective IMFs. Furthermore, we confirm completeness 

of the IMO solutions as a basis with which the given measurement can be expanded. This is 

demonstrated in Fig. 3.19 . Note that the apparent discrepancies between the measured and 

reconstructed acceleration signals are due to the fact that the nonsmooth IMF was not 

included when reconstructing the original signal.  
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Finally, Figs. 3.20 (a) and (b) depict the spatio-temporal variations of ( ) 1 10m ka t k| Λ , |, = , ,⋯ , 

respectively, for the 10th ( 10m= ) and 4th ( 4m= ) IMFs from experimental measurements at 

the 10 positions along the beam. As was discussed from the NSI of the numerical data, the 

10th (4th) IMO manifests globally (locally) linear dynamics in between vibro-impacts (cf. 

Figs. 3.17(a) and(g)). For the 10th (or higher) IMO, formation of the flat strips is more 

evident, compared to that of the numerical data; and moreover, vibro-impacts occur 

simultaneously along the whole beam. On the other hand, the 4th (or lower) IMO retains 

linear dynamics, except for the position at 9x  where direct effects due to vibro-impacts from 

the rigid stops can be made on the beam dynamics; also, the positions as 1x  and 3x  exhibit 

localized nonlinear modal interactions evidenced by the wavy, wrinkled surface plot. Overall, 

NSI of the experimental results demonstrates dynamical behaviors qualitatively similar to that 

of the numerical results.  

3.2.5. Concluding Remarks 

We studied the dynamics of a cantilever beam with two symmetric rigid stops with prescribed 

clearances by performing nonlinear system identification (NSI) based on the correspondence 

between analytical and empirical slow-flow dynamics. Performing empirical mode 

decomposition (EMD) analysis on the numerically-computed acceleration responses at ten, 

almost evenly-spaced, spanwise positions along the beam, we constructed sets of the intrinsic 

modal oscillators at different time scales of the dynamics. In particular, the EMD analysis can 

separate nonsmooth effects due to vibro-impacts between the beam and the rigid stops from 

the underlying smooth dynamics governed by the flexible beam dynamics, so that nonlinear 

modal interactions can be explored only with the remaining smooth components. Then, we 

established nonlinear interaction models (NIMs) for the respective intrinsic mode oscillations, 
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where the NIMs invoke slowly-varying forcing amplitudes (or nonlinear modal interaction 

terms) that can be computed from empirical slow-flows and directly dictate nonlinear modal 

interactions between different-scale dynamics. By comparing the spatio-temporal variations 

of the nonlinear modal interactions for the vibro-impact beam and the underlying linear beam 

model, we demonstrated that vibro-impacts significantly influence the lower intrinsic mode 

functions involving strongly nonlinear modal interactions, whereas the higher modes tend to 

retain their linear dynamics in between impacts. Also, computation of the linear correlation 

coefficients as a measure for linear dependency between the dynamics of the linear and VI 

beams manifested the same results but only with spatial information. A preliminary 

comparison of the numerical NSI results with those resulting from analyzing experimental 

measurements provided the same qualitative results.  

3.3 NSI of Frictional Effects in a Beam with a Bolted Joint Connection (Eriten et al. 
2013) 

3.3.1 Introduction 

Frictional connections are common in assembled structures whether bolted, welded or riveted. 

These joints introduce additional flexibility and damping to the overall structural dynamics. 

Identification of joint parameters is a challenging task due to the nonlinear nature of the joint 

mechanics spanning multiple spatial and temporal scales. Various experimental and 

theoretical identification and modeling approaches for simple jointed structures have been 

proposed in the literature. Experimental studies focus on replacing the jointed interfaces with 

equivalent external forces and/or moments applied to the jointed members. Force-state 

mapping  (Jalali, Ahmadian, and Mottershead 2007; Crawley and Aubert 1986) and multi-

harmonic balance  methods (Y. Ren 1998) are two examples of these approaches. A 

systematic identification through experiments is conducted by (Ma, Bergman, and Vakakis 
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2001) for two cantilever beams connected by a lap joint; they compare the responses of the 

bolted assembly with a monolithic solid piece with identical geometry in order to isolate the 

joint effects. In  (Ma, Bergman, and Vakakis 2001) it is found that the joints introduce non-

proportional damping and nonlinear softening effects in the structure due to micro-impacts at 

the connections.  

In this section, we perform nonlinear system identification (NSI) of the effects of frictional 

connections in the dynamics of a bolted beam assembly. The methodology utilized in this 

work combines experimental measurements with slow-flow dynamic analysis and empirical 

mode decomposition, and reconstructs the dynamics through reduced-order models. These are 

in the form of single-degree-of-freedom linear oscillators (termed intrinsic modal oscillators – 

IMOs, see 2.4) with forcing terms derived directly from the experimental measurements 

through slow-flow analysis. The derived reduced order models are capable of reproducing the 

measured dynamics, whereas the forcing terms provide important information about nonlinear 

damping effects. The NSI methodology is applied to model nonlinear friction effects in a 

bolted beam assembly. A ‘monolithic’ beam with identical geometric and material properties 

is also tested for comparison. Three different forcing (energy) levels were considered in the 

tests in order to study the energy-dependencies of the damping nonlinearities induced in the 

beam from the bolted joint. In all cases, the NSI methodology employed was successful in 

identifying the damping nonlinearities, their spatial distributions and their effects of the 

vibration modes of the structural component. 

3.3.2 Experimental Fixture and Process 

We consider two simple beams of identical geometries and composed of low-carbon steel, 

one made from a solid piece (labeled the ‘monolithic beam’) and the other composed of two 

half-beams connected by a bolted lap-joint (labeled the ‘bolted beam’). By comparing the 
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dynamics of the two beams, we wish to isolate and identify the frictional effects of the lap 

joint on the structural dynamics. Each of the two half-beams of the bolted beam are of length 

254mm; they are joined by two lap plates of the same thickness and width but with shorter 

length of 81.3mm. Two 6.4 mm hex head stainless steel bolts, four 6.4 mm stamped steel 

washers and two 6.4 mm stainless steel hex nuts are used for bolting (cf. Fig. 3.21). 

The monolithic beam is machined from a single piece of steel, with bolt holes in the 

middle and identical bolting in order to achieve identical geometric properties and mass 

distribution as the bolted beam. Hence, the monolithic beam requires no assembly except for 

bolts and washers. Bolts are first carefully centered in the holes and are hand-tightened in 

order not to touch the sides of the holes. This step is required to prevent any complication due 

to micro-impacts between the bolts and the edges of the holes. Once fixed in position, the 

bolts are tightened to 6214 N-mm. by a dial type torque wrench with a memory needle 

(Precision Instruments, D2F300H). The assembly of the bolted beam requires more attention 

for joining the two half beams and the lap plates. 

 

Figure 3.21 The bolted beam used in the experimental tests (all dimensions given in mm). 
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Figure 3.22 Measurement grid for laser vibrometer measurements, positions of the two accelerometers 
and point of impulsive excitation for the bolted beam 

After the beams were suspended at each end by 1.6m long nylon cords (cf. Fig. 3.22). 

Impulsive excitations were then applied at points on the longitudinal axis of symmetry of the 

beams by an impact hammer with a metal tip (Model PCB 086C04) in order to excite the 

bending modes and avoid the excitation of any torsional modes. Vibration measurements from 

different sensing locations on each beam were recorded by means of two shear accelerometers 

(Models PCB 353B15) and a scanning laser vibrometer system (Polytec Model PSV-400). 

The accelerometers were attached through mounting adhesives and used to check the speckle 

effect (which can decrease the quality of the velocity measurements taken by the laser 

vibrometer). Each accelerometer weighted 2 grams (which amounted to 0.15% of the total 

mass of each beam), so it did not affect the mass distribution of each beam. Moreover, each 

beam was covered with reflective tape to improve the laser vibrometer signal quality. To 

perform the vibrometer measurements a total of 9 grid points were utilized as sensing 

locations along the longitudinal symmetry axis of each beam in order to identify the lower-

frequency lateral bending modes of the beams. The placement and labeling of the 

measurement grid are presented in in Fig. 3.22. Only one half of the beam is labeled due to 

the symmetry of the problem. A junction box (PSV-E-400-H4) and an acquisition board (NI 
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PCI-4452) are used for data acquisition with a sampling frequency of 6.4 kHz (the total 

duration of each time signal is limited to 2.56s). After averaging three successful hits per grid 

point, the measurements for all nine points are recorded and the average spectra of the force, 

velocity and acceleration signals were checked; the Fast Fourier Transform (FFT) settings 

were set to a 2.5 kHz bandwidth with 0.39 Hz resolution, and rectangular windows were 

applied to all measured signals. 

 

Figure 3.23 Typical forcing and velocity spectra in the experimental tests for the monolithic and bolted 
beams: (a,b) Applied force in time and frequency domains, (c) velocity spectra 

 An example of force input and velocity measurements (in time and frequency 

domains) are presented in Fig 3.23 for the monothithic and bolted beams. The force inputs 

resemble perfect impulses within the bandwidth of interest; i.e., there is a 5-6 dB drop in the 

power spectrum over the frequency range of interest from 0 and 2,500 Hz. Considering the 

velocity spectra for both beams, six clear peaks corresponding to the first six bending modes 

of the free-free fixtures can be identified, whereas no torsional modes appear [the low 

frequency mode with nearly zero frequency correspond to rigid body (pendumum) modes, 
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since the beams tested were suspended by nylon cords in order to impose free boundary 

conditions]. Even though the force inputs seem to be nearly identical for both beams, the 

corresponding velocity response spectra differ significantly, especially considering the higher 

bending modes; indeed, the spectrum of the bolted beam indicates increased compliance and 

damping compared to the monolithic beam. Clearly, this difference is attributed solely to the 

frictional interface in the bolted beam assembly, as the lap joint inevitably softens the overall 

stiffness of the beam, and introduces friction forces over the contact patch leading to energy 

dissipation and increased damping. Note, however, that the softening and energy dissipation 

effects are not affecting uniformly all modes within the frequency range of interest, but rather 

a subset of them. One of the main objectives of this work is to identify and model the effects 

of the lap joints on the individual modes of the bolted beam. 

 As mentioned above, measurements from 5 different positions along one half of each 

beam are recorded for a time window of 2.56 s. Typical time series measured from the five 

sensing positions on the monolithic beam are presented in Fig. 3.24. FFTs and wavelet spectra 

for each time series are also provided and, except for sensing position 5, contain a sufficient 

amount of modal data for all six bending modes of interest. Sensing point 5 coincides with the 

mid-point of the beam and, hence, corresponds to the nodal point for the 2nd, 4th and 6th 

modes; this can be inferred from the wavelet spectra that show the frequency contents of the 

time series, as well as the relative contribution of each mode to the response. Moreover, the 

rigid body (pendulum) mode of the beam can be observed directly in the frequency content of 

the time series (as pointed out in the previous section, the suspending nylon cords are 1.6 m 

long, leading to a pendulum mode of approximately 0.4 Hz). The corresponding signals 

obtained from the bolted beam resemble their monolithic equivalents with softening and 

added dissipative effects mentioned above. In the next subsection we perform linear modal 
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analysis of the experimental measurements in order to use the results as a basis for 

comparison with the NSI methodology. 

3.3.3 Linear Modal Analysis 

As a first step, experimental modal analysis is used to extract the modal parameters of the 

leading six bending modes of the two beams. These are identified by analyzing mobility 

functions from sensing location 1 by the rational fraction polynomial (RFP) method 

(Richardson and Formenti 1982), as if the dynamics were linear; whereas this assumption 

holds for the monolithic beam, it does not hold for the bolted beam due to the frictional 

interface at the lap joint. 

 Indeed, the RFP method using a single degree of freedom (SDOF) approximation 

yields very successful results for the monolithic beam, since it is a linear structure with 

limited modal interactions. In contrast, the bolted beam measurements cannot be matched 

adequately using a SDOF approximation in the RFP method; instead, the multi-DOF variant 

of RFP is employed. The RFP curve-fits with SDOF and 3-DOF approximations for the 

mobility plots measured at sensing position 3 are presented in Fig 3.25. Although the peaks 

are matched satisfactorily with the 3-DOF RFP method, there are additional resonances or 

anti-resonances created by the RFP algorithm that are computational artifacts resulting in 

modal damping values that are either unrealistically high or even negative (unstable modes). 

Clearly, these modes have no physical meaning and arise due to the fact that a linear modal 

analysis technique is used to curve-fit nonlinear data. Hence, the existence of these artificial 

resonances and anti-resonances in a best-fit condition is an automatic indication of the 

presence structural nonlinearity in the frequency domain of the measurements of the bolted 

beam (Ewins 1984). 
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(a) 

 

 (b) 

Figure 3.25 Measured and reconstructed mobility FRFs from sensing position 3 based on the RFP 
method with (a) SDOF and (b) 3-DOF curve-fitting algorithms. 
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 In Table 3.3, we summarize the experimental modal frequencies (Hz) and viscous 

damping ratios (%) extracted from the mobility frequency response functions (FRFs) The 

parameters are fairly consistent for the mobility FRFs derived from all sensing positions. 

Bolted beam measurements yield significantly lower modal frequencies and higher modal 

damping ratios compared to the monolithic beam, especially for the higher modes; as 

mentioned previously these effects are due to the frictional interface. The mode shapes 

presented in Table 3.3  are obtained using laser vibrometry (Polytec PSV-400 with PSV-S-

UNI-HM software and PSV-S-ImpGeo geometry import option) considering only the leading 

six bending modes and using 9 grid points along the beam. 

Table 3.3 Experimental Linear Modal Analysis for the Monolithic and Bolted Beams 

 

3.3.4 Nonlinear System Identification 

As mentioned in subsection 2.2, the EMD technique is a time-domain method used to 

decompose a time series into a set of nearly monochromatic time series. The measured time 

series that will be analyzed are the transverse velocity measurements at each of the sensing 

positions 1-5 depicted in Fig 3.24. As shown in Fig 3.24, each velocity signal is composed of 
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several harmonics corresponding to the excitation of the bending modes. EMD decomposes a 

given measured velocity signal in terms of IMFs which provide information about the modal 

content of the signal. Hence, the participation of each mode – that is, the corresponding IMF – 

can be studied in isolation from the other modes. It follows that the first step of the NSI 

methodology is to analyze the measured time series by EMD. 

 A demonstration of application of the EMD procedure is presented Fig 3.26, where the 

velocity signal measured from sensing point 1 of the monolithic beam and resulting IMFs are 

depicted. We note that in our analysis EMD was enhanced with application of masking 

signals and heterodyning (Deering and Kaiser 2005; Senroy and Suryanarayanan 2007; Lee, 

Tsakirtzis, et al. 2011), in order to accurately decompose the signal in terms of IMFs. The 

wavelet spectrum of the measured time series response shows the existence of three separate 

frequency bands, mainly corresponding to the 2nd, 3rd and 4th bending modes, and a very weak 

band for the 1st mode. The same trend can be observed when considering the time series of the 

corresponding IMFs and their wavelet spectra. Since the IMFs are nearly monochromatic, 

they contain additional frequency components of lesser magnitudes. This is because it is not 

possible to compute a fully-orthogonal set of IMFs (Lee, Tsakirtzis, et al. 2009; Lee, 

Tsakirtzis, et al. 2011); for example, random noise and speckle effects introduced in the 

velocity measurements by the vibrometer can contaminate the signals over broad frequency 

ranges. In addition, for weakly excited modes (such as the 1st mode in the measurement of 

Figure 3.26), frequency contamination from neighboring modes may be inevitable due to the 

very nature of the EMD technique. Finally, we note that the rigid body mode was subtracted 

from the response so that it does not appear as an IMF in the results of Figure 3.26.  
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Figure 3.26 EMD analysis of the velocity time series at sensing position 1 on the monolithic 
beam. 

 The next step in the nonlinear system identification methodology is to model and 

reproduce the dominant IMFs in terms of a set of IMOs, as discussed in Chapter 2. The IMO 

forcing amplitudes are calculated directly from the IMF signals using relation (12) for viscous 

damping ratios equal to 	`4 = 0.1. As discussed previously this damping ratio yields a 

satisfactory match between each IMF and the corresponding IMO because of the light 

structural damping. As demonstrated in the example in  Section 3.1, , an IMO damping ratio 

sufficiently larger than the physical damping of the system (i.e., `0 ≫ S0) generally 

guarantees satisfactory reproduction of the corresponding IMF. The corresponding IMO 

responses match well with the measured IMFs for all the modes in the frequency range of 

interest. For example, the four highest frequency modes possess higher energies than the two 

lower frequency modes for measurements taken from sensing location 1; this can be explained 
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by studying the deformations of the modal at this sensing location. Moreover, the rigid body 

mode (pendulum swing motion) is extracted directly from the measured time series by the 

EMD procedure, and summed with the six IMO responses to reconstruct the measured 

velocity signals at each of the sensing positions. In Figure 3.27, we provide a typical 

comparison of the experimental and reconstructed velocity time series for sensing position 1 

of the monolithic and bolted beams. We note good agreement between these responses. Such 

comparisons validate the NSI methodology and demonstrate that the leading six bending 

modes are sufficient for reproducing the experimental measurements. Finally we note that in 

both monolithic and bolted beam cases, the fast frequencies of the IMOs are found to coincide 

with the corresponding damped modal frequencies; in essence, each of the IMOs corresponds 

to a structural mode. Hence, in the following discussion, ‘IMO’ and ‘Mode’ will be 

interchanged in the discussion of the NSI results. 

 

Figure 3.27 Measured and reconstructed velocity time series at sensing position 1 of (a) and (b) bolted 
beams; the reconstructed response was computed as the superposition of the IMO responses with the 
rigid body (pendulum) mode. 
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3.3.5 Nonlinear Frictional Effects 

The complex forcing amplitudes ( ) ( )i
k tΛ  of the IMOs contain essential information about the 

slow-flow dynamics of the modal coordinates and nonlinear interactions between the multi-

scale dynamics. The linear modal analyses provided in subsection 3.3.3 were performed under 

the assumption that the structural responses were composed of nearly decoupled modes, so 

that individual modal responses could be approximated by linear oscillators. From that 

example we recall that for a good match between the measured IMFs and the corresponding 

IMOs it was necessary that the damping ratios of the IMOs be much greater than the modal 

dampings, and under that condition the logarithms of the magnitudes of the complex forcing 

amplitudes of the IMOs could be approximated as linear functions of time; then for the M −th 

harmonic component of the measurement at the + −th sensing position it holds that 

 

 ( ) ( ) ( )ln ( ) ( , , , ) , 1,...,5, 1,...,6i i i
k k k i i i i it C F t k iλ ω ζ ζ ωΛ ≈ − = =   (3.19) 

 

In this notation iζ  is the modal damping of the M-th mode, iω  is the M-th modal (fast) 

frequency, iF  is the impulse amplitude acting at the M-th mode, and, ( )i
kλ  is the damping ratio 

of the M-th IMO of the response at the +-th sensing position. The real coefficient 

( ) ( )( , , , )i i
k k i i iC Fλ ω ζ  can be assumed to be constant with respect to time (in actuality it is an 

oscillatory function due to fast oscillatory components, but a low pass filter can remove these 

oscillations). It follows that linear temporal decay of the logarithm of the magnitude of the 

complex forcing amplitude of an IMO indicates linear dynamic behavior of that mode, with 

the corresponding rate of decay being approximately equal to the viscous modal damping 

ratio. Moreover, based on this finding, we may state that any deviation from linear decay of 
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the temporal plot of the logarithm of the magnitude of the complex forcing of an IMO with 

respect to time is representative of nonlinear dynamical behavior of that mode. 

 In Figure 3.28,  we depict the temporal evolutions of the magnitudes of the forcing 

amplitudes of the six IMOs of the velocity response at sensing position 1 of the monolithic 

beam. In the absence of a mechanical joint in this structure we expect the dynamics to be 

linear, and this is confirmed by the results of this Figure. In addition to the actual forcing 

amplitudes, low-pass filtered versions (with cut-off at 60 Hz) and the theoretically predicted 

linear modal approximations (LMAs) [based on multi-DOF RPF modal analysis of the 

measured time series and relation (21)] are plotted in Figure 11. We note that the plots decay 

approximately linearly with time as long as the signal-to-noise ratios are above a certain 

threshold, whereas deviations occur only after the signals decay to nearly zero values. In 

particular, the three leading IMOs are nearly zero after approximately 0.69 sec; however, the 

4th, 5th and 6th IMOs nearly vanish after 0.4, 0.56 and 0.2 sec, respectively. These times are 

exactly the instants when the linear decays of the plots break down, and highly-oscillatory 

behaviors occur for larger times, which should be regarded as computational artifacts. 
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Figure 3.28 Logarithms of the magnitudes of the complex forcing amplitudes for the six IMOs of the 
velocity time series measured at sensing location 1 of the monolithic beam; both unfiltered and low-
pass filtered data are shown and compared to theoretically predicted LMAs according to (21) (vertical 
line denotes the time instant where an IMO is nearly zero). 

 

 In Figure 3.29,  we depict the results of a similar study for the forcing amplitudes of 

the IMOs of the experimental velocity time series at sensing position 1 of the bolted beam. As 

in Figure 3.28, the experimental results are compared to the theoretical prediction based on 

multi-DOF RFP modal analysis of the measured time series (the corresponding modal 

parameters are listed in Table 1). We note that the linear prediction correlates reasonably well 
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with the experimental results for the even-order modes (in the time period where the signal to 

noise ratio is sufficiently large), but deviates considerably for the odd-ordered modes. This 

clearly suggests that only a subset of structural modes is affected by the frictional nonlinearity 

at the joint (the modes of odd order), whereas there is a subset of modes of even order that is 

not affected by the nonlinearity. This is reasonable, since the frictional interface located in the 

middle of the bolted beam introduces additional damping to the structural response; however, 

even-order modes are influenced very little by the joint since they have a node at the position 

(and source) of the frictional nonlinearity. As in the monolithic case, a vanishing IMO signal 

causes artificial oscillatory behavior in the computed forcing amplitudes, especially for the 5th 

and 6th IMOs. Nevertheless, the other IMOs as well as the initial parts of the 5th and 6th IMOs 

clearly demonstrate the effect of friction and mismatch compared to the linear theoretical 

predictions. Moreover, by computing the variations of the slopes of the filtered results in 

Figure 3.29  we can derive estimates for the variations of equivalent viscous damping ratios 

due to the frictional nonlinearity, and obtain quantitative estimates of the nonlinear effects on 

each IMO (mode) of the structural response. This result will be used in the next subsection to 

study the spatial distribution of the nonlinear effects across the length of the bolted beam at 

different levels of impulsive excitation. 
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Figure 3.29 Logarithms of the magnitudes of the complex forcing amplitudes for the six IMOs of 
the velocity time series measured at sensing location 1 of the bolted beam; both unfiltered and 
low-pass filtered results are shown and compared to theoretically predicted LMAs according to 
(21) (vertical line denotes the time instant where an IMO is nearly zero). 

 Note that the analyses above are conducted using the forcing amplitudes of the IMOs 

corresponding to the velocity time series measured at a single point (sensing position 1) on the 

bolted beam. By analyzing velocity time series meassured at the other sensing positions we can 

study the spatial distribution of the nonlinear frictional effects along the span of the bolted beam. 

In Figures 3.30  and 31,  we depict the spatio-temporal variations of the logarithms of the moduli 
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of the forcing amplitudes of the IMOs, ( )ln ( )i
k tΛ  [where + = 1,… ,5 denotes the sensing position 

and M = 1,… ,6 the dominant harmonic (mode)], for the monolithic and bolted beams, 

respectively. All plots are expected to decrease linearly in time for the monolithic beam, and 

indeed this is confirmed until the time instants where the measured signals nearly vanish. 

                               

Figure 3.30 Spatio-temporal variations of ( )ln ( )i
k tΛ  for the monolithic beam; the cross-line in 

each plot indicates the time instants of vanishing signals due to damping. 
 

 For the bolted case shown in Figure 3.31, nonlinear deviations due to the frictional contact 

are noted in the spatio-temporal patterns especially for the 4th and 5th IMOs. In this case, we can 
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study the spatial distribution of the nonlinear frictional effects along the span of the bolted beam 

by studying the local slopes of the graphs of Figure 3.31 as they involve in time and space. In 

addition, we note that the mode shapes of the bolted beam are nearly identical to the 

corresponding mode shapes of the monolithic beam, so frictional effects do not influence the 

mode shapes (these are influenced predominantly by nonlinear stiffness effects, which are absent 

in the present case). 

