
c© 2014 Kyungmin Bae

REWRITING-BASED MODEL CHECKING METHODS

BY

KYUNGMIN BAE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair and Director of Research
Professor Gul Agha
Professor Edmund M. Clarke, Carnegie Mellon University
Associate Professor Grigore Roşu

ABSTRACT

Model checking is an automatic technique for verifying concurrent systems
[60]. The properties of the system to be verified are typically expressed
as temporal logic formulas, while the system itself is formally specified as
a certain system specification language, such as computational logics and
conventional programming languages. Rewriting logic is a highly expressive
computational logic for effectively defining a formal executable semantics of
a wide range of system specification languages. This dissertation presents
new rewriting-based model checking methods and tools to effectively verify
concurrent systems by means of their rewriting-based formal semantics.
Specifically, this work develops: (i) efficient model checking algorithms

and a tool for a suitable property specification language, namely, linear
temporal logic of rewriting (LTLR) formulas under parameterized fairness;
(ii) various infinite-state model checking techniques for LTLR properties,
such as equational abstraction, folding abstraction, predicate abstraction,
and narrowing-based symbolic model checking; and (iii) the Multirate PALS
methodology for making it possible to model check virtually synchronous
cyber-physical systems by reducing their system complexity.
To demonstrate rewriting-based model checking, we have developed fully

integrated modeling and model checking tools for two widely-used embedded
system modeling languages, AADL and Ptolemy II. This approach provides
a model-engineering process that combines the advantages of an existing
modeling language with automatic rewriting-based model checking.

ii

To my parents and my wife

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor José Meseguer
for his sincere support, exemplary guidance, and friendship. His depth of
knowledge and creativity has greatly inspired me to become a researcher,
and made this work possible. I would also like to extend my appreciation
to my committee members: Gul Agha, Edmund Clarke, and Grigore Roşu,
for their kindness, valuable comments, and insightful feedbacks.

I would like to thank my research collaborators during my PhD study.
Special thanks to Peter Csaba Ölveczky for being my coauthor on many
papers, for inviting me to Oslo for a month, and always being a good friend.
I am grateful to Santiago Escobar for inviting me to Valencia for two months,
and collaborating with me on narrowing-based methods. I am thankful to
Abdullah Al-Nayeem and Lui Sha for the fruitful discussions on PALS and
AADL. I am grateful to Carolyn Talcott for arranging my visits to SRI, and
to Steven Eker for helping me understand the Maude implementation.
I am grateful to the members of my research group for their friendship

and many useful discussions: Camilo Rocha, Mu Sun, Mike Katelman, Ralf
Sasse, Musab Al-Turki, Stephen Skeirik, Si Liu, Andrew Cholewa, and Fan
Yang. I also thank my friends and fellow students for great memories.
Most of all, I thank my wife Sun Hee Lee for her love, friendship, support,

and sharing our lives. I also thank my parents, Geum Ju Bae and Seung Hee
Kang, my brother, Kyung Woon Bae, and my parents-in-law, Sang Cheol
Lee and Soon E Shin, for their support and consistent encouragement.
The work in this dissertation was supported in part by NSF CCF grant

09-05584, NSF CNS grants 07-16638, 08-34709, 09-04749, and 13-19109,
AFOSR grant FA8750-11-2-0084, Boeing Corporation grant C8088-557395,
Lockheed Martin Corporation, and KFAS scholarship.

iv

TABLE OF CONTENTS

Chapter 1 Introduction . 1
1.1 Property Specification Logics 4
1.2 Approximation Methods . 6
1.3 Applications to Modeling Languages 8
1.4 Summary of Contributions . 9

Part I System and Property Specification Logics 12

Chapter 2 Preliminaries: Rewriting-based System Specifications . . . 13
2.1 Membership Equational Logic 13
2.2 Rewriting Logic . 18
2.3 Maude . 24

Chapter 3 Linear Temporal Logic of Rewriting 31
3.1 Introduction . 31
3.2 Syntax and Semantics . 35
3.3 Automata Theoretic LTLR Model Checking 41
3.4 The Maude LTLR Model Checker 46
3.5 Case Study: the Bounded Retransmission Protocol 51
3.6 Concluding Remarks . 54

Chapter 4 Model Checking Under Localized Fairness 55
4.1 Introduction . 55
4.2 Localized Fairness in Quantified LTLR 59
4.3 Parameterized Fair Model Checking Algorithm 66
4.4 The Maude Fair LTLR Model Checker 75
4.5 Case Study: the Evolving Dining Philosophers 79
4.6 Concluding Remarks . 82

v

Part II Approximation Methods 83

Chapter 5 Infinite-State Model Checking 84
5.1 Introduction . 84
5.2 Infinite-State System Examples 88
5.3 Equational Abstraction . 93
5.4 Folding Abstraction . 101
5.5 Narrowing-based Logical Abstraction 110
5.6 Predicate Abstraction . 124
5.7 Concluding Remarks . 136

Chapter 6 Multirate PALS . 137
6.1 Introduction . 137
6.2 Multirate Synchronous Models 141
6.3 Multirate PALS Transformation 149
6.4 Multirate PALS Methodology 161
6.5 Case Study: an Airplane Turning Control System 174
6.6 Concluding Remarks . 190

Part III Applications to Modeling Languages191

Chapter 7 Multirate Synchronous AADL 192
7.1 Introduction . 192
7.2 Multirate Synchronous AADL 195
7.3 Real-Time Maude Semantics 205
7.4 The MR-SynchAADL Tool 210
7.5 Case Studies . 212
7.6 Concluding Remarks . 217

Chapter 8 Ptolemy II Discrete-Event Models 218
8.1 Introduction . 218
8.2 Ptolemy II and its DE Model of Computation 221
8.3 The Semantics of Ptolemy II DE Models 226
8.4 Formal Verification in Ptolemy II 244
8.5 Case Studies . 246
8.6 Concluding Remarks . 251

Chapter 9 Conclusions and Future Work 252
9.1 Summary . 252
9.2 Future Work . 254

Part IV Appendix .255

Appendix A More LTLR Case Studies and Implementation 256
A.1 More Case Studies . 256
A.2 The Model Checker Implementation 273

vi

Appendix B More Details on Multirate PALS 275
B.1 Formalizing Specification of Asynchronous Models 275
B.2 More Details on the Proof . 298
B.3 More Details on the Real-Time Maude Framework 303
B.4 The Simplified Asynchronous Model 306

Appendix C More Details on Multirate Synchronous AADL 312
C.1 More Details on the Real-Time Maude Semantics 312
C.2 The Active Standby System Requirements 318
C.3 The Three–Node Active Standby System 320

Appendix D More Details on Ptolemy II DE Models 326
D.1 More Ptolemy II Actors . 326
D.2 Real-Time Maude Code Generation 327
D.3 More Details on the Ptolemy II DE Semantics 331

References . 353

vii

CHAPTER 1

INTRODUCTION

Computer systems are everywhere, from large-scale infrastructure such as
air traffic control systems, to small devices such as smart phones or watches.
They have become more integrated with our daily life; for example, modern
automobiles often use electronic systems to control braking, speed, airbags,
etc. As a consequence, small design errors or software bugs can result in a
huge damage or a financial loss, such as rocket explosions or car accidents.
It is clearly very important and highly beneficial to verify the safety and
correctness of computer systems. Therefore, numerous techniques have been
developed in the last few decades, including simulation and testing, static
analysis, deductive verification, and model checking.
Model checking [60] refers to a body of automatic techniques to verify a

concurrent system by exhaustively checking any possible behaviors of the
system. The system requirements—such as safety, fault tolerance, liveness,
etc.—are specified as temporal logic formulas, and model checking algorithms
verify them by trying to find a counterexample that violates one of the
system requirements. Unlike simulation and testing, if no counterexamples
are found by model checking, then it is guaranteed that the system always
satisfies the requirements. This is one of the reasons why model checking is
widely used in industry, particularly for safety-critical systems.
To verify a concurrent system by model checking, the first step, called

system specifications, is to model the system with a modeling language or
formalism. Generally, two kinds of system specification languages are used
by model checking tools: (i) conventional languages, such as programming
languages (e.g., C, Java, etc.), or software and hardware modeling languages
(e.g., Promela, Simulink, Verilog, etc.); and (ii) mathematical formalisms,
such as process calculi, Petri nets, Boolean programs, automata, etc.

1

Both types of specification languages have complementary strengths and
weaknesses. On the one hand, conventional languages are used directly by
modeling engineers to develop the software and hardware products, and
have powerful design tools (e.g., debugging and graphical modeling tools).
But they sometimes lack a clear mathematical semantics. This implies that
model checking may not be able to fully guarantee the correctness of the
system, though it may be helpful for thoroughly testing the system. On
the other hand, mathematical formalisms have a precise formal semantics.
Since mathematical formalisms—particularly those that can be described
as computational logics—are simple, they allow the use of efficient model
checking algorithms. However, they can be comparably harder to use, and
may not be able to directly express certain complex system features, such
as unbounded data structures or distributed objects.1 This categorization
of system specification languages is not only relevant for model checking
techniques, but also applies to other formal verification methods.
To overcome such a gap between modeling languages and mathematical

formalisms, one promising approach is:

1. using a very expressive, yet simple, mathematical formalism in which
other modeling languages can be faithfully expressed;

2. defining a formal mathematical semantics of a conventional modeling
language in the formalism; and

3. verifying a system specified in such a conventional modeling language
by means of the formal semantics of the language.

Rewriting logic [132] can be considered as one of such universal and highly
expressive specification languages, since different models of concurrency
(e.g., actors, process calculi, Petri nets, timed and hybrid automata, etc.),
programming languages (e.g., C, Java, etc.), and software and hardware
modeling languages (e.g., Verilog, AADL, etc.) can be naturally expressed
in rewriting logic [137, 140, 141]. There are specification and verification
tools for rewriting logic, such as Maude [61], CafeOBJ [71] and ELAN [39].
Rewriting logic specifications are executable, so that they can be thoroughly
tested with executable system specifications.2 Figure 1.1 briefly illustrates
rewriting-based formal verification approaches.

1E.g., finite state machines or Boolean programs cannot directly express unbounded
data structures, such as (unbounded) integers, lists, and queues.

2E.g., the executable rewriting logic semantics of the C language by Ellison and Roşu
[82] has been thoroughly tested using the GCC torture suite (GCC itself passes 99.0% of
the test cases, and the Ellison-Roşu semantics passes 99.2% of them).

2

Model Rewriting Logic Formal Verification

System specification Rewrite theory Simulation
M =⇒ RM Model checking

=⇒ Theorem proving
Property specification Logic formula · · ·

spec =⇒ ϕspec

Figure 1.1: Rewriting-based Formal Verification

Rewriting-based formal verification approaches have many conceptual and
practical advantages. First, rewriting logic is executable and has a clear
mathematical semantics. Second, defining a formal semantics in rewriting
logic is definitely much easier than developing new verification tools for the
given modeling language.3 Third, rewriting logic supports various formal
analysis methods, including model checking and inductive theorem proving.
In order words, giving a formal semantics has the effect of developing both
model checking and theorem proving tools for the language at the same time.
Because of the high performance of Maude’s implementation, the tools thus
obtained are actually quite useful and have acceptable performance.4

The major goal of this dissertation is to substantially advance the body of
rewriting-based model checking methods. This can combine the advantages
of the three different approaches: (i) model checking is automatic and allows
using rich property specification logics, (ii) rewriting logic is simple, formal,
expressive, and executable, and (iii) modeling languages come with powerful
design tools and well-established model-engineering methods. However, as
always, this combination also poses many challenges, including:

1. What are suitable property specification languages for rewriting logic
specifications? And do they have efficient model checking algorithms?

2. How can the state space explosion problem be dealt with? How about
infinite-state concurrent systems?

3. Is it really possible to develop fully integrated modeling and verification
environments for modeling languages as proposed?

3In particular, different language definitional styles, such as denotational semantics and
structural operational semantics, and different computation models, such as functional and
object-oriented models, can be directly expressed in rewriting logic [140].

4This has been demonstrated for semantics-based model checkers for languages such
as Java [88], C [82], and Verilog [131], and is demonstrated in this thesis for AADL and
Ptolemy II, two widely used modeling languages for embedded systems.

3

The rest of this chapter reviews previous efforts to tackle these research
problems, and shows a high-level overview of our new, both theoretical and
practical, techniques presented in this thesis.

1.1 Property Specification Logics

Generally, formal specification involves two specification languages: one for
system specifications, and one for property specifications. The concept
emerging from these considerations is a tandem of logics [136]. That is,
we use a pair of logics (LS ,LP) together to specify the system in LS and its
requirements in LP , and then verify the satisfaction relation S |= ϕ between
a system specification S and a property specification ϕ using verification
tools. As discussed in [136], not all tandems are well-matched: that is, a
mismatch between LS and LP can occur because of lack of expressiveness in
either of the logics, so that systems of interest or relevant properties cannot
be expressed or need to be encoded in complicated ways.
In particular, the expressive power of rewriting logic is not fully exploited

when matched with temporal logics that are either purely state-based (e.g.,
LTL, CTL and CTL∗ [60]) or purely event-based (e.g., Hennessy-Milner logic
[103] and A-CTL∗ [145]). The point is that rewriting logic can naturally
specify both state-based and event-based aspects of the system, whereas
one of these aspects is missing in those temporal logics. That is, the full
power of rewriting logic can be best exploited by temporal logics that can
deal with both state-based and event-based properties.

The temporal logic of rewriting (TLR) [136] was therefore proposed as an
expressive temporal logic—where both CTL∗ and A-CTL∗ are sublogics of
TLR—to give the well-matched tandem between rewriting logic and TLR.
The linear temporal logic of rewriting (LTLR) is a sublogic of TLR extending
linear temporal logic (LTL) in a similar way. It was shown in [136] that the
LTLR model checking problem of a rewriting logic specification R can be
reduced to the equivalent LTL model checking problem of the transformed
rewriting logic specification T (R). Since the Maude system already has
an LTL model checker [61, 81] implementing efficient LTL model checking
algorithms, the first LTLR model checker [20] was implemented using the
model transformation T . However, because such a transformation encodes
event information as part of the state [136], the state space of T (R) could
be much bigger than that of the original specification R. An efficient LTLR
model checking algorithm is needed to resolve this problem.

4

However, such an algorithm would still leave unanswered the important
question of how to efficiently deal with fairness in general, and especially
with parameterized fairness. Fairness is a very important property for model
checking, because many important system requirements are not satisfied
without appropriate fairness assumptions. For example, the effective data
transmission by a fault-tolerant network protocol usually can only be proved
under the assumption that the receiving node will receive messages infinitely
often if the node is infinitely often enabled to receive them.
In practice, often the necessary fairness assumptions are parametric over

relevant system entities [134], such as processes, actors, objects, messages,
etc. Since fairness conditions can be expressed as temporal logic formulas
[32], parameterized fairness conditions correspond to universally quantified
temporal logic formulas. For example, if a fairness condition of a single
process p is expressed as the formula fair(p), then a parameterized version
of the fairness condition is expressed as the formula

(∀x) fair(x).

In rewriting logic specifications, parameterized fairness conditions can be
succinctly specified in the notion of localized fairness [134].
Although parameterized fairness is very common for many concurrent

systems, to the best of our knowledge no model checking algorithms were
proposed to properly handle parameterized fairness before the work in this
thesis. In existing model checking techniques and tools, a total number of
fairness instances are either explicitly given (e.g., [32, 60, 108]), or implicitly
found by statically analyzing the model (e.g, [158]). However, this ad-hoc
method is not appropriate for general rewriting-based model checking that
does not build in any specific model of computation. In this general setting,
parameters are not identifiable at the language level, since they can be any
kinds of system entities. Further, it may be impossible to determine a prior
the number of such fairness instances without exploring the entire state
space (e.g., consider a system with dynamic process creation).
In short, the temporal logic of rewriting (TLR) under localized fairness

was proposed as a suitable property specification language well-matched
with rewriting logic [134, 135]. However, efficient model checking algorithms
and tools were not available for the property specification language; only a
model checker for LTL formulas was available in Maude. We present efficient
model checking algorithms and a tool for LTLR formulas in Chapter 3, and
for parameterized fairness in Chapter 4.

5

1.2 Approximation Methods

One of the biggest challenges in model checking is how to deal with the state
space explosion problem [60]. The number of states generated by model
checking is in general exponential in the size of the system specification,
and therefore it is often unfeasible to verify large system specifications by
model checking. In order to cope with the state space explosion problem,
many techniques have been developed, including abstractions, symbolic and
bounded model checking, partial order reduction, and so on [32, 59, 60].

For rewriting-based model checking, the state space explosion problem is
also one of the most difficult problems. Furthermore, the system specified
in rewriting logic can be infinite-state, because rewriting logic specifications
are parametric and any algebraic data types can be easily represented in
rewriting logic.5 To verify such infinite-state systems specified in rewriting
logic by model checking, two different methods were proposed: equational
abstraction [139] and narrowing-based symbolic model checking [86].6

Although many infinite-state systems can be successfully verified by using
equational abstraction and narrowing-based symbolic model checking, four
important problems remained unsolved:

1. Equational abstractions may produce spurious counterexamples that
violate the given temporal logic formula in the abstract system but
not in the concrete system.

2. An important class of infinite-state systems, namely, parameterized
systems for an unbounded number of processes, could in general not
be verified by using either of these methods.

3. Both narrowing-based model checking and equational abstraction do
not guarantee that the resulting abstract systems are finite-state.

4. Both narrowing-based model checking and equational abstraction were
developed only for LTL properties, and thus needed to be extended
for linear temporal logic of rewriting (LTLR) properties.

In Chapter 5, we partly address all of these limitations by further developing
each of these approaches, by combining both methods, and by presenting a
new rewriting-based abstraction method.

5That is, both finite-state systems (e.g., sequencial circuits, Boolean programs, etc.)
and infinite-state systems (e.g., pushdown systems, parameterized protocols, etc.) are
naturally specified in rewriting logic.

6Other state-space reduction methods are also available for rewriting logic, including
invisible transitions [89], partial order reduction [90], symmetric reduction [119], etc.

6

Another important class of concurrent systems are virtually synchronous
distributed cyber-physical systems. In many embedded computer systems,
such as cars and airplanes, their implementation must be asynchronous due
to physical and fault-tolerance constraints, but their logical design requires
that the system components should act together in a virtually synchronous
way. Rewriting logic is also a suitable formalism for specifying this kind of
objected-oriented distributed real-time systems [137, 140]. However, their
model checking verification typically becomes unfeasible due to the huge
state space explosion caused by the system’s concurrency.

The PALS (physically asynchronous, logically synchronous) pattern has
therefore been developed to reduce the system complexity of a single-rate
virtually synchronous cyber-physical systems [138, 143]. Roughly speaking,
assuming certain performance bounds Γ on the underlying infrastructure,
the PALS pattern defines a model transformation

E 7→ A(E ,Γ)

that maps a synchronous design E to a correct-by construction distributed
implementation A(E ,Γ) that satisfies the same temporal logic properties as
E [138]. This means that the distributed real-time system A(E ,Γ) can be
verified by model checking the much simpler synchronous system E .
To apply this PALS methodology for designing and verifying a general

class of virtually synchronous distributed cyber-physical systems, there were
two major remaining challenges:

1. PALS assumes a single logical period during which all components
must transition to their next states. But for physical reasons, different
components may operate at different rates.

2. Cyber-physical systems often control physical entities with continuous
dynamics, typically governed by differential equations, but PALS only
considers discrete real-time systems.

In Chapter 6 these problems are addressed in two ways. First, we define the
Multirate PALS pattern that generalizes PALS to a wider class of multirate
systems. Second, we then explain how the continuous environments of such
cyber-physical systems can be modeled in the Multirate PALS framework,
and also present a general rewriting-based framework to formally specify
and verify multirate cyber-physical systems. The Multirate Synchronous
AADL modeling language is also defined in Chapter 7 for the same purpose
within an industrial modeling standard AADL.

