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Abstract

We consider the phase separation of binary fluids in contact with a surface

which is preferentially wetted by one of the components of the mixture. We

review the results available for this problem and present new numerical results

obtained using a mesoscopic-level simulation technique for the 3-dimensional

problem.
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I. INTRODUCTION

There has been much interest in the phase-separation dynamics of homogeneous binary

mixtures, which have been rendered thermodynamically unstable by a rapid quench below

the coexistence curve. The time evolution of pure bulk mixtures in which the evolving system

coarsens into domains rich in either of the components is now reasonably well-understood.

These domains are characterized for late times by a single length scale L(t) ∼ tφ, where t is

the time and the growth exponent φ depends upon the system considered, e.g., whether or

not the order parameter is conserved, the relevance of hydrodynamic effects, etc. [1].

An experimentally important variation of this problem considers the role of surfaces with

a preferential attraction for one of the components of the mixture. The first experimental

study of this problem is due to Jones et al. [2], who considered unstable polymer mixtures

of polyethylene-propylene (PEP) and perdeuterated PEP (d-PEP) in a thin-film geometry.

The surface energy of d-PEP is somewhat less than that of PEP leading, in addition to

bulk phase separation (spinodal decomposition), to a preferential deposition of d-PEP at

any free surface. Jones et al. studied laterally-averaged composition profiles as a function of

distance from the surface. The bulk is characterized by randomly-oriented phase-separation

profiles and the lateral averaging procedure does not yield a systematic behavior. However,

the surface exhibits an enrichment layer in the preferred component, which is followed by a

depletion layer. This oscillatory profile is time-dependent and decays with a characteristic

length to the bulk composition.

This experiment motivated many further investigations of this problem. The experi-

mental techniques and results have been reviewed by Krausch [3], and the theoretical and

numerical developments by Puri and Frisch [4] and Binder [4]. To date, most numerical

studies of this problem have focused on the case of binary mixtures without hydrodynamic

effects, i.e., the growth of surface wetting layers and bulk domains is governed by diffusive

processes. However, many important experiments in this area involve binary fluids in contact

with a surface. It is well-known that macroscopic matter and energy flows, i.e., hydrody-
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namic effects, drastically alter the nature of domain growth in the bulk phase-separation

problem. Therefore, it is reasonable to expect important physical effects to result from

hydrodynamic flows in the case of surface-directed phase-separation also. To understand

some of the issues involved, we have undertaken a detailed numerical simulation of this

problem. In particular we adapted mesoscopic models formulated to study bulk spinodal

decomposition in binary fluids to surface-directed spinodal decomposition.

This paper is organized as follows. Section 2 reviews available experimental, analytical

and numerical results for this problem. In Section 3, we describe our model and the numerical

methods used. These involve an “integration” of the Vlasov-Boltzmann equations for the

binary mixture in contact with a surface. In Section 4, we present results obtained from our

simulations. Finally, Section 5 is devoted to a summary and discussion of the results.

II. SUMMARY OF AVAILABLE RESULTS

A. Experimental Studies

One of the earliest experiments on phase-separating binary fluids near a surface is due to

Guenoun et al. [6], which considered unstable mixtures of cyclohexane (C) and methanol (M)

in contact with a surface which preferred M. The surface rapidly developed a M-rich layer,

followed by a bicontinuous domain structure. Guenoun et al. found that domain growth

was characterized by a number of different length scales. Thus, the wetting layer grew as

R1(t) ∼ ta with a ≃ 0.56. The domains adjacent to the wetting layer were anisotropic and

were characterized by perpendicular (L⊥(t) ∼ tb with b ≃ 0.64) and parallel (L‖(t) ∼ tc with

c ≃ 1) scales.

Wiltzius et al. [7] considered critical fluid mixtures of polyisoprene (PI) and PEP sealed

between two quartz plates. They found that the structure factor exhibited two peaks - one

corresponding to the usual bulk domain length scale Lb(t) ∼ t and the other corresponding

to a fast length scale Ls(t) ∼ t3/2. Furthermore, they found that the dimensionality of
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domain growth associated with the fast length scale was d = 2, suggesting that it resulted

from a rapid coarsening in the surface layer. The rapid surface growth was interpreted

as a prelude to the formation of a complete wetting layer on the surface. In that case,

there is no inconsistency between their results and the earlier results of Guenoun et al. [6],

which correspond to later times when a complete wetting layer was already formed. Similar

experiments were also performed by Shi and collaborators [8] on mixtures of guaiacol and

glycerol-water confined in a thin-film geometry.