 

Figure 3.31 Spatio-temporal variations of ( )ln ( )i
k tΛ  for the bolted beam; the cross-line in each plot 

indicates the time instants of vanishing signals due to damping. 
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Up to this point, the analysis of the nonlinear effects was purely qualitative, except for the 

comparison of the dynamics of the monolithic and bolted beams with experimental modal 

analysis of subsection 3.2; therefore, we need to define quantative or statistical measures to study 

in detail the nonlinear frictional effects. For this purpose, we compute Pearson’s linear correlation 

coefficient  (Kurt et al. 2012) for the moduli of the slowly varying complex forcing amplitudes 

( ) ( )i
k tΛ  for all IMOs of the monolithic and bolted beam cases (i.e., for M = 1,… ,6), and at all 

positions along the beam (i.e., for + = 1,… ,5). This linear correlation coefficient – LCC is widely 

utilized in statistics as a measure of the linear dependence between two variables and in this work 

was implemented through MATLAB. The expression used to compute LCC is 

LCC=d9;ee fln	(|Λ0,2i)i?4Fj4k(4) |), ln	(|Λ0,li?Fm^(4) |nod = 

.pp
q × st uvw	(|xy,Ez{z|U}~U�(U) |n

�

)@.
uvw	(|xy,�z|}��(U) |ns                                     (22) 

where N is the data array dimension, and variables uvw	(|xy,Ez{z|U}~U�(U) |n and uvw	(|xy,�z|}��(U) |n denote the 

scores (distance between the raw data and the mean of this data in units of standard deviation) of 

the variables ln	(|Λ0,2i)i?4Fj4k(4) |) and ln	(|Λ0,li?Fm^(4) |. 
In Figure 3.32,  we depict the interpolated strips along the beam of the absolute value of 

the linear correlation coefficient for the first 6 modes for durations of 0.1, 0.15, 0.2 and 0.25 

seconds. These four snapshots are selected in order to study how the correlation of the forcing 

amplitudes of the IMOs of the monolithic and bolted beams evolves in time for each of the six 

bending modes in the frequency range of interest. It is clear from the results of Figure 3.32  that 

the strongest linear correlation between the dynamics of the monolithic and bolted beams is 

realized for the 2nd and the 4th modes (IMOs), with corresponding correlation values on the order 
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of 95%. Since the source of frictional nonlinearity in the bolted beam is local and located exactly 

at the middle of the beam, the even-order modes are expected to be influenced less by the 

nonlinearity (since each of these modes possesses a node at the bolted joint); the high values of 

the correlation coefficient noted for the 2nd and 4th modes confirm this fact.  

Focusing now on the 3rd mode of the bolted beam, we note that in the initial snapshot 

strong linear correlation with the corresponding mode of the monolithic beam is observed. 

However, in later snapshots this correlation gradually deteriorates; a similar behavior is noted for 

the correlation of the 6th mode. In general, the odd-ordered modes of the bolted beam show weak 

correlation with the corresponding modes of the monolithic beam, indicating that the nonlinear 

frictional effects affect mainly these modes. In addition, examining the odd-ordered modes, we 

note a slight decrease of the linear correlation coefficient as the mid-span of the beam is 

approached; this is expected due to the location of the bolted joint at this position. The correlation 

values at each modal strip and spatial coordinate can be used as a quantitative measure of the 

effects of the frictional nonlinearity. In the bolted beam experiments, the frictional interface does 

not affect the modal frequencies much (this can be confirmed by the experimental modal analysis 

results of Table 3.3), but frictional dissipative effects introduce additional damping in each mode. 
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Figure 3.32 Absolute value of the linear correlation coefficient (%) (interpolated along the half-span of the 
beam) for (a) " = 0.10�39, (b) " = 0.15�39, (c) " = 0.20�39, and (d) " = 0.25�39. 

While a study based on the linear correlation coefficient provides physical insight into the 

spatial distribution of the frictional effects on the dynamics, it does not provide any information 

regarding the temporal variation of the nonlinear effects along the half-span of the bolted beam. 

Such effects can be studied by defining equivalent damping coefficients based on computations of 

local slopes of the graphs of ( )ln ( )i
k tΛ  versus time for each IMO and at each sensing position 

along the bolted beam. 
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3.3.6 Equivalent Damping Ratios 

Considering the results of Figure 3.29 in the previous subsection, we mentioned that the 

deviations of the graphs of ( )ln ( )i
k tΛ  from the linear decaying behavior predicted by LMA 

provide a clear indication of the presence of nonlinear damping effects in the IMO responses. 

Given the fact that the dynamics of the bolted beam is expected to reach a linearized limit for 

sufficiently small impulsive excitation, we anticipate that the nonlinear effects should decrease 

with decreasing applied excitation. To verify this, we performed three independent hammer tests 

of the bolted beam by applying strong, moderate and light impulsive excitations at the same 

forcing position on the beam indicated in Figure 3.22. The case of strong excitation corresponds 

to the results reported in the previous subsection. In Figure 3.33, we present the time histories of 

the three different impulsive excitations realized in the experiments, and focus on the velocity 

time series measured at each sensing position of the bolted beam. In particular, after decomposing 

the experimental time series into their dominant IMFs by means of EMD, we construct sets of 

IMOs that reconstruct the extracted IMFs. Based on these reconstructions we compute the 

quantities ( )ln ( ) , 1,...,5, 1,...,6i
k t k iΛ = =  for each experimental test based on the forcing terms 

of the IMOs. Lastly, we compute the average slopes of graphs of ( )ln ( )i
k tΛ  in order to estimate 

equivalent modal damping ratios iζ  for each mode, at each sensing position, and for each of the 

three experimental tests. 
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Figure 3.33 The three different impulsive excitations applied to the bolted beam.  

The energy applied to each mode (IMO) is estimated at the time instant immediately after 

the application of the hammer excitation by assuming that this energy scales with the square of 

the measured initial velocity of the mode at the point of impact. Hence, heavy, moderate and light 

hit experiments give three different energy levels and corresponding damping ratios for each 

mode and at each sensing position along the half-span of the bolted beam. For each mode (IMO) 

the results are interpolated in the spatial direction and in the applied energy. The results of this 

analysis are depicted in Figure 3.34. It is clear that the equivalent damping ratios for the odd-

order modes exhibit a significant increase with increasing energy, indicating an increase in the 

friction-induced damping nonlinearity as the magnitude of the applied impulse increases; on the 

contrary, even-order modes are not influenced much by the increase in applied impulse, 
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confirming the small influence of frictional effects on the dynamics of these modes. Moreover, 

the results of Figure 3.34  not only yield quantitative measures of the frictional damping effects, 

but also provide the spatial distribution of these effects along the half-span of the bolted beam and 

their dependence on energy. We note, however, that the appearance of nodes may lead to 

deterioration of the results (this can be seen, for example, by the results of the first mode at 

//� ≈ 0.3). 

 

Figure 3.34 Equivalent modal damping ratios extracted by the NSI methodology; each plot depicts the 
spatial dependence of this ratio on the applied modal energy. 
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3.3.7 Concluding Remarks 

We applied a new nonlinear system identification methodology to the analysis and modeling of 

the nonlinear damping effects induced by a frictional interface on the dynamics of a beam with a 

bolted joint connection. The analysis was performed by decomposing measured time series using 

empirical mode decomposition (EMD), and modeling the resulting dominant intrinsic modal 

functions (IMFs) in terms of sets of intrinsic modal oscillators (IMOs) that capture the multi-scale 

dynamics in the measured time series. In particular, we showed that by studying the temporal 

decays of the logarithms of the moduli of the complex amplitudes of the forcing functions of the 

IMOs we can deduce the nonlinear damping effects in the dynamics. This is due to the fact that 

linear modes correspond to linear decays of these quantities, so deviations from this linear decay 

law provide clear indications of the presence of nonlinear damping effects in the measured data. 

Based on this finding we were able to provide estimates for the nonlinear damping effects of the 

frictional interface on the beam dynamics, study how these damping effects are distributed along 

the span of the beam, and analyze the dependencies of these nonlinear effects on the level of 

energy (or applied level of external applied excitation). The outlined methodology can be 

employed to study nonlinear damping effects in structural assemblies with more complex 

mechanical joints, and nonlinear stiffness effects in structural components with local or 

distributed nonlinearities of a different source (e.g., geometric, kinematic or material 

nonlinearities). Moreover, it is possible to study the effects of non-proportional (linear or 

nonlinear) damping distribution on the modal responses, and conceive methods for modeling such 

effects and for examining how these effects perturb the results of classical experimental modal 

analysis. 
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3.4 Strongly Nonlinear Beats in the Response of a Beam with a Strongly Nonlinear Stiffness 
(Kurt, Eriten, et al. 2014a) 

3.4.1 Introduction and System Description 

In this work, we consider nonlinear system identification of a cantilever beam with an 

essentially (non-linearizable) nonlinear stiffness at its free end. Our aim is two-fold: First, we aim 

to show that this system can exhibit an unexpected nonlinear beat phenomenon resulting from 

internal resonances between beam modes that are coupled through the strong nonlinearity; second 

we will develop a nonlinear system identification methodology capable of identifying the 

parameters of the system and the participating modes for which nonlinear beats occur. In general, 

our motivation is to study and identify the strongly nonlinear dynamics that arise in flexible 

structures with local stiffness nonlinearities. Unexpected nonlinear beat phenomena involving 

low-frequency modes are observed in this system caused by strongly nonlinear modal interactions 

induced by the local essential stiffness nonlinearity. We provide an explanation of these nonlinear 

phenomena and then proceed to extend the NSI methodology reviewed in (Lee, Tsakirtzis, et al. 

2011; Vakakis et al. 2011) in order to account for this type of complex multi-scale dynamics. We 

will do this by considering the nonlinear normal modes (NNMs) of the system in the frequency-

energy domain. NNMs were defined as vibrations-in-unison of dynamical systems starting from 

the seminal works of (Rosenberg 1960; Rosenberg 1962) and were proposed in (Kerschen et al. 

2009; Peeters et al. 2009) as a way to extend experimental modal analysis to the nonlinear regime. 

In the next section, we perform an NSI study of the nonlinear dynamics of the cantilever beam 

considering the linearized, weakly nonlinear and strongly nonlinear response regimes. The source 

of the strongly nonlinear beat phenomena in the dynamics of this system is investigated using a 

reduced order model based on Guyan reduction, showing the generation of multi-scale nonlinear 
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modal interactions due to the presence of a local, strong stiffness nonlinearity. Finally, in the last 

part, we extend the NSI technique to account for nonlinear beats in the measured time series, and 

then apply it to the NSI of the low-frequency nonlinear dynamics of the cantilever beam. We end 

the section with concluding remarks. 

 

Figure 3.35. The system under consideration: (a) configuration, (b) applied impulsive force. 
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Figure 3.36. Acceleration of the tip of the beam: (a) Linear case (no nonlinear spring attached), (b) case of 
weaker nonlinearity, +)? = 10�	N/m�, (c) case of stronger nonlinearity, +)? = 10.p	N/m�. 

In a series of simulations the dynamics of the system of Fig. 3.35  is studied for two different 

values of the nonlinear cubic stiffness (specifically, +)? = 10�	*/A�, and +)? = 10.p	*/A�), 
and for the case when the nonlinear spring is detached (i.e., the linear beam). The results of the 

simulations are depicted in Fig. 3. For each simulated case we depict the transient acceleration of 

Nonlinear 
effects 

Nonlinear 
effects 
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the tip of the beam, together with its Morlet wavelet transform and Fourier spectrum. The wavelet 

transform provides information regarding the temporal evolutions of the dominant frequency 

components of the measured signals, and, hence, it can be regarded as a ‘dynamic analog’ of the 

classical Fourier transform that provides averaged information regarding the freuqency content of 

a signal under the assumption of stationarity and linearity. The wavelet transform (WT) is 

especially useful for post-processing the nonstationary and nonlinear time series considered in 

this work. 

From the examination of the linear (Fig. 3.36a) and nonlinear (Figs. 3.36b and 3.36c) we can 

readily deduce the effects of the strong nonlinearity on the dynamics. As evidenced by the WT 

plots and the Fourier spectra, the local nonlinearity considerably affects the frequency content of 

the response. Moreover, whereas the weak nonlinear stiffness case mainly affects the lower 

structural modes, the stronger nonlinear stiffness seems to affect the entire frequency range of the 

response. 

3.4.2 Empirical Mode Decomposition 

In this section, we post-process the previous nonlinear time series of the tip response of the beam 

by EMD. Although the EMD of the linear response of Fig. 3.36a is somewhat straightforward, 

this is not the case for the nonlinear time series of Figs. 3.36b and 3.36c, for which the analysis 

will pose some distinct challenges. First, due to the realization of nonlinear internal resonances 

between distinct nonlinear normal modes of the beam, we will encounter difficulities in extracting 

nearly monofrequency IMFs. Second, we need to determine a certain frequency value around 

which to extract a narrowband IMF, which is not generally trivial for the strongly nonlinear case. 
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                           (a)                         (b) 
 
Figure 3.37 The 1st and 6th intrinsic mode functions (IMFs) and their wavelet transforms: (a) Linear 
system, and (b) strongly nonlinear system. 

 We now proceed with the results of the empirical mode decomposition of the acceleration 

time series of the linear (cf. Fig. 3.36a – no nonlinear spring attached) and strongly nonlinear (cf. 

Fig. 3.36c – case of the nonlinear spring with stiffness constant +)? = 10.p	*/A�) beams 

discussed in subsection  3.4.1. Although as many as 10 IMFs were extracted for both systems, in 

Figure 3.37, we only present the 1st and 6th IMFs for both linear and strongly nonlinear systems, 
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since those IMFs are good representatives of linear and strongly nonlinear behaviors, 

respectively. For each IMF we also depict its corresponding wavelet spectrum depicting the 

temporal variation of its frequency content. We note that, whereas in the linear case the harmonic 

components of the IMFs are expected to be at fixed frequencies (identical to the damped natural 

frequencies of the linear beam), this is not so for the strongly nonlinear case, where temporal 

variation of the harmonic content of the IMFs is expected (especially for the lowest frequency 

IMFs). 

 From the results of EMD and the comparison between the linear and nonlinear IMFs, we 

note that the nonlinear effects are more pronounced in the 6th IMF; i.e., the nonlinear effects 

seem to predominantly affect this beam mode. In addition, in the nonlinear case for the 6th IMF, 

we observe beating phenomena which dominate the entire IMF response. This indicates a 

continuous exchange of energy between nonlinearly interacting modes for the entire duration of 

the dynamical response. This type of nonlinear beating is generated by strongly nonlinear modal 

interactions induced in the dynamics by the local strong stiffness nonlinearity. 

 In Fig. 3.38 we show the transient response reconstruction of both linear and nonlinear 

time series using the superposition of all the IMFs extracted for both systems. The IMFs do not 

form an orthogonal basis of functions (although they are nearly orthogonal); however, their 

superposition reconstructs the measured time series. Therein lies the usefulness of EMD, as it 

provides a multi-scale decomposition of the oscillatory time series in terms of embedded 

oscillatory components (the IMFs) at the dominant time scales of the dynamics. 
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                        (a)                      (b) 

Figure 3.38 Original reconstructed time series, the latter obtained by summing intrinsic mode functions 
(IMFs) and the responses of intrinsic modal oscillators, respectively, (IMOs) for (a) the linear system, and 
(b) the strongly nonlinear system;  original time series,  sum of IMF responses,   sum 
of IMO responses. 

3.4.3 Intrinsic Modal Oscillators (IMOs) 

Based on the EMD results of subsection 3.4.2, we construct sets of intrinsic modal oscillators – 

IMOs that reproduce the nonlinear transient dynamics (as described in Section 2). In Fig. 3.38, it 

is demonstrated that the original time series can be reconstructed by summing the IMFs identified 

in the previous section, and by summing the responses of the corresponding intrinsic modal 

oscillators (IMOs – see Section 2.4) that will be computed below. 

As discussed in Section 2.4, the forcing amplitudes of the IMOs contain essential 

information about the slow-flow dynamics of the system and the nonlinear interactions that occur 

between the nonlinear modes of the beam. In linear modal analysis the structural response is 

composed of nearly decoupled modes, which are the corresponding IMOs in our methodology. 

Hence, in a digression we consider a linear system with a forcing for the Ath IMO (mode) 
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obtained from a physical response linked to the +th degree of freedom given by ( ) ( )m
kF tδ . Then 

the corresponding IMO (mode) has the simple solution  

 
( )

( )
( )  

,
,

e) sin(
m

mk

m
m t

d m
d

k
k

m

F
tc t ζ ω ω

ω
−=   (3.20) 

 

where 
1/ 2( ) 2

, 1d m km
mω ω ζ = −  is the damped frequency of the Ath dominant frequency (natural 

frequency) and ( )m
kζ  the damping ratio associated with the Ath IMO of the +th degree of freedom. 

Using the equivalence between the analytical and measured slow-flows (see discussion in Section 

2.3), and substituting this solution into (2.2) yields the corresponding slow complex amplitude 

�0(2)(") which, in turn, provides the forcing amplitude for the Ath IMF of the +th degree of 

freedom 

 

( ) ( ) ( )
( )( ) ( ) ( )( ){

( ) ( ) ( ) ( )( ) }
,

2 2
, , ,

2  2 cos

1  ) si/ n

m
mkt jm m m m

k k k k m d m

m m m m
d m k k k k m d m d m

t F t

j t

ζ ω
ζ λ ω ω

ω ζ λ ζ λ ω ω ω

− +
Λ = − + +

 − + + + −
 

e

 

  (3.21) 

 
As shown in (Eriten et al. 2013), the natural logarithm of the forcing amplitude (3.21) yields an 
expression of the form   

 ( ) ( ) ( ) ( ) ( )ln ( ) ( , , , )m m m m m
k k m k k k mt C F tζ ζλ ω ω−Λ ≈   (3.22) 

 

where ( )m
kλ  is the damping ratio for the corresponding IMO equation and ( ) ( ) ( )( , , , )m m m

k m k kC Fζλ ω  

is a coefficient that is constant with respect to time. Hence, when the proposed NSI technique is 

applied to a linear structure and an IMO is forced properly to reproduce the measured modal 

coordinate response (IMF), the corresponding forcing amplitude ( ) ( )m
k tΛ  is expected to scale 

linearly with the modal damping in a log-linear plot with a slope value equal to ( )m
k mζ ω− .  
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Table 3.4. Damping factors, fast frequencies and line slopes for each linear cantilever mode based 
on the beam tip response 

Mode 

No. 

(A) 

( )m
Tipζ  mω  

(rad/s) 

( )m
mTipζ ω−  

(rad/s) 

1 0.0071 23 -0.17 

2 0.0011 146 -0.16 

3 0.0012 409 -0.49 

4 0.0029 798 -2.3 

5 0.0068 1319 -9.0 

6 0.0034 1979 -6.7 

7 0.0074 2758 -20 

8 0.0018 3657 -6.6 

9 0.0023 4719 -11 

10 0.0015 5818 -8.7 
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In Table 3.4, we provide the expected slopes for the modes of the linear beam under consideration 

(i.e., with nonlinear spring detached), along with the corresponding modal damping factors and 

natural frequencies (fast frequencies in EMD notation). These estimates are computed by 

analyzing the 10 IMFs (IMOs), some of which are shown in Fig. 3.37, which are extracted by 

EMD of the cantilever tip response. 

  

 

 

 

 

 

 

Figure 3.39 Plots of ( )ln ( )Tip
m tΛ  for IMOs corresponding to the (a) 1st IMF, (b) 6th IMF of the linear and 

strongly nonlinear cantilever beams;  _____ Linear,  _ _ _ _  strongly nonlinear,  __ _ __ predicted linear 
slope. 
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From these results and the previous discussion it should be clear that linearity in an 

identified IMO is demonstrated by a linear plot of the logarithm of the magnitude of its forcing 

function. Hence, any nonlinear deviation from linearity in this plot provides a clear indication of 

nonlinear effects in the measured IMOs. We show this by computing the logarithms ( )ln ( )Tip
m tΛ  for 

the IMFs of the linear and nonlinear beams. The corresponding results for the IMFs depicted in 

Figure 3.37 are depicted in Figure 3.39, from which we deduce that not all cantilever modes are 

affected to the same extent by the strongly nonlinear local stiffness attached to the boundary of 

the beam. Specifically, and referring to the plot of Figure 3.39a, we observe that for the first 

(highest-frequency) IMO the logarithms of the forcing amplitudes are on almost perfect match 

with the predicted slope lines for both the linear and nonlinear beams, indicating that this highest 

frequency mode is nearly unaffected by the local stiffness nonlinearity.  

However, considering the lower frequency IMO depicted in Fig. 3.39, we note a different 

trend. Focusing on Fig. 39b we observe a strong nonlinear effect in this IMO. Recalling the result 

depicted in Figure 37, we observed that due to the high modal damping and the mode shape 

effect, the 6th IMF (corresponding to the 5th beam mode) exhibited strongly nonlinear effects at 

various time instants; that is, new nonlinear modes appeared near the fast frequency of this mode 

caused by mode mixing due to internal resonances. Similarly, in Figure 6b, we observe that the 

logarithm of the forcing amplitude of the 6th IMO of the linear beam lines up well with the 

predicted slope line until 0.2 s after which noise effects introduce perturbations. For the strongly 

nonlinear beam, however, the corresponding logarithm of the forcing amplitude exhibits a 

completely different behavior and deviates significantly from the predicted linear trend. This is 
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caused by the nonlinear effects generated by internal resonances, and shows that this particular 

mode is strongly affected by the local stiffness nonlinearity of the beam.  

Thus, by examining the temporal dependence of the magnitude of the forcing function of 

each IMO, one is able to detect the presence of nonlinear effects in its respective IMO. It follows 

that by employing the outlined methodology it is possible to identify which of the modes (IMOs) 

of the cantilever beam with the local stiffness nonlinearity at its end are significantly affected by 

nonlinear effects. We conclude from the analysis of these IMOs that whereas lower frequency 

modes are affected by the nonlinear effects, higher frequency modes are less affected by the 

nonlinearity appearing to be nearly linear. In the following Section we construct a reduced-order 

model of the system of Fig. 3.35a in order to investigate (and explain) the origin of the nonlinear 

beat phenomena detected in the IMFs in Fig. 3.37. Based on this understanding, in a later Section 

we will develop a method for system identification of these strongly nonlinear dynamics. 

3.4.4 Analysis of Nonlinear Beat Phenomena by Reduced Order Modeling 

To analyze nonlinear beat phenomena in the system of Fig. 3.35a it is necessary to consider a 

reduced-order model of this flexible system. To this end we apply Guyan reduction, a static 

model reduction method (Guyan 1965). Ignoring the damping effects for the moment, a linear 

discrete dynamical system with mass matrix YA\ and stiffness matrix Y+\ can be partitioned in 

terms of driven ({ul}) and driver ({u5}) coordinates as  

   

 [ ]{ } { }
0

aa ab a a

ba bb b

k k z F
k z F

k k z

     
= = ≡    

    
  (3.23) 
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where we assume that degrees of freedom {u5} are excited by the external forces{ }aF , and we 

ignore forces (external and inertial) associated with the degrees of freedom {ul}. This yields the 

coordinate transformation 

 [ ]{ } [ ]{ } { } [ ] [ ]
[ ]

{ } { }
[ ]
�

{ } [ ]{ }1
0

ba

a
ba a bb b b bb ba a a a

b ba
T

T

z I
k z k z z k k z z z T z

z T
−    

+ = ⇒ = − ⇒ = = ≡   
   �		�		�

  (3.24) 

 

  

Returning to the original linear dynamical system (with inertia, damping and all forcing terms 

included) we apply the static transformation (3.24) to reduce the system to a form that involves 

only the driver coordinates {u5} 
 [ ] [ ][ ] { } [ ] [ ][ ] { } [ ] [ ][ ] { } [ ] { } [ ]{ }

{ }R RR R

T T T T a
a a a a ba b

b
M KC F

F
T m T z T c T z T k T z T F T F

F
         

 
+ + = = + 

 
ɶ ɶ ɶ ɶ

ɺɺ ɺ
�	�	� �	�	� �	�	� �		�		�

  (3.25) 

 

where { }bF  represents the vector of forces applied to the driven coordinates, and { }RFɶ  the vector 

of forces applied to the reduced model. 