7

1.3 Applications to Modeling Languages

Following the general research direction of the rewriting logic semantics
project [140, 141], the formal semantics of many programming and modeling
languages have been defined in rewriting logic [137]. Rewriting-based model
checking techniques, including those presented in this thesis, can therefore
be applied to all of those language. To demonstrate fully integrated modeling
and verification engineering methods, we consider two modeling languages
for real-time embedded systems, Ptolemy II and AADL.
Ptolemy II [79] is a well-established actor-based modeling and simulation

tool for embedded systems used in industry, which provides powerful yet
intuitive graphical modeling language. Ptolemy II designs are hierarchical
models that combine different models of computations, such as finite state
machines, data flow, and discrete-event models. In particular, discrete-event
(DE) models are widely used for system simulation and embedded software
[96, 169]. Although the operational semantics of DE models is defined in
[125], Ptolemy II DE models lacked formal verification capabilities.
AADL [91] is an industrial modeling standard for embedded systems that

is widely used in avionics, automotive, etc. Because AADL lacks formal
semantics, there are a number of approaches to define a formal semantics of
AADL; specifically, [147] defines a real-time semantics for a behavior subset
of AADL in rewriting logic. However, the state space explosion problem
can easily make model checking of AADL models unfeasible, since AADL
models consist of distributed components that communicate asynchronously
with each other. Multirate Synchronous AADL, defined in Chapter 7, is a
synchronous subset of AADL to apply the Multirate PALS methodology for
designing and verifying virtually synchronous cyber-physical systems.
In order to develop model-engineering environments that are integrated

into the established modeling processes for Ptolemy II DE and Multirate
Synchronous AADL models, we follow the three steps in Chapters 7 and 8:

1. defining a formal (real-time) semantics for a targeted subset of each
language in rewriting logic;

2. defining a property specification language for each language, using the
syntax of the modeling language; and

3. building a tool as a “plugin” of the existing modeling tool, which
automatically synthesizes the verification model from a design model
and performs model checking of the model within the modeling tool.

8

1.4 Summary of Contributions

The work presented in this dissertation can be classified in three areas,
according to the corresponding three research questions discussed above for
rewriting-based model checking methods.

Algorithms and Tools. We present the theoretical foundations for LTLR
model checking under parameterized fairness. The LTLR model checking
problem is characterized as an automata-based approach, which generalizes
the SE-LTL model checking technique [49] to LTLR, where SE-LTL can be
considered as a sublogic of LTLR [136]. The satisfaction of parameterized
fairness conditions can be determined by the notion of parameter abstraction,
which can be used to deal with an unbounded, dynamically changing, but
finite number of generic system entities for fairness.
Based on the theoretical foundations, we present an on-the-fly LTLR

model checking algorithm under parameterized fairness conditions. This
algorithm is based on the existing on-the-fly algorithms for efficiently model
checking a fixed number of fairness conditions [76, 122], but is significantly
adapted to directly deal with “dynamic” parameters. Experimental results
show that this algorithm is comparable to the algorithms used in other
explicit-state model checkers (for a fixed number of fairness conditions).
We have developed the Maude Fair LTLR model checker that implements

the on-the-fly LTLR model checking algorithm under parameterized fairness
at the C++ level as an extension of the Maude system. In addition, our tool
provides a convenient and succinct way to specify spatial action patterns and
parameterized fairness conditions. The effectiveness of our tool is illustrated
with several practical case studies in this dissertation.

Approximation Methods. We significantly further develop equational
abstraction and narrowing-based symbolic model checking. First, both
narrowing-based symbolic model checking and equational abstraction are
extended to LTLR. Second, to deal with spurious counterexamples, we show
that equational abstractions can be bisimilar, and folding abstractions—that
are combined with narrowing-based model checking to achieve finite-state
abstractions [86]—can be faithful in the sense that they do not generate
any spurious counterexamples for safety properties. Third, we explain how
narrowing-based symbolic model checking can be combined with equational
abstractions to further reduce infinite-state systems, which enables us to
verify parameterized systems for an unbounded number of processes.

9

We also present a new rewriting-based method to automatically generate
a predicate abstraction. Predicate abstraction is one of the most widely
used abstraction methods that can always generate finite-state abstractions;
however, automatic predicate abstraction methods were not developed for
rewriting logic before. Since constructing minimal predicate abstractions is
undecidable in general for rewriting logic, we also present sound, automatic,
rewriting-based, but incomplete method to determine transitions between
abstract states for predicate abstractions, which can be used to construct
over-approximations of predicate abstractions.
For multirate virtually synchronous cyber-physical systems, we present

the Multirate PALS pattern, that extends the PALS pattern for single-rate
systems, to drastically reduce the system complexity. Similarly, for global
period T and performance bounds Γ on the underlying infrastructure, the
Multirate PALS pattern defines a model transformation E 7→ MA(E , T,Γ)
from a multirate synchronous design E to its distributed implementation
MA(E , T,Γ). We prove that the distributed system MA(E , T,Γ) is also
correct-by-construction, and therefore both E and MA(E , T,Γ) satisfy the
same temporal logic properties.
We then show how virtually synchronous cyber-physical systems can be

specified using Multirate PALS, where the continuous dynamics of their
physical environments are governed by differential equations. We define
a modeling framework for specifying Multirate PALS designs in rewriting
logic, and illustrate our methodology with a multirate cyber-physical system,
consisting of an airplane maneuvered by a pilot who turns the airplane to
a specified angle through a distributed control system. Similarly, we define
the Multirate Synchronous AADL language as a sublanguage of AADL.

Semantic Integration of Model Checking. We have given a formal
rewriting-based semantics to the Multirate Synchronous AADL language,
and have developed the MR-SynchAADL tool as a plugin of the OSATE
AADL modeling environment. The MR-SynchAADL tool is a simulation
and model checking tool for Multirate Synchronous AADL based on the
rewriting-based semantics. The tool automatically synthesizes a verification
model from a Multirate Synchronous AADL model, provides a requirements
specification language to easily specify the temporal logic requirements of the
design model, and performs model checking of the design within the OSATE
modeling environment. Therefore, this gives a model-engineering process
that combines the power of AADL modeling with OSATE, the complexity
reduction of Multirate PALS, and rewriting-based model checking.

10

We have also given a formal semantics to Ptolemy II DE models and
have integrated their model checking into the Ptolemy II system, using
Ptolemy II’s code generation infrastructure. We define a rewriting-based
semantics for a significant subset of Ptolemy II DE models, including finite
state machine (FSM) actors, composite actors, and modal model actors.
This is nontrivial, since Ptolemy II models use unbounded data types, its
operational semantics is based on fixed-point computations, and Ptolemy II
supports a generic expression language. We define a property specification
language to easily specify the temporal logic requirements. The entire model
checking processes can be done within Ptolemy II, and therefore it provides
a model-engineering process that combines the convenience of Ptolemy II
modeling with rewriting-based model checking.

11

Part I

System and Property
Specification Logics

12

CHAPTER 2

PRELIMINARIES: REWRITING-BASED SYSTEM
SPECIFICATIONS

Rewriting logic [132] is a generic system specification formalism in which
many concurrent systems are naturally described, including actors, process
calculi, Petri nets, and the semantics of concurrent programming languages,
such as C and Java [137, 140]. In rewriting logic specifications, each state of
a system is specified as an algebraic data type axiomatized by an equational
theory, and each concurrent transition between states is axiomatized by
rewrite rules. Rewriting logic specifications are executable under reasonable
assumptions, so that we can apply model checking techniques to verify any
possible concurrent behaviors of the system.
This chapter briefly introduces rewriting logic, the underlying system

specification formalism used in this thesis. Section 2.1 explains membership
equational logic and some preliminary notions on term rewriting. Section 2.2
describes rewriting logic, and Section 2.3 illustrates Maude—a language and
tool for rewriting logic—with simple concurrent system examples.

2.1 Membership Equational Logic

Equational logic is generally a sublogic of first-order logic with equality that
has only function symbols and no other predicate symbols. Theories in
equational logic typically model algebraic structures, such as numbers, sets,
multisets, strings, trees, etc. Membership equational logic (Mel) [133] is
an expressive version of equational logic, with extra membership predicates,
that subsumes many-sorted and order-sorted equational logics. We follow
the classical notation and terminology from [11, 37] for term rewriting.

13

2.1.1 Signatures and Terms

A Mel signature is a tuple Σ = (K,σ, S) withK a set of kinds, S = {Sk}k∈K
a K-kinded family of disjoint sets of sorts, and σ = {Σw,k}(w,k)∈K∗×K a
many-kinded signature in which each Σk1...kn,k for n ≥ 0 is a set of n-ary
function symbols of the form f : k1×· · ·×kn → k with domain k1×· · ·×kn
and range k.1 A 0-ary function symbol c : nil → k is often called a constant
symbol (of kind k). The kind of a sort s is denoted by [s].

For a set X of K-kinded variables,2 TΣ(X) = {TΣ(X)k}k∈K denotes the
K-kinded set of Σ-terms, inductively defined by:

• for each variable x ∈ X of kind k: x ∈ TΣ(X)k; and

• for each function symbol f ∈ Σk1...kn,k: f(t1, . . . , tn) ∈ TΣ(X)k, if
t1 ∈ TΣ(X)k1 , t2 ∈ TΣ(X)k2 , . . . , tn ∈ TΣ(X)kn .

Similarly, TΣ = {TΣ,k}k∈K denotes the K-kinded set of ground Σ-terms
containing no variables. Throughout this thesis, we assume that TΣ,k 6= ∅
for each kind k ∈ K (i.e. there exists a ground term for each k ∈ K).

Example 2.1. The signature ΣN of the natural numbers can be composed
of two kinds K = {[Nat], [Bool]}, sets of sorts S[Nat] = {Nat,Zero,NzNat}
and S[Bool] = {Bool}, and function symbols

Σnil,[Nat] = {0}, Σ[Nat],[Nat] = {s}, Σnil,[Bool] = {true, false},

Σ[Nat][Nat],[Nat] = {+}, Σ[Nat][Nat],[Bool] = {<}.

For example, s(0) < (0 + s(0)) ∈ TΣ,[Bool] is a ground term of kind [Bool],
and x+ ((s(0) + s(y)) + s(s(0))) ∈ TΣ(X)[Nat] is a term of kind [Nat], where
x, y ∈ X are variables of kind [Nat].

Given a term t ∈ TΣ(X), vars(t) ⊆ X denotes the set of variables in t.
Positions in a term t are denoted as strings of nonzero natural numbers
that indicate argument positions of function symbols in t. A subterm t|p of
a term t at a position p is inductively defined by:

t|ε = t and f(t1, . . . , tn)|i.p = ti|p,

where ε is the empty string. The replacement in a term t of such a subterm
at position p by another term u is denoted by t[u]p.

1We assume that if f ∈ Σk1...kn,k ∩Σk′
1...k

′
n,k

′ , then (k1, . . . , kn) = (k′1, . . . , k′n) implies
k = k′, to avoid ambiguous terms of the same form but of different kinds.

2That is, X = {Xk}k∈K with disjoint sets Xk of variables.

14

A substitution θ : X → TΣ(X) is a function that maps variables to terms
of the same kind and θ(x) 6= x for only finitely many x’s. The domain of a
substitution θ is the finite set dom(θ) = {x ∈ X | θ(x) 6= x}. The restriction
of a substitution θ to Y ⊆ X is the substitution θ|Y : X → TΣ(X) such
that θ|Y (x) = θ(x) if x ∈ Y , and θ|Y (x) = x otherwise. The substitution
instance θ(t) of t is a term obtained from t by simultaneously replacing each
occurrence of variable y ∈ X in t with θ(y).

Example 2.2. Consider the Mel signature ΣN in Example 2.1. For the
term t = x+((s(0)+y)+0), the subterm t|2.1 is s(0)+y, and the replacement
t[z]2.1 is x + (z + 0). For the substitution θ = {x 7→ s(y), y 7→ (x + 0)},
θ(t) = s(y) + ((s(0) + (x+ 0)) + 0).

2.1.2 Equational Theories and Algebras

There are two kinds of atomic formulas in membership equational logic: an
equation t = t′, where t, t′ ∈ TΣ(X)k; and a membership t : s, stating that t
has sort s, where t ∈ TΣ(X)k and s ∈ Sk. A Mel theory is a pair (Σ, E) with
Σ a Mel-signature and E a finite set of Mel sentences, either a conditional
equation or a conditional membership of the respective forms:

(∀X) t = t′ if
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj , (∀X) t : s if
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj .

A subsort declaration s1 < s2 can be used to shorten the Mel sentence
(∀x) x : s2 if x : s1. Similarly, an operator declaration f : s1 × · · · × sn → s

corresponds to (∀ x1, . . . , xn) f(x1, . . . , xn) : s if x1 : s1 ∧ · · · ∧ xn : sn.

Example 2.3. The Mel theory (ΣN, EN) of the natural numbers can be
defined by the Mel signature ΣN in Example 2.1 and the set EN of the
following (abbreviated) Mel sentences:

true : Bool, false : Bool, 0 : Zero, s : Nat→ NzNat,

Zero < Nat, NzNat < Nat, (∀x) x+ 0 = x,

(∀x, y) x+ s(y) = s(x+ y), (∀x, y) x+ y = y + x,

(∀x, y, z) (x+ y) + z = x+ (y + z), (∀x) 0 < s(x) = true,

(∀x) x < 0 = false, (∀x, y) s(x) < s(y) = x < y.

Intuitively, terms in sorts are well-defined, whereas terms without sorts are
either “undefined” values, or expressions, such as 0 + s(0), that are not yet
“computed,” but that will evaluate to well-sorted terms.

15

A Σ-algebra A consists of a carrier set Ak for each kind k, a subset
As ⊆ Ak for each sort s ∈ Sk, and a function fA : Ak1 × · · · ×Akn → Ak for
each function symbol f ∈ Σk1...kn,k. For a valuation a : X → A assigning a
value in carrier set Ak to each variable x ∈ X of kind k, its homomorphic
extension ā : TΣ(X) → A is inductively defined by:

• ā(x) = a(x) for each x ∈ X , and

• ā(f(t1, . . . , tn)) = fA(ā(t1), . . . , ā(tn)) for each f ∈ Σk1...kn,k.

A Σ-algebra A is a model of (Σ, E) iff each sentence φ ∈ E is satisfied in
A for any valuation a. An equation t = t′ is satisfied on A for a valuation a,
denoted by (A, a) |= t = t′, iff ā(t) = ā(t′). Similarly, (A, a) |= t : s iff
ā(t) ∈ As. For a Mel sentence, (A, a) |= α if

∧
i∈I ui = vi ∧

∧
j∈J wj : sj ,

where α is either t = t′ or t : s, iff (A, a) |= α whenever (A, a) |= ui = vi and
(A, a) |= wj : sj for each i ∈ I and j ∈ J .

Example 2.4. A model of the Mel theory (ΣN, EN) in Example 2.3 can be
defined by the Σ-algebra A with:

• the carrier sets A[Nat] = N and A[Bool] = {⊥,>};

• the subsets ANat = A[Nat], AZero = {0}, ANzNat = A[Nat] − {0}, and
ABool = A[Bool];

• the functions 0A = 0, trueA = >, falseA = ⊥, sA(n) = n + 1,
+A(n,m) = n+N m, and <A (n,m) = if n <N m then > else ⊥ fi.

where +N and <N are the standard addition and order for N.

2.1.3 Initial and Free Algebras

Membership equational logic is sound and complete in the sense that for
any Mel sentence φ, a proof of E ` φ can be derived by the deduction rules
in [133] iff (A, a) |= φ for any model A of (Σ, E) and valuation a. A Mel
theory (Σ, E) induces a congruence3 relation =E on terms defined by the
equivalence t =E t′ ⇐⇒ E ` t = t′. Let TΣ/E,k be the set of E-equivalence
classes [t]E = {t′ ∈ TΣ,k | t =E t′} of ground terms of kind k, and let
TΣ/E(X)k be the set of E-equivalence classes TΣ/E(X)k = {[t]E | t ∈ TΣ(X)k}.

3That is, if t1 =E t′1, t2 =E t′2 . . . , tn =E t′n, then f(t1, . . . , tn) =E f(t′1, . . . , t′n).

16

A Mel theory (Σ, E) has a “standard” model up to isomorphism, namely,
the initial algebra TΣ/E , from which there exists a unique homomorphism4

to any model of (Σ, E) [133]. The initial algebra TΣ/E of (Σ, E) consists of:

• a carrier set TΣ/E,k for each kind k;

• a subset TΣ/E,s = {[t]E ∈ TΣ/E,k | E ` t : s} for each sort s ∈ Sk; and

• a function fTΣ/E,k : TΣ/E,k1
× · · · × TΣ/E,kn → TΣ/E,k for each operator

f ∈ Σk1...kn,k such that fTΣ/E,k([t1]E , . . . , [tn]E) = [f(t1, . . . , tn)]E .

Likewise, a Mel theory (Σ, E) has the free algebra TΣ/E(X), where for
any model A of (Σ, E), a valuation a : X → A can be uniquely extended to
a homomorphism ā : TΣ/E(X) → A [133], which consists of:

• a carrier set TΣ/E(X)k for each kind k;

• a subset TΣ/E(X)s = {[t]E ∈ TΣ/E(X)k | E ` (∀X) t : s} for each sort
s ∈ Sk; and

• a function fTΣ/E(X)k : TΣ/E(X)k1×· · ·×TΣ/E(X)kn → TΣ/E(X)k for each
f ∈ Σk1...kn,k such that fTΣ/E(X)k([t1]E , . . . , [tn]E) = [f(t1, . . . , tn)]E .

2.1.4 Order-Sorted Equational Logic

An order-sorted signature is a triple Σ = (S,≤, σ) with (S,≤) a poset of
sorts and σ = {Σw,s}(w,s)∈S∗×S a many-sorted signature. An order-sorted
equational theory is a pair (Σ, E) with Σ an order-sorted signature and E
a set of conditional equations of the form (∀X) t = t′ if

∧
i∈I ui = vi. As

hinted at in Section 2.1.2, an order-sorted equational theory (Σ, E) can be
transformed into an Mel theory as follows [133]:

• a kind k for each connected component in (S,≤);

• (∀x) x : s2 if x : s1 for each s1 ≤ s2 in (S,≤); and

• (∀x1, . . . , xn) f(x1, . . . , xn) : s if x1 : s1∧· · ·∧xn : sn for each function
symbol f ∈ Σs1...sn,s.

However, it is sometimes useful to explicitly consider order-sorted theories
instead of Mel theories, because order-sorted unification algorithms are
well-developed (e.g., see Chapter 5).

4h : A → B is a homomorphism iff h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for each
f ∈ Σk1...kn,k and ai ∈ Aki , 1 ≤ i ≤ n, and h(a) ∈ Bs for each sort s ∈ Sk and a ∈ As.

17

2.2 Rewriting Logic

Rewriting logic basically extends (membership) equational logic by adding
rewrite predicates of the form t −→ t′, where t, t′ ∈ TΣ(X)k, stating that
a term t can “evolve” to t′. A rewrite theory R = (Σ, E,R) is a formal
specification of a concurrent system [132], where (Σ, E) is a Mel theory
specifying the system’s states, and R is a finite set of (universally quantified)
labeled conditional rewrite rules, each of which has the form:

l : q −→ r if
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∧
∧
m∈M

tm −→ t′m,

specifying the system’s concurrent transitions, where l is a label, and ui = vi

and wj : sj are atomic formulas in membership equational logic.

Example 2.5 (Dining Philosophers). There are N philosophers sitting at
a circular table who are thinking, waiting, or eating. A chopstick is placed
between each pair of adjacent philosophers. A thinking philosopher wakes up.
A waiting philosopher grabs one adjacent chopstick and eats when having
both. After eating, a philosopher places the chopsticks back and thinks.
In rewriting logic, a philosopher can be expressed by a term p(id, status) of

sort Philo with status ∈ {think, wait0, wait1, eat}, and a chopstick can be
represented by c(id) of sort Chopstick. A system state can be expressed by a
‖-separated multiset of philosophers and chopsticks, with the empty multiset
none (for example, p(0, wait0) ‖ c(0) ‖ p(1, think) ‖ c(1)). That is, the Mel
theory (Σ, E) (see Example 2.10 for the Maude specification) contains:

• kinds: [Conf] and [Status],

• sorts: S[Status] = {Status} and S[Conf] = {Philo,Chopstick,Conf},

• function symbols: Σ[Conf][Conf],[Conf] = {‖}, Σnil,[Conf] = {none},
Σnil,[Status] = {think, wait0, wait1, eat}, Σ[Nat][Status],[Conf] = {p},
and Σ[Nat],[Conf] = {c}.