Detailed studies of the morphologies which arise for phase-separating mixtures confined

to 1- and 2-dimensional capillaries were performed by Tanaka and co-workers [9] on critical

and off-critical mixtures of polyvinyl-methyl-ether (PVME) and water, and ǫ-caprolactone

oligomer (OCL) and styrene oligomer (OS). In particular, they clarified conditions under

which the equilibrium state is completely wet (i.e., only the preferred phase is in contact

with the surface) or partially wet (i.e., both phases are in contact with the surface). Tanaka’s

group did not observe the fast growth reported by Wiltzius and co-workers [7,8], possibly

because the quench depth in their experiments was too large. Once the wetting layer is

formed, they found that its thickness grows linearly in time, i.e., R1(t) ∼ t, in disagreement

with the experiments of Guenoun et al. [6]. In most of their experiments, the wetting layer

is finally destabilized by a Rayleigh instability and the system crosses over to a partially wet

morphology.

B. Analytical Arguments

The equilibrium behavior of immiscible binary fluids in contact with a substrate was

examined long ago by Young [10]. Let γA and γB be the surface energies per unit area for

the fluids A and B in contact with the substrate (say, γB > γA); and let σ be the surface

tension between fluids A and B. Then, the contact angle θ between A and the surface is

given by σ cos θ = γB − γA. This equation has no solution when (γB − γA)/σ > 1, which

corresponds to a situation where the preferred fluid (A) completely wets the substrate. The
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effects of geometry and composition can also be included [9,11,12].

The nonequilibrium problem we consider is a homogeneous critical binary mixture (at

high temperature) in contact with a surface which has a preference for one of the components

of the mixture. At time t = 0 the system is quenched below its critical temperature and

becomes unstable to phase separation. We are interested in the dynamics of approach to the

equilibrium morphology, which will consist of either partially wet (PW) or completely wet

(CW) configurations. Typically, the surface is initially coated by the preferred component,

which is then followed by the growth of the wetting layer [9]. We focus here on the wetting

layer growth.

As remarked by Siggia [5] the bicontinous morphology of critical or near critical phase

separating binary fluids consists essentially of interpenetrating “tubes”. When a tube of the

preferred phase establishes contact with the surface layer the curvature induced pressure

gradient σ/L2 leads to a flow of material from the tube to the surface. The material flux per

tube can be estimated for example from Poiseuille law to be (σ/η)L2 [5]. Then S(dR1/dt) ∼

(σ/η)L(t)2 × (S/L(t)2), where S is the surface area and S/L(t)2 is the number of tubes.

Thus, R1(t) ∼ (σ/η)t for the hydrodynamic problem, a result which has been confirmed

experimentally [9]. We believe that the discrepancy between this result and the earlier

experimental work of Guenoun et al. [6] is due to the long-lived transient growth laws

dependent upon the form of the surface potential [13]. For the diffusive case the chemical

potential gradient between the bulk tube, µ ∼ (σ/L) [1], and the flat tube portion at the

surface, µ ∼ 0, induces a current j ∼ (σ/L2) and therefore a flux per tube ∼ σ. The

corresponding growth law is then R1(t) ∼ σ1/3t1/3.

The wetting layer grows until it reaches the equilibrium length (dictated by the com-

position for a CW morphology), or is destabilized by surface fluctuations and goes over to

the appropriate equilibrium PW morphology. There is also a dynamical coupling of phase

separation and the growth of the wetting layer, which leads to the domains adjacent to the

wetting layer being anisotropic with L⊥(t) < L‖(t) [6,4].
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C. Numerical Results

One of the earliest numerical studies of the hydrodynamic problem is due to Keblinski et

al. [15], who performed molecular dynamics (MD) simulations of binary fluids (AB) confined

in a 2-dimensional capillary (or a planar thin film). One of the cases that they study is when

the wall preferentially attracts A, which is analogous to the experiments we have discussed

earlier. In this case they observe a “fast mode” in the surface layer but with an exponential

growth rather than the power law growth.

Chen and Chakrabarti [16] have studied phase separation in 2-dimensional binary fluids

near a surface through numerical solutions of the coarse-grained model H equations [1] in a

semi-infinite geometry. The model H equations consist of coupled dynamical equations for

the order parameter and the fluid velocity field. Chen and Chakrabarti consider a surface

with a long-range attraction for one of the components of the mixture and impose “no-slip”

conditions on the velocity field at the surface. They find that the wetting-layer growth

crosses over from R1(t) ∼ t1/3 (characteristic of bulk diffusive growth in any dimension)

to R1(t) ∼ t2/3 (characteristic of bulk hydrodynamic growth in d = 2). This crossover is

associated with domains of the preferred component establishing contact with the surface

layer and their subsequent rapid draining into the surface layer.