 We now consider the nonlinear cantilever system of Fig. 3.35a. We apply Guyan 

reduction to the global mass and stiffness matrices assembled through finite element (FE) 

discretization of the cantilever beam. In the application considered in this Section the FE model 

consists of two planar beam elements leading to a four-DOF full model (two translations and two 

rotations), which reduces to a two-DOF reduced Guyan model (RGM) involving only the two 

translations. The mass, damping and stiffness matrices of the RGM are given by 
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1.66 0.33 0.5329 0.1140 17709 5534

, ,
0.33 0.51 0.1140 0.1675 5534 2214R R RM C K

−     
    = = =          −     
ɶɶ ɶ   (3.26) 

 

reproducing the two lowest modes of the cantilever beam with natural frequencies equaling 23 

and 146 rad/s (3.7 Hz and 23.3 Hz). Moreover, in correspondence with the original beam we 

assume proportional damping in the RGM, selecting the damping coefficients to match those of 

the two lowest modes of the cantilever beam, as given in Table 3.4. In summary, the RGM of the 

system of Fig. 3.35 is given in the form 

 { } { } { } { } { } [ ]( ) 0
T

R a R a R a R nl eM z C z K z F F F t    + + = = +    
ɶɶ ɶ ɶɺɺ ɺ   (3.27) 

 

where {u5} = Y/. /(\], {Z)?} = Y0 −+)?/(�\] represents the force due to the strong 

nonlinearity connected to the second DOF of the RGM (with coefficient +)? = 10.p	*/A�, 

representing the strongly nonlinear case studied in Section 3.4.1), and ( )eF t the external shock 

excitation (given in Fig. 3.35b) applied to the first DOF. In the previous notation /. and /( 

represent the amplitudes of the two translations that represent the two-DOF of the RGM. 

Next, we consider the nonlinear normal modes (NNMs) (Vakakis 2002)  of the RGM 

(3.27) by considering the Hamiltonian system resulting when we omit the damping and set the 

external excitation equal to zero. The nonlinear modes of the reduced system are depicted in a 

frequency-energy plot (FEP) as discussed in (Vakakis 2008). This plot depicts the periodic orbits 

of the RGM in the frequency-energy plane. Of special interest will be strongly nonlinear modal 

interactions generated by internal resonances since, as shown below, they are responsible for 

nonlinear beat phenomena of the type identified in the transient responses of the full flexible 

system. 
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    (a) 

 

  (b) 

Figure 3.40 FEP of the RGM with end stiffness nonlinearity: (a) Backbone branches, (b) detail of the in-
phase backbone branch indicating subharmonic tongues due to internal resonances;  Stable NNMs, 

 unstable NNMs.  

S311 

S312 
S512 

S511 
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In Fig. 3.40a we depict the FEP of the RGM; this plot was computed using the numerical 

continuation code developed by (Peeters et al. 2009). There are two branches of nonlinear normal 

modes for this system denoted as backbone branches. These branches are labeled N11 ∓ since 

they correspond to in-phase (+ sign) and out-of-phase (− sign) synchronous oscillations of the 

two masses of the RGM with both degrees of freedom oscillating with identical frequencies; i.e., 

they satisfy the condition of 1:1 internal resonance between the two degrees of freedom of the 

RGM. Due to the stiffening effect of the cubic nonlinearity, the frequency of the in-phase NNM 

converges to a certain asymptotic limit with increasing energy, as the cubic stiffness becomes 

approximately rigid and the system approaches a beam with pinned right end. The out-of-phase 

NNM ‘decouples’ from the in-phase mode during this limiting process, becoming a purely 

nonlinearity-governed NNM. 

Apart from the backbone branches, of particular interest for our discussion are the 

subharmonic tongues appearing as bifurcating branches out of the lower frequency in-phase 

backbone branch N11 +, generated by 1: � internal resonances between the in-phase and out-of-

phase NNMs of the RGM. In Fig. 3.40b we depict the subharmonic tongues N31 and N51 

corresponding to 3:1 and 5:1 internal resonances, respectively, between the two backbone modes. 

The reason that we find two of each of these subharmonic tongues (labeled as N31.,( and N51.,( 

in Fig. 7b) is that the ratio between the frequencies of the in-phase and out-of-phase backbone 

branches reaches 3 and 5, respectively, at two different energy levels. We mention that, if the ratio 

of the linearized frequencies of these two NNMs were smaller than 3, it would be impossible to 

obtain these tongues. The stability of the NNMs on the backbone curves and the subharmonic 

tongues was studied by means of Floquet theory (Peeters et al. 2009), and the results are depicted 

in Fig. 3.40. 
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        (a)           (b) 
 

Figure 3.41 RGM (24): (a) Response of the first reduced DOF /.("), (b) Response of the second reduced 
DOF /((") ; both in meters (wavelet transform spectra and Fourier transforms are also depicted). 

 

Figure 3.42 Wavelet transform spectrum of the second DOF of the RGM superimposed on the Hamiltonian 
FEP of Fig. 7; nonlinear beats in the neighborhood of subharmonic tongues N31( and N51( are evidenced 
by the corresponding broadband frequency components that emanate from these tongues. 

Nonlinear beats S311 

S511 

S312 
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 As discussed in (Vakakis 2008), on subharmonic tongues there occurs mode conversion 

from the in-phase to the out-of-phase NNM, since the orbit of each subharmonic tongue 

corresponding to maximum energy correspond to a point of bifurcation with the out-of-phase 

NNM (N�� − for the branches N31.,(, and N�� − for the branches N51.,(). Hence, on each 

subharmonic tongue mode mixing occurs and the corresponding periodic orbits are in the form of 

nonlinear beats (Peeters et al. 2009). It turns out that it is the excitation of such subharmonic 

tongues due to nonlinear internal resonance that gives rise to the nonlinear beat phenomena 

observed in the numerical simulations of subsection 3.4.1 for the beam with the nonlinear 

stiffness at its end. 

 To demonstrate the effect of these internal resonances on the transient response we now 

consider the full RGM (3.27) and perform numerical simulations of its dynamics for the transient 

force used in the Section 3 and depicted in Fig. 3.35b. In Fig. 3.41 we depict the responses of the 

two degrees of freedom (DOFs) of the RGM, together with their wavelet spectra and Fourier 

transforms. In Fig. 3.41b we clearly observe that at " ≈ 9	s the response of the second DOF 

approaches the neighborhood of the N31( subharmonic tongue, as can be deduced by considering 

the frequency ratios of the two modes of the response in the wavelet transforms around this 

particular time instant. It is evident from the WTs that the dynamics in the second DOF is richer, 

due to the fact that the second mass of the RGM is directly attached to the strongly nonlinear end 

spring. Therefore, in the remaining part of this section, we will focus our analysis on the transient 

response /((").  
In Fig. 3.42 we depict the WT spectrum of /((") superimposed onto the Hamiltonian FEP 

of Fig. 3.40. This WT spectrum was computed from the corresponding spectrum of Fig. 3.41b by 
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replacing time with the instantaneous energy of the forced and damped system at every time 

instant. The comparison of the Hamiltonian FEP to the WT spectrum of the damped and forced 

response of the RGM is purely phenomenological; however, it shows how the underlying 

Hamiltonian dynamics (periodic orbits and nonlinear internal resonances) affect the response of 

the same RGM when damping and forcing are added. Indeed, at high energies (that is, in the 

initial highly energetic phase of the dynamics) the WT spectrum approximately follows the 

Hamiltonian N11 − branch, indicating that initially the dynamics is dominated by 1:1 resonance 

between the two DOFs. However, complex modal interactions are found in the vicinity of the 

subharmonic tongues N31( and N51(; these lead to complex nonlinear beat phenomena, as 

evidenced by multiple higher and lower harmonic components emanating from the neighborhood 

of these tongues. Hence, the study of the dynamics of the RGM reveals that internal resonances 

due to the strong local stiffness nonlinearity lead to nonlinear beat phenomena. 
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Figure 3.43 Details of (a) the 1st IMF, (b) the 2nd IMF, (c) the transient response /((") in the region of 
nonlinear beats 

 We investigate the two dominant modes separately by carrying out empirical mode 

decomposition (EMD), through which we separate the in-phase and out-of-phase dynamics. Note 

that, although a computed IMF is expected to possess a narrow frequency bandwidth (see 

discussion in Section 2), it makes more sense to separate the damped physical modes as ‘single’ 

IMFs, rather than partitioning them into smaller narrow-band components .We extract the two 

IMFs of the response of the second DOF, /(("), corresponding to the out-of-phase and in-phase 

modes of the RGM, respectively. The realization of complex nonlinear modal interactions in these 

IMFs is evident. To study these modal interactions in more detail and highlight the resulting 

nonlinear beat phenomena, in Fig. 3.43 we depict the regions of nonlinear beats in the 1st and 2nd 

IMFs, and in the transient response /(("). In the time interval 9-15 s, we clearly observe the 

realization of strong nonlinear beats in both IMFs. This particular time interval was examined 

since this region corresponds to the N31( suharmonic tongue, as discussed above. Note that the 
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beats tend to vanish as soon as the transient dynamics leaves the N31( region as the total energy 

of the motion decreases due to damping dissipation. It is clear from the WT spectrum of Fig.10c 

that in this time interval there exist strong nonlinear interactions (mode mixing) between the out-

of-phase and in-phase modes, which cause the nonlinear beats observed in the corresponding 

IMFs.  

 The results of this Section based on the RGM demonstrated that the source of the 

nonlinear beats in the transient dynamics of the cantilever system of Fig. 3.35a is the nonlinear 

internal resonances realized due to the local strong stiffness nonlinearity, leading to complex 

modal interactions between cantilever modes. It follows that this type of nonlinear ‘mode 

coupling’ is rather generic in linear flexible systems with local strong stiffness nonlinearities, so 

complex nonlinear beat phenomena are expected to be present in the dynamics of this type of 

structures. We note that these nonlinear beating phenomena signal energy exchanges between 

different modes, which we attempted to model by using RGMs. This calls for the extension of the 

nonlinear system identification (NSI) methodology discussed in Section 2 to account for such 

nonlinear beat phenomena or nonlinear modal interactions. This is performed in the next Section. 

3.4.5 Slow Flow Modeling and NSI of Resonance-induced Beating Phenomena  

3.4.5.1 Preliminaries: Analysis of Beating Signals 

 

We start the analysis and modeling of beating signals by considering a preliminary example. As 

discussed in Section 2, since the general ‘nearly monochromatic’ IMO (2.16) models a nearly 

monochromatic IMF (i.e., possessing a single dominant frequency), any analysis based on IMOs 

of the form (2.15) fails to be valid for a beating signal which contains at least two different 
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closely spaced frequency components. The simplest model that can reproduce beating signals is 

the following linear damped oscillator with a harmonic forcing  

 [ ]22 cos (1 ) cosy y y t tζω ω ω ε+ + = + ≡ Ωɺɺ ɺ   (3.28)

  

where (1 ) dω ε ω εω ω ωΩ = + = + ≡ + . The response of oscillator (3.28) is expressed as the 

superposition of a homogeneous and particular solution, ( )hy t and ( )py t , respectively  
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  (3.29) 

which can be expressed as 
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  (3.30) 

  

where 1
2 2

2
tan

ζωβ
ω

− Ω =  Ω − 
. Viewed in the context of the previous Sections the response �(") can 

be regarded as the only IMF of system (3.28). The amplitude C and the phase difference � are 

obtained by imposing the initial conditions of the problem, but this is not critical for our further 

analysis in this Section. 

At this point, we apply a slow flow analysis by introducing the complexification  

 ( )( ) ( ) ( ) ( ) , ( ) ( )j t j ty t j y t t t e t j A t eω θω ψ ϕ ϕ ω+ = = =ɺ   (3.31) 
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Note the different definition of the complex amplitude ( )tϕ  compared to the corresponding 

definition in Section 2 for the nearly monochromatic signal. Upon matching (3.30) and (3.31), we 

evaluate the slow envelope and the slow phase of the beating signal 
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2

t
φ βθ − ≈  
 

   (3.33) 

Combining these results we evaluate the complex amplitude of the beating signal as 
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 (3.34) 

 

As discussed in Section 2, based on relation (2.16) we can express the slowly varying complex 

forcing amplitude of the IMO modeling the IMF (3.30) as 

 [ ]( ) 2 ( ) ( )t t tϕ λϕωΛ ≈ +ɺ   (3.35) 

where λ is the damping factor of the IMO equation (following the notation of relation (2.15)). 

Neglecting the first term in (3.35) since it quickly decays to zero, the above complex amplitude 

can be approximated as 
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  (3.36) 

 
 

At this point we denote the ratio, 7("), of the amplitudes of the homogeneous and particular 

components in (3.29) as 

  

 ( ) ( )2 22 2( ) 2tR t Ce ζω ω ζω−= Ω − + Ω   (3.37) 

  

It turns out that when damping is weak this ratio is very slowly varying, so it can be regarded as 

being approximately constant, 7(") ≈ 7. Taking the natural logarithm of the expression (3.36) 

and accounting for the approximation (3.37), we obtain the relation 

   

 ln ( ) ln cos 1
2 2

t tdt Ce t RC eζω ζωω φ βλω − −
    Ω − +   Λ ≈ − − +      

        

  (3.38) 

 

At this point (and without loss of generality) we assume a zero phase difference for the sake of 

simplicity, � = 0. Finally, taking the derivative with respect of time of both sides of relation (36), 

we obtain  
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We will be mainly interested in two specific features of the approximate analytical expression 

(3.39). The first feature concerns the behavior of the slope of ln ( )tΛ  when " approaches the time 

instant ")i^m corresponding to a nodal point of the beating signal 
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  (3.40) 

                   

Note that expression (3.40) is dependent on the ratio 7. Indeed, when 7 = 1 the above limit 

reaches −∞, whereas when 7 = 0 (which means that there is no beating) the limit equals ζω−  

which is in agreement with the previous analysis based on relation (20). In between these limiting 

values of 7 the derivative of the slope is dependent on 7, �, ` and 1. In general, we should expect 

very steep slopes between the aforementioned limiting cases since 7 will usually be close to unity 

for a beating signal. 

 The second feature of interest in (3.39) is the behavior of the slope of ln ( )tΛ  at the 

maximum values of the beating signal. Assuming that at " = "256  a maximum of the beating 

phenomenon is reached, we obtain the limiting expression 
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  (3.41) 

 

Hence, in the vicinity of the maxima in the beating signal, the slope of ln ( )tΛ  approaches the 

value ζω− , which is identical to the corresponding slope of ln ( )tΛ  in the case of the nearly 

monochromatic signal examined in the previous section. [see expression (3.22)].  
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Figure 3.44 Transient variation of ln ( )tΛ  (logarithm of the modulus of the complex forcing of the IMO) 

of a beating signal, and its comparison to the line with slope ζω− ; ln ( )tΛ ,  predicted 

linear line, -o- nodal points. 

The limiting expressions (38) and (39) provide the necessary framework for extending the 

nonlinear system identification methodology outlined in Section 3 to the case of time series with 

beats. Before we proceed to formulate this extension, we provide a numerical example that 

highlights the previous findings. 

In the following example we consider the beating signal composed of two harmonics with 

closely spaced frequencies given by [ ]( ) cos cos (1 )ty t e t tζω ω ω ε−= + +  with 

100 / , 0.01rad sω ζ= =  and 0.01ε = . In Fig. 11 we plot ln ( )tΛ  derived from this signal, and 

the predicted line with slope ζω− . We see that, in accordance with the previous analytical 

findings, the slope of ln ( )tΛ  tends to −∞ at nodal points of the beat (since 7 = 1 in this 
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particular example). In addition, the slope of ln ( )tΛ  in the neighborhoods of the maxima of the 

beating approximates ζω− , again in accordance to the previous analysis. 

3.4.5.2 Nonlinear System Identification of Beating Signals 

 

Here, the analysis of the previous subsection for the SDOF oscillator (2.28) will be applied to the 

IMFs computed in Section 3 for the strongly nonlinear case. It was observed that, due to strong 

stiffness nonlinearity at the end of the cantilever, the lower frequency modes (i.e., the higher order 

IMFs) exhibit nonlinear beating phenomena. As discussed before, these nonlinear beats are 

generated by internal nonlinear resonances which lead to nonlinear mode mixing and strongly 

nonlinear modal interactions.  

In Fig. 3.45 we consider the first four IMFs of the beam with strongly nonlinear stiffness 

employing the NSI methodology for nonlinear beats discussed in the previous Section. As 

indicated, these IMFs correspond to the highest frequency oscillatory modes that are embedded in 

the measured time series. From Figs. 12a,b we deduce that IMFs 9]4�(.) (") and 9]4�(() (") exhibit 

nearly linear behavior and do not appear to be significantly affected by the presence of the strong 

stiffness nonlinearity. This should be clear from the fact that the corresponding plots of (1)ln ( )Tip tΛ  

and (2)ln ( )Tip tΛ  almost perfectly match the straight lines with slopes equaling 1

(1)
Tipζ ω−  and 2

(2)
Tipζ ω− , 

respectively, which is the prediction for linear behavior [as given in (3.22)]. Discrepancies from 

linear behavior are observed only when the amplitudes of the IMFs decrease below the noise 

level. Moreover, we note absence of nonlinear beats in these two IMFs. 
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Figure 3.45 Application of the NSI technique to beating signals in the (a) 1st IMF, (b) 2nd IMF, (c) 3rd 

IMF, and (d) 4th IMF of the strongly nonlinear system;   
( ) ( )Tip
mc t ,  

 
( )ln ( )Tip
m tΛ , 

 predicted linear slope. 

 

 Considering now the 3rd IMF depicted in Fig. 3.41c, we note the occurrence of nonlinear 

beats, as evidenced by the deviation of the plot of (3)ln ( )Tip tΛ  from the line with the slope 3

(3)
Tipζ ω− . 

In addition, we observe that the line with slope 3

(3)
Tipζ ω−  crosses the maxima of the plot of 

(3)ln ( )Tip tΛ  corresponding to nonlinear beats between 0.2 and 0.4 seconds, as predicted by relation 

(3.41). The reason for drawing multiple lines with the predicted slope comes from the fact that 

(b) (a) 

(c) (d) 
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there occur multiple nonlinear beats with different beating frequency; indeed, recalling the 

methodology derived in Section 5.1 we note that relation (39) was derived under the assumption 

that the nonlinear beats possess the same beating frequency. The occurrence of multiple beating 

phenomena will be further analyzed below when IMF 9]4�(�) (") is considered. For the 4th IMF 

9]4�(�) ("), we note that this mode has the highest modal damping (cf. Table 1) and the line with 

slope 4

(4)
Tipζ ω−  crosses the maxima of the plot of (4)ln ( )Tip tΛ  only in the beginning of the time span. 

 

 

(a) (b) 

Figure 3.46 Application of the NSI technique to beating signals in the (a) 5th IMF, and (b) 6th IMF of the 

strongly nonlinear system;  
( ) ( )Tip
mc t ,  

 
( )ln ( )Tip
m tΛ ,  predicted linear slope. 

 

 In Fig. 3.46 we analyze the 5th and 6th IMFs of the strongly nonlinear system. From the 

plot of Fig. 13a the nonlinear beating in the early phase of the 5th IMF is evident, so relation 

(3.40) can be applied in this case. Indeed, we note that in accordance with the theoretical 
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prediction the maxima of the plot of (5)ln ( )Tip tΛ  that correspond to the maxima of the nonlinear 

beats, are approximately bounded by the predicted linear line with slope equal to 5

(5)
Tipζ ω− .  

 Also, considering the 6th IMF depicted in Fig. 3.46b, it is clearly observed that this mode 

is dominated by nonlinear beats caused by the strong nonlinearity. The line with predicted slope 

6

(6)
Tipζ ω− crosses the maxima of the nonlinear beats in the beginning of the time span; however, 

after approximately 0.1 s, this mode becomes dominated by nonlinear effects and traces of the 

linear mode disappear, which can be deduced by looking at the completely different damping 

behavior of that mode. 

 

    (a)             (b) 
 

Figure 3.47 Application of the NSI technique to beating signals in the a) 7th IMF, and (b) 8th IMF 

of the strongly nonlinear system (cf. Fig. 7b);  ( ) ( )Tip
mc t ,  

 
( )ln ( )Tip
m tΛ ,  

predicted linear slope. 

 

In Fig. 3.47  we consider the beating signals in the 7th and 8th IMFs. For the 7th IMF (at ~ 

798 rad/s or 127 Hz) the line with slope 7

(7)
Tipζ ω−  crosses the maxima of (7)ln ( )Tip tΛ  as predicted by 
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(38) until 0.6 s, where a different type of beating occurs. Moving on to the 8th IMF depicted in 

Fig. 3.47b, we noted previously that for the linear case this IMF has a fast frequency equaling 409 

rad/s (or 65 Hz), whereas for the strongly nonlinear case that frequency is nearly 534 rad/s (or 85 

Hz). Until around 0.5 s, strong nonlinearity governs this mode, whereas linear behavior is 

recovered afterwards. It is observed that the 8th IMF possesses multiple beating frequencies, so 

application of (39) requires the detection of the maxima of the beats corresponding to the same 

beating frequency. In Fig. 3.47b the maxima of (8)ln ( )Tip tΛ , denoted by horizontal ellipses, vertical 

ellipses and rectangles correspond to maxima of beats with identical beating frequencies. We note 

at this point that, since this represents a completely new mode that is generated by the strong 

stiffness nonlinearity (as it has no analogue in the linear case – that is, the fast frequency of this 

mode is different from that of the corresponding linear mode), we draw separate parallel lines 

with the predicted slope 8

(8)
Tipζ ω− , where the damping and frequency values no longer correspond to 

those of the linear mode. We observe that each of these lines crosses the maxima of the plot of 

(8)ln ( )Tip tΛ  separately, as predicted in (3.41).  

3.4.6 Concluding Remarks 

 

In this section, we study a linear cantilever beam with a strongly nonlinear grounding stiffness at 

its free boundary. The nonlinear stiffness has no linear component, so it can be characterized as 

essentially nonlinear (since it is non-linearizable). Due to this strong local nonlinearity and the 

fact that no cantilever modes have nodes at the free end of the beam, we anticipate that all modes 

will be affected to a certain extent by the nonlinearity, although as this work shows, it is the 

lower-frequency cantilever modes that are most affected by the strong stiffness nonlinearity. In 



 

115 

 

addition, we observed strongly nonlinear beat phenomena, which upon further analysis we 

attributed to nonlinear modal interactions arising by internal resonances between cantilever 

modes. It is interesting to note that these internal resonances involve cantilever modes whose 

linearized natural frequencies are not necessarily close or even related by rational ratios; rather 

conditions of internal resonances in the present system are realized due to the strong energy-

dependencies of the frequencies of the participating cantilever modes as they are affected by the 

strong local stiffness nonlinearity. These essentially nonlinear beat phenomena generate 

‘nonlinear mode mixing,’ through which a cantilever modes is ‘mixed’ with another mode, 

ultimately being transformed to the lateral mode as energy varies. This is in marked contrast to 

the linear case (i.e., in the system with either no spring or with a linear spring attached), where 

beat phenomena can only be generated by modal interactions of closely spaced modes. We note 

that this type of nonlinear mode mixing is generic in nonlinear systems, and its realization in the 

frequency-energy domain depends on the specific system configuration and the specific system 

parameters. 

 We demonstrate the relation between nonlinear beat phenomena and internal resonances 

by constructing a reduced order model of the full finite-element dynamic model using Guyan 

reduction and studying the dynamics of the reduced-order system in the frequency-energy plane. 