• and the (abbreviated) Mel sentences:

p : Nat Status→ Philo, c : Nat→ Chopstick, none : Conf,

‖ : Conf Conf → Conf, think : Status, wait0 : Status,

wait1 : Status, eat : Status, Philo < Conf,

Chopstick < Conf, (∀x) x ‖ none = x, (∀x, y) x ‖ y = y ‖x,

(∀x, y, z) (x ‖ y) ‖ z = x ‖ (y ‖ z).

18

If the functions lc(i) and rc(i), respectively, return the chopstick’s id
on the left and the right of the philosopher i, and adj(i, j) returns true iff
j = lc(i) or j = rc(i),5 then the behavior can be defined by the rules:

wake : p(i, think) −→ p(i, wait0)

grabF : p(i, wait0) ‖ c(j) −→ p(i, wait1) if adj(i, j) = true

grabS : p(i, wait1) ‖ c(j) −→ p(i, eat) if adj(i, j) = true

stop : p(i, eat) −→ p(i, think) ‖ c(lc(i)) ‖ c(rc(i))

For example, from the state p(0, wait0) ‖ c(0) ‖ p(1, think) ‖ c(1), one
next state by the grabF rule is p(0, wait1) ‖ p(1, think) ‖ c(1).

2.2.1 Rewrite Relations and Proof Terms

Rewriting logic has the deduction rules in [45, 132] that infer all concurrent
computations in the system specified by R. That is, a term t′ is reachable
from a term t iff R ` λ : (∀X) t −→ t′ can be derived, where a proof term λ

describes how t′ has been computed from t. A rewrite theory R = (Σ, E,R)
induces the rewrite relation −→∗R on TΣ/E(X) such that λ : [t]E −→∗R [t′]E
iff R ` λ : (∀X) t −→ t′, which is generally classified as follows [132]:

• a zero-step rewrite t : [t]E −→0
R [t]E , where −→0

R ⊆ −→∗R.

• a sequential rewrite (λ1;λ2; . . . ;λn) : [t1]E −→∗R [tn]E iff for each
1 ≤ i < n, λi : [ti]E −→∗R [ti+1]E holds.

• a one-step rewrite

t[l(θ, β1, . . . , β|M |)]p : [t]E −→1
R [t′]E , where −→1

R ⊆ −→∗R,

iff there exist a substitution θ, a position p, and a rule l : q −→ r if∧
i∈I ui = vi ∧

∧
j∈J wj : sj ∧

∧
m∈M tm −→ t′m ∈ R such that

t|p =E θ(q), t′ = t[θ(r)]p,
∧
i∈I θ(ui) =E θ(vi),∧

j∈J E ` (∀X) θ(wj) : sj ,
∧
m∈M βm : [θ(tm)]E −→∗R [θ(t′m)]E .

That is, a term t[θ(q)]p containing θ(q) is rewritten to t[θ(r)]p in which
θ(q) has been replaced by θ(r), provided that the condition holds.

5That is, Σ contains: Σ[Nat],[Nat] = {lc, rc} and Σ[Nat][Nat],[Bool] = {adj}, and E contains:
(∀i) lc(i) = i, (∀i) rc(i) = s(i) if s(i) < N , (∀i) rc(i) = 0 if s(i) equals N , and
(∀i, j) adj(i, j) = (j equals lc(i)) or (j equals rc(i)).

19

• a concurrent rewrite

f(λ1, . . . , λn) : [f(t1, . . . , tn)]E −→∗R [f(t′1, . . . , t′n)]E
⇐⇒ λi : [ti]E −→∗R [t′i]E , for each 1 ≤ i ≤ n.

Example 2.6. Consider R = (Σ, E,R) for the dining philosophers problem
in Example 2.5. For N = 2, by the rule grapF , we have the one-step rewrite:

grapF({i 7→ 0, j 7→ 0}) ‖ p(1, think) ‖ c(1) :
[p(0, wait0) ‖ c(0) ‖ p(1, think) ‖ c(1)]E −→1

R [p(0, wait1) ‖ p(1, think) ‖ c(1)]E .

2.2.2 Concurrent and Interleaving Models

A standard model of a rewrite theory R = (Σ, E,R) is the initial concurrent
model6 TR = {TR,k}k∈K , where TR,k = (TΣ/E,k,−→

∗
R) [132]. That is, each

TR,k is a transition system whose states are elements of the k-component of
the initial algebra TΣ/E,k, and whose transitions, labeled by proof terms, are
given by the rewrite relation −→∗R. Similarly, the free concurrent model7 of
R is defined by TR(X) = {TR(X)k}k∈K , where TR(X)k = (TΣ/E(X)k,−→∗R).

Several concurrent computations, specified by different proof terms, can
be equivalent to each other. Indeed, any proof term λ, except for zero-step
proof terms, is always equivalent to an “interleaving” description, namely, a
sequential composition λ1; . . . ;λn of one-step proof terms [132, 135]. That
is, −→∗R is equivalent to the reflexive and transitive closure of −→1

R.

Example 2.7. For R in Example 2.5 with N = 2, the concurrent rewrite
that applies the rule grapF to the two philosophers at the same time:

grapF({i 7→ 0, j 7→ 0}) ‖ grapF({i 7→ 1, j 7→ 1}) :
[p(0, wait0) ‖ c(0) ‖ p(1, wait0) ‖ c(1)]E −→∗R [p(0, wait1) ‖ p(1, wait1)]E .

is equivalent to the sequential composition of the following one-step rewrites
that apply the rule grapF to one philosopher at a time:

grapF({i 7→ 0, j 7→ 0}) ‖ p(1, wait0) ‖ c(1) :
[p(0, wait0) ‖ c(0) ‖ p(1, wait0) ‖ c(1)]E −→1

R [p(0, wait1) ‖ p(1, wait0) ‖ c(1)]E ,

p(0, wait1) ‖ grapF({i 7→ 1, j 7→ 1}) :
[p(0, wait1) ‖ p(1, wait0) ‖ c(1)]E −→1

R [p(0, wait1) ‖ p(1, wait1)]E .

6There exists a unique homomorphism from TR to any concurrent model A = (A,→∗A)
of R [132], where A is a model of the Mel theory (Σ, E) and→∗A ⊆ A2 is a binary relation
that satisfies the rewrite rules in R and the algebraic laws of true concurrency in [132].

7For any concurrent model A = (A,→∗A) of R, a : X → A can be uniquely extended
to a homomorphism ā : TR(X)→ A, where [t]E −→∗R [t′]E implies ā(t)→∗A ā(t′).

20

Therefore, we have the initial interleaving model T 1
R = {T 1

R,k}k∈K , where
T 1
R,k = (TΣ/E,k,−→

1
R), whose reflexive and transitive closure generates the

initial concurrent model TR. Similarly, the free interleaving model of R
is defined by T 1

R(X) = {T 1
R(X)k}k∈K , where T 1

R(X)k = (TΣ/E(X)k,−→1
R).

For model checking verification of a rewrite theory R, we focus on these
interleaving models of R throughout this thesis.

2.2.3 Localized Fairness

Fairness means that if a certain kind of choice is sufficiently often provided,
then it is sufficiently often taken [168]. For example, strong fairness means
that if a given choice is available infinitely often, then it is taken infinitely
often. Similarly, weak fairness means that if the choice is continuously
available beyond a certain point, then it is taken infinitely often. Fairness
assumptions are often necessary to verify many important system properties,
since without fairness, unrealistic counterexamples can be produced.

Example 2.8. For the dining philosophers model in Example 2.5, when
N = 2, without fairness assumptions, there exists the following (unrealistic)
infinite behavior in which the philosopher 1 does not take any action forever:

[p(0, think) ‖ c(0) ‖ p(1, think) ‖ c(1)]E −→1
R [p(0, wait0) ‖ c(0) ‖ p(1, think) ‖ c(1)]E

↑1R ↓1R
[p(0, eat) ‖ p(1, think)]E 1

R←− [p(0, wait1) ‖ p(1, think) ‖ c(1)]E .

This behavior indeed violates the weak fairness condition: ” if a philosopher
can continuously wake up beyond a certain point, then the philosopher must
wake up infinitely often.” However, there still exists the unrealistic behavior:

[p(0, think) ‖ c(0) ‖ p(1, wait0) ‖ c(1)]E −→1
R [p(0, wait0) ‖ c(0) ‖ p(1, wait0) ‖ c(1)]E

↑1R ↓1R
[p(0, eat) ‖ p(1, wait0)]E 1

R←− [p(0, wait1) ‖ p(1, wait0) ‖ c(1)]E ,

which can be eliminated by assuming the strong fairness condition: ” if a
philosopher can grab a chopstick infinitely often, then the philosopher must
grab a chopstick infinitely many times.”

In rewriting logic it may not be enough to give fairness of rewrite rules:
rather, we often need parameterized fairness localized to specific entities
in the system. For example, in Example 2.8, both counterexamples fairly
perform all the four rewrite rules but only for the philosopher 0, whereas
the necessary fairness conditions are parameterized to each philosopher.

21

This idea was captured by the notion of localized fairness [134]. That is, a
transition specified by a rule l : q −→ r if C is parametric on the variables in
q, and fairness for the rule l can then be localized to a subset {xj1 , . . . , xjk}
of vars(q). For instance, the fairness conditions in Example 2.8 are localized
to the single variable i denoting the id of a philosopher. One of the major
contribution of this thesis is to provide a novel model checking algorithm
for such parameterized fairness conditions (see Section 4.3).

2.2.4 Executability Conditions

For a rewrite theory R = (Σ, E,R), a one step rewrite [t]E −→1
R [t′]E may

be undecidable in general. Therefore, we require that R satisfies additional
executability conditions under which [t]E −→1

R [t′]E can be decided in a
finite number of steps. A rewrite theory R = (Σ, E,R) is called computable
iff E and R are finite and the following conditions hold [136].
First, E can be decomposed into a disjoint union Eo ∪ B with B a set

of structural axioms (such as associativity, commutativity, and identity), so
that equational deduction is performed modulo B. Also, t =B t′ is decidable,
and furthermore, there exists a matching algorithm modulo B, which, given
a subject term t and a pattern term u, produces a finite and complete set
of B-matching substitutions θ such that t =B θ(u), or failing otherwise.

Second, Eo is oriented into sort-decreasing,8 and ground terminating,9

confluent,10 and coherent11 rewrite rules modulo B [70]. This implies that
for Eo/B = (Σ, B,Eo), each ground term t ∈ TΣ has a unique B-equivalence
class [canEo/B(t)]B ∈ TΣ/B, called the Eo/B-canonical form of t, such that
[t]B −→∗Eo/B [canEo/B(t)]B and [canEo/B(t)]B cannot be further rewritten by
−→1

Eo/B
. That is, =E is decidable for ground terms, since we have:

t =E t
′ ⇐⇒ canEo/B(t) =B canEo/B(t′).

Moreover, this condition makes the canonical term algebra CanΣ,Eo/B, given
by a carrier set CanΣ,Eo/B,k = {[canEo/B(t)]B | t ∈ TΣ,k} for each kind k,
isomorphic to the initial algebra TΣ/E , where E = Eo ∪B.

8For any substitution θ and equation (t = t′ if condition) ∈ Eo, the least sort of [θ(t)]A
is greater than or equal to the least sort of [θ(t′)]A.

9There exists no infinite Eo/B-rewrite sequence of ground B-equivalence classes
[t0]B −→1

Eo/B
[t1]B −→1

Eo/B
[t2]B −→1

Eo/B
[t3]B −→1

Eo/B
· · · .

10For ground terms t, t1, t2 ∈ TΣ, if [t]B −→∗Eo/B [t1]B and [t]B −→∗Eo/B [t2]B , then
there exists t′ ∈ TΣ such that [t1]B −→∗Eo/B [t′]B and [t2]B −→∗Eo/B [t′]B .

11For ground terms t1, t′1, t2 ∈ TΣ, if t1 −→1
Eo/∅ t

′
1 and t1 =B t2, then there exists

t′2 ∈ TΣ such that t2 −→1
Eo/∅ t

′
2 and t′1 =B t′2.

22

Finally, R is ground coherent with Eo modulo B [166]. Together with
the above conditions, this means that for R/B = (Σ, B,R), if a one-step
rewrite λ : [t]B −→1

R/B [t′]B holds for ground terms t, t′ ∈ TΣ, then there
exists a corresponding one-step rewrite λ′ : [canEo/B(t)]B −→1

R/B [t′′]B with
a canonical one-step proof term λ′ such that canEo/B(t′) =B canEo/B(t′′).
Therefore, provided the conditions C in rewrite rules l : q −→ r if C only
involve equations and memberships and do not have extra variables, −→1

R
is decidable for ground terms, since we have λ : [t]E −→1

R [t′]E iff

λ′ : [canEo/B(t)]B −→1
R/B [t′′]B ∧ canEo/B(t′) =B canEo/B(t′′).

Similarly, this condition yields “canonical” models of R = (Σ, Eo ∪B,R).
In particular, the canonical interleaving model Can1

R = {Can1
R,k}k∈K with

Can1
R,k = (CanΣ,Eo/B,k,−→

1
R)

is isomorphic to the initial interleaving model T 1
R [45, 132], where the relation

−→1
R is defined by the equivalence:

λ : [canEo/B(t)]B −→1
R [canEo/B(t′)]B ⇐⇒ λ : [canEo/B(t)]B −→1

R/B [t′]B.

Let CanProofTerms1(R) denote the set of all canonical one-step proof terms
in R. Then, an infinite computation of kind k is given by a pair of two
functions (π, γ) with π : N→ CanΣ,Eo/B,k and γ : N→ CanProofTerms1(R)
such that γ(n) : π(n) −→1

R π(n+ 1) is a canonical one-step rewrite for each
n ∈ N [136]. Pictorially:

π(0) γ(0)−−−→R π(1) γ(1)−−−→R π(2) γ(2)−−−→R

These computability requirements are quite natural in practical system
specifications [137]. Given a rewrite theory R = (Σ, Eo ∪ B,R), the first
condition holds for B any combination of associativity, commutativity, and
identity axioms. For a Maude specification of R, the tool can automatically
check sort-decreasingness of Eo, and can guarantee B-coherence of Eo by
a simple theory transformation [61]. Finally, the Maude Church-Rosser,
Termination, and Coherence tools can check the rest of the executability
conditions [61, 62]. For example, using these tools we can easily show that
the Maude specification of the dining philosophers problem in Example 2.5
(see Example 2.10 in Section 2.3.2) satisfies the executability conditions.

23

2.3 Maude

Maude [61] is a declarative language and high-performance tool to support
the formal specification and analysis of concurrent systems in rewriting logic.
The language can directly specify Mel theories and rewrite theories, and
the tool provides a number of formal analysis methods, such as simulation,
reachability analysis, and LTL model checking. This section summarizes
the syntax of the Maude language in a nutshell (see [61] for more details),
illustrated with simple concurrent system examples.

2.3.1 Functional Modules

In Maude, a Mel theory (Σ, E) is specified by a functional module M ,
declared with the syntax: ‘fmod M is (Σ, E) endfm’. Sorts are declared by
the keywords sort and sorts followed by identifiers, and subsort relations
are declared by the keywords subsort and subsorts:

subsort s1 < s2 .

subsorts s1,1, . . . , s1,n1 < · · · < sm,1, . . . , sm,nm .

A kind [s] is automatically inferred for each connected component of a sort
s in the poset (S,≤) of sorts. An operator f , with s1 . . . sn the sorts of its
arguments and s its range sort, is declared with the syntax:

op f : s1 . . . sn -> s .

ops f1 f2 . . . fm : s1 . . . sn -> s .

where the keyword ops can simultaneously define several operators of the
same type. As explained in Section 2.1.4, it also declares the membership
axiom (∀ x1, . . . , xn) f(x1, . . . , xn) : s if x1 : s1 ∧ · · · ∧ xn : sn. A partial
function with no such axioms (i.e., a function f : [s1] × · · · × [sn] → [s] at
the kind level) can be declared by using the arrow ‘~>’ instead of ‘->’.
Operators can have user-definable syntax with underbars ‘_’, marking

each of the argument positions (for example, _+_ and if_then_else_fi).
An operator f can be declared to have equational attributes, such as comm,
assoc, and id: t, stating that f satisfies, respectively, the commutativity
(f(x, y) = f(y, x)), associativity (f(f(x, y), z) = f(x, f(y, z))), and identity
(f(x, t) = x) axioms. An operator can be declared to be a constructor,
by the ctor attribute, that defines the carrier of a sort. A variable can be
either explicitly declared by the keywords var and vars followed by variable
identifiers, or can be introduced on-the-fly using the syntax var : sort. A
comment is preceded by ‘***’ or ‘---’ and lasts till the end of the line.

24

Equations are declared by using the keywords eq and—for conditional
equations—ceq, and memberships are declared by the keywords mb and—
for conditional memberships—cmb:

eq u = v . ceq u = v if condition .

mb u : s . cmb u : s if condition .

An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute
can be applied to a term f(. . .) only if no other equation with left-hand
side f(u1, . . . , un) can be applied.12 An equational condition u = v can
be declared as a matching equation, written u := v, which instantiates the
variables in the pattern u by a substitution θ such that [θ(u)]E = [v]E .

Example 2.9. The Mel theory (ΣN, EN) in Example 2.3 for the natural
numbers is specified by the following functional module in Maude, including
additional Boolean and comparison operators:

fmod NATURAL-NUMBERS is
sorts Bool Zero NzNat Nat .
subsorts Zero NzNat < Nat .
vars X Y : [Nat] . var B : Bool .

op 0 : -> Zero [ctor] . op s : Nat -> NzNat [ctor] .
ops true false : -> Bool [ctor] .
op _+_ : Nat Nat ~> Nat [comm assoc].
op _<_ : Nat Nat ~> Bool .
op _equals_ : Nat Nat ~> Bool [comm] .
op not : Bool ~> Bool .
op _or_ : Bool Bool ~> Bool [comm] .
op _and_ : Bool Bool ~> Bool [comm] .

eq X + 0 = X . eq X + s(Y) = s(X + Y) .
eq 0 < s(X) = true . eq X < 0 = false .
eq s(X) < s(Y) = X < Y . eq X equals Y = not((X < Y) or (Y < X)) .
eq not(true) = false . eq not(false) = true .
eq true or B = true . eq false or false = false .
eq false and B = false . eq true and true = true .

endfm

For example, the following Maude reduce command evaluates the given term
and returns the result (i.e., its canonical form):

Maude> red s(0) + s(s(0)) equals s(s(s(0))) .
result Bool: true

12A specification with owise equations can be transformed to an equivalent system
without such equations [61].

25

2.3.2 System Modules

A rewrite theory R = (Σ, E,R) is specified by a system module in Maude,
declared with the syntax

mod R is (Σ, E,R) endm

where rewrite rules in R are declared by using the keywords rl and—for
conditional rules—crl as follows:

rl [l]: u => v . crl [l]: u => v if condition .

For both functional and system modules, a module inclusion relation can
be declared with the keywords including and protecting. If a functional
module M1, specifying a Mel theory (Σ1, E1), includes another function
module M2 that specifies (Σ2, E2), then

(Σ2, E2) ⊆ (Σ1, E1).

Similarly, if a system module R1 = (Σ1, E1, R1) includes a system module
R2 = (Σ2, E2, R2) (resp., a functional module M2 = (Σ2, E2)), then

(Σ2, E2, R2) ⊆ (Σ1, E1, R1), (Σ2, E2) ⊆ (Σ1, E1).