Another study of model H in a semi-infinite geometry is due to Tanaka and Araki [17].

These authors solved the model H equations numerically in d = 3. They find that the

wetting-layer thickness grows initially as R1(t) ∼ t1/3 (characteristic of diffusive growth) and

then crosses over to the hydrodynamic regime with R(t) ∼ t. They also study characteristic

length scales in the layer parallel to the surface. Far from the surface, they find the expected

bulk growth law L‖(t) ∼ t, while in the vicinity of the surface they find a faster growth.

However, it seems difficult to unambiguously assign an exponent to this faster growth.

Furthermore, the time-regime of the “fast mode” is considerably later than the time-scale of

formation of the complete wetting layer. This suggests to us that the “fast growth” observed

by Tanaka and Araki should be identified with the anisotropic growth (with L⊥ < L‖) of

6



domains in the vicinity of the wetting layer due to orientational effects of the wetting layer,

rather than the “fast mode” of Wiltzius and others [7,8]. As we have discussed earlier, this

fast mode is associated with the coating dynamics which results in a complete wetting layer.

Finally, we mention a MD study by Toxvaerd [18] who investigated critical mixtures (AB)

of particles interacting through Lennard-Jones potentials. He focused on the morphologies

which arise for different wall-types, e.g., one wall attracts A whereas the other wall attracts

B versus the case where both walls attract A and B equally, etc. Using MD simulation he

finds that the system evolves into a layered morphology, with the layer being parallel to the

surface walls. We believe that these are metastable configurations which evolve exceedingly

slowly due to the low effective dimensionality (d = 1) of the system.

The paucity of detailed numerical results for binary fluids undergoing phase separation

in contact with a wetting surface motivated us to undertake a mesoscopic-level simulation

of this problem, through a direct “solution” of the relevant Vlasov-Boltzmann equations.

III. DESCRIPTION OF MODEL

The subtle interplay between diffusion and convection which occurs in phase-separating

fluids makes the modeling of these systems more complicated than that of solids. The

local conservation of linear momentum and energy, which is characteristic of fluids, and the

associated transport of matter and energy on macroscopic scales, plays a crucial role during

phase segregation. Typically, the phase separation of binary fluids has been modeled either

(a) at the microscopic level, e.g., via MD simulations, or (b) at the macroscopic level via

coarse-grained hydrodynamic equations. An alternative to these approaches was introduced

in Ref. [19]. The system studied was a binary mixture consisting of A and B particles

with short range repulsive interactions, modeled by hard spheres with equal mass m and

diameter d, and a long-range Gaussian repulsion between the two components, A and B.

The dynamics was described by coupled Vlasov-Boltzmann kinetic equations:

∂fi

∂t
+ v ·

∂fi

∂r
+

Fi

m
·
∂fi

∂v
= J [fi, f1 + f2] i = 1, 2 (1)
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where fi(r,v, t) are the one-particle distribution functions, Fi(r, t) = −∇Vi(r), Vi(r) =

∫
V (|r − r′|)nj(r′)dr′ (Vlasov potential), nj(r′) =

∫
fj(r′,v, t)dv, with i 6= j, and J [f, g] is

the Boltzmann collision operator for hard core interactions [20]. The Boltzmann equation

properly describes the dynamics of dilute gases, where the free flow of the particles is in-

terrupted by localized binary collisions between particles that are uncorrelated. The Vlasov

term takes into account the long-range interaction in the spirit of the mean-field approxi-

mation: each particle now moves between collisions in the background potential generated

by all the other particles it is interacting with through the long-range potential V (r).

The above mesoscopic representation in terms of one-particle distribution functions has

the advantage that the relevant conservation laws are automatically satisfied, and it also

provides a rigorous route to a macroscopic description [21]. Computationally, the method

introduced in Ref. [19,22] to simulate the Vlasov-Boltzmann kinetics at the particle level,

i.e., coupling of the direct simulation Monte Carlo (DSMC) algorithm [23] for close-range

collisions and the grid-weighting method for the long-range repulsions [24], contains the

essential physical ingredients of the Vlasov-Boltzmann equations, and it permits the study

of much bigger systems than those used in MD calculations.