By superimposing the wavelet transform spectra of damped transitions onto the Hamiltonian 

frequency-energy plot of the periodic orbits of the reduced system, we show that nonlinear beats 

are caused by excitation of certain subharmonic tongues that are generated by nonlinear internal 

resonances involving well-separated beam modes. This provides an explanation of the nonlinear 

beat phenomena that are observed in the transient responses of the full system (beam with 

attached nonlinear stiffness). 
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 Based on our understanding of the nonlinear dynamics of this system, we develop a 

nonlinear system identification method capable of identifying strongly nonlinear modal 

interactions and their effects on the cantilever modes participating in these interactions. The 

system identification method is based on an adaptive step-by-step application of empirical mode 

decomposition (EMD) to the measured time series, as explained in Section 2.2, which is extended 

to multi-frequency beating signals. In particular, our work extends an earlier nonlinear system 

identification approach developed for nearly mono-frequency (mono-chromatic) signals, and 

applies it to the identification of the complex nonlinear dynamics of the cantilever beam with the 

strong end nonlinearity. Important features of the beating nonlinear dynamics are recovered using 

the proposed approach, including the nodal positions, the positions of the maxima, the modal 

damping factors and the beating frequencies for each participating modal response. The 

methodologies and results presented in this work pave the way for identifying unexpected 

strongly nonlinear dynamical phenomena (such as the nonlinear beats considered herein) and the 

properties of the modes participating in these phenomena in flexible structures with local stiffness 

nonlinearities.  
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CHAPTER 4                                                                           

GLOBAL ASPECTS OF THE NSI METHODOLOGY 

4.1 Introduction and Background Information 

In this chapter, the global aspects of the NSI methodology will be discussed and the 

improvements made to the global NSI tools will be presented. The global aspect of our NSI 

method can be applied to both discrete and continuous nonlinear dynamical systems, irrespective 

of their dimensionalities. The main feature we use in our global NSI methodology is the 

frequency-energy dependence of the nonlinear systems, therefore, as explained in Section 2.6, 

FEPs are key components in our understanding of the global dynamical characteristics of 

nonlinear systems. By constructing FEPs, we can identify global features of the dynamics, e.g., 

ranges of frequencies and energies where the system possesses linearized responses 

(corresponding to nearly horizontal branches of solutions in the FEP), coexisting branches of 

strongly nonlinear solutions, bifurcation points signifying the limits of response branches, etc.  In 

addition, it is well established that forced resonances of nonlinear systems occur in neighborhoods 

of free periodic solutions (NNMs); hence, by identifying the FEPs we gain understanding of the 

structure of nonlinear (fundamental or subharmonic) resonances in the forced dynamics. Since we 

are interested in the global frequency-energy dependence of the dynamical systems, we point out 

the benefit of considering transient instead of steady state responses in our proposed NSI. Indeed, 

analyzing transient responses is an efficient way of ‘probing’ the dynamics and obtaining a 

broader understanding of the frequency transitions. Performing transient tests allows us to 
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effectively probe the dynamics of a system and to depict these results in compact form in a FEP, 

as will be shown in this chapter. 

    

Figure 4.1 General outline of the global NSI approach 

In Figure 4.1, the general outline of the global NSI methodology is depicted.  As done for the 

local aspect, we start with the measured time series and extract the instantaneous frequency, 

amplitude and energy estimations. Then we construct FEPs (either numerically or analytically) 

and compare the empirical frequency-energy dependence with these reference FEPs. In doing so, 

one can extract many essential information about the system such as the nature, order and 

physical location of the nonlinearities. Then, we construct reduced-order models based on the 
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findings we obtain from the FEP analysis and try to reproduce the original time series, which will 

be further discussed in Chapter 5. 

In Section 4.2, we will discuss the type and amount of information that can be extracted from 

frequency-energy plot reconstructions and give an insight regarding the necessary steps to analyze 

and interpret the FEPs. In Section 4.3, we extend the Hamiltonian FEPs to forced and damped 

systems as well, which make them a practical tool for analyzing strongly nonlinear systems. 

Finally, we study two applications of forced and damped FEPs, namely a vibration isolation 

problem through nonlinear targeted energy transfer and a study of 1:3 resonance in a 2-DOF 

oscillator. 

4.2 Frequency-Energy Plot Reconstructions 

4.2.1 Analyzing the Frequency-Energy Plots of Different System Topologies 

 

In studying the FEPs to retrieve the nonlinear characteristics of the underlying system, the main 

assumption we make is that we can reconstruct/track the backbone branches of the system by 

simply using the empirical (experimental or numerical) data. In addition to the nonlinear 

characteristics, a great deal of information regarding the topology of a system can be deduced 

from FEPs. As described in Section 2.6, FEPs provide a synoptic global description of the 

frequency and energy dependencies of periodic orbits of Hamiltonian n-degree of freedom (DOF) 

dynamical systems. Therefore, by definition, FEPs also provide information about the underlying 

linear dynamics of the dynamical system under consideration since for very low energies, 

nonlinear normal modes (NNMs) will approximate to linear normal modes (LNMs), provided that 

they exist.  Another type of information that can be extracted from FEPs is the asymptotic 
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behavior of each mode as the energy levels go to infinity. For very large energy levels, the system 

configuration might effectively change into a completely new one, since the effects of the 

nonlinearity  

Due to the stiffening effect of the cubic nonlinearity, the frequency of the in-phase NNM 

converges to a certain asymptotic limit with increasing energy, as the cubic stiffness becomes 

approximately rigid and the system approaches a beam with pinned right end. The out-of-phase 

NNM ‘decouples’ from the in-phase mode during this limiting process, becoming a purely 

nonlinearity-governed NNM. 

To give an example, let’s consider the system whose FEP is given in Figure 4.3.  We assume that 

we know the mass distribution of this 2-DOF system, such that 1 21.45 , 0.27m m= = .  In order to 

find the system configuration, we study the asymptotic behaviors of the two backbone branches, 

namely the in-phase and out-of-phase modes, for lower and higher energy extremes. We note that, 

due to the 0 in phase frequency at low energies, we do know that only 1 linear spring exists in the 

system. So, we can deduce that, we are looking for one of the configurations below:  

            

                                       (1)                                              (2) 

Figure 4.2 Possible system configurations for the examined system 

 

We can also use the information available for the asymptotic region of the first backbone branch. 

For the first system in Figure 4.2, we see that the in phase frequency limit should be  
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1

2
lim in
E

k
mω

→∞
→ , and for the second system as 1

1 2
lim ( )in
E

k
m mω

→∞
→ + . We immediately rule 

out first system, since this would yield a higher frequency value than the linear out-of-phase 

frequency, which is not possible. So we find that our system configuration is (2). A basic 

calculation based on the linear out-of-phase yields the linear spring value as  1 414k = . 

 

Figure 4.3 FEP of the system studied in 4.2.1 

 

Another important information that can be extracted by using FEPs is the leading nonlinearity 

order. By using slow-flow analysis, one can show that, the energy of a SDOF nonlinear oscillator, 
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which possesses an integer order of nonlinearity, has the relationship with frequency as

1
2

1

n

nE ω
+ 

 − ≈ . For example, for a Duffing oscillator, we have: 
1

3 2( ) 4
1

n
n

n

+= ⇒ =
−

. 

So, if we apply a power-type fit to the “highest mode of a nonlinear system” at high energies, we 

should be able to find the order of nonlinearity, since we would expect this highest mode to 

behave like a SDOF nonlinear oscillator at the high energy extremes.  

As an application, we consider the frequency-energy plot of the cantilever beam with attached 

cubic nonlinear spring at its tip, which is studied in great detail in Section 3.4. Recalling that an 

assumed-modes approach consisting of 10 modes was applied to study the system, below in Fig. 

15, 10 backbone branches for the corresponding modes are plotted. As seen in Figure 4.4, the 

highest mode approaches to the frequency-energy behavior of a Duffing oscillator, thus, by using 

the energy limit of the highest backbone branch, we can deduce the dominant nonlinearity order 

in the system. 
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Figure 4.4 FEP of the system studied in Section 3.4 

  

4.2.2 Experimental Results 
 

In this section, a 2-DOF system consisting of a linear oscillator (LO) attached with a nonlinear 

energy sink (NES) is considered. As stated in Section 4.1, it is crucial to be able to 

reconstruct/track the backbone branches of the system from the experimental data, in order to 

identify the underlying global dynamics of a system. Therefore, the purpose of this experimental 

study is to show that we can predict the frequency-energy dependence of this nonlinear system by 

constructing and comparing with numerical and analytical FEPs. 
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Figure 4.5. (a) Picture of the experimental setup (b) Graphic representation of the experimental setup. 

 

The experimental setup is shown in Figure 4.5. The linear oscillator (LO) consists of a leaf spring, 

connected to the ground and a cart upon which the masses are placed symmetrically. LO is 

connected to the nonlinear energy sink (NES) via a piano wire (.5 mm), which provides an almost 

cubic-order nonlinearity in between due to geometric nonlinearities. The whole setup is placed on 

an air-track, which provides very low damping values (damping ratios are on the order of 10-4). 

Note that this is desired since the computation of Hamiltonian FEPs are much simpler than their 
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forced & damped counterparts, which makes them more practical for model updating and global 

system identification purposes. 

      

Figure 4.6 (a) Impulse response of the LO (b) Impulse response of the NES for forcing depicted in (c). 

 

The parameters for LO are found by using logarithmic decrement method. In order to find NES 

parameters, we locked the LO and excited the NES with an impact hammer. NES parameters are 

then found by using restoring force method.  The system parameters we found are 

6
1 2 11.45 kg, 0.27 kg,  414.13 N/m, 4.3 10  N/m ,  (nonlinearity order)= 2.89n

nlm m k k n= = = = × . 

In order to track the frequency-energy dependence of the system, we do multiple impulse tests 

and record the transient behaviors of the LO and the NES.   One example data is given in Figure 
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4.6a,b. Looking at the raw velocity data for the LO and the NES, we can immediately observe the 

energy dependence of the in-phase and out-of-phase modes. Note also that, WTs of the 

experimental data reveal much more information regarding the dynamics of the system then the 

FTs, which is why we adhere to using WTs for such strongly nonlinear systems for identification 

and reduced-order modeling.  

Before we move to studying the frequency-energy dependence of the system, we apply empirical 

mode decomposition (EMD) to the NES velocity data, depicted in Figure 4.6b. Note that, as noted 

in section 2.2, an intrinsic mode function (IMF) is generally extracted as a “narrow-band” 

component. As observed in Figure , c1(t) and c2(t), IMFs of the NES velocity data depicted in 

Figure , are not narrow-band components, but rather depict the damped frequency transitions of 

the in-phase and out-of phase modes. This is a (meaningful) extension of the definition of IMFs, 

since for our system identification purposes, it is more important to use “physically-meaningful” 

IMFs rather than narrow-banded signals. Therefore, one can think of c1(t) and c2(t) as the 

summation of many narrow-banded IMFs, and as a result depict the particular mode transitions of 

the NES response. 
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Figure 4.7 EMD results for the NES response in Figure 4.6b 

 

Since the damped-transition of both in-phase and out-of-phase modes are very clear in Figure , it 

is a good idea to superimpose these onto the FEP of the original system. The FEP of the original 

system, depicted by dashed lines in Figure 4.8  and 4.9  are computed by using NNMcont (Peeters 

et al. 2009). In Figure 4.8, we superimpose the WTs of c1(t) and c2(t) onto the FEP of the original 

system. As predicted, the individual IMFs c1(t) and c2(t) , which are extracted in an intentional 

way so that they would represent the damped frequency transitions of each mode, track the 

Hamiltonian backbone branches. 

(a)  
  (b)  
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Figure 4.8 Superposition of the WTs of IMFs (in Figure 4.7) on the FEP. 

       

               

Figure 4.9 Superposition of the WTs from combined impulse tests (NES data). 

 

(a) (b) 
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As a final step, we combine the NES data from multiple impact tests with varying forcing 

amplitudes so that we would be able to span a greater energy range. We then superimpose the 

WTs of the whole data onto the computational FEP of the original system. This result is depicted 

in Figure 4.9.  As one can observe, the damped frequency transitions seem to be agreeing with the 

Hamiltonian backbone branches with a good accuracy. Note that one of the crucial properties for 

this was to use low damping, which we ensured in our experiments, since we compare the 

experimental data with the Hamiltonian backbone branches. The superimposed WTs of the NES 

data is normalized with respect to the maximum amplitude of the energy range for each mode for 

visualization purposes.  

4.3 Extending the Frequency-Energy Plots for Forced and Damped Systems 

4.3.1 Forced and Damped Frequency-Energy Plots (FEPs) (Kurt, Eriten, et al. 2014b) 

4.3.1.1 Introduction and System Description 
 

In recent studies the free and forced dynamics of strongly nonlinear oscillators have been 

considered; i.e., of dynamical systems with essential stiffness nonlinearities possessing negligible 

or very small linear components(Gendelman et al. 2001; Vakakis and Gendelman 2001; Gourdon 

et al. 2007; Gourdon, Lamarque, and Pernot 2007; Vakakis 2008).  The high degeneracy that this 

class of strongly nonlinear systems possesses gives rise to interesting nonlinear dynamical 

phenomena, such as cascades of transient resonance captures(Arnold 1988; Vakakis et al. 2004), 

broadband vibration energy transfers between subcomponents (targeted energy transfers) 

(Vakakis 2008), and nonlinear localization phenomena (Gendelman et al. 2001). Tools for 

analyzing the strongly nonlinear dynamics of these systems have been developed, such as wavelet 
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spectra superposition on frequency-energy plots – FEPs of Hamiltonian dynamics and 

complexification/averaging analysis (Vakakis 2008). As shown in previous works two-

dimensional FEPs provide a synoptic global description of the frequency and energy 

dependencies of periodic orbits of Hamiltonian n-degree of freedom (DOF) dynamical systems, 

and can be used to interpret complex dynamical transitions of weakly damped systems possessing 

even strong, non-smooth nonlinearities (Lee, Nucera, et al. 2009). This is achieved by 

superimposing wavelet spectra of the damped responses onto the Hamiltonian FEPs, thus 

identifying the underlying Hamiltonian dynamics that influence the damped transitions (Vakakis 

2008). 

 The principal aim of the present work is to study the perturbations of the Hamiltonian 

FEPs in the presence of weak damping and small-amplitude harmonic excitation. This topic has 

not been addressed in the literature and, hence, the results reported here are new. Considering a 

specific two-DOF oscillator with strong nonlinearity, our analysis is carried out under conditions 

of 1:1 resonance; i.e., when the two degrees of freedom oscillate in synchronicity with identical 

dominant frequencies. Moreover, the applied harmonic excitation is assumed to also possess a 

frequency close to the frequency of oscillation of the system, so an additional condition of 

fundamental resonance is assumed. Our analysis is based on complexification-averaging (CX-A) 

of the equations of motion, and the results are applied to the problem of optimizing vibration 

isolation of a harmonically forced linear system by means of transferring steady-state energy to a 

weakly coupled strongly nonlinear attachment (termed the nonlinear energy sink – NES). 

Whereas interesting recent contributions to the problem of optimal vibration isolation 

through nonlinear targeted energy transfer have appeared (Gendelman and Starosvetsky 2006; 

Starosvetsky and Gendelman 2008a; Starosvetsky and Gendelman 2008b) our approach to the 
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optimization is different since it is based on the forced and damped FEP of the system. We note 

that a two-DOF system similar to the one considered in this work was first considered in (Jiang et 

al. 2003), where the feasibility of steady-state energy transfer from the directly excited linear 

oscillator to the nonlinear attachment was addressed without performing, however, any 

optimization related to vibration isolation. In fact, as pointed out in (Malatkar and Nayfeh 2007) 

where this system was re-examined, a Hopf bifurcation in the steady-state dynamics of the weakly 

coupled system leading to weakly modulated responses was missed in (Jiang et al. 2003). 

However, what we show in the present work is that optimization of the steady-state dynamics of 

the weakly coupled and weakly damped two-DOF system of (Jiang et al. 2003) can lead to 

effective vibration isolation by means of steady-state nonlinear targeted energy transfer and 

localization. 

We consider in this report a two-DOF system, consisting of a weakly damped linear oscillator – 

LO weakly coupled with an essentially nonlinear, weakly damped attachment (which will act as a 

nonlinear energy sink – NES) through a weak linear stiffness of constant �+k, where |�| ≪ 1 is a 

small quantity that will be designated as the perturbation parameter of our study. The stiffness 

nonlinearity is characterized as essential since its characteristic is purely cubic (with coefficient 

+)?) and lacking a linear part; hence, the nonlinearity is completely nonlinearizable. The LO is 

excited by a small-amplitude harmonic force with amplitude equaling εP  and frequency ω . The 

configuration of the system is depicted in Figure 1. We are mainly interested in the amplitude-

frequency dependence of the steady-state responses of the LO and the NES. 
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Figure 4.10 Two-DOF weakly coupled and weakly damped system under weak harmonic forcing. 

 

We will study the steady-state dynamics of this system both analytically and numerically. First, 

under the assumption of fundamental resonance and 1:1 resonance between the LO and the NES, 

we apply the CX-A method and slow/fast partition of the steady-state dynamics and construct 

damped and forced perturbations of the FEP of the underlying Hamiltonian system 

(corresponding to no damping or forcing). We note that our analytical approach applies even in 

this strongly nonlinear case, when traditional asymptotic methods of nonlinear dynamics based on 

the assumption of weak nonlinearity and linear generating solutions are not valid (since the 

current problem is non-linearizable). Then, we will verify the analytical results by direct 

numerical simulation of the equations of motion, to highlight some interesting phenomena of 

practical interest. 

 The equations of motion of the system of Figure 4.10 are expressed as 
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where the normalized coefficients are given by `. = 9./A.,	 `( = 9./A(,	 Q. = +k/A.,	 
Q( = +k/A(, � = +)?/A( and 1p( = +./A.. For simplicity, we make the assumption of equal 

masses A. = A(, so that 1 2α α= , since this assumption will help us reduce the complexity of the 

resulting analytical derivations. Furthermore, again without loss of generality we set the natural 

frequency of the LO equal to unity, 1p( = 1 (this can always be achieved by appropriate rescaling 

of the time variable in (4.1)). 

4.3.1.2 Constructing the Forced and Damped Frequency-Energy Plots (FEPs) 
 

We now apply the complexification-averaging method (CX-A) to study the dynamics of 

fundamental resonance of system (4.1). The method was first developed by (Manevitch 1999) and 

then applied extensively in studies of nonlinear targeted energy transfer (Vakakis et al., 2008). To 

this end, we complexify the normalized equations of motion (3.43) by introducing new complex 

variables in the form 

 
� � � �1 2

' ' ' ' ' ' '

2

'

1/2
1( ) ( ) ( )( ) ( ) , (( ) , ( 1)) ( )j t j t

Slow part Fast part Slow part Fast part

t x t t v t jj x t t e j v t t eω ωω ϕ ω ϕψ ψ≡ ≡= + = + = −ɺ ɺ   (4.2) 

 
In (3.44) a slow/fast decomposition was additionally imposed, whereby the new complex 

variables ( )i tψ  were expressed in terms of slowly varying envelopes ( )i tϕ  that modulate fast 

harmonic oscillations at frequency 1. Moreover, (4.2) indicates that the desired solutions possess 

dominant harmonic components at the frequency of the harmonic excitation, so only fundamental 

resonances of system (4.1) will be examined (as mentioned above, we will also refer to these 

motions as 1:1 resonances since the two oscillators are assumed to oscillate with identical 

frequencies). This means that other types of nonlinear resonance (e.g., subharmonic and 
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superharmonic resonances) cannot be examined by the ansatz (4.2); see (Vakakis 2008; Andersen 

et al. 2012)for extension of the CX-A method to such cases. Then, we express the original 

variable / in terms of the new complex variables as 

 
* * *

1 1 1 1 1 1
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with similar expressions holding for the other variable P. Substituting these expressions into the 

original equations of motion (4.3) and averaging over the fast frequency 1 we obtain the 

approximate set of modulation equations 
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also referred to as the slow flow system. This system of slowly varying complex equations 

governs the essential (important) dynamics of fundamental resonance of system (4.2) after the 

unessential fast dynamics at frequency 1 has been averaged out. We note that the approximation 

in (4.4) is caused by the fact that higher harmonics (e.g., at frequency 31) are neglected; it 

follows that our analytical study is only valid in regimes where the system responds primarily at 

the frequency of the applied harmonic excitation and is expected to be inaccurate for responses 

where higher harmonic components cannot be neglected. 

As a first step we need to transform the modulation equations (4.4) back to the real 

domain in order to study the steady-state dynamics. To this end, we express the complex variables 
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in (4.4) in polar form, ij
i i e θϕ φ= , where iφ  and iθ  are real amplitudes and phases. Separating 

real and imaginary parts yields the slow flow system in terms of real variables 
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The stationary points of system (4.5) yield the periodic steady-state solutions for fundamental 

resonance. Setting ɺφ
k

= 0, ɺθ
k

= 0  we derive the system of nonlinear algebraic equations 

 

 

( )

( )( ) ( )
( )

( )

1 1
1 1 2 1 2

2
1 1 2 1 2 1 1

2 1
2 1 1 2

2 3
1 1 1 2 2 1 22

sin sin 0
2 2 2

cos cos 1 0

sin 0
2 2

3
cos ( ) 0

4
s

P

P

C

ελ εαεφ θ φ θ θ
ω

ε ω θ α φ θ θ φ ω εα

ελ εαφ φ θ θ
ω

εα φ θ θ φ ω εα φ
ω

+ + − =

+ − + − + − =

− − =

− + − − =

  (4.6) 

 

Solving these equations for the amplitudes iφ and phases iθ  provides the approximate steady-

state periodic responses of the two oscillators in (4.1), and allows us to obtain frequency-

amplitude (energy) dependencies of these solutions. 

First, we study the periodic orbits of the underlying Hamiltonian system by setting 

1 2 0Pλ λ= = =  in (4.6), which now take the simpler form 
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where 1 2γ θ θ= −  is the phase difference. From (4.7) we conclude that the Hamiltonian system 

admits in-phase 1:1 periodic orbits corresponding to 0 (mod 2 )γ π=  when 2
11ω εα< + , and out-

of-phase periodic orbits for (mod 2 )γ π π=  when 2
11ω εα> + . In Figures 4.11 and 4.12 we use 

solid gray lines to depict the frequency-amplitude plots (or approximate frequency response plots) 

for the linear (LO) and nonlinear (NES) oscillators, respectively, for parameters 1 10, 1sCα = =  

and 0.05ε = . These 1:1 steady-state periodic solutions of the Hamiltonian system are also 

referred to as nonlinear normal modes (Rosenberg 1966). In Figure 4.13 these two plots are 

combined into a single frequency-energy plot (FEP), where, again, solid gray lines are used to 

depict the Hamiltonian periodic motions. The lower branch of the FEP corresponds to the in-

phase mode for � = 0 (which for low energy approaches the natural frequency of the LO), 

whereas the upper branch corresponds to the out-of-phase mode for � = �. We construct these 

plots analytically by solving the slow flow equations (4.7) for the normalized steady-state 

amplitudes 1 2/ , /X Vφ ω φ ω= =  and the phase difference 1 2γ θ θ= − , giving 
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and then find the conserved energy of the Hamiltonian system � by calculating the maximum 

potential energy stored in the stiffness elements 

 
( )22 4

12 2 4s

X YX Y
E Cεα

−
= + +   (4.9) 

                                      

When harmonic forcing is introduced to the undamped system (i.e., when � ≠ 0), the equations 

(4.6) governing the  fundamental resonances take the form 
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Nontrivial solutions necessitate that the phase difference takes the form , 0,1m mγ π= = ; thus, 

(4.10) simplifies to 
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Note that since the first of equations (4.11) yields 1 , 0,1n nθ π= = , (4.11) can be further reduced 

to 
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In Figures 4.11 and 4.12  we depict the frequency-amplitude plots of the LO and NES oscillators, 

respectively, for the forced undamped system with parameters 1 10, 5, 0.05, 100sC Pα ε= = = = . 

As in the Hamiltonian case these two plots are combined in a single frequency-energy plot (FEP) 

in Figure 4.13. We partition each plot into four main branches, labeled branches 1-4. A first 

observation is that all branches can be regarded as forced perturbations of corresponding branches 

of the Hamiltonian system. Indeed, branch 1 is the forced perturbation of the in-phase NNM, 

below the linearized natural frequency of the LO at 6 rad/sec; these are predominantly linear, in-

phase fundamental resonance oscillations, localized to the LO and exhibiting only weakly 

nonlinear effects. Branch 2 undergoes a very interesting dynamical transition with increasing 

frequency. In particular, at lower frequencies in the neighborhood of the linearized natural 

frequency of the LO, the fundamental resonance oscillations are predominantly linear, in-phase 

and localized to the LO, whereas at higher frequencies they become nonlinear, out-of-phase and 

strongly localized to the NES. This is due to the fact that branch 2 is a forced perturbation of two 

branches of NNMs of the Hamiltonian system; that is, for lower frequencies branch 2 is a forced 

perturbation of the in-phase (predominantly linear) NNM, whereas at higher frequencies it 

represents a perturbation of the strongly nonlinear, high-frequency and out-of-phase NNM which 

is strongly localized to the NES. The transition between these two qualitatively different 

dynamical behaviors is signified by the folding point on branch 2 in the FEP.   
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Figure 4.11 Normalized amplitude of the LO as function of frequency for the forced and 

undamped system:   NNMs of the underlying Hamiltonian system,  Forced 
fundamental resonance branches. 