The protecting keyword asserts that the semantics of the submodule is
preserved. A functional module M1 protects a functional module M2 iff
(Σ2, E2) ⊆ (Σ1, E1) and for each sort s ∈ Σ2, both initial algebras TΣ1/E1,s

and TΣ2/E2,s
have the same set of elements.13 Similarly, a system module R1

protects R2 iff (Σ2, E2, R2) ⊆ (Σ1, E1, R1), (Σ1, E1) protects (Σ2, E2), and
the reachability relation of R2 is preserved in R2.14

In the Maude tool, the rewrite command simulates one behavior of the
system from the initial state t in k rewrite steps:

rew [k] t .

The search command analyzes all possible behaviors by using a breadth-first
strategy to search for n states that are reachable from the initial state t,
match the search pattern, and satisfy the search condition:

search [n] t =>* pattern such that condition .

If the arrow =>! is used instead of =>* in the command, then it searches
for terminating states that cannot be further rewritten by rewrite rules.

13For each sort s ∈ Σ, the unique homomorphism TΣ2/E2,s → TΣ1/E1,s induced by the
theory inclusion (Σ2, E2) ⊆ (Σ1, E1) is bijective.

14For two ground Σ2-terms t, t′ ∈ TΣ2 , [t]E2 −→R2 [t′]E2 ⇐⇒ [t]E1 −→R1 [t′]E1 .

26

Example 2.10. The rewrite theory R for the dining philosophers problem
in Example 2.5 with N = 2 is specified by the following modules:

fmod DINING-PHILOS-FUNCS is
protecting NATURAL-NUMBERS .
sorts Status . ops think wait0 wait1 eat : -> Status [ctor] .
op #N : ~> Nat . --- a total number of philosophers
ops lc rc : Nat ~> Nat .
op adj : Nat Nat ~> Bool .
vars I J : Nat . ceq rc(I) = s(I) if (s(I) < #N) = true .
eq lc(I) = I . ceq rc(I) = 0 if (s(I) equals #N) = true .
eq adj(I,J) = (J equals lc(I)) or (J equals rc(I)) .

endfm

mod DINING-PHILOS is
including DINING-PHILOS-FUNCS .
sorts Philo Chopstick Conf .
subsorts Philo Chopstick < Conf .
op p : Nat Status -> Philo [ctor] .
op c : Nat -> Chopstick [ctor] . op none : -> Conf [ctor] .
op _||_ : Conf Conf -> Conf [ctor comm assoc id: none] .
eq #N = s(s(0)) . vars I J : Nat . var C : Conf .

*** defining the system behavior
rl [wake]: p(I,think) => p(I,wait0) .

crl [grabF]: p(I,wait0) || c(J) => p(I,wait1) if adj(I,J) = true .
crl [grabS]: p(I,wait1) || c(J) => p(I,eat) if adj(I,J) = true .
rl [stop]: p(I,eat) => p(I,think) || c(lc(I)) || c(rc(I)) .

endm

For example, the following rewrite command executes the system from the
initial state and returns a state reachable in three rewrite steps:

Maude> rew [3] p(0,think) || c(0) || p(s(0),think) || c(s(0)) .
result Conf: p(0, eat) || p(s(0),think)

To find a deadlock state from which no one-step rewrites exists, we can use
the Maude search command with the arrow =>! as follows:

Maude> search p(0,think) || c(0) || p(s(0),think) || c(s(0)) =>! C .

Solution 1 (state 15)
C:Conf --> p(0, wait-1) || p(s(0), wait-1)

No more solutions.

27

2.3.3 Object-Oriented Modules

Rewriting logic is particularly useful to formally specify concurrent systems
in an object-oriented style. Concurrent object system are typically modeled
by a set of objects that can interact with each other either synchronously, or
asynchronously by sending and receiving messages. As already mentioned,
other object-oriented models for concurrent systems, such as actors [5], can
be naturally specified in rewriting logic [132, 137].
In Maude, each state of a system, called a configuration, is modeled as

a term of sort Configuration that has a structure of a multiset made up
of objects and messages. Multiset union for configurations is denoted by
a juxtaposition operator (empty syntax) that is declared associative and
commutative and has none as its identity as follows [61]:

sorts Object Msg Configuration .
subsorts Object Msg < Configuration .
op none : -> Configuration [ctor] .
op __ : Configuration Configuration -> Configuration

[ctor assoc comm id: none] .

In Full Maude—a language extension of Maude—one can declare classes
and messages in a object-oriented module [61], declared with the syntax:15

(omod R is (Σ, E,R) endom)

Object-oriented modules are just syntactic sugar, and are automatically
transformed into system modules in Maude [61]. A class declaration

class C | att1 : s1,...,attn : sn .

declares a class C with attributes att1, . . . , attn of sorts s1, . . . , sn. An object
of class C is represented as a term of sort Object and has the form:

< O : C | att1 : val1,...,attn : valn >,

where O is the object’s identifier of sort Oid, C is the class identifier of
sort Cid, and val1, . . . , valn are its attribute values of sort s1, . . . , sn. A
subclass, introduced with the keyword subclass, inherits all the attributes
of its superclasses. A message is a term of sort Msg, where the declaration

msg m : s1 . . . sn -> Msg .

defines the syntax of the message m(v1, . . . , vn) and the sorts s1, . . . , sn of
its parameters v1, . . . , vn.

15In Full Maude, module declarations and commands must be enclosed by parentheses.

28

Example 2.11. The Maude specification in Example 2.10 for the dining
philosophers problems, when N = 2, can be alternatively specified by:

(omod OO-DINING-PHILOS is
including DINING-PHILOS-FUNCS . vars I J : Nat .
class Philo | status : Status . msg c : Nat -> Msg .
subsort Nat < Oid . eq #N = s(s(0)) .
rl [wake]: < I : Philo | status : think >

=> < I : Philo | status : wait0 > .
crl [grabF]: < I : Philo | status : wait0 > c(J)

=> < I : Philo | status : wait1 > if adj(I,J) = true .
crl [grabS]: < I : Philo | status : wait1 > c(J)

=> < I : Philo | status : eat > if adj(I,J) = true .
rl [stop]: < I : Philo | status : eat >

=> < I : Philo | status : think > c(lc(I)) c(rc(I)) .
endom)

Example 2.12 (Client-Server Communication). There are a number of
clients and servers, with status either idle or busy, where each server can
serve many clients but each client communicates with one server. An idle
client C sends a query N to a server S and becomes busy. If the server S is
idle, then S becomes busy and returns the answer f(S,N) of the query using
a function f, only known to the server itself. A busy client can receive an
answer and become idle, and a busy server can become idle at any time.
This system can be specified by the following object-oriented module:16

(omod OO-CLIENT-SERVER is
including NAT .
class Node | status : Status . msg m : Oid Oid Nat -> Msg .
class Client | val : Nat, to : Oid . class Server .
subclass Server Client < Node . sorts Status .
ops idle busy : -> Status [ctor] . op f : Oid Nat -> Nat .
vars C S : Oid . var N : Nat .
rl [reqs]: < C : Client | status : idle, val : N, to : S >

=> < C : Client | status : busy > m(S,C,N) .
rl [repl]: < S : Server | status : idle > m(S,C,N)

=> < S : Server | status : busy > m(C,S,f(S,N)) .
rl [recv]: < C : Client | status : busy > m(C,S,N)

=> < C : Client | status : idle, val : N > .
rl [idle]: < S : Server | status : busy >

=> < S : Server | status : idle > .
endom)

16By convention, attributes of objects can be omitted from (one side of) a rewrite rule
if they are not relevant, e.g., the attributes to and val in the recv rule [61].

29

2.3.4 Real-Time Maude

Real-Time Maude [149] is a language and tool for real-time systems that
extends Maude [61]. A Real-Time Maude timed module specifies a real-time
rewrite theory R = (Σ, E,R) [148], where:

• (Σ, E) contains an equational subtheory (ΣTIME , ETIME) ⊆ (Σ, E)
that satisfies the TIME axioms in [148] specifying sort Time for the
time domain (which can be discrete or dense). The supersort TimeInf
extends the sort Time with an “infinity” value INF.

• The rules in R are decomposed into:

– “ordinary” rewrite rules specifying the system’s instantaneous
(i.e., zero-time) local transitions, and

– tick rules, that model the elapse of time in a system, of the form

l : {t} u−→ {t′} if condition,

where t and t′ are of sort System, u is of sort Time denoting
the duration of the rewrite, and {_} is a built-in constructor of
sort GlobalSystem. In Real-Time Maude, tick rules, together with
their durations, are specified with the syntax:

crl [l]: {t} => {t′} in time u if condition.

The initial state must be reducible to a term {t0}, for t0 a ground term of
sort Configuration (which is a subsort of System) in an object-oriented style,
using the equations in the specification. The form of the tick rules then
ensures uniform time elapse in all parts of the system.
Real-Time Maude provides formal analysis methods, including simulation,

reachability analysis, and metric LTL and timed CTL model checking [149].
For example: (i) the timed rewrite command (tfrew t in time <= τ .)

simulates one behavior of the system within time τ from the initial state t,
(ii) the timed search command (tsearch [n] t =>* pattern such that

condition in time <= τ .) analyzes all possible behaviors to search for n
states that are reachable from the initial state t within time τ , match the
search pattern, and satisfy the search condition, and (iii) the timed LTL
model checking command (mc t |=t ϕ in time <= τ .) checks whether
the LTL formula ϕ holds from the initial state t within time τ , extending
Maude’s LTL model checking commands.

30

CHAPTER 3

LINEAR TEMPORAL LOGIC OF REWRITING

The linear temporal logic of rewriting (LTLR) extends linear temporal logic
(LTL) by adding spatial action patterns that describe patterns of rewrite
events. This chapter1 presents the foundation and design of the LTLR model
checker, developed at the C++ level by extending the existing LTL model
checker within the Maude system. LTLR generalizes various state-based
and event-based logics, so that “mixed” properties involving both states
and events, such as fairness properties, can be naturally expressed in LTLR.
This greater expressiveness is gained without compromising performance,
since the LTLR algorithm minimizes the extra costs in handling events.

3.1 Introduction

As mentioned in Chapter 1, model checking of a concurrent system involves
two different tasks: (i) system specifications to formally model the system
in a system specification language LS , and (ii) property specifications to
define the requirements in a temporal logic LP , where (LS ,LP) is called a
tandem of logics [136]. Given a system specification S ∈ LS and a property
specification ϕ ∈ LP , model checking tools verify the satisfaction relation

S |= ϕ.

For example, using rewriting logic as a system specification language, the
Maude LTL model checker [61] can verify an LTL property ϕ of a rewrite
theory R, where each atomic proposition p in ϕ is related to each state [t]E
of R by means of the satisfaction relation [t]E |= p.

1This chapter is based on the papers [17, 22], joint work with José Meseguer.

31

However, such a satisfaction relation S |= ϕ is not always definable in
a natural way when there is a mismatch between LS and LP [136]. The
mismatch problems are typically caused by lack of expressiveness in one of
the logics. For example, there exists a mismatch between rewriting logic and
temporal logics that are either only state-based (e.g., LTL and CTL∗ [60])
or only event-based (e.g., Hennessy-Milner logic [103] and A-CTL∗ [145]).
Rewriting logic can specify both state-based and event-based aspects of a
system but one of these aspects is missing in those temporal logics.2

In practice this problem can be partially resolved by “cooking” of the
system specification to encode the model features not directly expressible in
the property logic. For instance, to deal with the event-based aspects of a
system using a state-based temporal logic, we may encode action information
in a modified version of the state and introduce appropriate atomic state
propositions that can detect certain actions having taken place. However,
this encoding often makes the system specification unnecessarily complex,
and further increases the size of the state space.
The temporal logic of rewriting (TLR) [136] is an expressive temporal logic

that adds atomic event propositions to CTL∗. Moreover, not only atomic
events (corresponding to rule applications), but also spatial action patterns
indicating where in the state structure, and for which instances a given
action took place are expressible in TLR. When used together with rewriting
logic (RWL), the (RWL,TLR) tandem can avoid such mismatch problems
as explained in [136]. But how usable and well-supported by algorithms and
tools is the (RWL,TLR) tandem in practice?
To answer the question, this chapter presents a model checking algorithm

and a tool for the (RWL,LTLR) tandem, a subtandem of (RWL,TLR). The
linear temporal logic of rewriting (LTLR) is a sublogic of TLR that extends
LTL by just adding spatial action patterns. Since LTL is one of the simplest
and most widely used state-based logics, the good features of LTL are also
shared by LTLR. Furthermore, since Maude already has an efficient LTL
model checker, it has been possible to reuse some of the components of its
C++ implementation in the new LTLR model checker.

2E.g., consider the rewriting logic specification of the dining philosophers problem in
Example 2.5. Since there exists no event information in the state, the satisfaction of the
fairness properties in Example 2.8 cannot be easily defined using the LTL semantics.

32

3.1.1 Main Contributions

First, this chapter presents the automata-theoretic foundations for an LTLR
model checking algorithm. Specifically, model checking an LTLR formula ϕ
for a rewrite theoryR is equivalent to deciding a language emptiness problem
for a Büchi automaton, obtained as a “special” synchronous product of the
Büchi automaton B¬ϕ for the negation of ϕ and a labeled Kripke structure
K̄ naturally associated to R, that recognizes a union trace of K̄ given by a
sequence of sets of state propositions and spatial action patterns.
Second, this chapter extends the original notion of spatial action patterns

in [136], denoted by SP(R), into any form of spatial action patterns that
can be equationally defined with respect to one-step proof terms, in a way
similar to defining state propositions for LTL model checking in rewriting
logic. In this characterization, SP(R) is just a special case, since the syntax
and semantics of SP(R) can also be defined by using equations. This is
particularly useful when a system requirement contains a complex event
proposition that cannot be expressed using simple action patterns.
Third, this chapter presents the Maude LTLR model checker, based on the

automata-theoretic foundations and the extended notion of spatial action
patterns, and implemented at C++ level as an extension of the Maude
system. This implementation uses an intrinsic model checking algorithm,
using the automata-theoretic foundations, that does not incur any state
space blowup. In contrast, a previous LTLR model checker implementation,
documented in [20], used a theory transformation R 7→ T (R) that encoded
event information as part of the system state [136], but the state space of
the transformed theory T (R) could be much bigger than that of the original
theory R. Substantial effort has also gone into designing and implementing
a user interface. This is nontrivial because:

• the syntax of spatial action patterns, typically not a part of the system
specification, must be made available to the user; and

• the possibility of extending the basic LTLR, which corresponds to the
extended notion of spatial action patterns, should also be supported
by the tool to make the system more flexible.

A case study of the bounded retransmission protocol, involving user-defined
spatial action patterns, shows the expressiveness and effectiveness of our
tool. More case studies can also be found in Chapter 4 and Appendix A.1.

33

3.1.2 Related Work

The first implementation of an LTLR model checker was presented in [20].
However, the implementation reused the Maude LTL model checker as given,
without any changes in its algorithm. It relied on a theory and formula
transformation, so that the LTLR model checking problem was transformed
into an equivalent LTL model checking problem for a transformed Maude
specification. As mentioned above, while useful for experimental purposes,
this solution was not optimal for event-based properties, because rewrite
events had to be encoded in the state of the transformed Maude specification,
leading to a considerable increase of the state space.

The family of TLR logics is introduced in [136]. Besides LTLR, the most
general one of these logics is TLR∗, which generalizes the state-based logic
CTL∗. Many well-known state-based logics, such as LTL, CTL, and CTL∗

[60, 130], and event-based logics, such as Hennessy-Milner’s logic [103] or
De Nicola and Vaandrager’s A-CTL∗ [145], can be viewed as special cases of
TLR∗ [135]. There are a number of approaches to combine state-based and
event-based formulas; we refer to [22, 136] for an overview and comparison
with TLR. In particular, the state/event-based logic SE-LTL proposed in
[49, 50], where each transition is labeled by a single event, can also be
considered as a special case of LTLR. Our automata-theoretic LTLR model
checking algorithm generalizes the SE-LTL model checking algorithm in [49]
to allow transitions labeled by a set (or a “pattern”) of atomic events.

3.1.3 Structure of the Chapter

This chapter is organized as follows. Section 3.2 describes the syntax and
semantics of LTLR, including spatial action patterns and labeled Kripke
structures, and explains how a rewrite theory R can be associated with its
underlying labeled Kripke structure K̄ to define the semantics of an LTLR
property ϕ with respect to R. Section 3.3 presents an automata theoretic
foundation for LTLR model checking, generalizing the standard automata
theoretic technique for LTL model checking. Section 3.4 explains the design
of the Maude LTLR model checker, including its user interface. Section 3.5
illustrates our tool with a case study, showing the effectiveness of the tool.
Finally, Section 3.6 gives some concluding remarks.

34

3.2 Syntax and Semantics

The linear temporal logic of rewriting (LTLR) is a state/event extension of
LTL with spatial action patterns. Recall that the syntax of LTL is defined by
ϕ ::= p | ¬ϕ | ϕ∧ϕ′ | ©ϕ | ϕUϕ′, where p is an atomic state proposition [60].
The only syntactic difference of LTLR is that an LTLR formula may include
spatial action patterns δ1, . . . , δn as well as state propositions p1, . . . , pm,
and therefore may describe properties involving both states and events.

Definition 3.1 (The LTLR Syntax). Given a set of state propositions AP
and a set of spatial action patterns ACT , the syntax of LTLR is defined by:

ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ, where p ∈ AP and δ ∈ ACT .

Other logical and temporal operators can be defined by using equivalences,
e.g., ϕ∨ϕ′ ≡ ¬(¬ϕ∧¬ϕ′), ϕ→ ϕ′ ≡ ¬ϕ∨ϕ′, 3ϕ ≡ true Uϕ, �ϕ ≡ ¬3¬ϕ,
ϕRϕ′ ≡ ¬(¬ϕU¬ϕ′), and ϕWϕ′ ≡ (ϕUϕ′) ∨�ϕ.

3.2.1 Spatial Action Patterns

Spatial action patterns are the action atoms of LTLR that describe actions
of a rewrite theory R. In a concurrent system specified by R, actions of
the system can be considered as rewrite events triggered by the rules in R,
characterized by one-step proof terms. A spatial action pattern δ defines a
set of one-step proof terms λ that match the pattern δ.

We define a simple language for spatial action patterns that can express
a wide range of atomic actions. Disregarding rewrite condition proof terms,
a one-step proof term3 t[l(θ, β1, . . . , βm)]p is represented as a triple

{ t[2]p | ′l : ′x1 \u1 ; . . . ; ′xm \um }

of a context term t[2]p that contains a hole 2 at position p, a quoted rule
label ′l, and a substitution θ = {x1 7→ u1, . . . , xm 7→ um} expressed as a
semicolon-separated assignment set, where ′xi is a quoted identifier for a
variable xi, 1 ≤ i ≤ m. We use quoted identifiers for labels and variable
names, since R may contain other constants with the same names.

3A one-step proof term t[l(θ, β1, . . . , βm)]p indicates that a rule with label l has been
applied with substitution θ at position p of the state t, where β1, . . . , βm denote proof terms
for the rewrite conditions of the rule (see Section 2.2.1). In this thesis, β1, . . . , βm are not
used to define spatial action patterns (that is, two one-step proof terms t[l(θ, β1, . . . , βm)]p
and t[l(θ, β′1, . . . , β′m′)]p correspond to the same set of spatial action patterns).

35

Definition 3.2. Given a rewrite theory R, SP(R) is the set of spatial action
patterns that have one of the forms [19, 136]:

{ ′l} { ′l : θ} {u[2]q | ′l} {u[2]q | ′l : θ} top{ ′l} top{ ′l : θ}

where ′l is a quoted label, θ is a substitution of the form ′x1\u1; . . . ; ′xm\um,
u[2]q is a context term, and u, u1, . . . , um ∈ TΣ are ground terms in R. In
particular, BP(R) ⊆ SP(R) is the set of spatial action patterns either of the
form {′l} or {′l : θ}, called basic action patterns.