In the present work, we modify the model of Ref. [19] to include the presence of a

preferred surface. One of the components of the binary mixture (say, A) interacts with the

surface located at z = 0 through an attractive potential W (z), which decays as z−3 at large

distances, i.e., W (z) = −W0 if z ≤ r0 and −W0(r0/z)3 otherwise, where W0 > 0. This

interaction potential corresponds to the case of non-retarded van der Waals interactions

in d = 3 [25]. The wall is diffusive [26], i.e., particles “hitting” the wall are absorbed

and re-emitted isotropically with a velocity drawn from a Maxwellian distribution with the

temperature of the wall, TW . The other wall along the z direction is purely reflective (no

preferred attraction), which allows us to run the simulations for longer times than if the set-

up was symmetric. We performed simulations with equal fractions of the components at fixed

temperature, T/Tc = 0.6, TW = T , where Tc is the bulk mean-field critical temperature of

the system, using the velocity-rescaling technique introduced by Berendsen et al. [27]. Below
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Tc the bulk fluid segregates into an A rich and a B rich components, denoted by 1 and 2

respectively. The parameter varied was the strength of the wall-particle interaction W0.

As discussed in subsection 2.2, the wall-wetting morphology, i.e., completely wet (CW)

versus partially wet (PW), is determined by the ratio σ/(γ2 − γ1), where σ is the surface

tension between the two fluid phases 1 and 2; and γ1, γ2 are the corresponding wall-fluid

surface tensions. Taking into account that A and B are partially miscible the surface tension

parameters can be estimated as follows. Consider the A-rich phase (1) with average total

particle density n0 and average individual densities n0
1A and n0

1B , n0 = n0
1A + n0

1B. The

wall-fluid surface energy is then

γ1 =
∫ ∞

0

dzn1A(z)W (z) (2)

If we neglect the inter-particle spatial correlations, which is appropriate in our model if

the long-range repulsion between the two components is sufficiently weak, we can write

n1A(z) = n0
1A exp[−βW (z)]. With this assumption and using the fact that the phases are

symmetric, we obtain the expression

γ2 − γ1 = kBTn0φ0r0H(βW0), (3)

where ±φ0 is the average order parameter in the two phases, φ0 = (n0
1A − n0

1B)/n0, and

the function H(x) depends on the wall-interaction potential. For our choice of wall-particle

interaction we have

H(x) = x[exp(x) + (1/2)
∫

1

0

dy exp(xy
3

2 )]

The surface tension σ between the two phases 1 and 2 is related to the profile of the

planar interface separating the equilibrium phases [28]. For our system this can be written

as

σ = m
∫

dz{(d[nφ]/dz)2 − (dn/dz)2} (4)

[28,29], where n(z)φ(z) = nA(z)−nB(z), n(z) = nA(z)+nB(z), and m = (1/12)
∫

drV (r)r2,

with V (r) the long-range repulsive interaction between the two species. (NB. Here z stands
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for the distance from the center of a planar interface separating the two bulk phases.)

As remarked in [19] and is well-known for these systems [28], φ(z) is well represented as

φ0 tanh(z/2ξ), where ξ is a correlation length that characterizes the interface thickness.

Furthermore, the total density profile n(z) is well characterized as n0[1−δsech(z/2ξ)], where

φ0 and n0 are the values of the order parameter and density far from the interface. With

these considerations, the surface tension between phases 1 and 2 can be computed as:

σ =
kBTcn0G(φ0, δ)

4γ2ξ
. (5)

Here γ−1 is the range of the inter-species potential V (r) = αγ3U(γr), where, as in [19],

we use U(x) = π− 3

2 exp(−x2) (note that kBTc = n0α/2 [19]). The function G(φ0, δ) has a

simple algebraic form,

G(φ0, δ) = (2/3)φ2

0 − (1/3)δ2 + (7/15)δ2φ2

0 − (π/4)δφ2

0

Therefore, we obtain the desired ratio for Young’s condition as

σ

γ2 − γ1

=
Tc

T

G(φ0, δ)

φ0

1

4γ2ξr0H(βW0)
. (6)

The physical quantities ξ, δ and φ0 have been obtained in simulations of the interface profile

at T/Tc = 0.6 [19] as ξ ≃ 1.5γ−1, φ0 ≃ 0.8, δ ≃ 0.2, and we set r0 = γ−1. Recall that

we vary the surface potential strength W0, and keep other parameters fixed as specified

above. We then estimate Young’s condition as corresponding to βW Y
0 ≃ 0.071. We have

performed simulations with W0/W
Y
0 ranging from 0.67 to about 5. The size of the system

was 60 × 60 × 120 in units of the potential range γ−1, and the number of particles used

was approximately N = 2.5 × 106. For each value of W0 we averaged the results of 12-