 

Figure 4.12 Normalized amplitude of the NES as function of frequency for the forced and undamped 
system:   NNMs of the underlying Hamiltonian system,  Forced fundamental 
resonance branches. 
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Figure 4.13 Frequency-energy plots (FEPs) for fundamental resonances of the forced and 
undamped system: (a) Global FEPs, (b) detail showing the bifurcations of fundamental 
resonances; gray solid lines depict the NNMs of the underlying Hamiltonian system. 

 

Branch 3 represents a forced perturbation of the high-frequency out-of-phase strongly 

nonlinear NNM, so it consists of strongly nonlinear out-of-phase resonances localized to the NES. 

This branch meets the weakly nonlinear out-of-phase branch 4 at the bifurcation point A in the 

FEP. Branch 4 can be regarded as the forced perturbation of a trivial dynamical state (zero 

response) of the Hamiltonian system at frequencies above the linearized natural frequency of the 

LO. We note that there is an additional folding point for branch 3 with varying frequency in the 

FEP (cf. Figure 4.13). 
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 The stability of the computed steady-state solutions was examined by linearizing the 

modulation equations (4) in the neighborhood of each stationary point and computing the 

eigenvalues of the matrix of coefficients of the resulting variational system. When the results of 

this numerical stability analysis were inconclusive we resorted to direct numerical integrations of 

the equations of motion with the theoretically predicted initial conditions for the fundamental 

resonances. We found that branches 1,2 and 4 are stable, whereas branch 3 is unstable.  

 By comparing the Hamiltonian and forced responses (especially the FEPs) it is possible to 

deduce the effect of the NNMs of the Hamiltonian dynamics on the fundamental resonances of 

the harmonically forced system. Indeed, the underlying topological structure of the NNMs of the 

Hamiltonian system affects the topological structure of the forced fundamental resonances, and 

the localization characteristics of the underlying NNMs get transferred to corresponding 

localization characteristics of the forced resonances. It is this later observation that will help us in 

designing the system for optimal energy transfer and localization to the NES and vibration 

isolation of the LO, as discussed in the next Section. 

In a third step we consider the full slow flow (4.5) and the equations governing the 

fundamental resonances (4.6), by taking into account both weak harmonic excitation and weak 

damping. Solving the third equation in (4.6) for the phase difference yields

( ) 2
1 2 2 1

1

sin /
ωλθ θ φ φ
α

− =  which, when substituted into the first equation, gives 

 2 2
1 1 2 2 1 1sin 0Pλ φ λ φ φ θ+ + =   (4.13) 

 

This equation provides the balance between the energy input by the external force and the energy 

dissipated by the damping elements, and basically states that, in order for a fundamental 
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resonance to be realized in the forced and damped system, the energy dissipated in each cycle 

should be balanced by the energy input provided by the harmonic excitation. The remaining two 

equations in the set (4.6) then simplify, (when the trigonometric identity cosθ = ± 1− sin2θ  is 

employed) to 
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  (4.14) 

     

This set of equations relates the amplitudes of the steady-state responses of the LO and the NES 

during fundamental resonance and the frequency of the applied excitation 1. Hence, solving 

equations (4.13) and (4.14) provides the desired frequency-amplitude (energy) relations. The 

corresponding steady-state phases are then computed by the previous relationships. 

 In Figures 4.14 and 15 we depict the frequency-amplitude plots for the LO and NES, 

respectively, of the harmonically forced and damped system with parameters 

1 110, 5, 0.05, 100, 0.2sC Pα ε λ= = = = =  and 2 0.2λ = . These results are combined in the FEP 

of Figure 7. One can regard these plots as damped perturbations of the corresponding plots of the 

harmonically forced and undamped system of Figures 4.11-13.  
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Figure 4.14 Normalized amplitude of the LO as function of frequency for the forced and damped system: 

  NNMs of the underlying Hamiltonian system,  Forced fundamental resonance 
branches. 

 

Figure 4.15 Normalized amplitude of the NES as a function of frequency for the forced and 

damped system:   NNMs of the underlying Hamiltonian system,  forced 
fundamental resonance branches. 
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Figure 4.16 Frequency-energy plots (FEPs) for fundamental resonances of the forced and damped 
system: (a) Global FEPs, (b) detail showing the bifurcations of fundamental resonances; gray 
solid lines depict the NNMs of the underlying Hamiltonian system. 
 

As before, we can partition each plot into four main branches. Keeping the same notation, 

we see that in the present case branch 2 extends over a finite frequency range as it coalesces with 

branches 3 and 4 at a frequency close to 4 rad/s. The same holds for branch 3 which now extends 

over a finite frequency range until it coalesces with branches 2 and 4. In summary, the basic 

topological features of the 1:1 fundamental resonance branches are preserved when weak 

damping is added, and the main damping effects are observed in branches 2 and 3, which now 

possess a cut-off frequency as discussed previously. 

 In the present case there exist two bifurcation points: A is the point of coalescence of 

branches 3 and 4 (as in the previous forced undamped case), and B is the point of coalescence of 

branches 2 and 3, which is exclusively due to the presence of damping. As discussed previously, 

branches 1 and 4 represent weakly nonlinear fundamental resonances localized to the LO which 
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can be considered perturbations of the corresponding linear resonance curves of the forced 

uncoupled LO; branches 2 and 3 are realized due to the strong (essential) stiffness nonlinearity of 

the NES and represent strongly nonlinear motions localized to the NES. 

To study the stability of the computed fundamental resonances we reconsider the complex 

slow flow (4.4), but instead of a polar representation we introduce a Cartesian complex 

representation ( ) ( ) ( )i i it y t j z tϕ +=  to express the slow flow in terms of the real variables iy  and 

iz . Further, we let 0 1 0 1, ( ) (( ) ( ) ), 1,2i i i ii iy z ty t y t z z t iε ε+ = + == ; i.e., we introduce small 

time-dependent perturbations 1 1,( ) ( )i izy t t  of the computed fundamental resonance solutions 

0 0,i iy z , and substitute into the slow flow equations. The resulting linear variational system of 

equations derived when O(ε) terms are considered takes the form 

 [ ] [ ]211 11 11 2( ) ( ) ( ) ( ) 0 0 0 0
T T

A t t t ty y z z =   (4.15) 

                                

where the constant matrix A  depends on the computed steady-state solutions. Examination of the 

eigenvalues of the matrix A  reveals the linearized stability of the steady-state solutions. 

Theoretically speaking, all eigenvalues of A  should have negative real parts in order for a steady-

state solution to be stable. Note, however, that the computed steady-state solutions are 

approximate since they are based on the averaging approximation discussed previously. As a 

result, for some steady-state branches the linearized stability results proved to be inconclusive as 

the real parts of the eigenvalues tended toward zero. Here we resorted to direct numerical 

simulation of the original equations of motion (4.1) with initial conditions determined by our 

previous analysis. This led to conclusive results since unstable steady-state solutions led to 
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strongly modulated responses and transitions to coexisting stable solutions. Our results indicate 

that branches 1, 2 and 4 are stable, whereas branch 3 is unstable.  

4.3.1.3 Application to Vibration Isolation By Means of Nonlinear Energy Transfer 

In this section we use the ideas developed in the prior Section to show that it is possible to design 

the system depicted in Figure 1 for vibration isolation of the directly excited LO through steady-

state energy transfer to the strongly nonlinear attachment. We previously developed approximate 

analytical solutions for the fundamental resonances of the system of Figure 4.10, based on the 

simplifying assumption that the LO and NES have equal masses. Relaxing this assumption, the 

slow-flow modulation equations are expressed in physical coordinates as 
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and the energy-amplitude relationship becomes (where the notation of the previous section holds) 
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2 42
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ckX m
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m m

ε
= + − + −   (4.17) 

 
Following the earlier methodology, we numerically solve a set of nonlinear algebraic equations 

within a predefined frequency range to study the amplitude-frequency relationships and the 

corresponding FEP. 

We note at this point that for practical applications where vibration isolation of the 

directly forced LO is sought, a smaller NES mass might be preferable. In the following we will 

study the fundamental resonances of the system numerically for varying parameters and 

investigate the reduction of the steady amplitude of the LO response through vibration energy 
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transfer to a lightweight NES. Although we will not perform a global optimization study by 

simultaneously varying all system parameters, we seek an understanding of how individual 

system parameters affect the steady-state responses of the LO. Our aim is to select a set of 

parameters that provide effective vibration reduction of the amplitude of the steady response of 

the LO over a significantly broad frequency range, so that the vibration isolation is robust to 

change in the frequency of the excitation. Thus, we will examine separately the effect of each of 

the important system parameters on the amplitude of steady-state vibration of the LO and 

compare it to the corresponding amplitude of the LO with no NES attached. 

First we consider the effect of the mass ratio A./A( on the amplitude-frequency relation 

of the LO by fixing the system parametersλ1 = 0.05,λ
2

= 0.1,ε = 0.05,k
c

= 1,C = 1,P = 1. In 

Figure 8 we depict the approximate frequency response of the LO (as described in the previous 

Section) for varying mass ratios. For comparison purposes we also depict the approximate 

frequency response of the uncoupled forced LO (i.e., without the coupling effect to the NES). We 

note that there is clearly a trade-off in choosing the NES mass for the purpose of vibration 

reduction of the steady-state response of the LO. Moreover, we see that a relatively large NES 

mass reduces the frequency range of vibration reduction, without necessarily improving the 

amount of reduction. On the other hand, as expected, a relatively small NES mass causes the 

frequency response to nearly collapse to the linear response of the uncoupled LO. Therefore, the 

selection of the mass ratio needs to be such that the amplitude reduction is feasible and optimal. 

From the results of Figure 4.17 we deduce that a mass ratio of  A./A( = 30 leads to significant 

amplitude reduction over a broad frequency range compared to the case of the uncoupled LO; 

therefore, we will employ this value of mass ratio further. We note that no stability analysis is 
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carried out for the steady-state plots depicted in Figure 4.17; a detailed stability study of the 

solutions is postponed until the final optimized system is selected. 

 

Figure 4.17 Effect of the mass ratio ��/�� on the steady-state amplitude of the LO for system parameters 

λ1 = 0.05,λ
2

= 0.1,ε = 0.05,k
c

= 1,C = 1,P = 1. 

Next we consider the effect of the normalized nonlinear spring coefficient �� on the 

amplitude-frequency relation of the LO. In the results presented in Figure 4.18 the system 

parameters were fixed to
  λ1 = 0.05,λ

2
= 0.1,ε = 0.05,k

c
= 1,m

1
= 30,m

2
= 1,P = 1 and the nonlinear 

coefficient was varied. Depending on the value of �� (i.e., on the strength of the essential 

nonlinearity of the NES) some of the LO branches may vanish; these are the strongly nonlinear 

branches representing relatively large motions of the NES, and, as expected, in the weakly 

nonlinear regime (i.e., for �� ⟶ 0) these motions vanish and the steady response of the system 

appears as a perturbation of the linear response of the LO uncoupled from the NES. For 
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increasing nonlinear coefficient we see that there appear frequency ranges where the steady-state 

branches of the LO are significantly below the corresponding response of the uncoupled LO. 

These branches coexist with strongly nonlinear branches of solutions corresponding to relatively 

large steady-state amplitudes of the NES, indicating that the reduction of the steady-state 

amplitude of the LO is due to irreversible vibration energy transfer from the directly excited LO 

to the weakly coupled NES. Moreover, a moderate increase of the nonlinear coefficient leads to a 

broadening of the frequency band where the reduction of the steady-state response of the LO 

occurs although, as discussed below, the stability of these solutions needs to be considered as well 

in order for the noted responses to be physically realizable. Further increase of the nonlinear 

coefficient, however, leads to deterioration of the vibration isolation since the nonlinear stiffness 

of the NES behaves as a rigid link. Then the attachment to the LO becomes nearly rigid, the 

nonlinear effects in the dynamics decrease, and the response becomes linearized. Taking this into 

account, we set the nonlinearity coefficient to �� = 1, which is a good trade-off between the 

frequency range of effective vibration isolation and the level of vibration reduction. 
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Figure 4.18 Effect of the stiffness coefficient �� on the steady-state amplitude of the LO for system 

parameters   λ1 = 0.05,λ
2

= 0.1,ε = 0.05,k
c

= 1,m
1

= 30,m
2

= 1,P = 1. 

Finally, we consider the effect of the normalized NES damping parameter  on the 

steady-state response of the LO by fixing the system parameters 

  λ1 = 0.05,ε = 0.05,k
c

= 1,m
1

= 30,m
2

= 1,C = 1,P = 1. In fact, a change in NES damping can result in 

qualitatively different dynamics; e.g., stability changes of particular solutions can lead to strongly 

modulated responses. Therefore, although it might appear that decreasing NES damping can 

cause reduction of the steady-state response of the LO, as shown in Figure 4.19, for finite values 

of NES damping, within the vibration reduction region there appear strongly modulated responses 

with varying amplitudes; this is a clear indication of instability of the response of the LO. 

Moreover, for large values of NES damping, the attachment to the LO becomes nearly rigid, so 

the nonlinear effects decrease, the dynamics becomes weakly nonlinear, and the vibration 

isolation deteriorates. As a result, we choose the optimized NES damping coefficient to be 

2λ
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`( = 0.1. We note again that we did not conduct a systematic study (i.e., a bifurcation analysis) of 

the steady-state dynamics for changes of NES damping; rather, the parameter chosen should be 

considered a reasonable value for effective vibration suppression of the response of the LO. 

 

Figure 4.19 Effect of the damping coefficient `( on the steady-state amplitude of the LO for system 

parameters   λ1 = 0.05,ε = 0.05,k
c

= 1,m
1

= 30,m
2

= 1,C = 1,P = 1. 

Finally, we consider the effect of the forcing amplitude � on the amplitude-frequency 

relation of the LO.  We represent the steady-state amplitude of the LO normalized with respect to 

the forcing amplitude, εP  in Figure 4.20, where the other system parameters were fixed to 

λ1 = 0.05,λ2 = 0.1,C = 1,ε = 0.05,kc = 1,m1 = 30,m2 = 1 and the forcing amplitude was varied. 

Forcing amplitude has a very similar effect as with the nonlinear coefficient: A moderate increase 

of the forcing amplitude leads to a broadening of the frequency band where the reduction of the 

steady-state response of the LO occurs; however, further increase of the forcing amplitude results 
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in deterioration of the vibration isolation since the nonlinear stiffness of the NES behaves as a 

rigid link for high forcing levels.  

 

Figure 4.20 Effect of the forcing amplitude P on the steady-state amplitude of the LO for system 

parameters.λ1 = 0.05,λ2 = 0.1,C = 1,ε = 0.05,kc = 1,m1 = 30,m2 = 1. 

As a result of the studies carried out in this subsection, we selected the system parameters 

to be λ1 = 0.05,λ2 = 0.1,ε = 0.05,k
c

= 1,m
1

= 30,m
2

= 1,C = 1,P = 1, leading to the steady-state 

responses for the LO and NES depicted in Figure 4.21. We emphasize yet again that these 

parameters are not “globally optimal” values but rather parameters which help us understand the 

sensitivity of the steady-state dynamics of the system to parameter changes. Indeed, a full 

optimization analysis, including the bifurcation of stable solutions by changing these parameters, 

is necessary to achieve a “globally optimal” set of parameters, but this is not performed in this 

work 
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        (a)                                          (b) 

 

       (c) 

Figure 4.21. Steady state dynamics of the optimized solution: (a)  Response of LO without the 

attached NES and  of LO with the attached NES; (b) response of NES, (c) damped FEP where 
gray solid lines depict the NNMs of the underlying Hamiltonian system (the comparisons of the steady 
state responses with and without NES attached are shown to assess the effectiveness of vibration 
suppression).  
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Figure 4.22. Time simulations carried out for selected steady-state solutions of the plots of Figure 12 for 
the LO without attached NES, the LO with attached NES, and the NES; initial conditions are taken on the 
steady-state branch 2 at frequency (a) 1.4 rad/s, (b) 1.5 rad/s, (c) 1.6 rad/s. 
 

We note that, consistent with our previous observations, branches 1, 2 and 4 are stable, 

whereas branch 3 is unstable. As we see in Figure 12a, we appear to have a reasonable region of 

vibration reduction around 1.5 rad/s, when compared with the LO without the NES. Indeed, to 

validate such a conclusion, we first must test the stability of these solutions. Taking ICs from the 

     
       (a)                                    (b) 

                                           
         (c) 
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lower branch of the curve in Figure 4.21, we see that this lower branch is completely stable until 

the coalescence point near 1.8 rad/s. This conclusion can be reached by looking at the time 

responses in steady-state of each IC corresponding to this lower branch curve. An almost 

maximum suppression, which corresponds to a 1-to-5 ratio, can be reached around 1.5 rad/s. We 

depict the time responses of both the LO and NES at frequencies 1.4, 1.5 and 1.6 rad/s with the 

initial conditions starting from branch 2 in Figure 4.22 to prove the stability of these responses in 

steady-state. In comparison to the case of the LO without the attached NES, we appear to obtain 

excellent vibration isolation. 

Since we have two competing stable branches between approximately 1.3 and 1.8 rad/s, it 

might be interesting to consider the domains of attraction of these solutions. Note that the domain 

of attraction of the original problem is in fact 5 dimensional, consisting of two amplitudes, two 

phases and time; however, we will consider the projection of this domain of attraction onto a 2D 

plane, where we vary only the amplitude initial conditions as in (18)  with x1 corresponding to the 

LO, and x2 corresponding to the NES, giving  
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x X
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πω θ
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=

= ≈

ɺ   (4.18) 

 

while fixing the frequency to 1.5 rad/s=ω  and the phase angles to 1,2 / 2=θ π . In Figure 4.23, we 

depict the corresponding domains of attraction of the two stable steady-states denoted by I and II 

in Figure 4.22 (with the unstable steady-state denoted by III); these were computed by 

numerically integrating the original equations of motion (1) subject to the initial conditions (18) 

and the aforementioned optimal values of the system parameters. Initial conditions corresponding 
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to solutions that converge to the non-localized steady-state solution are denoted by crosses (x), 

whereas initial conditions generating solutions that converge to the localized solution by gray dots 

(∏). We note that for sufficiently small initial conditions (including zero initial conditions) there 

appears to be an elliptical region where the solutions converge to the nonlocalized stable state II 

on branch 4.  However, we also note a large region of attraction of the localized steady-state 

solution I on branch 2, indicting robustness of this solution within that domain of attraction.  

To demonstrate this, we consider four simulations in Figure 4.24, with the points chosen 

from Figure 4.23. We observe in Figure 15a,b that a small deviation in the ICs in some regions of 

the domain, such as Points A and B of Figure 14, can result in undesired and desired solutions, 

respectively. This is due to the effect of the underlying nonlinear dynamics at large amplitudes. In 

Figure 4.24c, we see that ICs corresponding to point C of Figure 4.23, where the IC for the LO is 

quite large and the IC condition for NES is very small, we seem to obtain the desired solution, 

which has practical importance.  
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Figure 4.23 Projection of the domains of attraction of the competing stable steady state solutions I and 
II of Figure 12: Gray dots (∏) depict the initial conditions corresponding to solutions that converge to 
the optimized localized steady state I, whereas black crosses (x) depict the initial conditions 
corresponding to solutions converge to the competing stable solution II; points S1 and S2 denote the 
initial conditions of the stable steady states I and II, respectively, whereas U1 the initial conditions for 
the unstable solution III. 
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(a)                                                                        (b) 

      

(c)                                                                        (d) 

Figure 4.24 Time simulations for initial conditions depicted in Figure 14: (a) Point A corresponding to 
X1=-0.36, X2=2.06, (b) point B corresponding to X1=-0.36, X2=2.03, (c) Point C corresponding to 
X1=0.48, X2=-0.05, (d) zero initial conditions.  
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4.3.1.4 Concluding Remarks 

In this section, we considered a two-DOF system, consisting of a linear oscillator weakly coupled 

to a nonlinear energy sink (NES) through a linear spring. The system is examined through 3 

cases: Hamiltonian, forced, and forced and damped.  We were interested in the amplitude-

frequency dependence of the NES and the LO, and therefore depicted the NNMs of the system, 

calculated through approximate slow flow analysis and shown in FEPs. We observed that there 

are mainly 4 branches in the forced and forced and damped cases, which correspond to forced 

(linear) and nonlinear responses, respectively. In the last section, we examined some practical 

implications of this approach, basically showing that the NES in the given configuration can be 

utilized as a good vibration absorber within predefined frequency ranges. 
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4.3.2 Application to 1:3 Resonance in a Two-Degree-of-Freedom Oscillator (Kurt, Slavkin, et al. 
2014) 

4.3.2.1 Introduction and System Description 

As shown in previous works, two-dimensional FEPs provide a synoptic global description of the 

frequency and energy dependencies of periodic orbits of Hamiltonian � −degree-of-freedom 

(DOF) dynamical systems, and can be used to interpret complex dynamical transitions of weakly 

damped systems possessing even strong, non-smooth nonlinearities (Lee, Nucera, et al. 2009). 

This is achieved by superimposing wavelet spectra of the damped responses onto the Hamiltonian 

FEPs, thus identifying the underlying Hamiltonian dynamics that influence the damped transitions 

(Vakakis 2008). In a recent study, these FEPs were extended to forced and damped systems as 

well, which make them a practical tool for analyzing strongly nonlinear systems (Kurt, Eriten, et 

al. 2014b).  

In strongly nonlinear systems, interesting dynamical phenomena such as internal 

resonances and mode-mixing may occur. Unlike in linear systems, in nonlinear systems modes 

can interact with each other not only in 1:1 resonance but also in any rationally related ratios.  

Internal resonance denotes a strongly nonlinear energy transfer phenomenon, whereby two 

structural modes (even widely spaced in the frequency domain) become coupled by the system 

nonlinearity and start exchanging energy between them, giving rise to nonlinear beat phenomena 

(Manevich and Manevitch 2005; Kurt, Eriten, et al. 2014a). In this study, our main aim is to 

investigate a grounded nonlinear oscillator coupled with a light linear attachment which has two 

linearized eigenfrequencies with ratio 3:1.  The main concentration will be on studying the 1:3 

internal resonance branch around the first linearized frequency region for both forced and 
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unforced cases.  

 

In this study we consider a two-DOF system, a grounded nonlinear oscillator coupled with a light 

linear attachment (whose mass is denoted by the small parameter �, with |�| ≪ 1. The stiffness 

nonlinearity is characterized as essential since its characteristic is purely cubic (with coefficient 

+)?) and lacking a linear part, hence making the nonlinearity non-linearizable, and a 1:3 

resonance exists in the system as explained below. The grounded nonlinear oscillator is excited by 

a harmonic force with amplitude F and frequency ω . The configuration of the system is depicted 

in Figure 4.25. We are mainly interested in the amplitude-frequency dependence of the steady-

state responses of the nonlinear oscillator and the light attachment. The main concentration will 

be placed on studying responses that are affected by 1:3 resonance in the neighborhood of the first 

linearized frequency region both for forced and unforced cases. 

 

Figure 4.25.  Grounded nonlinear oscillator and light linear attachment under harmonic forcing. 

We will study the steady-state dynamics of the system depicted in Figure 1 both 

analytically and numerically. This system has practical interest due to its specially tuned system 
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parameters, which give the system two basic eigenfrequencies in the ratio 3:1. We start with the 

assumption that both steady state responses /(") and P(") possess two harmonics at frequencies 

 and 3  respectively. We apply the complexification-averaging (CX-A) method and slow/fast 

partition of the steady-state dynamics to analytically construct forced perturbations of the FEP of 

the underlying Hamiltonian system (which corresponds to no damping nor forcing). We note that 

this analytical approach is applicable even for such a strongly nonlinear case, when traditional 

asymptotic methods for nonlinear dynamics, based on the assumption of weak nonlinearity and 

linear generating solutions, are not valid (since the current problem is non-linearizable). Then, we 

will compare the analytical and numerical results for the steady-state dynamics and examine by 

direct numerical simulation of the equations of motion interesting dynamical phenomena of 

practical interest. 