A spatial action pattern in SP(R) can be viewed as a partial description
of a one-step proof term that specifies a set of more specific one-step proof
term instances. A basic action pattern {′l} describes a rule labeled l that
can be applied anywhere. A basic action pattern {′l : θ} allows l to also be
applied anywhere, but constrains the variable instantiation related to rule l
to be an extension of the substitution θ. Spatial action patterns {u[2]q | ′l}
and {u[2]q | ′l : θ} describe one-step rewrites related to the basic action
patterns {′l} and {′l : θ}, respectively, where l is applied at position p of
the term u. Similarly, spatial action patterns top{′l} and top{′l : θ} cover
the cases where l is applied at the top of the term. Notice that a one-step
proof term λ is a spatial action pattern matching itself.

Definition 3.3. The matching relation |= between a one-step proof term
and a spatial action pattern in SP(R) is then formalized as follows, where
θ ⊆E ϑ iff for each ′x\u ∈ θ, there exists ′x\v ∈ ϑ such that u =E v, and
t[2]p =E u[2]q iff t[x]p =E u[x]q for an appropriate kinded variable x:

{t[2]p | ′l : ϑ} |= { ′l}

{t[2]p | ′l : ϑ} |= { ′l : θ} ⇐⇒ θ ⊆E ϑ

{t[2]p | ′l : ϑ} |= {u[2]q | ′l} ⇐⇒ t[2]p =E u[2]q
{t[2]p | ′l : ϑ} |= {u[2]q | ′l : θ} ⇐⇒ t[2]p =E u[2]q ∧ θ ⊆E ϑ

{2 | ′l : ϑ} |= top{ ′l}

{2 | ′l : ϑ} |= top{ ′l : θ} ⇐⇒ θ ⊆E ϑ.

The syntax and semantics of SP(R) can be defined by using equations in
membership equational logic, which can be automatically generated from R
as explained in Section 3.4.1. This equational semantics enables us to easily
define more general kinds of spatial action patterns.

36

3.2.2 Labeled Kripke Structures

To compare LTLR with LTL we first recall the semantics of LTL that is
defined with respect to a Kripke structure [60].

Definition 3.4. A Kripke structure is a 4-tuple K = (S,AP,L,→K) with
S a set of states, AP a set of atomic state propositions, L : S → 2AP a
state-labeling function, and →K ⊆ S × S a total4 transition relation.

A path π : N → S is an infinite sequence with π(i) →K π(i + 1) for each
i ∈ N. An LTL formula ϕ is satisfied from a set of initial states S0 ⊆ S

in K, denoted by K, S0 |= ϕ, iff for each path π with π(0) ∈ S0, the path
satisfaction relation K, π |= ϕ holds, which is inductively defined as follows,
where πi is the suffix of π starting at π(i):

K, π |= p ⇐⇒ p ∈ L(π(0))

K, π |= ¬ϕ ⇐⇒ K, π 6|= ϕ

K, π |=©ϕ ⇐⇒ K, π1 |= ϕ

K, π |= ϕ ∧ ϕ′ ⇐⇒ K, π |= ϕ ∧ K, π |= ϕ′

K, π |= ϕUϕ′ ⇐⇒ (∃j ≥ 0) K, πj |= ϕ′ ∧ (∀0 ≤ i < j) K, πi |= ϕ.

Similarly, the semantics of LTLR is defined with respect to a labeled Kripke
structure, a natural extension of a Kripke structure with transition labels
[17, 49]. A labeled Kripke structure is a Kripke structure whose transition
is also labeled by a (possibly empty) set Λ of atomic events, which enables
us to describe an event pattern as well as just an atomic event.

Definition 3.5. A labeled Kripke structure (LKS) is defined by a 5-tuple
K̄ = (S, AP, L, ACT , →K̄), where:

• S is a set of states;

• AP is a set of state propositions;

• L : S → 2AP is a state-labeling function;

• ACT is a set of atomic events (e.g., spatial action patterns); and

• →K̄ ⊆ S × 2ACT × S is a total labeled transition relation.

A path (π, α) is a pair of functions π : N → S and α : N → 2ACT such that
π(i) α(i)−−−→K̄ π(i+ 1) for each i ∈ N. We denote by (π, α)i the suffix of (π, α)
beginning at position i ∈ N (that is, (π, α)i = (π ◦ si, α ◦ si)).

4That is, each state s ∈ S has a next state s′ ∈ S with s→K s′.

37

Definition 3.6 (The LTLR Semantics). An LTLR formula ϕ is satisfied
from a set of initial state S0 ⊆ S in an LKS K̄, denoted by K̄, S0 |= ϕ, iff
for each path (π, α) of K̄ such that π(0) ∈ S0, the path satisfaction relation
K̄, (π, α) |= ϕ holds, which is inductively defined as follows:

K̄, (π, α) |= p ⇐⇒ p ∈ L(π(0))

K̄, (π, α) |= δ ⇐⇒ δ ∈ α(0)

K̄, (π, α) |= ¬ϕ ⇐⇒ K̄, (π, α) 6|= ϕ

K̄, (π, α) |= ϕ ∧ ϕ′ ⇐⇒ K̄, (π, α) |= ϕ ∧ K̄, (π, α) |= ϕ′

K̄, (π, α) |=©ϕ ⇐⇒ K̄, (π, α)1 |= ϕ

K̄, (π, α) |= ϕUϕ′ ⇐⇒ (∃j ≥ 0) K̄, (π, α)j |= ϕ′ ∧
(∀0 ≤ i < j) K̄, (π, α)i |= ϕ.

Notice that the only difference between the LTLR and the LTL semantics is
the semantics of spatial action patterns. Specifically, K̄, (π, α) |= δ holds iff
the first transition π(0) α(0)−−−→K̄ π(1) corresponds to the action pattern δ.

3.2.3 Relating LKSs and Rewrite Theories

This section explains how to associate to a rewrite theory R = (Σ, E,R) a
corresponding labeled Kripke structure K̄ = (S,AP,L,ACT ,→K̄). Basically,
in order to define the semantics of AP and ACT , we need to have: (i) the
state satisfaction relation [t]E |= p for each state [t]E and state proposition
p ∈ AP; and (ii) the action satisfaction relation λ |= δ for each one-step
proof term λ and spatial action pattern δ ∈ ACT .

These satisfaction relations for R = (Σ, E,R) can be defined by means of
equations D in a support equational theory P = (Π, D), including:

• A kind k ∈ Σ for states, sort ProofTerm for one-step proof terms, sort
Prop for state propositions, and sort Action for spatial action patterns;

• Two boolean constants true and false of sort Bool in Π such that
true 6=E∪D false, and for each ground term t ∈ TΣ∪Π,Bool of sort Bool,
either t =E∪D true or t =E∪D false holds;

• A signature for one-step proof terms, including context terms, quoted
identifiers, and substitutions; and

• Operators _|=_ : k Prop→ Bool and _|=_ : ProofTerm Action→ Bool.

38

A state proposition is then defined as a term of sort Prop ∈ Π, using function
symbols in Π of the form p : s1 . . . sn → Prop. For each ground state
proposition p(u1, . . . , un) ∈ TΣ∪Π,Prop and state [t]E ∈ TΣ∪Π,k, the state
satisfaction relation is given by:

[t]E |= p(u1, . . . , un) ⇐⇒ t |= p(u1, . . . , un) =E∪D true.

Likewise, a spatial action pattern is defined as a term of sort Action ∈ Π,
using function symbols in Π of the form δ : s1 . . . sm → Action. For each
ground spatial action pattern δ(v1, . . . , vm) ∈ TΣ∪Π,Action and one-step proof
term λ, the action satisfaction relation is given by:

λ |= δ(v1, . . . , vm) ⇐⇒ λ |= δ(v1, . . . , vm) =E∪D true.

Note that spatial action patterns in SP(R) can be automatically generated
(see Section 3.4.1). Finally, since the set of states TΣ/E,k should not be
disturbed by P = (Π, D), the extended theory (Σ∪Π, E∪D) should protect
(Σ, E) (that is, TΣ∪Π/E∪D,s ' TΣ/E,s for each sort s ∈ Σ).

Example 3.1. For the dining philosophers model in Example 2.10, the state
proposition enabled(wake(i))—meaning that the philosopher i can wake up—
and the spatial action pattern wake(i)—meaning that the philosopher i has
woken up—can be defined by the following equations in Maude:

var CF : Conf . vars I J : Nat . var R : RuleName .
var SUB : StateSubstitution . var CXT : StateContext .

op wake : Nat -> Action [ctor] .
eq {CXT | ’wake : ’I \ I ; SUB} |= wake(I) = true .
eq {CXT | R : SUB} |= wake(I) = false [owise] .

op enabled : Action -> Prop [ctor] .
eq (p(I,think) || CF) |= enabled(wake(I))= true .
eq CF |= enabled(wake(I)) = false [owise] .

Notice that the spatial action pattern wake(i) is equivalent to the spatial
action pattern { ′wake : ′I\i} in SP(R).

We now associate to a rewrite theory R an LKS K̄(R, k)P , where state
propositions and spatial action patterns are specified by a support equational
theory P. Since R may contain a deadlock state from which no one-step
rewrites exists, K̄(R, k)P adds the self loop [t]E {deadlock}−−−−−−−−→K̄ [t]E for each
deadlock state [t]E , labeled by a predefined event deadlock.

39

Definition 3.7. Given a rewrite theory R = (Σ, E,R), a support equational
theory P = (Π, D), and a kind k ∈ Σ of states, the corresponding LKS is

K̄(R, k)P = (TΣ/E,k, AP, LP , ACT , →K̄),

where AP = TΣ∪Π,Prop, ACT = TΣ∪Π,Action ∪ {deadlock}, and:

• LP([t]E) is the set of state propositions satisfied in state [t]E, i.e.:

LP([t]E) = {p ∈ AP | (t |= p) =E∪D true}.

• →K̄ is the total transition relation, labeled with either events in ACT
or a deadlock event deadlock such that [t]E Λ−−→K̄ [t′]E iff:

λ : [t]E −→1
R [t′]E , and Λ = {δ ∈ ACT | (λ |= δ) =E∪D true}; or

t = t′,Λ = {deadlock}, and [t]E cannot be rewritten by −→1
R.

Example 3.2. Consider the dining philosophers model in Example 2.10. If
AP = {enabled(wake(0))} and ACT = {wake(0), { ′wake}, deadlock}, where
enabled(wake(0)) and wake(0) are defined in Example 3.1, then there exists
the following path (π, α) in the corresponding LKS K̄(R, k)P :

[p(0, think) ‖ c(0) ‖ p(1, think) ‖ c(1)]E

{{ ′wake}}
��

LP(π(0)) = {enabled(wake(0))}

[p(0, think) ‖ c(0) ‖ p(1, wake0) ‖ c(1)]E

∅
��

LP(π(1)) = {enabled(wake(0))}

[p(0, think) ‖ c(0) ‖ p(1, wake1)]E

{wake(0),{ ′wake}}
��

LP(π(2)) = {enabled(wake(0))}

[p(0, wait0) ‖ c(0) ‖ p(1, wake1)]E

∅
��

LP(π(3)) = ∅

[p(0, wait1) ‖ p(1, wake1)]E{deadlock}
$$

LP(π(i)) = ∅, for i ≥ 4.

For an rewrite theory R = (Σ, E,R) and its support equational theory
P = (Π, D), in order to compute the corresponding LKS K̄(R, k)P in which
LTLR formulas can be decided by model checking, the good executability
properties of sort-decreasingness, and ground termination, coherence and
confluence modulo B should also be satisfied by the extended equational
theory (Σ ∪ Π, E ∪ D), provided that R is executable and K̄(R, k)P has a
finite set of reachable states from a given initial state [t]E .

40

3.3 Automata Theoretic LTLR Model Checking

This section presents the automata-theoretic foundation for an LTLR model
checking algorithm and its associated computational complexity. We make
use of the standard automata theoretic LTL model checking approach to
characterize the LTLR model checking problem.

3.3.1 Preliminaries on LTL Model Checking

Let us first recall the automata theoretic LTL model checking method. Given
a Kripke structure K = (S,AP,L,→K), the trace Traces(π) of a path π is
an infinite sequence of state labels such that Traces(π)(i) = L(π(i)) for each
i ∈ N. The automata-based verification of an LTL formula ϕ then uses the
Büchi automaton B¬ϕ associated to the negated formula ¬ϕ, and checks the
emptiness of the synchronous product K[S0] ×B¬ϕ to determine whether
B¬ϕ accepts any trace of K from a set of initial states S0 ⊆ S [32].

Definition 3.8. A Büchi automaton is a 5-tuple B = (Q,Q0, P, δ, F), where
Q is a finite set of states, Q0 ⊆ Q is a set of initial states, P is an alphabet
of transition labels, δ ⊆ Q×P×Q is a labeled transition relation, and F ⊆ Q
is a set of accepting states.

If [N�P] denotes the set of all functions from N to P , the language accepted
by B is the subset L(B) ⊆ [N�P] of infinite runs of B starting from an
initial state q0 ∈ Q0 that visit accepting states in F infinitely often.

Definition 3.9. Given a Kripke structure K = (S,AP,L,→K), a set of
initial states S0 ⊆ S of K, and a Büchi automaton B = (Q,Q0, 2AP , δ, F)
with an alphabet 2AP , the synchronous product of K and B is the Büchi
automaton K[S0]×B = (S ×Q, S0 ×Q0, 2AP , δK, S × F), where:

(s, b) L(s)−−−→ (s′, b′) ∈ δK ⇐⇒ s→K s′ ∧ b L(s)−−−→ b′ ∈ δ.

Such a product automaton K[S0] ×B accepts an infinite run of B that is
also a trace of K starting from a state in S0. The essence of LTL model
checking is expressed by the following theorem:

Theorem 3.1 (LTL Model Checking [60]). Given a Kripke structure K and
an LTL formula ϕ, there is a Büchi automaton B¬ϕ with size O(2|ϕ|) such
that K, S0 |= ϕ ⇐⇒ L(K[S0]×B¬ϕ) = ∅ for a set of initial states S0.

41

3.3.2 Automata-Based Verification of LTLR Formulas

We can convert the LTLR model checking problem for a rewrite theory R
into an LTL model checking problem by theory transformations that encode
rewriting events in states [20, 136]. In spite of the simplicity of this method,
there is the problem of a blowup in the number of states: if R has n states
and m transitions, the associated Kripke structure has O(nm) states [136].
We can avoid such a state-space blowup by directly constructing an LKS.
This section shows that model checking an LTLR formula ϕ for a rewrite

theory R is equivalent to deciding a language emptiness problem for a Büchi
automaton, obtained from the Büchi automaton B¬ϕ for the negation of ϕ
and the associated LKS K̄(R, k)P . Our approach is closely related to the
automata-theoretic solution for model checking SE-LTL properties proposed
in [49], where SE-LTL is subsumed by LTLR [136]. The SE-LTL model
checking algorithm in [49] assumes that each transition of an LKS is labeled
by a single event, while our algorithm has been generalized to handle the
case when a transition is labeled by a set of events (e.g., Example 3.2).

The model checking problem of an LTLR formula ϕ for a rewrite theory
R can be reduced to the satisfiability of ϕ on its associated LKS K̄(R, k)P .
Given an LKS K̄ = (S,AP,L,ACT ,→K̄), the trace of a path (π, α) is the
pair of functions (Traces(π), α) such that for each i ∈ N:5

Traces(π)(i) = L(π(i)).

Basically, we need to determine whether an LTLR formula ϕ recognizes
every trace of K̄ from a set of initial states S0 ⊆ S.

Definition 3.10. A union trace of a path (π, α) in an LKS K̄ is a function
Traces(π) ∪ α : N→ AP ∪ACT such that for each i ≥ 0:

(Traces(π) ∪ α)(i) = Traces(π)(i) ∪ α(i).

If AP and ACT are disjoint, then there exists a one-to-one correspondence
between a trace (Traces(π), α) and its union trace Traces(π) ∪ α. In such
union traces there is no difference between events and state propositions.
Hence, we can check if a union trace Traces(π) ∪ α is accepted by a Büchi
automaton B¬ϕ for the negated formula ¬ϕ, using the same Büchi automata
construction as in the LTL case, where the alphabet of B¬ϕ is the power
set 2AP]ACT of the disjoint union AP]ACT .

5Notice that Traces(π) is a trace of a path π in a usual Kripke structure.

42

Example 3.3. The following are the trace and its union trace of the path
(π, α) in Example 3.2 for the dining philosophers example:

(Traces(π), α) Traces(π) ∪ α

{enabled(wake(0))}
{{ ′wake}}��

{enabled(wake(0)), { ′wake}}

��
{enabled(wake(0))}

∅��

{enabled(wake(0))}

��
{enabled(wake(0))}

{wake(0),{ ′wake}}��

{enabled(wake(0)),wake(0), { ′wake}}

��
∅
∅
��

∅

��
∅{deadlock} {deadlock}""

In fact, union traces of an LKS K̄ induce an equivalent Kripke structure
D(K̄), whose states are pairs of a state and a transition label.

Definition 3.11. Given an LKS K̄ = (S,AP,L,ACT ,→K̄), its associated
Kripke structure is D(K̄) = (D(S), AP ∪ACT , D(L), →D(K̄)), where:

• D(S) = {〈s,Λ〉 ∈ S × 2ACT | ∃s′ ∈ S. s Λ−−→K̄ s′}

• D(L)(〈s,Λ〉) = L(s) ∪ Λ

• 〈s,Λ〉 →D(K̄) 〈s′,Λ′〉 iff s Λ−−→K̄ s′ and 〈s′,Λ′〉 ∈ D(S).

Example 3.4. The path (π, α) in Example 3.2 for the dining philosophers
example corresponds to the following path π ∪ α in D(K̄(R, k)P):

〈[p(0, think) ‖ c(0) ‖ p(1, think) ‖ c(1)]E , {{ ′wake}}〉

−→ 〈[p(0, think) ‖ c(0) ‖ p(1, wake0) ‖ c(1)]E , ∅〉

−→ 〈[p(0, think) ‖ c(0) ‖ p(1, wake1)]E , {wake(0), { ′wake}}〉

−→ 〈[p(0, wait0) ‖ c(0) ‖ p(1, wake1)]E , ∅〉

−→ 〈[p(0, wait1) ‖ p(1, wake1)]E , {deadlock}〉 }}

where

D(LP)((π ∪ α)(0)) = {enabled(wake(0)), { ′wake}},

D(LP)((π ∪ α)(1)) = {enabled(wake(0))},

D(LP)((π ∪ α)(2)) = {enabled(wake(0)),wake(0), { ′wake}},

D(LP)((π ∪ α)(3)) = ∅, and D(LP)((π ∪ α)(i)) = {deadlock}, for i ≥ 4.

Notice that the union trace Traces(π) ∪ α in K̄(R, k)P is identical to the
corresponding trace Traces(π ∪ α) in D(K̄(R, k)P).

43

It is clear that each trace of D(K̄) is a union trace of K̄. There exists a
one-to-one correspondence between a path (π, α) of K̄ and a path π ∪ α of
D(K̄), where (π ∪ α)(i) = 〈π(i), α(i)〉 for each i ∈ N. Further, K̄ and D(K̄)
are equivalent in the sense of the satisfiability of a formula as follows.

Lemma 3.1. Given an LKS K̄ = (S,AP,L,ACT ,→K̄), an LTLR formula
ϕ over AP and ACT , and a set of initial states S0 ⊆ S, if any spatial action
pattern in ϕ is regarded as a state proposition of D(K̄), then:

K̄, S0 |= ϕ ⇐⇒ D(K̄),D(S)�S0 |= ϕ,

where D(S)�S0= (S0 × 2ACT) ∩ D(S).