15 independent runs, wherever statistical averaging was required. In the figures presented

below the unit of length is γ−1 and the unit of time is the mean-free time between collisions

τ = λ/c, λ = (2
1

2 πnd2)−1, c = (2kBT/m)
1

2 , where n is the overall particle density, d is the

hard sphere diameter and T is the temperature.
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IV. NUMERICAL RESULTS

As discussed in the previous section, W0/W
Y
0 < 1 and W0/W

Y
0 > 1 should correspond

to the PW and CW cases, respectively. In our subsequent discussion, we will refer to

W0/W
Y
0 < 1 as the weak-field case, and W0/W

Y
0 > 1 as the strong-field case. Of course, we

should stress that there are additional entropic effects, which have not been accounted for

in our calculation. In general, this would raise the critical surface field for transition from

PW to CW morphologies.

Fig. 1 shows 3-dimensional snapshots of the evolution for W0/W
Y
0 = 0.67 at times

t = 60, 120 and 180. The wall is located at z = 0 (extreme right) and preferentially attracts

A, though it is not completely wetted by A. The enrichment layer (in A) at the surface

is followed by a depletion layer in A; and this layered structure deforms continuously into

the bulk, as has been seen in various earlier studies for both the diffusive [14], [4] and

hydrodynamic [17] cases. Fig. 2 shows laterally-averaged profiles φav(z, t) vs. z (depth from

the surface) for the evolution depicted in Fig. 1 at times t = 50, 100, 200 and 275. These

profiles are obtained by averaging the order parameter profiles in the direction parallel

to the surface – analogous to the corresponding experimental situation [3]. There is a

systematic profile at the surface, which decays to zero (due to isotropic phase separation) in

the bulk. The systematic surface profile propagates into the bulk with the passage of time.

Furthermore, the degree of enrichment diminishes as isotropic phase separation in the bulk

destroys the layered structure at the surface.

To characterize the morphology of the surface layer, Fig. 3 plots the first and second

zeros of the laterally-averaged profiles as a function of time. After an initial transient regime,

the position of the first and second zeros grow approximately linearly in time. The linear

growth of the first zero results from hydrodynamic draining of the preferred material to the

surface through bulk tubes which make contact with the surface layer. This is in accordance

with the observation of Tanaka and Araki [17], and the mechanism for this was discussed

in subsection 2.2. Additionally, it is reasonable to expect that the overall composition of
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the first and second layers should be comparable with the average composition. Thus, we

expect the second zero, R2(t), to exhibit the same scaling behavior as the first zero, R1(t).

Next we consider the evolution for the (very) strong-field case, where the surface is com-

pletely wetted by the preferred component. Fig. 4 shows 3-dimensional evolution pictures

for the case W0/W
Y
0 = 4 at t = 60, 120, 180. Notice the perfectly layered structure at the

surface. Figs. 1 and 4 should be compared with analogous pictures for the diffusive problem

[4]. Fig. 5 shows the corresponding laterally-averaged profiles at t = 50, 100, 200 and 275.

The broad features are the same as in Fig. 2, but the level of enrichment (depletion) of A

in the surface layer (next-to-surface layer) is much higher. This layered structure evolves

more slowly in time because the bulk domains have not established contact with the sur-

face layer on the time-scales of our simulation. Thus, growth of the wetting layer occurs

only through diffusive transport of A from the bulk through the depletion layer in A. There

are two regimes for diffusive growth [13]. In the first regime, the attractive force due to

the surface potential gives a potential-dependent growth law. In the asymptotic regime,

the chemical potential gradient between the domains in the bulk and the flat wetting layer

gives rise to an asymptotic growth law R1(t) ∼ t1/3, provided that the preferred component

is not the majority component. The crossover time between the first and second regimes

depends on the strength and range of the surface potential [13]. In the present case, we

have a long-ranged surface potential (V (z) ∼ z−3). The corresponding exponent for the

potential-dependent growth regime is φ = 0.2 (in general, φ = 1

n+2
for V (z) ∼ z−n [13]);

and the asymptotic exponent for diffusive growth is φ = 1/3.