4.3.2.2 Study of the Frequency-Energy Plots (FEPs) of the system 

We start by expressing the equations of motion of the undamped system of Figure 4.25 as, 

 
3

1 1 1 2

2 2

( ) cos

( ) ( ) 0
nlm x c x k x k x v k x F t

v c v x k v x

ω
ε

+ + + − + =
+ − + − =
ɺɺ ɺ

ɺɺ ɺ ɺ
  (4.19) 

  

where the parameters are taken as 1 2 1 1 21.05, 0.378, 1,  1, 0.044, 0nlk k k m c cε= = = = = = = . 

These parameters are chosen to make the linear frequencies of the system equal to 1 and 3. Using 

these parameters the linearized modal frequencies are given by 1 1 rad/s≈ω  and 2 3 rad/s≈ω . In 

order to study the steady-state dynamics of system (4.19), we apply CX-A. This method was first 

introduced by (Manevitch 1999) and then applied extensively in further studies of nonlinear 

ω ω
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targeted energy transfer (e.g.,(Vakakis 2008; Kurt, Eriten, et al. 2014b)). To this end, we 

complexify the normalized equations of motion (4.19) with new complex variables of the form 

 � � � �

� � �

3
1 1 1 1 3 2 2 3

' ' ' ' ' '' '

3
2 1 1 2 4 2 2 4

' ' ' ' ' ' '

( ) ( ) ( ) ( ) , ( ) ( ) 3 ( ) ( )

( ) ( ) ( ) ( ) , ( ) ( ) 3 ( ) ( )

j t j t

Slow part Fast part Fast partSlow part

j t j t

Slow part Fast part Slow part Fas

t x t j x t t e t x t j x t t e

t v t j v t t e t v t j v t t e

ω ω

ω ω

ψ ω ϕ ψ ω ϕ

ψ ω ϕ ψ ω ϕ

= + ≡ = + ≡

= + ≡ = + ≡

ɺ ɺ

ɺ ɺ
�

't part

  (4.20) 

    

In (4.20) a slow/fast decomposition was additionally imposed, whereby the new complex 

variables  were expressed in terms of slowly varying envelopes  that modulate fast 

harmonic oscillations at frequencies 1 and 31. Moreover, (4.20) indicates that the desired 

solutions possess dominant harmonic components at the frequency and at three times the 

frequency of the harmonic excitation, so both 1:3 resonances of the system (4.19) will be 

examined. Then, we express the original variable / in terms of the new complex variables as, 

   

 

3 * 3 3 * 3* *
3 3 3 31 1 1 1

3 * 3*
3 3 31 1

1 3

, ,
2 6 2 2

3
2 2

− −− −

−−

− +− += + = +

−−= + + +ɺ ɺɺɺ
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e e e ee e e e
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e ee e
x e j e j

ω ω ω ωω ω ω ω

ω ωω ω
ω ω

ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ
ω ω

ϕ ϕϕ ϕϕ ω ϕ ω
  (4.21) 

 

We note that similar expressions to (4.21) hold for the displacement P, as well. Substituting 

expressions (4.20) and (4.21) into the equations of motion (4.19) and averaging over the fast 

frequencies 1 and 31 separately, we derive the following approximate set of modulation 

equations governing 1:3 resonance in system (4.19): 

 

( )i tψ ( )i tϕ
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  (4.22) 

 

 This is also referred to as the slow flow. Note that the first and second equations in (4.22) refer to 

the slowly varying complex equations governing the important (slow) dynamics of the 1:3 

resonance of system (4.19) after the unimportant (fast) dynamics at frequency 1 has been 

averaged out. Similarly, the third and fourth equations in (4.22) refer to the slowly varying 

complex equations after the fast dynamics at frequency 31 has been averaged out. We note that 

the approximation in (4.22) takes both 1 and 31 harmonic components into account, since, as it 

will be shown below, both harmonics are needed to accurately analyze the steady state dynamics 

in the energy and frequency regions of interest. 

Since the slow flow (4.22) is complex, we need to transform the analysis back to the real 

domain. To this end, we note that if we express the complex variables in (4.22) in polar form, 

 ϕ i
= φ

i
ejθ i , where  and  are real amplitudes and phases, and setting separately equal to zero 

the real and imaginary parts, expresses the slow flow system in terms of real variables. The 

stationary points of this system yield the periodic steady-state solutions for 1:3 resonance. Hence, 

we set ɺφ
k

= 0, ɺθ
k

= 0  to derive the following system of real nonlinear algebraic equations: 

 

iφ iθ
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  (4.23) 

 

Once the solutions of (4.23) are derived, the steady state responses in terms of physical 

coordinates are expressed as: 

 

31
1 1 2 3 1 3

2 4
1 2 2 4 2 4

sin( ) sin(3 ) sin( ) sin(3 )
3

sin( ) sin(3 ) sin( ) sin(3 )
3

x X t X t t t
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φφω θ ω θ ω θ ω θ
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= + + + = + + +
   (4.24) 

 

Returning to system (4.23), since there is no damping in the system the second, fourth, fifth and 

eighth equations can be solved trivially by setting 1 2 3 4 / 2= = = =θ θ θ θ π , which results in the 
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simplified system (4.25). This set of equations is valid for both the Hamiltonian and forced 

systems:  

 

2 2 3 2 2
1 1 2 1 1 2 2 1 1 3 1 3

2
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                   (4.25) 

 

In the next section we consider the Hamiltonian system corresponding to Z = 0. Then system 

(4.25) provides the nonlinear normal modes (NNMs) of the system in the frequency-energy 

domain, which can then be used as basis for examining the forced and damped dynamics of 

system (4.19). 

4.3.2.3 Time-Periodic Solutions of the Hamiltonian System 

Setting 0F =  in (4.25) these equations take the form: 
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                            (4.26) 

 

We solve the system of equations (4.26) and analytically relate the 1 and 31 steady- state 

amplitudes of both displacements as, 
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(4.27) 

These steady-state periodic solutions of the Hamiltonian system are also referred to as nonlinear 

normal modes (NNMs) (Rosenberg 1966). Then, we find the conserved energy	� of the 

Hamiltonian system, by calculating the maximum potential energy stored in the stiffness 

elements: 

 ( )22 4
1 2 1 21 2 1 2

1 2

( ) ( )( ) ( )

2 2 4

X X V VX X X X
E k k

+ − ++ += + +                         (4.28) 

 

Before we use the analytical formulas given above to investigate the steady-state dynamics of 

system (4.19), we first determine the frequency range where the phenomena of practical interest 

occur. In Figure 2 we depict the Hamiltonian frequency – energy plot (FEP) of system (4.19), 

calculated numerically utilizing a shooting method to compute NNMs as introduced by(Peeters et 

al. 2009). Specifically, at a specific energy level we formulate the problem of computing the 

periodic solutions of (4.19) (with no damping or forcing) as a nonlinear boundary value problem 

which we solve numerically with the period of the oscillation playing the role of nonlinear 

eigenvalue. Then, by varying the energy level we produce the branches of periodic solutions 

presented in Figures 4.26 and 4.27. 
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Figure 4.26. Frequency-energy plot (FEP) of the unforced and undamped (Hamiltonian) system; the box 
indicates the branch produced by 1:3 resonance which is depicted in detail in Figure 4.27. 

Here, we depict the topological structure in the frequency – energy plane of the periodic 

orbits of the underlying Hamiltonian system derived by eliminating the damping and forcing 

terms from (4.19). The lower and upper branches in the FEP correspond to the in-phase (N11 +) 

and out-of-phase (N11 −) backbone branches for 1:1 resonance, respectively; that is, each point 

on these branches represents free periodic oscillations (or a nonlinear normal mode – NNM 

(Vakakis 2008)) where the two masses of the system oscillate with identical frequencies, either 

in-phase or out-of-phase. The notation NA� ± denotes a time-periodic motion of system (4.19) 

with � being the number of half-waves in /, and A the number of half-waves in P in a half-period 

of the response, and (±) denotes the in-phase or out-of-phase character of the oscillations. 

However, due to the presence of 1:3 resonance in this system, two additional 1:3 internal 

Region of appearance of 1:3 

resonant branch 
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resonance branches appear in the neighborhood of the lowest linearized natural frequency of 

system (14.19) at 1 rad/s, as highlighted in Figure 4.26. This is the region of practical interest for 

our study, since this internal resonance branch governs the nonlinear targeted energy transfer due 

to the 1:3 internal resonance and covers a relatively broad energy regime. 

      

Figure 4.27. S13± branches due to 1:3 resonance; ▬▬▬ FEP of the Hamiltonian system, ▲ 

points for which the configuration plots are depicted. 

 

G 



 

170 

 

In Figure 4.27, we depict the general view of the two branches produced by 1:3 resonance, 

namely, N13 ±. Each point on these branches corresponds to time-periodic motions (or NNMs) 

where both masses undergo oscillations with two frequency components 1 rad/s and 3 rad/s. 

Whereas, such ‘resonance tongues’ appear also in coupled oscillators with no internal resonances 

(Vakakis 2008) the energy ranges where they are realized are small. On the contrary, the 1:3 

resonance imposed in the present system extends the energy range where these branches are 

realized, a feature which is important for the practical implementation of this dynamics. In Figure 

4.27 we depict some representative plots in the configuration plane of the system, computed 

numerically. The horizontal axis of each configuration plot corresponds to the response of the 

grounded nonlinear oscillator and the vertical axis to the response of the light linear attachment.  

Considering the two branches N13 ± of 1:3 resonant time-periodic solutions depicted in 

Figure 4.27, we note that with increasing energy the third-harmonic components in the 

oscillations become stronger until point G where both branches coalesce with branch N33 −. We 

note that branches Snn−  are, in essence, identical to the branch 11S − , since they are identified 

over the domain of their common minimal period (the Snn−  branches are branches 11S −  

‘repeated n  times’). This can be clearly deduced by observing the depictions of selected NNMs 

in Figure 4.27, where close to point G the mode shape becomes close to the anti-phase NNM 

11S − . With increasing energy the in-phase 1:3 resonant branch N13 + makes a smooth transition 

to the in-phase branch N11 +, whereas for decreasing frequency the out-of-phase 1:3 resonant 

branch N13 − makes a similar smooth transition to the same branch. Again, this is clearly 

deduced by considering the plots of the selected NNMs in Figure 4.27. Finally, we note that due 

to the tuned linear frequencies of system (4.19) in the ratio 1:3, this internal resonance tongue 
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spans a relatively large energy range, however the corresponding frequency range is confined in a 

narrow range. 

 

Figure 4.28.  Comparisons of S13± and S33- branches for the underlying Hamiltonian system: ▬▬▬▬ 
Analytical results obtained by solving equations (8), ▬▬▬▬▬▬▬   results from direct numerical 
integrations of system (1) with no damping or forcing. 

 

At this point, having determined the frequency range of interest for 1:3 resonance, we wish to test 

the predictive capacity of the analytical model (4.26) to reconstruct the numerical solutions of 

Figure 3. Solving numerically the system of equations (4.26) in the neighborhood of the first 

linearized natural frequency at 1 rad/s and at the energy range of interest, we compare the 

resulting branches with the numerically computed N13 ± branches depicted in Figure 3. We note 

that the numerical treatment of system (4.26) is quite challenging in the very narrow frequency 

range where the 1:3 resonant branches are realized; therefore, the computation requires great 

S33- 

 

S33- 

S13- 

S13+  

G 
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numerical precision and significant effort in order to reconstruct the full topology of the two 

branches N13 ±.  

In Figure 4.28, we depict  the N13 ± branches computed by solving the system of 

equations (4.26) for the Hamiltonian case over a very small frequency range around the first 

linearized frequency and compare it with the numerically computed Hamiltonian N13 ± branches 

(previously depicted in Figure 4.27). We note that the numerically and analytically computed 

N13 ± branches agree quite well and any mismatch, extremely small both in the frequency and 

energy scales, is due to the difference in numerical precision and number of harmonics assumed 

in each method. Also, although the N33 − branch in Figure 4.28 extends to lower energy levels as 

well, we present just the portions of this branch that are of interest to us, which start from the 

triple coalescence point G of Figure 4.27. 

4.3.2.4 Steady-State Dynamics of the Forced and Undamped System 

We now reconsider the system of equations (4.25) with zero damping but nonzero forcing in order 

to investigate the effect of the forcing parameters (magnitude and frequency) on the interesting 

nonlinear dynamical phenomena that result due to 1:3 resonance. To this end, we wish to study 

the perturbations of the Hamiltonian branches N13 ± (studied in subsection 4.3.2.3) when 

harmonic excitation is applied to the undamped system. To start with, we take the forcing 

amplitude as 5=F N  and again focus on the steady state response of the system in the 

neighborhood of the first linear frequency, 1 rad/s, since in that frequency range the most 

interesting dynamics induced by 1:3 resonance were detected in the Hamiltonian system. 
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Figure 4.29. Perturbations of the Hamiltonian branches  �¡ ± and  ¡¡ − for applied harmonic forcing of 
constant magnitude 5=F N  and no damping in system (1):   ▬▬ Branches of time-periodic steady state 
solutions; selected points corresponding to the shown plots of the responses in the configuration plane;  
 coalescence points between branches  �¡ ± and  ¡¡ −. 

In Figure 4.29, we depict the computed perturbations of the Hamiltonian branches N13 ± 

at the frequency range close to the first linearized natural frequency. These computations were 

performed by solving the slow-flow equations (4.25) for varying frequency. In the same plot we 

also depict the configuration-plane plots at selected points on these branches (again in each plot 

the horizontal axis corresponds to the response of the grounded nonlinear oscillator and the 

vertical axis to that of the light linear attachment). The computed branches show very interesting 

properties, which are somewhat similar to their Hamiltonian counterparts shown in Figures 4.27 

and 28. The first thing to notice in Figure 4.29 is the extended frequency range where for effects 

of 1:3 resonance occur in the forced but undamped system. In other words, the transitions from 

G2 

G1 

S13+ 

S13- 

 

S33- 

 

S33- 
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N11 + to N13 − and, likewise, from N13 − to N11 + occur over a broader frequency scale, 

indicating the 1:3 resonance has stronger significance in the forced dynamics. Moreover, the 

effect of the applied harmonic excitation is to ‘split’ the coalescence point G of the Hamiltonian 

plots of Figures 4.27 and 28 ‘splits’ into two distinct coalescence points. Indeed, as shown in 

Figure 4.29 with increasing frequency the out-of-phase resonance branch N13 − coalesces with 

branch N33 − at point G1, whereas the in-phase resonance branch N13 + coalesces with branch 

N33 − at point G2. The reason behind this ‘splitting’ is that, due to the forcing of the system, there 

are now two branches N33 −, which are forced in-phase and out-of-phase perturbations of the 

Hamiltonian branches N33 − (in fact, it is well known that in forced nonlinear systems backbone 

curves representing NNMs – or free nonlinear oscillations – ‘split’ into in-phase or out-of-phase 

forced analogs); since we did not consider damping in this computation, these perturbed branches 

extend to arbitrary large frequencies. Similar observations were reported in the study by Kurt et 

al. (2014b), where nonlinear localization and targeted energy transfer were implemented in 

vibration isolation designs. 

Having studied the forced perturbations of branches N13 ± in the neighborhood of the first 

linearized natural frequency, we now wish to examine the global topological structure of the FEP 

of the forced and undamped system when both 1 and 31 harmonics are taken into account. In 

Figure 6, we depict the FEP of the forced system with both 1 and 31 harmonic components 

shown. This plot was computed by numerically solving the system of equations (4.25) for 

F = 5 N , and compared to the numerical Hamiltonian FEP studied in subsection 4.2.2.3. 

Referring to the plot of Figure 4.30, we observe that branch 1 is the forced perturbation of the in-

phase NNM, below the first linearized natural frequency 1 rad/s. We also note that, for low 
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frequencies, branch 2 is the forced perturbation of the branch of in-phase free periodic motions 

(in-phase NNMs), whereas at higher frequencies it represents a perturbation of the strongly 

nonlinear, high frequency and out-of-phase NNM, which is strongly localized to the nonlinear 

oscillator. 

 

Figure 4.30. FEP of the forced and undamped system computed by solving (7) for 5=F N , and with both 1 and 31 harmonic components shown (▬▬); underlying numerical Hamiltonian FEP for the undamped 
and unforced system ( ▬ ▬ ▬ ▬ ). 

 

In addition, branch 3 represents the forced perturbation of the high-frequency out-of-phase 

strongly nonlinear branch of NNMs, so it consists of strongly nonlinear out-of-phase resonances 

localized to the nonlinear oscillator. This branch meets the weakly nonlinear out-of-phase branch 
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4 since this branch is located at lower energies. Branch 2 undergoes an interesting dynamical 

transition with increasing frequency. In particular, at lower frequencies and in the neighborhood 

of the first linearized natural frequency of the system, this branch exhibits the strong effects of 1:3 

resonance as it connects to the forced perturbations of branches S13± (presented in Figure 4.29 

and depicted as N13. ± in Figure 4.30); whereas at higher frequencies becomes strongly 

nonlinear and the system undergoes out-of-phase oscillations that are strongly localized to the 

nonlinear oscillator. This branch also exhibits the strong effects of 1:3 resonance at high energy 

levels, on the branches depicted as N13( ±, which connect to the N33 − branches in Figure 6. 

This 1:3 resonance basically occurs between the forced perturbations of out-of-phase mode and in 

phase modes at high energy levels. Similar N13 ± branches can be observed at high energies in 

the in-phase mode of the Hamiltonian system as well, as shown in Figure 4.26. Note that since 

this phenomenon occurs at very high energy levels, it has less practical meaning for our study. 
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Figure 4.31: Effect of varying the magnitude of the applied excitation on the branches N13 ± of the forced 
and undamped system for: ▬▬ 1=F N , ▬▬ 3=F N , ▬▬ 5=F N . 

4.3.2.5 Effect of Varying the Magnitude of the Harmonic Excitation on the Steady-State Dynamics 

At this point, we investigate the effect of varying the magnitude of the applied force, F , on the 

topological features of the branches N13 ±, which as discussed in previous sections they are the 

primary manifestations of the dynamical effects of 1:3 resonance. In Figure 4.31, we depict the 

topologies of these branches for the forced and undamped system for three distinct forcing levels, 

namely, Z = 1, 3	and 5	*. We observe that a larger force magnitude results in an expanded 

internal resonance region in the frequency domain; moreover, the internal resonance effects occur 

at larger energy values. 

S33- 

S13- 

S13+ 
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(a) 

 

(b) 

Figure 4.32. Direct numerical simulation results (with small damping 1 2 0.001 /= =c c Ns m) showing 

the steady state responses of system (1) and their Fourier spectra with the excitation frequency 
1 /= rad sω , and, (a) 0.01=F N , (b) 1=F N , (c) 5=F N , (d) 20=F N ; for comparison we depict 

the analytical predictions (•) for the harmonic content from the slow-flow equations (4.25). 
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(c) 

 

(d) 

Figure 4.32 (cont.) 
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These results are of practical significance, since they increase the frequency and energy ranges in 

which the dynamical effects of 1:3 resonance can be practically realized and implemented in 

design. In addition, it is interesting to note that a larger force magnitude makes the two branches 

N13 ± more robust in the frequency domain, which means that the dynamical effects of 1:3 

resonance extends over a larger frequency span, as shown in Figure 4.32. 

          As a next step, we seek to confirm our general observations regarding the results of Figure 

4.31 by directly integrating the nonlinear equations of motion (4.19); in the simulations small 

damping was added to system (4.18) in order to dampen out the initial transient and obtain the 

steady-state responses. The results of the simulations are depicted in Figure 4.32. Considering the 

result of Figure 8a corresponding to small forcing magnitude, we note that the responses of both 

masses of the system possess dominant frequency components at the excitation frequency, and 

these are predicted well by the analytical results obtained by the slow flow system (4.25) as 

explained later. However, the dynamics changes drastically when the forcing magnitude is 

increased. As seen from the results of Figures 4.32b,c,d corresponding to larger forcing 

magnitudes, the ¢−component dominates the response of the grounded nonlinear oscillator but 

the ¡¢ −component dominates the response of the light linear attachment, which is a clear 

indication of 1:3 resonance in the system. This occurs since, at higher excitation magnitudes the 

third harmonic component in the response of the grounded nonlinear oscillator is excited, which, 

in turn, resonates with the second linearized natural frequency of the system (which is at exactly 

three times the first linearized frequency). This leads to a relatively strong third harmonic of the 

light linear attachment. Of course, the disadvantage of applying a stronger harmonic excitation is 

that in that case both the ¢−harmonic component of the response of the light attachment and the 

¡¢ −harmonic component of the response of the grounded nonlinear oscillator also increase, 
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thereby causing a mixed-mode response of both masses. However, for practical applications, it is 

much more useful to use a forcing level which leads to a clear separation of the different 

harmonic components in the responses of different masses. 

In Figure 4.32, we also assess the theoretical predictions derived by solving the system of slow-

flow equations (4.25) by comparing them with the corresponding Fourier transform spectra of the 

direct numerical solutions of the exact governing equations of motion (4.19). In general, 

satisfactory agreement between the analytical predictions and the numerical simulations is 

deduced. Wherever mismatches occur (see Figures 4.32a,d) the reason is that, for very low and 

very high forcing amplitudes, the third harmonic component of the response of the light 

attachment is very sensitive to damping, which we did not take into account in the slow-flow 

equations (4.25). Also, at higher forcing levels, higher harmonics are generated in the responses, 

which, again, are not taken into account when deriving the slow-flow system (4.25). However, we 

clearly observe that, in the responses depicted in Figures 4.32b,c, all steady-state amplitudes of 

both masses are predicted with good accuracy by the analytical results. 
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Figure 4.33. Stability analysis of the numerical branches  �¡ ± for the underlying Hamiltonian system by 
studying Floquet multipliers of the steady state responses; unstable NNMs are denoted by (×). 
 

Finally, we proceed with the stability analysis of the branches N13 ± of the Hamiltonian 

system and their perturbations for the forced and undamped system. In Figure 4.33 we depict the 

stability results for the numerically computed branches N13 ± for the Hamiltonian system. The 

stability analysis is carried out by calculating the Floquet multipliers of the responses of the 

Hamiltonian system (Kerschen et al. 2009). We observe that branch N13 − is stable, whereas, 

starting from the triple coalescence point branch N13 + is unstable. After a smooth yet unstable 

transition from N13 + to N11 +, the NNMs become stable again with increasing frequency. 
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Figure 4.34. Steady-state periodic solutions computed by system (4.25) for the forced and undamped 
system with 5=F N , with points where the stability is investigated denoted by ( ); letters refer to the 
numerical simulations of Figure 4.35. 

 

Stability analysis of the forced system is more challenging since, for varying forcing 

amplitude and damping values, the system can exhibit strongly nonlinear, quasiperiodic or even 

chaotic dynamical behavior. Note that, due to the extremely narrow frequency range where the 

effects of 1:3 resonance are realized, the most straightforward way to study the stability of the 

steady-state solutions at these frequencies is through direct numerical simulations of the equations 

of motion (4.19) for the analytically predicted initial conditions (on the solution branches shown 

in Figure 4.34). 

S33- 

S13- 
S13+ 
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(a) 

 

(b) 

Figure 4.35. Direct numerical simulation results showing the steady state responses of system (1) 
and their Fourier spectra for 5=F N  with initial conditions and the excitation frequency taken 
from (a) Point A, (b) Point B (c) Point C (d) Point D (e) Point E in the plot of Figure 4.34; weak 
damping values, 1 2 0.001 /= =c c Ns m, were used for the simulations. 
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(c) 

 

(d) 

Figure 4.35 (cont.) 
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(e) 

Figure 4.35 (cont.) 

Therefore, we focus on the fixed forcing magnitude 5=F N  and weak damping values 

1 2 0.001 /= =c c Ns m.  