Proof. It suffices to show that K̄, (π, α) |= ϕ iff D(K̄), π ∪ α |= ϕ for each
(π, α) of K̄. We can prove this by structural induction on ϕ. If ϕ is a
spatial action pattern δ, then K̄, (π, α) |= δ iff δ ∈ α(0). Equivalently,
δ ∈ L(π(0)) ∪ α(0) = D(L)(〈π(0), α(0)〉), since AP ∩ ACT = ∅. Thus,
D(K̄), π∪α |= δ. Similarly, if ϕ is a state proposition p, then K̄, (π, α) |= p iff
p ∈ L(π(0)) iff p ∈ L(π(0))∪α(0) = D(L)(〈π(0), α(0)〉) iff D(K̄), (π, α) |= p,
since AP ∩ ACT = ∅. The other cases follow easily from the induction
hypothesis. For example, K̄, (π, α) |= ©ϕ iff K̄, (π, α)1 |= ϕ by definition,
K̄, (π, α)1 |= ϕ iff D(K̄), (π ∪ α)1 |= ϕ by induction hypothesis, and finally,
D(K̄), (π ∪ α)1 |= ϕ iff D(K̄), π ∪ α |=©ϕ by definition.

In order to determine whether a Büchi automaton B¬ϕ accepts a union
trace of an LKS K̄ from a set of initial states S0 of K̄, we avoid the use of
D(K̄)[D(S)�S0] ×B¬ϕ directly, since it can produce a state-space blowup.6

Instead, we define a special state/event synchronous product K̄[S0]⊗B¬ϕ,
which advances to the next state only if both state labels and event labels
are accepted by the current transition of B¬ϕ.

Definition 3.12. Given an LKS K̄ = (S,AP,L,ACT ,→K̄), a set of initial
states S0 ⊆ S, and a Büchi automaton B = (Q,Q0, 2AP∪ACT , δ, F), the
state/event product of K̄ and B is the Büchi automaton

K̄[S0]⊗B = (S ×Q,S0 ×Q0, 2AP∪ACT , δK̄, S × F)

such that (s, b) L(s)∪Λ−−−−−→ (s′, b′) ∈ δK̄ iff s Λ−−→K̄ s′ and b
L(s)∪Λ−−−−−→ b′ ∈ δ.

The following lemma shows that the language emptiness problem for the
state/event product K̄ ⊗B is equivalent to that for D(K̄)×B.

6If an LKS K̄ has n states and m transitions, its associated Kripke structure D(K̄) has
O(n+m) states and m transitions.

44

Lemma 3.2. Given an LKS K̄ = (S,AP,L,ACT ,→K̄), a set of initial states
S0 ⊆ S, and a Büchi automaton B = (Q, Q0, 2AP∪ACT , δ, F), we have
L(K̄[S0]⊗B) = ∅ ⇐⇒ L(D(K̄)[D(S)�S0]×B) = ∅.

Proof. Let ρ = (L(s0), b0)(L(s1), b1)(L(s2), b2) . . . be a run of the state/event
product K̄[S0]⊗B. By definition:

• L(s0)L(s1)L(s2) . . . is a trace of K̄,

• b0b1b2 . . . ∈ L(B), and

• si Λi−−→K̄ si+1 and bi L(si)∪Λi−−−−−−→ bi+1 for each i ≥ 0.

Clearly, the union trace (L(s0) ∪ Λ0)(L(s1) ∪ Λ1)(L(s2) ∪ Λ2) . . . becomes
a trace of D(K̄) by definition, where 〈s0,Λ0〉 ∈ D(S) �S0 , and therefore
(L(s0) ∪ Λ0, b0)(L(s1) ∪ Λ1, b1)(L(s2) ∪ Λ2, b2) . . . ∈ L(D(K̄)[D(S)�S0]×B).
Conversely, let ρ̂ = (L(s0) ∪ Λ0, b0)(L(s1) ∪ Λ1, b1)(L(s2) ∪ Λ2, b2) . . . be a
run of D(K̄)[D(S)�S0]×B. By definition:

• (L(s0) ∪ Λ0)(L(s1) ∪ Λ1)(L(s2) ∪ Λ2) . . . is a trace of D(K̄),

• b0b1b2 . . . ∈ L(B), and

• (si,Λi)→D(K̄) (si+1,Λi+1) and bi L(si)∪Λi−−−−−−→ bi+1 for each i ≥ 0.

Notice that si Λi−−→K̄ si+1 for each i ≥ 0 by construction of D(K̄). Hence,
(L(s0), b0)(L(s1), b1)(L(s2), b2) . . . ∈ L(K̄[S0]⊗B) by definition.

As a consequence, for an LTLR formula ϕ, an LKS K̄, and a set of initial
states S0 of K̄, if B¬ϕ is a Büchi automaton for ¬ϕ constructed in exactly
the same way as in the LTL case, then K̄, S0 |= ϕ iff L(K̄[S0] ⊗B¬ϕ) = ∅.
Therefore, by the LKS construction associated to a rewrite theory R:

Theorem 3.2. Given an LTLR formula ϕ, a rewrite theory R = (Σ, E,R),
a support equational theory P, a state kind k ∈ Σ, and an initial state [t]E:

K̄(R, k)P , {[t]E} |= ϕ ⇐⇒ L(K̄(R, k)P [{[t]E}]⊗B¬ϕ) = ∅.

The cost of model checking an LTLR formula ϕ on a labeled Kripke structure
K̄ is O((n+m) ·2|ϕ|), where K̄ has n states and m transitions. The m factor
here is added since each transition needs to test the spatial action pattern in
ϕ, where K̄ may have several transitions with different labels between two
states. If there are no spatial action patterns in the formula ϕ, then the cost
is O(n · 2|ϕ|), exactly the same as for LTL model checking.

45

3.4 The Maude LTLR Model Checker

This section explains the design and user interface of the Maude LTLR
model checker, illustrated with the Maude specification in Example 2.10 for
the dining philosophers problem. Our tool provides an extensible way to
define generic spatial action patterns, besides the patterns in SP(R). The
tool is available at http://maude.cs.illinois.edu/tools/tlr.

3.4.1 Support Equational Theories

The Maude LTLR model checker extends the existing Maude LTL model
checker that declares a support equational theory for LTL model checking
in the predefined functional module SATISFACTION:

fmod SATISFACTION is
protecting BOOL . sorts State Prop .
op _|=_ : State Prop -> Bool .

endfm

In the Maude LTLR model checker, the action satisfaction operator |= is
also declared in the predefined functional module ACTION-SATISFACTION,
which defines sort Action for spatial action patterns:

fmod ACTION-SATISFACTION is
including PROOF-TERM . including SATISFACTION .
sort Action . op _|=_ : ProofTerm Action -> Bool .
eq P:ProofTerm |= P:ProofTerm = true .

endfm

The triple representation {t[2]p | ′l : θ} of a one-step proof term t[l(θ)]p
is declared in the predefined functional module PROOF-TERM. A quoted rule
label ′l is a constant of sort RuleName, which includes sort Qid for any
quoted identifier constants of the form ′id. The constant deadlock of sort
ProofTerm denotes the deadlock event:7

fmod PROOF-TERM is
protecting QID . including STATE-CONTEXT .
including STATE-SUBSTITUTION .
sorts ProofTerm RuleName . subsort Qid < RuleName .
op unlabeled : -> RuleName [ctor] .
op deadlock : -> ProofTerm [ctor] .
op {_|_:_} : StateContext RuleName StateSubstitution -> ProofTerm

[ctor] .
endfm

7Recall that K̄(R, k)P adds a self loop [t]E {deadlock}−−−−−−−→K̄ [t]E for a deadlock state [t]E .

46

http://maude.cs.illinois.edu/tools/tlr

Each spatial action pattern is then defined by equations using the above
constructs. For example, the syntax and semantics of the spatial action
patterns in SP(R) are both specified in the predefined functional module
SPATIAL-ACTION-PATTERN, where sort ActionPattern denotes action patterns
in SP(R) and sort BasicActionPattern denotes basic action patterns:

fmod SPATIAL-ACTION-PATTERN is
including ACTION-SATISFACTION .
sorts BasicActionPattern ActionPattern .
subsorts BasicActionPattern ProofTerm < ActionPattern < Action .
var CXT : StateContext . var R : RuleName .
var SUB SUB’ : StateSubstitution .

op {_} : RuleName -> BasicActionPattern .
op {_:_} : RuleName StateSubstitution -> BasicActionPattern .
op {_|_} : StateContext RuleName -> ActionPattern .
op top{_} : RuleName -> ActionPattern .
op top{_:_} : RuleName StateSubstitution -> ActionPattern .

eq {CXT | R : SUB} |= {R} = true .
eq {CXT | R : SUB ; SUB’} |= {R : SUB} = true .
eq {CXT | R : SUB} |= {CXT | R} = true .
eq {CXT | R : SUB ; SUB’} |= {CXT | R : SUB} = true .
eq {[] | R : SUB} |= top{R} = true .
eq {[] | R : SUB ; SUB’} |= top{R : SUB} = true .

endfm

A substitution is represented as a semicolon-separated set of assignments
of the form ′x\u. Since variables in rewrite rules can have any sort, an
assignment operator __ : Qid s → StateAssignment should be defined for
any variable of sort s in the left-sides of the rules. For that purpose, the
operator __ is declared as polymorphic in its second argument by using the
attribute poly(2) and the predefined sort Universal, so that the instance
operator of each sort s in R is automatically declared by Maude:

fmod STATE-SUBSTITUTION is
protecting QID . sorts StateSubstitution StateAssignment .
subsort StateAssignment < StateSubstitution .
op __ : Qid Universal -> StateAssignment [ctor poly(2)] .
op none : -> StateSubstitution [ctor] .
op _;_ : StateSubstitution StateSubstitution -> StateSubstitution

[ctor comm assoc id: none] .
eq A:StateAssignment ; A:StateAssignment = A:StateAssignment .

endfm

47

Similarly, the hole symbol 2 in context terms can have any of the sorts
of left-sides of the rules, because a rewrite can happen at any position in a
state term. However, unlike assignment operators, in this case we cannot
use the polymorphic operator declaration

op [] : -> Universal [ctor poly(0)] .

since then the extended theory will not protect the original model. Instead,
a context term of the form t[2]p is by default partially declared as follows,
where the constant [] denotes the hole symbol for sort State:

fmod STATE-CONTEXT is
including SATISFACTION . sort StateContext .
op [] : -> StateContext [ctor] .
op noContext : -> StateContext [ctor] .

endfm

For a rewrite theory R = (Σ, E,R), a full signature of context terms that
protects (Σ, E) can be automatically generated by a theory transformation.
Let Ω ⊆ Σ be the subsignature of constructors in which every ground term
in canonical form is an Ω-term. For each rule (l : q → r if cond) ∈ R, the
signature Context[R] extends Ω by adding incrementally:

• a hole constant 2 with a new sort Context$s, where q has sort s;

• for each operator f : b1 . . . bm → b in Ω, a set of operators:

f : Context$b1 b2 b3 . . . bm → Context$b

f : b1 Context$b2 b3 . . . bm → Context$b

f : b1 b2 Context$b3 . . . bm → Context$b

. . .

f : b1 b2 b3 . . . Context$bm → Context$b

where Context$b1, . . . ,Context$bm and Context$b are new sorts related
to each sort in the operator declaration (these operators guarantee
that each context term should contain only one hole symbol); and

• a subsort relation Context$s1 < Context$s2 if s1 is a subsort of s2, and
Context$s < StateContext if s is a subsort of State.

The signature Context[R] defines new sorts of context terms for all operators
in Ω. For example, if a term u has sort s ∈ Σ, a context term u[2]p has sort
Context$s. Note that Context[R] protects R, since any new constants and
operators are introduced with new sorts that are not included in R.

48

3.4.2 The Model Checker Interface

The main functionality of the Maude LTLR model checker is defined in
the predefined functional module LTLR-MODEL-CHECKER. An LTLR formula
has sort Formula, and is constructed by state propositions of sort Prop,
spatial action patterns of sort Action, and temporal logic operators such as
~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”), U
(“until”), and O (“next”). For LTLR model checking the function

modelCheck : State Formula ~> ModelCheckResult

takes an initial state and an LTLR formula, and returns either true—if
the formula is satisfied—or a counterexample, provided that the number of
reachable states from the initial state is finite, where:

sort ModelCheckResult .
subsort Bool < ModelCheckResult .
op counterexample : TransList TransList -> ModelCheckResult .

A counterexample for an LTLR formula is an infinite path consisting of
two transition lists, where the first one is a finite prefix and the second one
is a cycle that gives the rest of the infinite path:

sorts Transition TransList .
subsort Transition < TransList .
op {_,_} : State ProofTerm -> Transition [ctor] .
op nil : -> TransList [ctor] .
op __ : TransList TransList -> TransList [ctor assoc id: nil] .

Each transition is a pair {t, λ}, representing a one-step rewrite from the state
t to a next state with the one-step proof term λ. For example, the term
counterexample({t1, λ1} {t2, λ2} · · · {tm, λm}, {tm+1, λm+1} · · · {tn, λn}),
where m < n, represents the infinite path:

t1
λ1 // t2

λ2 // · · ·
λm−1 // tm

λm // tm+1
λm+1 // tm+2

λm+2 // · · ·
λn−1 // tn

λn

gg

Finally, the module expression CONTEXT[M] for a system module M—only
available in the Full-Maude interface—generates the declarations for context
terms using the theory transformation Context[R]. Such context terms are
essential for some spatial action patterns, such as top{ ′l} in SP(R). If a
signature for context terms is not given, the constant noContext will be
internally used, instead of actual context terms, to indicate that context
terms could not be created during model checking.

49

For the dining philosophers model in Example 2.10, we can declare the
state proposition eating(i)—meaning that the philosopher i is eating—in
the following function module, which also includes the predefined module
SPATIAL-ACTION-PATTERN for spatial action patterns in SP(R):

mod DINING-PHILOS-PROP is
protecting DINING-PHILOS .
including LTLR-MODEL-CHECKER .
including SPATIAL-ACTION-PATTERN .
subsort Conf < State . var CF : Conf . vars I : Nat .

op eating : Nat -> Prop [ctor] .
eq p(I, eat) || CF |= eating(I) = true .

op init : -> State . *** the initial state
eq init = p(0,think) || c(0) || p(1,think) || c(1) .

endm

By model checking the formula (�¬deadlock)→ 3eating(0), we can find
a counterexample in which only the philosopher 1 performs actions:8

Maude> red modelCheck(init, []~ deadlock -> <> eating(0)) .
result ModelCheckResult: counterexample(
{c(0) || c(1) || p(0, think) || p(1, think), {’wake : ’I \ 0}},
{c(0) || c(1) || p(0, wait0) || p(1, think), {’wake : ’I \ 1}}
{c(0) || c(1) || p(0, wait0) || p(1, wait0), {’grabF : ’I \ 1 ; ’J \ 0}}
{c(1) || p(0, wait0) || p(1, wait1), {’grabS : ’I \ 1 ; ’J \ 1}}
{p(0, wait0) || p(1, eat), {’stop : ’I \ 1}})

To avoid such unrealistic situation, we need suitable fairness assumptions.
For the dinning philosophers problem with 2 philosophers, we need the two
fairness assumptions in the following model checking command:

Maude> red modelCheck(init,
((<>[] enabled({’wake : ’I \ 0}) -> []<> {’wake : ’I \ 0}) /\
([]<> enabled({’grabF : ’I \ 0}) -> []<> {’grabF : ’I \ 0}))
-> ([]~ deadlock -> <> eating(0))) .

result Bool: true

In our tool the state proposition enabled(δ) for a spatial action pattern δ is
automatically declared (see Section 4.2). Notice that the deadlock freedom
property �¬deadlock is also necessary to prove eating(0), since there exists
a deadlock state in this system.

8Context terms are not displayed in the counterexample since no signature for context
terms was provided. Such a signature can be provided by using the module expression
CONTEXT[DINING-PHILOS] in the Full Maude interface (e.g., see Section A.1.4).

50

3.5 Case Study: the Bounded Retransmission Protocol

This section shows how complex requirements of a concurrent system can
be naturally expressed in LTLR. The bounded retransmission protocol is
an extension of the alternating bit protocol where a limit is placed on the
number of message transmissions [1]. Descriptions of this protocol such as
those given in [139] are quite complex due to the use of a state-based logic,
which forces the specification to encode action information in the state.
With LTLR this encoding completely disappears, leading to a much simpler
protocol specification. For example, a previous state-based rewriting logic
specification had 35 rewrite rules, but we specify here the same model with
only 14 rules and with an easier to understand state representation.
The bounded retransmission protocol is described as follows. At the

sender side the protocol requests a sequence of data elements d1, . . . , dn

(action Req) and communicates one of the confirmations:

• Sok: the file has been transferred successfully;

• Snok: the file has not been transferred completely; and

• Sdnk: the file may not have been transferred completely.

At the receiver side the protocol marks each correctly received datum with
one of the indications

• Rfst: the delivered datum is the first one;

• Rinc: the datum is an intermediate one;

• Rok: the datum is the last one and the file is completed; and

• Rnok: the connection with the sender is broken.

The specification in [139] is adapted from the untimed model in [1], and
our specification substantially simplifies it. The configuration is a tuple

〈StatusS ,FlagS ,ChannelS ,ChannelR,FlagR,StatusR〉,

where StatusS is the status of the sender, StatusR is the status of the receiver,
FlagS and FlagR are Boolean values used by the sender and the receiver for
synchronization purposes, and ChannelS and ChannelR are the two ordered
lossy channels through which the sender and the receiver communicate. Each
message is one of 0, 1, first, last, where first denotes the first datum and last
the last datum. Messages typically contain both data and sequence bits, but
such message data is abstracted away in this specification.

51

fmod BRP-SYNTAX is
protecting BOOL .
sorts Conf Sender Receiver Msg MsgL . subsort Msg < MsgL .
op <_,_,_,_,_,_> : Sender Bool MsgL MsgL Bool Receiver

-> Conf [ctor] .
op idle : -> Sender [ctor] . --- sender’s status
ops set snd acc : Msg -> Sender [ctor] .
op wait : -> Receiver [ctor] . --- receiver’s status
op rec : Msg -> Receiver [ctor] .
ops 0 1 first last : -> Msg [ctor] . --- messages
op nil : -> MsgL [ctor] .
op _;_ : MsgL MsgL -> MsgL [ctor assoc id: nil] .

endfm

The sender’s status is one of idle, snd(α) and acc(α), where snd(α)

means that the sender is sending a message α, and acc(α) indicates that
the sender gets an acknowledgement of α. The receiver can have status wait
or rec(α), where rec(α) denotes that the receiver gets a message α.

The behavior of the protocol is specified by rewrite rules as follows. The
client-side behavior is specified by the four rules req, snd, acc, and los. In
the req rule, the auxiliary status set(α) denotes that the sender is about
to send a message α, and it is equationally reduced to the state with status
snd(α) with one α sent. In the acc rule, the sender’s status is changed to
acc(α) only if the message α has arrived in the receiver’s channel.

rl [req]: < idle, A, nil, nil, false, R >
=> < set(first), false, nil, nil, false, R > .

rl [snd]: < snd(M), A, K, L, T, R >
=> < snd(M), A, K ; M, L, T, R > .

crl [acc]: < snd(M), A, K, M’ ; L, T, R >
=> < S, A, K, L, T, R >

if S := (if M == M’ then acc(M) else snd(M) fi) .
crl [los]: < snd(M), A, K, nil, T, R >

=> < idle, true, K, nil, T, R > if M =/= first .
eq < set(M), A, K, L, T, R > = < snd(M), A, K ; M, L, T, R > .

The following rules labeled with sel describe the nondeterministic choice of
a next message. The transfer of data is finished when the sender accepts the
message last and the sender’s status is initialized to idle.

rl [sel]: acc(first) => set(0) .
rl [sel]: acc(first) => set(last) . rl [sel]: acc(last) => idle .
rl [sel]: acc(0) => set(1) . rl [sel]: acc(0) => set(last) .
rl [sel]: acc(1) => set(0) . rl [sel]: acc(1) => set(last) .

52

The server-side behavior is specified by the three rules rec, ign, and nil. In
the rec rule, when a received datum is first, the server flag is set to true.

crl [rec]: < S, false, M ; K, L, T, R >
=> < S, false, K, L ; M, B, rec(M) >

if R =/= rec(M) /\ B := (if M == first then true else T fi) .
rl [ign]: < S, A, M ; K, L, T, rec(M) >

=> < S, A, K, L ; M, T, rec(M) > .
crl [nil]: < S, A, nil, L, T, rec(M) >

=> < S, A, nil, L, false, wait >
if M == last or A == true .