The growth of the location of the first and second zeros of the laterally-averaged profile

for this case is shown as a function of t1/3 in Fig. 6. This plot is consistent with growth

driven by the chemical potential gradient between curved domains in the bulk and the

flat wetting layer. As we have remarked earlier, the strong layering inhibits the operation

of draining modes to the surface layer, which would give rise to the expected asymptotic

behavior R1(t) ∼ t. We also show in Fig. 7 the growth of the first zero of the laterally-

averaged profiles for all cases that we studied. The sharpness of the transition between the
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growth in the weak and strong field cases is remarkable and is in very good agreement with

our analysis of the partial and complete wetting morphologies.

V. DISCUSSION

Our mesoscopic-level modeling is in terms of coupled Vlasov-Boltzmann equations for

binary hard-sphere mixtures with additional long range interactions. The major advantage of

our modeling is that it enables the study of much larger systems than those accessible in MD

simulations. At the same time, we are still able to identify scales and parameters in terms

of microscopic quantities – in contrast to modeling via coarse-grained partial differential

equations.

The present work has focused on the morphology and temporal evolution of surface-

directed spinodal decomposition waves in critical binary fluids. We have considered param-

eter values where the surface is either partially wet or completely wet in equilibrium. It

is not our argument that the asymptotic behavior of these two cases is different. Rather,

we would like to stress the appearance of long-lived transient regimes which are critically

dependent on the morphology. These should be of relevance in the interpretation of experi-

ments. A confusing range of exponents have been reported in various studies and we believe

that the present work helps systematize these exponents.

(a) Let us first focus on the diffusive problem. These are relevant for binary fluids at

early times. Furthermore, if the composition of the binary fluid is such that the domain

morphology is not continuous, domain growth again proceeds through diffusive processes

[1]. For cases where the preferred component is the minority component, the wetting layer

exhibits a potential-dependent growth law, R1(t) ∼ t
1

n+2 for V (z) ∼ z−n [13], which crosses

over to a universal growth law, R1(t) ∼ t1/3. The crossover time depends on the surface field

strength and the wetting-layer morphology. For cases where the preferred component is the

majority component, a potential-dependent growth law applies for all time [13].

(b) Let us next consider the hydrodynamic case. For strongly off-critical compositions,
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hydrodynamic growth modes are inactive because of the discontinuous domain morphology.

As we have stated earlier, the results quoted in (a) apply for this case. For bicontinuous bulk

morphologies, wetting-layer growth can be characterized as follows. There is an early-time

growth (“fast mode”, with Ls(t) ∼ t3/2) associated with the formation of a coating layer

[7,9]. Subsequently, we expect the wetting layer to exhibit the diffusive behavior outlined in

(a) above. The asymptotic regime (R1(t) ∼ t) is accessed when the bulk establishes contact

with the wetting layer, enabling the activation of hydrodynamic draining modes. Again, the

crossover to the asymptotic behavior is dependent on the surface field strength and surface

morphology, and can be substantially delayed for strongly-layered surface structures.
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FIGURES

FIG. 1. Snapshots of the evolution after a critical quench for a weak-field case W0/W
Y
0 = 0.67.

The equilibrium surface morphology is partially wet. The times corresponding to the pictures are

(from top to bottom) t = 60, 120, 180.

18



0 25 50 75
−0.6

−0.3

0

0.3

0.6

z

ϕav(z,t)

FIG. 2. Laterally-averaged order parameter profiles, φav(z, t), as a function of z, the distance

from the surface. Parameter values are the same as those for the evolution depicted in Fig. 1. The

evolution times are t = 50 (dot-dashed), 100 (dotted), 200 (dashed) and 275 (solid line).
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FIG. 3. Time-dependence of first zero R1(t) (circles); and second zero R2(t) (triangles), of the

laterally-averaged profiles shown in Fig. 2.
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FIG. 4. Analogous to Fig. 1, but for a (very) strong-field case W0/W
Y
0 = 4, where the surface

is completely wetted by the preferred component in equilibrium.
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FIG. 5. Analogous to Fig. 2, but for the evolution depicted in Fig. 4 for the strong-field case.

The profiles are shown at times t = 50 (dot-dashed), 100 (dotted), 200 (dashed) and 275 (solid

line).
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FIG. 6. Plot of first zero R1(t) vs. t1/3 (circles); and second zero R2(t) vs. t1/3 (triangles), of

the laterally-averaged profiles shown in Fig. 5.
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FIG. 7. Time evolution of the first zero, R1, of the laterally-averaged profile for all cases studied:

from top, W0/W
Y
0 = 0.67, 1.33, 2.67, 4.0 and 5.33.
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