We note that an extended study of the stability and domains of attraction of the 

solutions are beyond the scope of this work. In Figure 4.35, we depict the numerical 

simulation results by using the initial conditions and the excitation frequencies from 

points A-E indicated on Figure 4.34. We see that, similar to the Hamiltonian stability 

analysis in Figure 4.33, steady-state solutions on the forced perturbation of S13-, which 

are A, B, and D, appear to be stable, whereas the response on point C, which is on the 

forced perturbation of S13+ branch, is unstable. The branches regain their stability after 

the transition from the forced S13+ to the forced S11+ as the frequency increases. This is 

verified by looking at the stability of the response on point E, which is found to be stable 
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in Figure 4.35. Also interesting is that point D, which is on the forced S13- branch, 

experiences a larger 3ω  component although the excitation frequency is only varied 

from 1 to 1.028 rad/s. This is because, as shown in Figure 4.31, as the forcing level 

increases the 1:3 resonance occurs over a broader frequency range, and a change in the 

excitation frequency may cause a large qualitative change in the responses. This result 

can be used to achieve an even greater separation of harmonic components between the 

grounded nonlinear oscillator and the light attachment; however, a detailed and careful 

stability analysis is needed to complete the assessment. 

4.3.2.6 Concluding Remarks 

In this section, we studied the interesting and complicated dynamics of a 2-DOF system 

consisting of a grounded nonlinear oscillator under harmonic forcing coupled to a light 

linear attachment, under condition of 1:3 resonance. We examined the periodic steady-

state solutions of the Hamiltonian and the forced configurations of the system and 

compared them in the frequency-energy domain by computing forced frequency-energy 

plots (FEPs). The dynamics of the system was drastically affected by the 1:3 resonance. 

Indeed, we observed localization of the 1 − and 3 −ω  harmonic components to the 

grounded nonlinear oscillator and the light linear attachment, respectively, when the 

system is operating near its first linearized frequency. Varying the forcing amplitude 

revealed that the phenomena of interest can be enhanced greatly when optimal forcing 

levels and excitation frequencies are applied.  

We also note that this type of localization in the dynamics of the system may have 

practical implications. An example of such an application could entail utilizing the 
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variation of the forcing amplitude to introduce essential and controllable changes in the 

frequency spectrum of a nonlinear structure with a lightweight attachment. This, in turn, 

could be used to design a new type of atomic force microscope (AFM) probe, in the form 

of a nonlinear cantilever beam with an internal lightweight linear paddle, with their 

linearized frequencies being in the ratio 1:3. The resulting 1:3 resonance can be utilized 

to magnify the third harmonic of the paddle response which can then be measured for 

high-frequency AFM. Moreover, the sensitivity of this design to produce enhanced high-

frequency response could be increased greatly by a simple variation of the excitation 

amplitude, as predicted by the present study. 

 

 

 

 



 

189 

Chapter 5                                                                  

NONLINEAR MODEL UPDATING 

5.1 Introduction and Background Information  

In this chapter, we propose a new nonlinear model updating strategy based on the   

global/local nonlinear system identification procedure discussed previously. The 

approach relies on analyzing the system in the frequency-energy domain by 

constructing Hamiltonian or forced and damped frequency- energy plots (FEPs). The 

system parameters are characterized and updated by matching the backbone branches 

of the FEPs with the frequency-energy dependence of the given system by using 

experimental or computational data. The main advantage of this method is that no type 

of nonlinearity model is assumed a priori, and the system model is updated solely 

based on simulation and/or experimental results. By matching the frequency-energy 

dependence of a dynamical system with that of its reduced order model, we show that 

we are able to retrieve the global dynamics and characterize the nonlinear properties of 

the system. We believe that this methodology represents a first step toward a widely 

applicable a nonlinear model updating methodology. 
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Figure 5.1 Summary of the proposed nonlinear model updating approach 
 

In Figure 5.1, the general outline of the proposed nonlinear model updating approach is 

presented. As in the case of local and global applications of NSI, the proposed nonlinear 

model updating strategy starts with the measured time series. In order to find the global 

frequency-energy behavior of a system, we measure time series from a number of sensors 

throughout the system under transient excitation. Afterwards, we estimate the 

instantaneous frequency, amplitude and the energy of the transient data by making use of 

the WT and its superposition onto a “reference” FEP. A very useful feature of the FEP 

for system identification purposes is its relation to the transient dynamics of the 

corresponding weakly damped system. This is due to the fact that the effect on the 

dynamics of weak damping is parasitic: Instead of introducing “new” dynamics, it just 

causes transitions of the dynamics between branches of normal modes leading to multi-

frequency nonlinear dynamical transitions.  It has been shown that the superposition of a 

frequency-energy plot (FEP) depicting the periodic orbits of the underlying Hamiltonian 
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system and the wavelet transform (WT) spectra of the corresponding weakly damped 

responses represents a suitable tool for analyzing energy exchanges and transfers taking 

place in the damped system (Kerschen et al. 2007; Andersen et al. 2012; Remick et al. 

2013). Therefore, by utilizing this (empirical) frequency-energy dependence obtained 

from the superposition of the WT spectra onto the FEP, we arrive at a nonlinearity model, 

since we can infer the properties of the nonlinearities in the frequency-energy domain, 

provided that the transient data has sufficient energy and frequency range. The  

parameters of the nonlinearity model are then optimized by comparing the numerical 

frequency-energy dependence from the simulations to the Hamiltonian FEPs computed 

by NNMcont (Peeters et al. 2009).  

5.2 System with Hardening/Softening Behavior 

5.2.1 Introduction and System Description 

One of the main characteristics of nonlinear oscillations is their frequency 

dependence on vibration amplitude, which can be of hardening or softening type (Nayfeh 

and Mook 2008). If the frequency increases with the amplitude of oscillations, the system 

is said to have a hardening behavior; whereas in the opposite case, it is said to be 

softening. 

In order to apply the nonlinear model updating strategy proposed in Section 5.1 and 

summarized in Figure 5.1, we consider the dynamics of a system consisting of two facing 

steel cantilever beams connected with a membrane-like element, depicted in Figure 5.2.  
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Figure 5.2  Overview of the examined system with the physical properties and dimensions. The 
two clamped beams are connected by a non-linear element whose force-displacement curve is 
given in Figure 5.3.  
 
 
The general scheme and physical properties of the system are given in Figure 5.2.  The 

two facing cantilever beams are identical except for their thickness values, which are 6 

and 5.5 mm, respectively, for beams 1 and 2. The goal will be to characterize and identify 

the nonlinear properties, if any, of the element connecting the two cantilever beams in 

Figure 5.2. Note that, for the sake of testing our “model updating” ideas, we, in fact, will 

treat the connecting element as “non-identified” in the upcoming sections.  

In Figure 5.3 (and 5.1), we present the empirical force-displacement curve of the 

“unknown” element for the load shown in Figure 5.2.   

 

 

①①①① 

②②②② 
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Figure 5.3 The force-displacement relationship of the nonlinear connection in Figure 5.2. 
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As seen in Figure 5.3 and (5.1), the force-displacement curve of the connection has two 

parts:  For relative displacements larger than bx , defined as the “breaking point” of the 

force-displacement curve with a value of -4 mm,  there is a cubic relationship (essentially 

[non-linearizable] nonlinear stiffness) between the relative displacement of the end points 

of the connection and the force exerted on the connection. Beyond the breaking pointbx

(i.e., for relative displacement values smaller than -4 mm), the curve reaches zero 

stiffness and has a constant value of 64 N afterwards. Such hardening/softening behavior 

resembles the buckling of membranes and shell-type structures: Until the breaking point
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bx , the connection possesses geometric nonlinearities, and thus, exhibits a cubic order 

nonlinearity; however, once the relative displacement of the end points is smaller than -4 

mm, the connection “buckles” and reaches (almost) zero stiffness.  Similar 

hardening/softening behavior of beams, shells and membranes have been studied 

extensively in the literature for nonlinear vibration problems (Lacarbonara 1997; Tiso, 

Jansen, and Abdalla 2006; Iu and Chia 1988; Cho et al. 2012).  

The properties of the linking member make this problem challenging and particularly 

interesting for model updating purposes. Due to the strong nonlinear properties of the 

connection, the system responses will possess strongly nonlinear characteristics, which 

cannot be analyzed with linear methods. Furthermore, since the force-displacement curve 

of the connection is asymmetric, the system will behave differently depending on the 

direction and the amplitude of the excitation force. Finally, the type of nonlinear behavior 

will depend on the instantaneous energy level of the response, since the connection 

switches between softening/hardening behaviors, depending on the relative displacement 

value of the two clamped beams at any instant. 

5.2.2 Numerical Simulations 

5.2.2.1 Numerical Simulation with the FE model 
 

As noted in Section 5.1, transient dynamics is at the center of our nonlinear model 

updating strategy, since it reveals the nonlinear dynamical transitions which, in turn, 

helps us obtain the approximate frequency-energy relationship of the dynamical system. 

Therefore, in this section, we carry out multiple impulse tests for the system under 
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consideration in order to obtain transient data, which will be incorporated into the model 

updating process later on.  

In order to simulate the system given in Figure 5.2, we construct FE models of the two 

beams, both consisting of 15 elements. We use a half-sine pulse with duration of 0.1 ms 

for the excitation force, as depicted in Figure 5.4. The direction and the location of the 

force is also shown in Figure 5.2; i.e., the force is applied to the tip of beam 1, in the 

positive direction. The system is simulated with varying magnitudes of Fmax, in order to 

obtain transient data both in the linear, weakly and strongly nonlinear regimes.  

 

Figure 5.4 Impulse force used for the numerical simulations of the system depicted in Figure 5.2, 
which is applied to the tip of the beam 1. 
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Figure 5.5 Impulse responses of the tips of the two beams 1 ,1( , )Tipw x t and 2 ,2( , )Tipw x t  for (a) Fmax 

=1 N (b) Fmax =100 N (c) Fmax =500 N (d) Fmax =750 N 
 

In Figures 5.5 and 5.6, we present the numerical simulation results for the displacements 

of the tips of the two beams, depicted as1 ,1( , )Tipw x t and 2 ,2( , )Tipw x t , respectively, for 

varying Fmax values.  In Figure 5.5a,b, where Fmax= 1 N and 100 N, respectively, we 

observe that the oscillation amplitudes of 2 ,2( , )Tipw x t are much smaller when compared 

with those of 1 ,1( , )Tipw x t . That is because, as seen in Figure 5.3 and formulated in (5.1), 

for small relative displacements (i.e. 1 ,1 2 ,2( , ) ( , ) 0Tip Tipx w x t w x t∆ − ≈≜ ), there is a cubic 

(a) (b) 

(c) (d) 
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force-displacement relationship, which results in a very weak coupling between the two 

beams. It is also interesting to note that, a nonlinear beating starts to appear in  1 ,1( , )Tipw x t  

around Fmax= 750 N, which is an indication that, above this forcing level, the effects of 

the hardening term in (5.1) begin to appear, increasing the coupling between the two 

beams and initiating the phenomenon called mode-mixing (between the first bending 

modes of the two beams) in the signals. 

 

Figure 5.6 Impulse responses of the tips of the two beams 1 ,1( , )Tipw x t and 2 ,2( , )Tipw x t  for (a) Fmax 

=1000 N (b) Fmax =2500 N (c) Fmax =5000 N (d) Fmax =20000 N. 

 

  

 

(a) (b) 

(c) (d) 
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In Figure 5.6a, where Fmax= 1000 N, we observe that the effect of the hardening term in 

(5.1) causes asymmetric oscillations and mode mixing in both of the beams. In Figure 

5.6b,c, x∆ , the relative displacement between the tips of the two beams, surpasses the 

breaking point bx , and breaks the symmetry of the oscillations since after the breaking 

point, the connection has zero stiffness and its nonlinear properties depicted in Figure 5.3 

are no longer symmetric around zero relative displacement. When the forcing level is 

increased dramatically, as in the case of Figure 5.6d, where Fmax =20000 N,  the 

hardening effect of the nonlinear connection overcomes the softening effect and the two 

beams become strongly coupled, thus resulting in similar 1 ,1( , )Tipw x t and 2 ,2( , )Tipw x t . 

In Figure 5.7, wavelet and Fourier transforms of the tip deflection for the first beam,

1 ,1( , )Tipw x t  for varying Fmax values are depicted.  For Fmax=100 N, in Figure 5.7a,b, the 

response is linear due to the low forcing level, as is evident in both the WT and FT of the 

signal. In Figure 5.7c,d, the frequency of the second mode clearly starts to increase , 

since, as shown in Figure 5.6a,b, the effect of the hardening term starts to dominate 

around this forcing level. In Figure 5.7e,f, the second mode of the system undergoes an 

interesting transition. The frequency of this mode increases (i.e., hardening effect) with 

energy until the relative displacement between the tips of the two beams is -4 mm, after 

which the connection softens and the frequency of the second mode in Figure 5.7e,f 

decreases.  
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Figure 5.7  Wavelet and Fourier transforms of the tip deflection for the first beam,1 ,1( , )Tipw x t for 

(a) Fmax=100 N, (c) Fmax=2500 N, (e) Fmax=10000 N. (b),(d) and (f) are the close-ups of the WTs 
of the time signals depicted in (a), (c) and (e), respectively. 

 

(e) 

(f) 

(a) 

(b) 

(c) 

(d) 

 



 

200 

5.2.2.2 Numerical Simulations of the Reduced Order Model 

 

          In the previous subsection, we discussed the dynamics of the system depicted in 

Figure 5.2 consisting of two cantilever beams coupled through a membrane-like member 

whose force-displacement characteristics are given in Figure 5.3. As was shown in Figure 

5.7e,f, the frequency of the second mode undergoes an interesting transition, which 

increases (i.e., hardening effect) with energy until the relative displacement between the 

tips of the two beams is -4 mm, after which the connection buckles and the frequency of 

the second mode in Figure 5.7e,f decreases.  

 

Figure 5.8 Reduced-order model of the system depicted in Figure 5.2 with parameters  

 
 

As explained in Section 5.1, obtaining the empirical frequency-energy relationship from 

the transient data is crucial in our nonlinear model updating strategy. However, strongly 

nonlinear modal interactions make this a hard task to complete in the FE model, since it 

is not trivial to distinguish the modal interactions from the actual backbone tracking. 

Therefore, in this section, we model the system depicted in Figure 5.2 with a 2-DOF 

reduced-order model shown in Figure 5.8. The parameters of Figure 5.8 are calculated by 

finding the linear spring constants and effective masses of the two beams, given in (5.2). 
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where, for the time being, ( )F x v−ɶ  has the same form as (5.1).   

In Figures 5.9 and 5.10, we present the numerical simulation results for the displacements 

of the tips of the two beams, depicted as1 ,1( , )Tipw x t and 2 ,2( , )Tipw x t , respectively and their 

counterparts in the ROM (cf. Figure 5.8), ( )x t and ( )v t  for varying Fmax values. The ROM 

is excited with the same forcing depicted in Figure 5.4, which is applied to the first DOF 

in Figure 5.8. In Figure 5.9a,b,c, we see that the ROM captures the general trend of the 

corresponding responses from the FE model, since near the linear region, the first 2 

modes are dominant (cf. Figure 5.7a). Note that there seems to be a small phase 

difference, which is due to the fact that the frequency values for the first 2 modes 

between the ROM and FEM model, although very close, are not identical. In Figures 5.8d 

and 5.9a-c, we see that the important dynamical transitions have been captured by the 

ROM. Note that these are strongly nonlinear cases, where the nonlinear connection 

undergoes both hardening and softening depending on the relative tip displacement 

between the two beams. Indeed, as the forcing level increases, the discrepancies between 

the responses increase, as the contributions of the higher modes to each beam’s response 

become more significant. 
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Figure 5.9 Comparison of impulse responses of the tips of the two beams 1 ,1( , )Tipw x t and

2 ,2( , )Tipw x t      between     Reduced order model,  FEM model for (a) Fmax 

=1 N (b) Fmax =100 N (c) Fmax =500 N (d) Fmax =750 N. 

(a) (b) 

(c) (d) 
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Figure 5.10. Comparison of Impulse responses of the tips of the two beams 1 ,1( , )Tipw x t and

2 ,2( , )Tipw x t      between     Reduced order model,  FEM model for for (a) 

Fmax =1000 N (b) Fmax =2500 N (c) Fmax =5000 N (d) Fmax =20000 N. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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5.2.3 Frequency-Energy Plots of the System 

 

Figure 5.11 Frequency-Energy Plot of the ROM depicted in Figure 5.8, with the nonlinear 
connection given in Figure 5.3. 

In Figure 5.11, the frequency-energy plot (FEP) of the reduced order model is 

computed by NNMcont (Peeters et al. 2009) and depicted. The FEP consists of two 

backbone branches, depicting the in-phase and out-of-phase NNMs, respectively. It is 

interesting to note that the frequency of the in-phase NNMs changes insignificantly over 

the energy. This is expected, since the nonlinear connection is located between the two 

masses and “activated” only during the out-of-phase motion.   

The out-of-phase backbone branch in Figure 5.11 follows an interesting transition. 

For low energies, the branch behaves like a linear mode; and as the energy level 

increases, due to the hardening behavior of the nonlinear connection (cf. Figure 5.3), the 

A 

B 
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frequency of the out-of-phase NNMs increases. After a critical point, depicted as A in 

Figure 5.11, which can be viewed as the energy level which corresponds to the breaking 

point bx (cf. Figure 5.3), the slope of the second backbone branch starts to decrease until 

it finally reaches zero at point B.  Afterwards, the softening part of (5.1) dominates the 

hardening, and the frequency of the out-of-phase NNMs starts to decrease, until the 

softening and hardening effects balance again. 

 

Figure 5.12 Superposition of WTs of the 2nd DOF responses (Figures 5.9 and 5.10) of the ROM 
onto:  ▬▬▬▬  Adjusted frequency-energy transition of the 2nd mode, obtained from the 
numerical simulations  ▬ ▬ ▬ ▬  Backbone branches computed by NNMcont (Peeters et al. 
2009). 
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In Figure 5.12, the wavelet transform corresponding to the impulse responses of the 2nd 

DOF in the reduced order model is superimposed onto the computed Hamiltonian 

backbone branches (depicted with gray dashed lines). Afterward, by calculating the 

maximum amplitude of the wavelet at each energy level, a numerical backbone curve 

corresponding to the out-of-phase mode is calculated, which is depicted with a black 

solid line in Figure 5.12. Note that, we only consider the second mode for our nonlinear 

model updating strategy, since the change in the frequency of the first mode is 

insignificant. 

We immediately observe that the Hamiltonian branch computed numerically and the 

backbone branch computed from the WTs of direct numerical simulations are very close 

to each other. The major difference appears during the hardening behavior, due to the low 

damping in the numerical simulations, which shifts the backbone branch toward the right 

in the frequency-energy domain.   

5.2.4 Modeling the Nonlinear Connection 
 
In this section, by interpreting the dynamical transitions shown in Figure 5.12, we will 

determine a model for the nonlinear connection in Figure 5.8.  Note that we aim to treat 

the nonlinear connection (5.1) as “unknown” and construct a model solely based on the 

frequency-energy features of the numerical data, shown in Figure 5.12. Looking at the 

frequency transition of the second mode in Figure 5.12, we can deduce the following: 

First, there must be a hardening component in the nonlinear connection, since the 

frequency of the out-of-phase mode seems to increase until a critical energy level. 

Second, after this critical energy level the frequency starts to decrease, we can infer that 



 

207 

there must be a softening part in the connection, which appears after a critical energy 

level; i.e., a critical relative displacement value.  

In the light of this discussion, we arrive at the nonlinearity model shown in Figure 5.13, 

for the connecting element. We assume linear softening behavior with slope bk after the 

breaking point bx . Although, for simplicity, only one breaking point is assumed, this can 

be modified. For the hardening part of the connection, we assume a single nonlinear term, 

although more terms can be added. Another assumption we make is symmetric hardening 

nonlinearity about the origin, which makes 1 1 and a b n m≡ ≡ in Figure 5.13.  

            

Figure 5.13 The general form of the assumed nonlinearity, based on the findings of Figure 5.12. 
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Having determined the type of nonlinearity that will be used, it remains to develop the 

nonlinear model updating and optimization strategies in order to match the frequency-

energy relationships of the reduced order model and the original system. This process 

involves optimizing the parameters of the nonlinearity model depicted in Figure 5.13. 

The free parameters are the power and coefficient of the hardening nonlinearity, n  and 

1a , respectively; the breaking point bx  beyond which the connection undergoes softening 

behavior; and the slope of the softening increment, bk . A simultaneous multi-variable 

optimization, although possible, would be quite challenging in this case due to the 

complexity of the problem. Therefore, we will address each of these parameters 

individually and attempt to optimize them one-by-one based on the sensitivity of the 

difference to each. For each parameter, we iteratively compute the 2nd backbone branches 

with NNMcont and compare against the backbone branch obtained from the numerical 

simulations in Figure 5.12. We justify this simplistic approach by noting that the primary 

objective of this study is to develop a nonlinear model updating strategy; therefore we 

leave the improved optimization procedure to define the nonlinearity model to future 

work. 

The first parameter of the nonlinear connection that we will attempt to optimize is the 

order of the hardening nonlinearity. For simplicity, only a single nonlinearity of integer 

order is selected, and optimization of the exponent is trivial and almost immediate.  
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As formulated in (5.3), in order to optimize the value of the hardening nonlinearity 

exponent, one should consider the slope of the backbone branch around a pre-chosen 

frequency value aω , such that the effect of the hardening is dominant. The convergence is 

almost immediate and the exponent is found to be n=3. 

The effect of the hardening nonlinearity coefficient 1a  (cf. Figure 5.13), other parameters 

held fixed, is a shift in the energy level in the frequency-energy domain. Since the effect 

of the hardening nonlinearity will be reflected in the smooth part of the 2nd backbone 

branch and since we already know the exponent (n=3); we optimize 1a  by matching  the 

smooth parts of the reference backbone branch (black solid line in Figure 5.12) and the 

branches computed with NNMcont using the following iteration scheme 

 
1, 1 1,i

0
i s av

s

a a Eµ
µ

+ = + ∆

>
  (5.4) 

 

where avE∆  is the average error between the backbone branches at each iteration step and 

sµ is an arbitrary positive number. We stop the iteration when the error between the 

reference and the computed backbone branches falls below a certain pre-defined 

tolerance. 

The result of the computation (5.4) for optimizing 1a  is presented in Figure 5.14. As 

observed, the smooth parts of the reference and the optimized branches match quite well, 

and the optimized value of 1a , which is found to be 0.92 x 109 N/m3 is reasonably close 

to the original hardening nonlinearity coefficient in (5.1), which is 1 x 109 N/m3. 



 

210 

        

Figure 5.14 Optimization result for the smooth part of the 2nd backbone branch to find the 

coefficient of the hardening nonlinearity, 1a . 

 

The next variable to optimize isbx , which is the breaking point of the model shown in 

Figure 5.13, after which the connection has a linear force-displacement relationship. 

Since the smooth part of the 2nd backbone branch is already optimized (cf. Figure 5.14), 

the parameter bx will reflect itself in the peak-zero frequency of the backbone branch. For 

instance, a larger bx  value would result in a larger peak zero frequency value as well. 

Thus, the iteration scheme is given as  

 
, 1 ,

0
b i b i x p

x

x x µ ω
µ

+ = + ∆

>
  (5.5) 

where pω∆  is the difference between peak zero frequencies of the reference and 
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computed backbone branches at each iteration step, and xµ is an arbitrary positive 

number (chosen as 0.02 for the iterations depicted in Figure 5.15). 

 
In Figure 5.15, we show the iteration process to optimize the breaking point of our 

nonlinearity model, bx . Using (5.5), we iterate onbx  by computing the second backbone 

branches with NNMcont, until the peak frequencies of the backbone branches match 

within our tolerance, which we have chosen to be 0.1 in this case. We clearly observe in 

Figure 5.15 that, for bx =-4.35 mm, the peak frequencies of the optimized and numerical 

backbone branches match almost perfectly, which concludes our iteration. Note that, in 

the iteration process, we used only the information about the peak frequencies, not the 

energy values at those points. This is due to the fact that we already optimized the smooth 

part of this backbone branch, so the contribution of the energy level of the peak 

frequency would not be significant in our iteration scheme. 
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Figure 5.15  (a) Iterations showing the optimization process for bx for the nonlinearity model 

assumed in Figure 5.13, (b) Close-up of (a) within the rectangle region. 

 

 

(a) 

(b) 
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Figure 5.16 Iterations showing the optimization process for bk for the nonlinearity model assumed 

in Figure 5.13. 