This protocol has an infinite number of states due to unbounded channels.
However, we can define the finite-state equational abstraction [139] (see
Section 5.3) by adding extra equations, and by adding extra rewrite rules to
keep the system coherent, where adjacent duplicate messages in the channels
are merged into a single message:

eq < S, A, KL ; M ; M ; K, L, T, R >
= < S, A, KL ; M ; K, L, T, R > .

eq < S, A, K, KL ; M ; M ; L, T, R >
= < S, A, K, KL ; M ; L, T, R > .

crl [acc]: < snd(M), A, K, M’ ; L, T, R >
=> < S, A, K, M’ ; L, T, R >

if S := if M == M’ then acc(M) else snd(M) fi .
crl [rec]: < S, false, M ; K, L, T, R >

=> < S, false, M ; K, L ; M, B, rec(M) >
if R =/= rec(M) /\ B := (if M == first then true else T fi) .

rl [ign]: < S, A, M ; K, L, T, rec(M) >
=> < S, A, M ; K, L ; M, T, rec(M) > .

The bounded retransmission protocol should satisfy the following system
requirements expressed in LTLR:

1. �(req → ©(¬req W (sok ∨ snok ∨ sdnk))): a request Req must be
followed by a confirmation before the next request;

2. �(rfst → (¬req W (rok∨rnok))): an Rfst indication must be followed
by one of the two indications Rok or Rnok before the beginning of a
new transmission (new request of a sender);

3. �(req → (¬sok W rok)): an Sok confirmation must be preceded by
an Rok indication; and

4. �(req → (¬rnok W (snok ∨ sdnk))): an Rnok indication must be
preceded by an Snok or Sdnk confirmation (abortion).

53

Events occurring in these formulas can be defined by (conditional) equations
in the following module BRP-CHECK:

mod BRP-CHECK is
protecting BRP-ABS . including LTLR-MODEL-CHECKER .
subsort Conf < State . var M : Msg .
var CXT : StateContext . var SUB : StateSubstitution .
ops req sok snok sdnk rfst rinc rok rnok : -> Action .
eq {CXT | ’req : SUB} |= req = true .
eq {CXT | ’acc : ’M \ last ;

’M’ \ last ; SUB} |= sok = true .
ceq {CXT | ’los : ’M \ M ; SUB} |= snok = true if M =/= last .
eq {CXT | ’los : ’M \ last ; SUB} |= sdnk = true .
eq {CXT | ’rec : ’M \ first ; SUB} |= rfst = true .

ceq {CXT | ’rec : ’M \ M ; SUB} |= rinc = true
if M == 0 or M == 1 .

eq {CXT | ’rec : ’M \ last ; SUB} |= rok = true .
ceq {CXT | ’nil : ’M \ M ; SUB} |= rnok = true if M =/= last .

endm

The following model checking command verifies the four LTLR properties
(122 system states and 328 transitions explored by this commend, while the
previous implementation [20] generates 283 states and 1034 transitions):

Maude> red modelCheck(< idle, false, nil, nil, false, wait >,
([](req -> O(~ req W(sok \/ snok \/ sdnk))))

/\ ([](rfst -> (~ req W(rok \/ rnok))))
/\ ([](req -> (~ sok W rok)))
/\ ([](req -> (~ rnok W(snok \/ sdnk))))) .

result Bool : true

3.6 Concluding Remarks

This chapter has shown that rewriting logic and LTLR are useful together
as a tandem of logics with tool support, equipped with an efficient model
checking algorithm, a suitable specification language, and an intuitive user
interface. After explaining the syntax and semantics of LTLR, we have
presented the automata-theoretic foundation of the Maude LTLR model
checker, and explained its support of language extensions for spatial action
patterns. The Maude LTLR model checker has been implemented at the
C++ level as an extension of the Maude system. As illustrated with several
case studies, the user interface of the Maude LTLR model checker provides
a convenient and succinct way of specifying spatial action patterns.

54

CHAPTER 4

MODEL CHECKING UNDER LOCALIZED FAIRNESS

This chapter1 presents a model checking algorithm to verify LTLR properties
under parameterized fairness assumptions. Fairness is an essential property
in model checking verification, but often the needed fairness assumptions
cannot be expressed as propositional temporal logic formulas because they
are parametric, that is, they correspond to universally quantified temporal
logic formulas. Such universal quantification is succinctly captured by the
notion of localized fairness; for example, fairness is localized to the object
name parameter in object fairness conditions. We have implemented our
algorithm within the Maude Fair LTLR model checker, the first tool we are
aware of that can deal with parameterized fairness assumptions.

4.1 Introduction

Fairness is an essential property in model checking, because many system
requirements do not hold unless appropriate fairness assumptions about the
system behavior are provided. LTLR is particularly relevant to fairness,
because fairness is a mixed property involving both state propositions and
events. Fairness cannot be directly specified in either purely state-based or
event-based logics, but it can be expressed in a simple and general way in
LTLR. For example, in its simplest form, strong fairness declares that some
system transitions infinitely often enabled are infinitely often taken, and
weak fairness says that some transitions continuously enabled after a certain
point are infinitely often taken. Enabledness is a state-based property, but
the taking of a transition is a paradigmatic example of an event.

1This chapter is based on the papers [18, 19, 22], joint work with José Meseguer.

55

To verify an LTLR property ϕ under fairness assumptions ψ1, . . . , ψn, we
can model check the implication (ψ1 ∧ · · · ∧ ψn) → ϕ, but not efficiently.
The problem is that LTLR model checking is based on associating a Büchi
automaton to the negation of the given formula (see Section 3.3.2); however,
constructing its associated Büchi automaton incurs an exponential blowup
which may be very large because of the fairness assumptions ψ1, . . . , ψn in
the formula (ψ1 ∧ · · · ∧ ψn) → ϕ [165]. For this reason, various model
checkers, such as PAT [158] and Maria [122], build in fairness assumptions
into their model checking algorithms.
However, what we often need in practice is not the fairness of transitions,

but a form of parameterized fairness in which fairness is localized to a possibly
infinite family of transition instances. A good example is that of object
fairness, where fairness is required for each object instance.2 This idea was
captured in rewriting logic with the notion of localized fairness [134]. As
explained in Section 2.2.3, a transition specified by a rule l : q −→ r if C
is parametric on the set X of variables in the rule, and fairness for the rule
l can be localized to a subset {xj1 , . . . , xjk} of X. For example, in object
fairness we localize it to the single variable o parameterizing the identity of
the object involved in the transition.
This is conceptually clear, but difficult to support at the model checking

level for at least three reasons: (i) fairness localized to variables xj1 , . . . , xjk
is actually a universally quantified first-order temporal logic formula of the
form ∀(xj1 , . . . , xjk) ϕ, whereas model checking works at the propositional
level; (ii) even if a system is finite-state, the number of actual instances of
the variables xj1 , . . . , xjk may be impossible to determine a priori without
exploring the entire state space (for example, object systems with dynamic
object creation); and (iii) even if one could determine all the instances, the
total number of fairness conditions generated for all instances may be large,
making the verification of properties under such localized fairness by direct
model checking of (ψ1 ∧ . . . ∧ ψn) → ϕ particularly hopeless. To the best
of our knowledge no solution to the problem of model checking properties
under such parameterized fairness assumptions was known until we proposed
and demonstrated a model checking algorithm for it in [18].

2E.g., in Example 2.5, the objects are philosophers having generic transitions (identified
by the grabF and grabS rules) to pick up a chopstick. It is not enough for such a transition
to be fair: we must require it to be fair when instantiated for each philosopher.

56

4.1.1 Main Contributions

First, this chapter presents a framework to verify LTLR properties under
parameterized fairness conditions, given by generalized strong and weak
fairness formulas of the forms:

(∀x) �3Φ→ �3Ψ, (∀x) 3�Φ→ �3Ψ,

where the number of system entities over which the parametrization ranges
can be unbounded3 and may change during execution. Our framework is
based on the notion of parameter abstraction to make explicit the fact that,
even though the domain of entities or parameters is infinite, only a finite
number of parameters are meaningful in a single state for fairness purposes.
For example, in concurrent object systems with dynamic object creation,
meaningful parameters are the objects in the state, and strong/weak fairness
is vacuously satisfied for the objects not existing in a system.4

Next, this chapter presents an on-the-fly LTLR model checking algorithm
that can handle universally quantified fairness formulas using parameter
abstraction. This algorithm is based on the emptiness checking algorithms
for a Streett automaton associated to the strong fairness conditions [76, 122],
but significantly adapted to directly deal with “dynamic” parameters. Its
computational complexity is linear in the number of fairness instances (recall
that the standard method that takes fairness as a premise of a property is
exponential in the number of strong fairness conditions).
Finally, the Maude LTLR model checker, introduced in Chapter 3, has

been extended to support verification of LTLR properties under localized
fairness assumptions. The work to implement this Maude Fair LTLR model
checker has been substantial and has involved non-trivial design decisions:
both the C++ implementation of the fair model checking algorithm and
the standard LTLR model checking algorithm are supported by the tool.
This is because, if no fairness assumptions are made, the second algorithm
offers greater efficiency. A convenient and succinct way to specify localized
fairness conditions by means of rule attributes has also been provided. To
the best of our knowledge, this is the first model checker that can verify
temporal logic properties under parameterized fairness assumptions.

3For finite-state systems the number is finite, but it may be impossible to determine
such a number from the initial state without exploring the entire state space.

4E.g., enabled(o) becomes false for all states if an object o does not exist in the system.
Therefore, 3�enabled(o)→ �3execute(o) is vacuously satisfied.

57

4.1.2 Related Work

Parameterization has long been considered as a way to describe fairness of
concurrent systems. The theorem proving of liveness properties commonly
involves parameterized fairness conditions, e.g., [150]. Fairness for modeling
languages is often parameterized, such as object/process fairness [98] and
actor fairness [5]. However, such fairness notions are parameterized only
by specific entities, depending on the system modeling language. Localized
fairness [134] was introduced as a unified notion to express different variants
of fairness, depending on the chosen system granularity level, but generalized
versions of strong and weak fairness were not discussed in [134]. This chapter
extends localized fairness to incorporate generalized strong/weak fairness
involving generic spatial action patterns, and answers the question of how
to model check LTLR properties under such localized fairness.
The typical method to model check a temporal logic property ϕ under

parameterized fairness is to build the conjunction of corresponding instances
of fairness, and to apply either a standard model checking algorithm for the
reformulated formula fair → ϕ, or a specialized model checking algorithm
to directly handle fairness, such as [76, 104, 122, 115]. The first approach
is inadequate for fairness in general, since the computational complexity is
exponential in the number of strong fairness conditions, while the other is
linear. Also, compiling such a formula fair → ϕ into a Büchi automaton
is often not feasible in reasonable time [165]. There are several tools using
the specialized algorithms, such as PAT [158] and Maria [122]. Our tool is
related to the second approach, but it does not require pre-translation of
parameterized fairness, and can handle dynamic fairness instances.

4.1.3 Structure of the Chapter

This chapter is organized as follows. Section 4.2 first introduces localized
fairness specifications and presents a logical framework for parameterized
fairness, including parameter abstraction. Section 4.3 then describes the
on-the-fly model checking algorithm under parameterized fairness, based on
Streett automata. Section 4.4 explains the user interface for conveniently
specifying localized fairness in the Maude Fair LTLR model checker, and
shows some experimental results. Finally, Section 4.5 presents a case study,
and Section 4.6 presents some concluding remarks.

58

4.2 Localized Fairness in Quantified LTLR

Fairness properties of a rewrite theory R can be easily expressed by patterns
of rewrite events, i.e., by spatial action patterns in LTLR. Given a ground
spatial action pattern δ, the strong fairness condition and the weak fairness
condition are respectively expressed by the LTLR formulas

�3enabled(δ)→ �3δ 3�enabled(δ)→ �3δ

where a special state proposition enabled(δ) is operationally5 defined using
the function symbol enabled : Action→ Prop as follows.

Definition 4.1. Given a computable rewrite theory R = (Σ, E ∪B,R) and
a spatial action pattern δ, the state proposition enabled(δ) holds in exactly
those states [canE/B(t)]B from which there is a canonical one-step rewrite
λ : [canE/B(t)]A −→R [canE/B(t′)]A such that the spatial action pattern δ

corresponds to λ (i.e., λ |= δ).

4.2.1 Localized Fairness Specifications

Localized fairness specifications make it possible to define parameterized
fairness conditions associated to spatial action patterns containing variables.

Definition 4.2. Given a rewrite theory R = (Σ, E,R), its localized fairness
specification is a pair of finite sets (J ,F), whose elements are parametric
spatial action patterns of the form

δ(y1, . . . , yk) ∈ J ∪ F .

The set J stands for parameterized weak fairness conditions and F stands
for parameterized strong fairness conditions.

The localized fairness condition specified by δ(y1, . . . , ym) ∈ J ∪ F means
that for each ground instance θ(δ(y1, . . . , ym)) of δ(y1, . . . , ym) with a ground
substitution θ, the corresponding one-step rewrite satisfies the desired weak
or strong fairness requirements. Thanks to the expressive power of spatial
action patterns, this localized fairness specification is quite general, so that
many different notions of fairness, including object/process fairness [98] and
actor fairness [5], can all be expressed in a unified way [134].

5That is, for efficiency reasons, the meaning of enabled(δ) is defined at the meta-level,
not using equations. In our tool, the enabled function is implemented at the C++ level
as a special function symbol in Core Maude.

59

A localized fairness specification (J ,F) of a rewrite theory R defines a
fair infinite paths in the corresponding LKS K̄(R, k)P , where the spatial
action patterns in J ∪ F are defined by the support equational theory P.

Definition 4.3. An infinite path (π, α) in K̄(R, k)P is J ,F–fair iff each
ground instance of every localized fairness condition in J ∪F is satisfied on
the path (π, α) in K̄(R, k)P , that is:

• for each δ(y) ∈ J and ground substitution θ, where y = (y1, . . . , ym),
the weak fairness condition of θ(δ(y)) holds, i.e.:

K̄(R, k)P , (π, α) |= 3�enabled(θ(δ(y)))→ �3θ(δ(y)),

• for each δ(y) ∈ F and ground substitution θ, where y = (y1, . . . , ym),
the strong fairness condition of θ(δ(y)) holds, i.e.:

K̄(R, k)P , (π, α) |= �3enabled(θ(δ(y)))→ �3θ(δ(y)).

An LTLR formula ϕ is then fairly satisfied in R from an initial state [t]E
under a localized fairness specification (J ,F), denoted by

K̄(R, k)P , [t]E |=J∪F ϕ,

iff K̄(R, k)P , (π, α) |= ϕ holds for each J ,F-fair infinite path (π, α) starting
from [t]E such that π(0) = [t]E .
Each localized fairness condition δ(y) ∈ J ∪ F can be expressed by an

equivalent universally quantified LTLR formula of the form ∀y ϕ, where ϕ
is quantifier-free, and vars(ϕ) ⊆ y. If [y�TΣ] denotes the set of all ground
substitutions θ : y → TΣ, then the satisfaction of ∀y ϕ is defined by:

K̄(R, k)P , (π, α) |= ∀y ϕ ⇐⇒ (∀θ ∈ [y�TΣ]) K̄(R, k)P , (π, α) |= θ(ϕ).

The strong and weak localized fairness conditions for a parametric spatial
action pattern δ(y) ∈ J ∪ F can then be respectively expressed by the
following universally quantified LTLR formulas:

∀y �3enabled(δ(y))→ �3δ(y), ∀y 3�enabled(δ(y))→ �3δ(y),

where the meaning of the parametric state proposition enabled(δ(y)) is again
operationally defined so that a ground instance enabled(θ(δ(y))) is satisfied
exactly on those states [canE/B(t)]A such that θ(δ(y)) is enabled.

60

Example 4.1. Consider the parameterized fairness conditions for the dining
philosophers problem in Example 2.8:

• if a philosopher can continuously wake up beyond a certain point (by
the wake rule), then the philosopher must wake up infinitely often; and

• if a philosopher can grab a chopstick infinitely often (by the grabF and
grabS rules), then the philosopher must grab it infinitely often.

Using the related spatial action patterns { ′wake : ′i\i}, { ′grabF : ′i\i}, and
{ ′grabS : ′i\i}, where the variable i denotes each philosopher’s identity, the
fairness conditions can be expressed as the localized specification:

J = { { ′wake : ′i\i} }, F = { { ′grabF : ′i\i}, { ′grabS : ′i\i} }.

Example 4.2 (Fault-Tolerant Client-Server Communication [136]). There
are a number of clients and servers, where each client C sends a query N to a
server S to receive an answer, and the server returns the answer f(S,C,N)

of the query using a function f. The communication environment is faulty
in the sense that messages can be duplicated or lost.
The configuration is a multiset of clients, servers, and messages, with the

empty multiset null. A client is represented as a term [C,S,N,W] with C

the client’s name, S a server’s name, N a number representing a query, and
W either a number representing an answer or nil if the answer has not yet
been received. A server is represented as a term [S] with the name S, and
a message is represented as a term I <- {J,N} with I the receiver’s name,
J the sender’s name, and N a number. The following rewriting rules define
the behavior of the system:

rl [req] : [C,S,N,nil] => [C,S,N,nil] S <-{C,N} .
rl [reply]: S <-{C,N} [S] => [S] C <-{S,f(S,C,N)} .
rl [rec] : C <-{S,M} [C,S,N,nil] => [C,S,N,M] .
rl [dupl] : I <-{J,M} => I <-{J,M} I <-{J,M} .
rl [loss] : I <-{J,M} => null .

The fairness assumptions needed to prove the liveness property 3{′rec}—
meaning that some client will eventually receive an answer—are: (i) weak
fairness of the rule req for each client C, (ii) strong fairness of the rule reply
for each server S and client C, and (iii) strong fairness of the rule rec for each
client C, and are naturally expressed as the localized fairness specification:

J = { {′req : ′C\C} }, F = { {′reply : ′S\S; ′C\C}, {′rec : ′C\C} }.

61

4.2.2 Parameterized Labeled Kripke Structures

For a universally quantified LTLR formula ∀y ϕ, the state propositions and
the spatial action patterns in ϕ are parametric on the relevant entities, e.g.,
process names, messages, or other data structures. Therefore, we allow a
parametric state proposition p(x1, . . . , xn) ∈ AP(X) and a parametric spatial
action pattern δ(y1, . . . , ym) ∈ ACT (X) over an infinite set of variables X .

Definition 4.4. A labeled Kripke structure K̄ = (S,AP(C),L,ACT (C),→K̄)
is parameterized over a set of parameters C iff there exist a set AP(X) of
parametric state propositions and a set ACT (X) of parametric spatial action
pattern over an infinite set of variables X such that X ∩ C = ∅, where:

AP(C) = {p(a1, . . . , an) | a1, . . . , an ∈ C, p(x1, . . . , xn) ∈ AP(X)},

ACT (C) = {δ(b1, . . . , bm) | b1, . . . , bm ∈ C, δ(x1, . . . , xm) ∈ ACT (X)}.

There is an implicit relation between a set C of parameters and a set S of
states derived from an LKS K̄ in terms of a definable set. Let [x�C] denote
the set of all substitutions θ : x→ C.

Definition 4.5. Given K̄ = (S,AP(C),L,ACT (C),→K̄), the definable set
of a parametric state proposition p(x) ∈ AP(X) for a state s ∈ S is

Ds(p(x)) = {θ ∈ [x�C] | θ(p(x)) ∈ L(s)},

that is, the set of substitutions θ that make their instances θ(p(x)) satisfied
in s. Similarly, the definable set of a parametric spatial action pattern
δ(x) ∈ ACT (X) for a transition s Λ−−→K̄ s′ is

DΛ(δ(x)) = {θ ∈ [x�C] | θ(δ(x)) ∈ Λ}.

We define the set of universally quantified LTLR formulas over AP(X),
ACT (X), and C as the set of formulas of the form ∀x ϕ with vars(ϕ) ⊆ X ,
where ϕ is a propositional formula over AP(C ∪ X) and ACT (C ∪ X).