The final parameter that needs to be optimized is the slope of the softening part, bk . To find bk , 

we use the iteration scheme 

 
b, 1 b,i

0
i ns av

ns

k k Eµ
µ

+ = + ∆

>
  (5.6) 

 

Where nsµ is an arbitrary positive number and avE∆  is the average error between the 

backbone branches at each iteration step. Note that a bigger bk will imply a smaller 

decrease in the frequencies of the out-of-phase NNMs.  In Figure 5.16, several iterations 

carried out on the parameterbk is shown. As observed, for bk =163 N/m, the reference and 

optimized backbone branches agree quite well, thus finalizing the form and parameters of 

our nonlinearity model as follows 
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Comparing (5.7) with (5.1) and also examining Figure 5.17, we see that the optimized 

nonlinearity model is in close agreement with the original nonlinearity, which we treated 

as “non-identified” during the model updating process.  

                 

Figure 5.17 The comparison between the optimized and original nonlinearity models 

5.2.5 Comparisons between the Optimized and Original Models 

In Figure 5.18, we compare the optimized 1st and 2nd backbone branches with their 

Hamiltonian counterparts, computed with the original membrane properties as depicted in 

Figure 5.3 and the backbone branch obtained from the superposition of WT of numerical 

simulations onto the Hamiltonian FEP. As observed, the optimized backbone branches 

match very closely with the reference and numerical backbone branches, which 
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demonstrates the accuracy of our prediction for the nonlinearity model formulated in 

(5.7) when compared with the original nonlinearity model in Figure 5.17. 

                                   

 

Figure 5.18 Comparison of the (a) 1st (b) 2nd backbone branches with the reference and numerical 
backbone branches. 

 

(a) 

(b) 
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Figure 5.19 Comparison of time series, wavelet and Fourier transforms for the tip deflection of 

the first beam, 1 ,1( , )Tipw x t for (a) Fmax=1000 N, (c) Fmax=2500 N between the optimized ROM and 

original system. 

(a) 

(b) 

Original system 

Original system 
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Having compared the frequency-energy relationships for the optimized and original 

reduced-order models, we now perform impulse tests (cf. Figure 5.4) with the reduced 

order model (cf. Figure 5.8) by using the optimized nonlinearity model formulated in 

(5.7). In Figure 5.19, we compare the responses of the optimized reduced order model, 

and the original system (FE) and their respective wavelet and Fourier transforms for Fmax 

= 1000 N and 2500 N. As observed, even in the case of a strongly nonlinear response 

(i.e., Figure 5.19b), the optimized reduced order model is able to replicate the dynamics 

in both time and frequency domain. 

One drawback of using ROMs with few DOFs, as in our case, is that it might be a 

challenge extending the result spatially to reproduce the dynamics at other points in the 

original system. There are several ways to address this issue: One is to interpolate the 

responses obtained from the ROM by first finding the “normalized mode shapes” from 

the original system response, which can be done through spatio-temporal IMOs discussed 

in Section 2.5.  In the case of localized nonlinearities, one can attempt to use the updated 

nonlinear model in the original system to reproduce the dynamics. This is done in Figure 

5.20: The FE model of the system (Section 5.2.1) is simulated with the optimized 

nonlinearity model in (5.7) and compared against the original system for an impulse 

excitation with Fmax=1000N. Since the optimized and the original system nonlinearities 

are in close agreement (cf. Figure 5.17); it is no surprise that the time series in Figure 

5.20 match almost perfectly. 
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Figure 5.20 Comparison of time series, wavelet and Fourier transforms for the tip deflection of 

the first beam, 1 ,1( , )Tipw x t for  Fmax=1000 N. 

5.3 Benchmark Problem 

5.3.1 Introduction and System Description 
 

In this section, a problem similar to that of  Section 5.2 will be investigated as an 

application of the proposed nonlinear model updating strategy. This problem was posed 

to the system identification community prior to the IMAC XXXII held in Orlando, 

Florida between February 3-6, 2014, as a “Round Robin Exercise on Nonlinear System 

Identification”. The benchmark files used in this exercise, which is a protected code that 

can be simulated at 8 sensing locations depicted in Figure 5.21, and more information can 

be found at http://sem.org/TDIV-Nonlin.asp.  The structure of interest consists of two 

facing cantilever steel beams connected by a non-identified flexible element, shown in 

Figure 5.21.  The purpose of the exercise was to identify and model the nonlinear 
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characteristics of this unknown element by using only the outputs of the system, which is 

exactly the solid foundation of our NSI, reduced order modeling and nonlinear model 

updating methodologies. 

 

Figure 5.21 Benchmark structure. The two clamped beams are connected by a non-identified 
element. A force in the positive direction on sensor D is indicated. 

 

The two beams lay on two parallel planes, so that the connecting element is inclined. The 

length of each beam is 300 mm, the width 20 mm, and the thicknesses of the two 

members are 6 mm and 5.5 mm, respectively. The linear, elastic material adopted for the 

beams is characterized by a Young modulus E = 210 GPa, a Poisson’s ratio ν = 0.33, and 

a mass density ρ = 7800 Kg/m3.  Eight sensors are placed along the beams, at the 

locations specified in Figure 5.21 (point A, B, C, D, E, F, G and H) from which 

displacements, velocities and accelerations in direction z can be measured.  A time 

dependent force in the z direction can be applied at one sensor point at a time. The system 
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has an operational limit that cannot be exceeded. The limit is set at 40 mm; if the 

displacement at any point of the structure exceeds this value, the time integration stops. 

5.3.2 Numerical Simulations of the Benchmark Model 

            We perform impulse tests on the given system in order to obtain transient 

responses that will be useful in obtaining the frequency-energy relationship for the 

system, The applied force, shown in Figure 5.4, is a half-sine signal with a duration of 0.1 

ms , acting close to the tip of the first beam, point D in Figure 5.21. We depict the tip 

responses of the two beams as 1( , )Dw x t  and 2( , )Ew x t , respectively. 

 

Figure 5.22 Time series, wavelet and Fourier transforms for the tip deflection of the first beam, 

1( , )Dw x t  for Fmax=1N. 
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Figure 5.23 Time series, wavelet and Fourier transforms for the tip deflections of the first and 

second beam, 1( , )Dw x t  and 2( , )Ew x t  for (a) Fmax=2500 N (b) Fmax=5000 N (c) Fmax=7500 N. 

 

 

(a) 

(b) 

(c) 
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Figure 5.24 Superpositions of FFTs resulting from the impulse test with varying Fmax values ,for 

the tip point deflection  of the first beam , 1( , )Dw x t . 

 

In Figure 5.22, we depict the time series for 1( , )Dw x t  with Fmax=1N applied at point D, to 

show the modes of the beam in the linear regime. Indeed, as we increase Fmax, as is done 

in Figures 5.23 and 24, we start observing strongly nonlinear phenomena in the frequency 

domain for 1( , )Dw x t  and 2( , )Ew x t . As is evident in Figure 5.23b,c and 5.24, an 

interesting damped transition occurs around the second bending mode: The frequency of 

the second mode seems to be  decreasing after a critical energy level, which is achieved 

when Fmax is equal to or larger than 2500 N. Also interesting to notice is that, in Figure 

5.23b,c , and the oscillations in 1( , )Dw x t  and 2( , )Ew x t  lose their symmetry, which 

implies the fact that the nonlinear relation for the connecting link in Figure 5.21 is 

asymmetric about the origin. 
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5.3.3 Modeling the Nonlinear Properties of the Connection 

 

With the transient data from the impulse tests in hand, we plot the WT spectra of the 

transient data by estimating instantaneous energy to derive an empirical relationship for 

the frequency-energy relationship of the system. Note that, while estimating the 

instantaneous energy, the energy stored in the connecting link has been neglected.  

 

Figure 5.25 Superposition of the WT spectra onto the frequency-energy domain. The transient 

data used are the impulse test results from the previous section for 1( , )Dw x t . 
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In Figure 5.25, we depict the empirical frequency-energy relationship of the 

system obtained from the impulse tests with Fmax varying from 1 N to 10000 N. For the 

superposition of the WT spectra, we used the transient data from the tip of the first beam, 

which is denoted as 1( , )Dw x t . The frequency-energy relationship of the system reveals 

interesting yet very complex damped frequency transitions: Although the frequencies of 

the first and third modes do not appear to change significantly with increasing force and 

energy level, the second mode, after some critical energy level (i.e., after some critical 

relative displacement of the tips of the two beams,bx ), seems to undergo a softening 

effect and reaches a new asymptote at the high energy extremes.  

 
 

Figure 5.26 Modeling of the nonlinear properties for the “non-identified” connection in Figure 
5.2 

 

 

 

xb
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We then model the nonlinear connection based on the frequency-energy relationship 

obtained from the impulse tests in Figure 5.25. Examining the frequency-energy 

relationship on the numerical FEP, we recognize the need for a member hat softens in one 

bending direction beyond some energy level (i.e., beyond some critical displacement 

value, x
b
), which is similar to buckling-type behavior. Thus, the nonlinear connection, 

after interpreting the frequency-energy relationship on the numerical FEP, is initially 

depicted in Figure 5.26. It is basically a member which softens in one bending direction 

beyond some critical point x
b
 and buckles. Since we observed linear behavior in our 

impulse tests for small forcing values (cf. Figure 5.22), we can assume symmetric linear 

behavior close to zero relative displacement, thus further simplify our model as shown. 

The optimization procedure involves using the nonlinearity model shown in  Figure 5.26 

and computing the nonlinear normal modes (NNMs) of the system with varying 

parameters k
1
,k

2
 and x

b
 such that the features shown in the numerical FEP are captured, 

such as linear frequencies, asymptotic frequencies and the energy level at which softening 

begins. Due to limitations in number of measurement points, loading types and duration 

of the time integration, we undertake a two-fold optimization which seeks to match the 

backbone branches at each iteration step meanwhile significantly monitoring the 

agreement between the time series. Note that this is a more time-consuming optimization 

process when compared with the previous section. To calculate the backbone branches 

during the iterations, we use a 15 element linear FE model for each beam. 
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Figure 5.27 Optimized backbone branches with 5 2
1 26 10  N/m, 5 10  N/m, x 0.02 mmbk k= × = × = . 

 

Based on this complex, time-demanding yet fruitful optimization strategy, the optimized 

parameters for the nonlinearity model depicted in Figure 5.26  become 5
1 6 10  N/m,k = ×

2
2 5 10  N/m, x 0.02 mmbk = × = . In Figure 5.27, we see the backbone branches computed 

with NNMcont using these parameters superimposed onto the empirical frequency-

energy relationship of the original benchmark model. As observed, they are in very close 

agreement with the backbone branches obtained from the direct numerical simulations. 
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Figure 5.28  Comparisons of the time series, wavelet and Fourier transforms for the tip 

deflections of the first and second beam, 1( , )Dw x t  and 2( , )Ew x t  for (a) Fmax=1 N (b) Fmax=5000 

N (c) Fmax=10000 N. 

 

 

(a) 

(b) 

(c) 
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Having found the optimized nonlinearity model for the connection in Figure 5.21, we 

now simulate the system with our optimized nonlinear connection by using a 15-element 

FE model for each beam and compare the results with those from the benchmark model. 

In Figure 5.28, we see this comparison for Fmax values 1 N, 5000 N and 10000 N. 

Looking at the comparisons of time series, wavelet and Fourier transforms, we see a very 

good agreement between our prediction and the benchmark model, which was really 

nothing more than a “black-box”. This result is quite remarkable and demonstrates the 

power of our nonlinear model updating strategy, which used only the transient time series 

from the system to infer the strongly nonlinear properties within the system. Furthermore, 

we were able to model the actual nonlinearity and reproduce the dynamics for both linear 

and strongly nonlinear regimes, as shown in Figure 5.28. 

 

 

 

 

(a) 

(b) 
 

Figure 5.29 (a) Impulse response of the tip of the first beam, 1( , )Dw x t  with 

Fmax=20000 N (b) Close-up of  its WT. 
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In Figure 5.29, we show the response of the tip of the first beam to the forcing depicted in 

Figure 5.4, with Fmax=20000 N. Looking at Figure 5.29b, we observe an interesting 

phenomenon: Starting from this forcing level, the first mode seems to undergo hardening 

behavior, which is unexpected since we do  not expect the in-phase mode to be affected 

in the frequency domain by the position of the nonlinearity in Figure 5.21. This has an 

interesting implication: For very large forcing values (i.e., at very high energies), not only 

the behavior of the linking member depicted in Figure 5.26, but also the effective system 

configuration changes. Indeed, as observed in Figure 5.30, when Fmax is larger than 

17500 N, the shapes of the two beams undergo a dramatic change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30 The maximum displacement configurations of the two beams for Fmax= 17500, 
20000, 21000, 22000, 23000, 24000 N, respectively, in the increasing amplitude direction. 
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Clearly, to model the hardening behavior of the first mode, depicted in Figure 5.29a,b ,  

we must change the system configuration. In order to reproduce the results, we consider 

the system configuration depicted in Figure 5.8, where  1 2 1 2, , ,k k m m   are unknown but 

the nonlinear connection is the optimized model obtained in this section. The general idea 

will be as follows: Since it was shown in Figure 5.30 that, when the relative tip 

displacement between the two beams is 20 mm, the configurations of the beams undergo 

a dramatic change. The unknown system parameters of Figure 5.8 will be represented by 

an arbitrary asymptotic shape for the two beams at high energy levels, and the effective 

stiffness and mass values at that configuration are computed. Since the benchmark code 

only allows displacement values up to 40 mm, we use the beam shape (in blue) 

corresponding to the impulse input of 24000 N amplitude. Then, by using these beam 

shapes as our new configuration, we find the effective stiffness and mass values as 

1 20.0792 , 0.072 ,m m= = kg   kg 1 18480k =  N/m and 2 14234k =  N/m . 

We then simulate the 2-DOF system in Figure 5.8 as follows: When the relative 

displacement of the masses exceeds 20 mm, we switch to the asymptotic configuration 

thus changing the stiffness and mass values; and when the relative displacement between 

the masses at any instant during the time integration drops to 20 mm, we go back to the 

effective stiffness and mass values that are found in Section 5.2 for the cantilever beams 

in Figures 5.2 and 5.21. Although this seems like a non-physical and counter-intuitive 

process, our main aim is to indeed prove that strongly nonlinear effects can cause 

changes in system configuration. If we compare the simulation with the switching 

mechanism for Fmax= 20000 N to the benchmark output as done in Figure 5.31 for 
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1( , )Dw x t , we see that we can indeed capture the hardening behavior of the first mode and 

obtain close agreement between the two time series. 

 

Figure 5.31 Comparison of the simulation result  by using the 2-DOF system of Figure 5.8 with 

the proposed configuration switching mechanism to the benchmark output for Fmax= 20000 N at 

the tip of the first beam, 1( , )Dw x t . 

5.4 Concluding Remarks 

In this section, a nonlinear model updating strategy based on global/local nonlinear 

system identification of a broad class of nonlinear systems was proposed. The approach 

relied on analyzing the system in the frequency-energy domain by constructing 

Hamiltonian or forced and damped frequency – energy plots (FEPs) and comparing 

against the frequency-energy relationship implied by the data obtained from transient 

dynamics. The first application was a system consisting of two facing steel cantilever 

beams connected by a membrane-like element which had hardening/softening properties. 
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It was shown that by constructing a ROM of the original system and modeling the 

nonlinear connection, it was possible to reproduce the transient dynamics. The second 

application was a benchmark problem with a system again consisting of two facing, but 

offset, steel cantilever beams coupled by an “unknown” nonlinear element, whose 

parameters were optimized and the underlying dynamics successfully reproduced. 
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CHAPTER 6                                                               

CONCLUDING REMARKS AND FUTURE WORK 

6.1 Summary 

This dissertation presented a novel nonlinear system identification (NSI) and 

nonlinear model updating methodology that utilizes the close correspondence between 

analytical (CX-A) and empirical (EMD) slow-flow dynamics and the frequency-energy 

relationship of nonlinear systems. The proposed NSI methodology, which has the 

promise of broad applicability to a wide range of dynamical systems, is based on the 

direct analysis of measured time series, requiring no a priori system information (i.e., it is 

purely an output-based approach). Global / local issues of NSI were discussed: Global 

aspects can be examined by “probing” the transient dynamics in a frequency-energy plot 

(nonparametric), whereas local aspects can be modeled by a set of intrinsic modal 

oscillators (parametric). A novel nonlinear model updating strategy based on   

global/local nonlinear system identification of a broad class of nonlinear systems was 

introduced, which relied on analyzing the system in the frequency-energy domain by 

constructing Hamiltonian or forced and damped frequency – energy plots (FEPs). 

Now, we will briefly summarize the scope and the main results of each chapter. In 

Chapter 2, we reviewed the basic elements of the global/local nonlinear system 

identification, reduced order modeling and nonlinear model updating methodology 

considered in this dissertation. With these issues addressed, in Chapter 3, three main 
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applications of the local NSI methodology were investigated. As the first application, in 

Section 3.2, we studied the dynamics of a cantilever beam with two symmetric rigid stops 

with prescribed clearances by performing nonlinear system identification (NSI) based on 

the correspondence between analytical and empirical slow-flow dynamics. Performing 

empirical mode decomposition (EMD) analysis on the numerically-computed 

acceleration responses at ten, nearly evenly-spaced, spanwise positions along the beam, 

we constructed sets of the intrinsic modal oscillators at different time scales of the 

dynamics. Afterwards, we established nonlinear interaction models (NIMs) for the 

respective intrinsic mode oscillations.  By comparing the spatio-temporal variations of 

the nonlinear modal interactions for the vibro-impact beam and the underlying linear 

beam model, we demonstrated that vibro-impacts significantly influence the lower 

intrinsic mode functions involving strongly nonlinear modal interactions, whereas the 

higher modes tend to retain their linear dynamics between impacts. The second 

application of the local NSI methodology was the analysis and modeling of the nonlinear 

damping effects induced by a frictional interface on the dynamics of a beam with a bolted 

joint connection, studied throughout Section 3.3. The analysis was performed by 

decomposing measured time series using empirical mode decomposition (EMD), and 

modeling the resulting dominant intrinsic modal functions (IMFs) in terms of sets of 

intrinsic modal oscillators (IMOs) that capture the multi-scale dynamics in the measured 

time series. It was shown that by studying the temporal decays of the logarithms of the 

moduli of the complex amplitudes of the forcing functions of the IMOs we can deduce 

the nonlinear damping effects in the dynamics.  As a final application of the local NSI 

methodology, in Section 3.4 the nonlinear system identification of a cantilever beam with 
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an essentially (non-linearizable) nonlinear stiffness at its free end was considered. We 

observed strongly nonlinear beat phenomena in the transient dynamics of the cantilever 

beam, which upon further analysis we discovered was due to nonlinear modal 

interactions arising through internal resonances between cantilever modes. We 

demonstrated the relation between nonlinear beat phenomena and internal resonances by 

constructing a reduced order model of the full finite-element dynamic model using Guyan 

reduction and studying the dynamics of the reduced-order system in the frequency-energy 

plane. Finally, we extended our nonlinear system identification approach developed for 

nearly mono-frequency (mono-chromatic) signals, to the identification of the multi-

frequency signals, which possess strongly nonlinear beating phenomena. 

In Chapter 4, the global aspects of the NSI methodology were discussed and more 

advanced global NSI tools were developed, which extended its range of application to a 

broader class of dynamical systems. In Section 4.2, we demonstrated the practical use of 

FEPs in global NSI. It was shown that by studying the FEPs, a great deal of information 

can be retrieved about a dynamical system, such as the nonlinear characteristics (e.g., 

position of the nonlinearity, nonlinear exponent and coefficient) and the configuration of 

the underlying system. The main assumption we made in using FEPs for system 

identification was that we can reconstruct/track the backbone branches of the system by 

using empirical (experimental or numerical) data. This was demonstrated in an 

experimental study in 4.2.2, where the frequency-energy dependence of a 2-DOF system 

consisting of a linear oscillator attached to a nonlinear energy sink was compared against 

numerical predictions. Since FEPs are at the heart of our NSI methodology and are 

usually computed for Hamiltonian systems so far, in Section 4.3, they were extended to 
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include forced and damped FEPs, as well.  They were then applied to study some 

practical implications, such as the performance of an NES as a vibration absorber within 

predefined frequency ranges (Section 4.3.1.3) and studying the interesting and 

complicated dynamics of a 2-DOF system consisting of a grounded nonlinear oscillator 

under harmonic forcing coupled to a light linear attachment, under condition of 1:3 

resonance (Section 4.3.2). 

Finally, in Chapter 5, we proposed a nonlinear model updating strategy based on   

global/local nonlinear system identification of a broad class of nonlinear systems. The 

approach relied on analyzing the system in the frequency-energy domain by constructing 

Hamiltonian or forced and damped frequency – energy plots (FEPs) and comparing 

against the frequency-energy relationship of the data obtained directly from transient 

dynamics. Two applications were considered: The first application was a system 

consisting of two facing steel cantilever beams connected with a membrane-like element, 

that had hardening/softening properties. It was shown that by constructing a ROM of the 

original system and modeling the nonlinear connection, it was possible to reproduce the 

transient dynamics. The second application was a benchmark problem with a system 

again consisting of two facing though offset, steel cantilever beams coupled with an 

“unknown” nonlinear element whose parameters were optimized using a similar 

approach.  

6.2 Future Work and Improvements 

Extensions of this work would require further improvements and refinements in 

the proposed NSI methodology. One crucial improvement would be to automate the 
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system identification procedure and decrease the “user-dependence” of the process. The 

automation of this technique is a new challenge since it requires simultaneous 

consideration of both the global and local aspects of the proposed methodology. This 

should almost completely remove the “user-dependence” of the developed NSI 

methodology and make it an important practical tool for both academia and industry, 

much as experimental modal analysis is to the linear system identification community. 

However, automating the NSI methodology brings its own set of important challenges: 

Recalling that EMD is applied in an ad hoc manner, thus having certain deficiencies 

related to issues such as uniqueness of the EMD results, and lack of orthogonality 

between the computed IMFs; a “step-by-step” EMD method was proposed in Section 2 in 

order to obtain well-decomposed, nearly mono-chromatic and orthogonal sets of IMFs. 

Although throughout Chapters 3-5, it was shown that the step-by-step EMD approach 

worked quite well to obtain almost-orthogonal sets of IMFs, this approach is manual and 

can be time-demanding for complex signals (i.e., responses from strongly nonlinear 

systems and/or time signals with many closely spaced modes). 

Another challenge that needs to be tackled in making the NSI methodology automated 

and more robust is related to obtaining the frequency-energy relationship of nonlinear 

systems using transient dynamics. Computing FEPs for systems with a large number of 

DOFs can be time consuming, thus slowing the model updating process. Furthermore, 

more work needs to be done on obtaining the instantaneous frequency-amplitude 

relationship of the transient data by using WTs and eliminating the spurious data. 
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Although the proposed NSI and nonlinear model updating methodologies have only been 

applied to nonlinear mechanical systems in this dissertation, it would be particularly 

interesting to explore applications in different disciplines, where nonlinear phenomena 

play a great role, such as in biology, cognitive sciences, economics and meteorology. 

Since the proposed NSI methodology has an “output-based” approach and uses the 

frequency-energy domain for global identification, it has the promise of broad 

applicability. One potential application might be to apply the methodology to medical 

applications. For instance, the NSI methodology can be used to study the heart rate 

variability (HRV), which is a sensitive indicator of a healthy heart. Changes in HRV can 

be identified, and the relevant nonlinear dynamical model can be updated to make better 

predictions regarding the patient’s condition.  Another example is to study traumatic 

brain injury (TBI) as an application of nonlinear system identification and model 

updating. Occurrence of TBI is a highly nonlinear and complex process, which is often 

associated with impacts to the head and head acceleration during an incident. Therefore, 

modeling the highly nonlinear motion of the head, neck and brain during impacts and 

identifying the nonlinear effects that might be useful in the development preventive 

mechanisms will be crucial in addressing this medical condition. 

Since the proposed approach is “time-series driven”, especially in the case of 

experimental analysis, a question that needs to be addressed is how the uncertainties such 

as process noise (e.g., the mismatch between the actual process and the predictions from 

model equations) and measurement noise (e.g., uncertainties from sensors) can be 

incorporated or accounted for in the system identification and model updating processes. 

For a robust modeling and identification process, we need to be able to distinguish 
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nonlinearity from uncertainty when analyzing the dynamics of uncertain nonlinear 

systems.  
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