Definition 4.6. Given a parameterized LKS K̄ over a set of parameters C,
for a path (π, α) and a universally quantified LTLR formula ∀x ϕ:

K̄, (π, α) |= ∀x ϕ ⇐⇒ (∀θ ∈ [x�C]) K̄, (π, α) |= θ(ϕ)

For a set of initial states S0 ⊆ S, K̄, S0 |= ∀x ϕ iff K̄, (π, α) |= ∀x ϕ for each
path (π, α) starting from π(0) ∈ S0.

62

Although the size of the parameter set C can be infinite, in practice, the
number of parameters C that occur in a state is typically finite. For example,
in a concurrent object system that dynamically creates a new object for each
step, the total number of objects—in the system’s infinite state space—
would be infinite, but the number of processes in a single state is always
finite. In particular, for a transition s Λ−−→K̄ s′, if the sets L(s), L(s′), and Λ
are finite, then the definable sets for any state propositions and spatial action
patterns are finite. This is captured by the finite instantiation property.

Definition 4.7. A parameterized LKS K̄ = (S,AP(C),L,ACT (C),→K̄) over
a set of parameters C satisfies the finite instantiation property (FIP) iff for
every transition s Λ−−→K̄ s′, the sets Ds(p(x)) for each p(x) ∈ AP(X) and
DΛ(δ(x)) for each δ(x) ∈ ACT (X) are always finite.

In general, a spatial action pattern δ(y) for a rewrite theory R may not
satisfy FIP. For example, consider the spatial action pattern ge(N) defined
by the conditional equation in Maude:

var CXT : StateContext . var SUB : StateSubstitution .
var R : RuleName . var N : Nat .

cep {CXT | R : SUB} |= ge(N) = true if N > 0 .

Obviously, there exist infinitely many relevant parameters for any transition,
namely, all natural numbers. In this case, the variable N is unbounded with
respect to the pattern {CXT | R : SUBST} for the spatial action pattern
ge(N), so that it can be instantiated to any values that satisfy the condition.

However, for a finite-state rewrite theory R and any basic action pattern
of the form l(y) = {′l : ′y1\y1; . . . ; ′ym\ym}, both l(y) and its corresponding
enabled proposition enabled(l(y)) satisfy FIP.

Definition 4.8. A rewrite theory R = (Σ, E,R) is called finite-state iff the
set of reachable states ReachR([t]E) = {[u]E ∈ TΣ,k | [t]E −→∗R [u]E} for
each initial state [t]E ∈ TΣ,k is finite.

Each one-step rewrite satisfies only one ground instance of l(y), since each
ground instance θ(l(y)) is satisfied by a one-step proof term t[l(θ)]. Similarly,
each ground instance θ(enabled(l(y))) is satisfied in a state [t]E iff there exists
a one-step rewrite from [t]E satisfying θ(l(y)). Since a finite-state rewrite
theory has only finitely many one-step rewrites from a state, each state [t]E
of R satisfies only finitely many ground instances of enabled(l(y)).

63

4.2.3 Sufficient Conditions for FIP

Furthermore, for a finite-state rewrite theory R = (Σ, E ∪ B,R), there
exist simple conditions for parametric state propositions and spatial action
patterns to satisfy FIP as follows (formally stated in Theorem 4.1 below).

1. For any equation involving parametric state propositions (resp., spatial
action patterns), the variables in the proposition pattern should be
bounded to the state pattern (resp., the proof term pattern).

2. To avoid an infinite number of ground proposition instances due to
the equations in E, the patterns in such equations should already be
in E/B-canonical form, and furthermore be strongly irreducible.

Definition 4.9. A term t is called strongly irreducible with respect to E
modulo B iff for every canonical ground substitution θ : X → CanΣ,E/B, the
term θ(t) is in E/B-canonical form, i.e., θ(t) =B canE/B(θ(t)).

Note that these conditions are not necessary conditions: even if there are
unbounded variables in parametric propositions, the conditions in related
equations may restrict the number of relevant parameters to be finite. For
example, consider the spatial action pattern ge2 (N) given by the equation
{CXT | R : SUBST} |= ge2 (N) = true if N ≥ 0 ∧N < 10. There is only a
finite number of relevant parameters 0, . . . , 9, although N is unbounded.
Any spatial action pattern δ(y) ∈ SP(R) satisfies these two conditions

whenever the pattern δ(y) is strongly irreducible, and therefore satisfies FIP.
Every equation for SP(R) in Section 3.4.1 has a strongly irreducible proof
term pattern and no unbounded variables. For instance, in the equations

eq {CXT | R : SUB ; SUB’} |= {R : SUB} = true .
eq {CXT | R : SUB ; SUB’} |= {CXT | R : SUB} = true .

the pattern {CXT | R : SUB ; SUB′} includes all the variables in the
equations and is strongly irreducible. Moreover, if R is finite-state, then
enabled(δ(y)) also satisfies FIP for strongly irreducible δ(y) ∈ SP(R). By
definition, each ground instance θ(enabled(δ(y))) is satisfied in a state [t]E∪B
iff there is a canonical one-step rewrite γ : [canE/B(t)]B −→R [canE/B(t′)]B
such that γ |= θ(δ(y)). Since δ(y) satisfies FIP, there is only a finite number
of such substitutions θ, and a finite-state rewrite theory has only finitely
many one-step rewrites from each state. Consequently:

Corollary 4.1. Given a finite-state and computable rewrite theory R, a
strongly irreducible spatial action pattern δ(y) in SP(R) and its enabled
proposition enabled(δ(y)) satisfy FIP.

64

We now precisely specify the sufficient conditions for FIP in the following
theorem. Two terms t, u ∈ TΣ(X) are E ∪ B-unifiable iff there is a ground
substitution θ : X → TΣ such that θ(t) =E∪B θ(u).

Theorem 4.1 (Sufficient Conditions for FIP). Given a finite-state rewrite
theory R = (Σ, E∪B,R) and a support equational theory P = (Π, D), where
both R and (Σ ∪Π, E ∪B ∪D,R) are computable:

• a parametric state proposition p ∈ TΣ∪Π(X)Prop satisfies FIP, if for
each matching equation (t |= p′ = t′ if cond) ∈ D such that p and
p′ are E ∪D ∪ B-unifiable, both t and p are strongly irreducible with
respect to E ∪D modulo B, and vars(p′) ⊆ vars(t).

• a parametric spatial action pattern δ ∈ TΣ∪Π(X)Action satisfies FIP, if
for each matching equation (γ |= δ′ = t′ if cond) ∈ D such that δ and
δ′ are E ∪D ∪ B-unifiable, both γ and δ are strongly irreducible with
respect to E ∪D modulo B, and vars(δ′) ⊆ vars(γ).

Proof. Let us first consider a parametric state proposition p ∈ TΣ∪Π(X)Prop.
Since (Σ ∪ Π, E ∪ B ∪ D,R) is computable, we can always consider terms
in E ∪ D-canonical form modulo B. By definition, each ground instance
θ(p) ∈ TΣ∪Π is satisfied in a state [canE/B(u)]B iff:

canE/B(u) |= canE∪D/B(θ(p)) =E∪D∪B canE∪D/B(true),

which holds only if there are a matching equation (t |= p′ = t′ if cond) ∈ D
and a canonical substitution ϑ : vars(t) ∪ vars(p′) → CanΣ∪Π,E∪D/B with
canE∪D/B(ϑ(t)) =B canE∪D/B(u) and canE∪D/B(ϑ(p′)) =B canE∪D/B(θ(p)).

By the assumptions, the theory (Σ ∪ Π, E ∪ B ∪D) protects (Σ, E ∪ B),
and vars(p′) ⊆ vars(t). Therefore, we have ϑ ∈ [vars(t)�CanΣ,E/B]. Also,
since t is strongly irreducible with respect to E ∪ D modulo B, we have
canE∪D/B(ϑt) =B canE∪D/B(u) ⇐⇒ ϑ(canE/B(t)) =B canE/B(u). Because
we assume that R is computable, there exists only a finite number of such
B-matching substitutions ϑ for each [canE/B(u)]B.

Next, since p is strongly irreducible with respect to E ∪ D modulo B,
canE∪D/B(ϑp′) =B canE∪D/B(θp) ⇐⇒ canE∪D/B(ϑp′) =B θ(canE∪D/B(p)).
Again, since (Σ∪Π, E∪A∪D,R) is computable, there exists a finite number
of such B-matching substitutions θ for each canE∪D/B(ϑp′). Consequently,
there exists a finite number of relevant canonical ground substitutions θ
with respect to a parametric state proposition p for each state [u]E∪B, i.e., p
satisfies FIP. The case for a parametric spatial action pattern δ is similar.

65

4.3 Parameterized Fair Model Checking Algorithm

As explained in Section 3.3.2, the model checking problem for an LTLR
formula ϕ on a rewrite theory R can be characterized by automata-theoretic
techniques applied to the associated LKS K̄(R, k)P together with the Büchi
automaton B¬ϕ for the negated formula ¬ϕ.

However, the model checking algorithm for a localized fairness condition
on R, namely, a universally quantified LTLR formula ∀x ϕ, is nontrivial,
since such a variable quantification can range over an infinite set C of actual
parameters: for each variable y ∈ x, the set of ground terms having the
variable’s sort in R. We cannot directly use the LKS K̄(R, k)P for model
checking ∀x ϕ. However, the satisfaction relation for ∀x ϕ can be efficiently
determined on a finite LKS satisfying the finite instantiation property (FIP).

4.3.1 Parameter Abstraction

By definition, if an LKS K̄ over a set of parameters C satisfies FIP, then
for each transition s Λ−−→K̄ s′, there are only finitely many “relevant” ground
substitutions that appear in the finite definable sets Ds(p(x)) and DΛ(δ(x)).
Therefore, we can define an abstraction of each substitution θ : x→ C with
respect to the definable sets, by collapsing the cofinite6 complement set of
each definable set into the abstract substitution ⊥x : x→ {⊥} with a fresh
new constant ⊥, which intuitively denotes any “irrelevant” parameters that
never appear in such a definable set.

Example 4.3. For a parametric state proposition p(x) ∈ AP(X) and a
state s0 ∈ S, the abstraction %s0,p(x)(θ) of each substitution θ is defined by:
%s0,p(x)(θ) = ⊥x if θ /∈ Ds0(p(x)), and %s0,p(x)(θ) = θ if θ ∈ Ds0(p(x)). The
extended parameter set C⊥ = C ∪ {⊥} then implies the parameterized LKS

K̄⊥ = (S,AP(C⊥),L,ACT (C⊥),→K̄)

that naturally extends K̄ = (S,AP(C),L,ACT (C),→K̄). In this case, we can
easily see that for any substitution θ and path (π, α) such that π(0) = s0:

K̄, (π, α) |= θ(p(x)) ⇐⇒ K̄⊥, (π, α) |= %s0,p(x)(θ)(p(x))

since ⊥ is a fresh new constant and therefore ⊥x(p(x)) /∈ L(s0) (recall that
Ds(p(x)) = {θ ∈ [x�C] | θ(p(x)) ∈ L(s)} by definition).

6A set is cofinite iff the complement of the set is finite.

66

This abstraction function can be extended to any LTLR formula using a
natural partial ordering � ⊆ [x�C⊥]2 in the abstract domain [x�C⊥].

Definition 4.10. For two abstract substitutions θ1, θ2 ∈ [x�C⊥], let:

θ1 � θ2 ⇐⇒ θ1(x) = ⊥ or θ1(x) = θ2(x) for each x ∈ x.

If θ1 and θ2 has a common upper bound (that is, θ1 � θ and θ2 � θ for
some θ ∈ [x�C⊥]), then their least upper bound θ1∨θ2 is defined as follows,
where c ∨ ⊥ = ⊥ ∨ c = c ∨ c = c for each c ∈ C:

(θ1 ∨ θ2)(x) = θ1(x) ∨ θ2(x) for each x ∈ x,

For two abstract substitutions θ1 and θ2 with possibly different domains,
where θ1(x) ∨ θ2(x) is defined for x ∈ dom(θ1) ∩ dom(θ2), the combined
substitution θ1 ⊕ θ2 is defined by:

θ1 ⊕ θ2(x) =

θ1(x) if x ∈ dom(θ1)− dom(θ2)

θ2(x) if x ∈ dom(θ2)− dom(θ1)

θ1(x) ∨ θ2(x) otherwise.

The parameter abstraction %(π,α),ϕ(θ) ∈ [vars(ϕ) � C⊥] of a substitution θ

can then be defined by extending the base cases for p(x) and δ(x) as follows.

Definition 4.11. Given a parameterized LKS K̄ over a set of parameters
C, the abstraction function %(π,α),ϕ : [vars(ϕ)�C⊥]→ [vars(ϕ)�C⊥] for an
LTLR formula ϕ and a path (π, α) is inductively defined by:

%(π,α),p(x)(θ) = if θ ∈ Dπ(0)(p(x)) then θ else ⊥x fi

%(π,α),δ(x)(θ) = if θ ∈ Dα(0)(δ(x)) then θ else ⊥x fi

%(π,α),¬ϕ(θ) = %(π,α),ϕ(θ)

%(π,α),ϕ1∧ϕ2(θ) = %(π,α),ϕ1(θ|vars(ϕ1))⊕ %(π,α),ϕ2(θ|vars(ϕ2))

%(π,α),©ϕ(θ) = %(π,α)1,ϕ(θ)

%(π,α),ϕ1Uϕ2(θ) =
∨
i≥0

%(π,α)i,ϕ1(θ|vars(ϕ1)) ⊕
∨
j≥0

%(π,α)j ,ϕ2(θ|vars(ϕ2))

Notice that both %(π,α),ϕ1∧ϕ2(θ) and %(π,α),ϕ1Uϕ2(θ) are well-defined since
%(π,α),ϕ(θ) � θ always holds by construction. For a universally quantified
LTLR formula ∀x ϕ, the satisfaction relation of ϕ on a path (π, α) for an
abstract substitution ϑ = %(π,α),ϕ(θ) is naturally defined in the extended
LKS K̄⊥ = (S,AP(C⊥),L,ACT (C⊥),→K̄), where C⊥ = C ∪ {⊥}.

67

Lemma 4.1. Given a parameterized LKS K̄ over a set of parameters C, a
universally quantified LTLR formula ∀x ϕ, and a path (π, α):

(∀θ ∈ [x�C]) K̄, (π, α) |= θ(ϕ) ⇐⇒ K̄⊥, (π, α) |= %(π,α),ϕ(θ)(ϕ).

Proof. We prove the following generalized version of the lemma by structural
induction on ϕ: for any substitution ϑ ∈ [x�C⊥] with %(π,α),ϕ(θ) � ϑ � θ,
K̄, (π, α) |= θ(ϕ) ⇐⇒ K̄⊥, (π, α) |= ϑ(ϕ).
– ϕ = p(x): K̄, (π, α) 6|= θ(p(x)) iff θ /∈ Dπ(0)(p(x)) iff %(π,α),p(x)(θ) = ⊥x,
and for any substitution ⊥x � ϑ ≺ θ, K̄⊥, (π, α) 6|= ϑ(p(x)), since ⊥ is a
fresh new constant and therefore ⊥x(p(x)) /∈ L(π(0)).

– ϕ = δ(x): K̄, (π, α) 6|= θ(δ(x)) iff θ /∈ Dα(0)(δ(x)) iff %(π,α),δ(x)(θ) = ⊥x,
and for any substitution ⊥x � ϑ ≺ θ, K̄⊥, (π, α) 6|= ϑ(δ(x)).

– ϕ = ¬ϕ′: K̄, (π, α) |= θ(¬ϕ′) iff K̄, (π, α) 6|= θ(ϕ′). By definition of %,
%(π,α),¬ϕ′(θ) = %(π,α),ϕ′(θ). By induction hypothesis, K̄, (π, α) 6|= θ(ϕ′) iff
K̄⊥, (π, α) 6|= ϑ(ϕ′) iff K̄⊥, (π, α) |= ϑ(¬ϕ′).

– ϕ = ©ϕ′: K̄, (π, α) |= θ(©ϕ′) iff K̄, (π, α)1 |= θ(ϕ′). By definition,
%(π,α),©ϕ′(θ) = %(π,α)1,ϕ′(θ). By induction hypothesis, K̄, (π, α)1 |= θ(ϕ′)
iff K̄⊥, (π, α)1 |= ϑ(ϕ′) iff K̄⊥, (π, α) |= ϑ(©ϕ′).

– ϕ = ϕ1 ∧ ϕ2: K̄, (π, α) |= θ(ϕ1 ∧ ϕ2) iff K̄, (π, α) |= θ|vars(ϕ1)(ϕ1) and
K̄, (π, α) |= θ|vars(ϕ2)(ϕ2). Let v1 = vars(ϕ1) and v2 = vars(ϕ2). By
definition of %(π,α),ϕ1∧ϕ2 , we can easily see that:

%(π,α),ϕ1(θ|v1) � %(π,α),ϕ1∧ϕ2(θ)|v1 , %(π,α),ϕ2(θ|v2) � %(π,α),ϕ1∧ϕ2(θ)|v2 .

That is, for any %(π,α),ϕ1∧ϕ2(θ) � ϑ � θ, %(π,α),ϕ1(θ|v1) � ϑ|v1 � θ|v1 and
%(π,α),ϕ2(θ|v2) � ϑ|v2 � θ|v2 hold. Therefore, by induction hypothesis,
K̄, (π, α) |= θ|v1(ϕ1) and K̄, (π, α) |= θ|v2(ϕ2), iff K̄, (π, α) |= ϑ|v1(ϕ1) and
K̄, (π, α) |= ϑ|v2(ϕ2), iff K̄, (π, α) |= ϑ(ϕ1 ∧ ϕ2).

– ϕ = ϕ1Uϕ2: Let v1 = vars(ϕ1) and v2 = vars(ϕ2). Similarly, by definition
of %(π,α),ϕ1Uϕ2 , we can easily see that for any i ≥ 0:

%(π,α)i,ϕ1(θ|v1) � %(π,α),ϕ1Uϕ2(θ)|v1 , %(π,α)i,ϕ2(θ|v2) � %(π,α),ϕ1Uϕ2(θ)|v2 .

That is, for any %(π,α),ϕ1Uϕ2(θ) � ϑ � θ, %(π,α)i,ϕ1(θ|v1) � ϑ|v1 � θ|v1 and
%(π,α)i,ϕ2(θ|v2) � ϑ|v2 � θ|v2 hold. Therefore, by induction hypothesis,
K̄, (π, α)i |= θ|v1(ϕ1) iff K̄⊥, (π, α)i |= ϑ|v1(ϕ1), and K̄, (π, α)j |= θ|v2(ϕ2)
iff K̄⊥, (π, α)j |= ϑ|v2(ϕ2), for each i, j ≥ 0. And this implies that
K̄, (π, α) |= θ(ϕ1Uϕ2) iff K̄⊥, (π, α) |= ϑ(ϕ1Uϕ2).

68

On the other hand, as a dual of %(π,α),ϕ, we can also define a concretization
function of an abstraction substitution ϑ ∈ [x�C⊥]. Let the “glueing” I1�I2

of two sets I1 and I2 of concrete substitutions be defined by

I1 � I2 = {θ | θ|dom(I1) ∈ I1, θ|dom(I2) ∈ I2}.

Definition 4.12. Given a parameterized LKS K̄ over a set of parameters
C, if [x�C]�ϑ denotes the set {θ ∈ [x�C] | θ � ϑ}, then the concretization
function I(π,α),ϕ : [vars(ϕ) → C⊥] → 2[vars(ϕ)→C] for an LTLR formula ϕ
and a path (π, α) is inductively defined by:

I(π,α),p(x)(ϑ) = if ϑ ∈ Dπ(0)(p(x)) then ϑ else [x�C]�ϑ −Dπ(0)(p(x)) fi

I(π,α),δ(x)(ϑ) = if ϑ ∈ Dα(0)(δ(x)) then ϑ else [x�C]�ϑ −Dα(0)(δ(x)) fi

I(π,α),¬ϕ(ϑ) = I(π,α),ϕ(ϑ)

I(π,α),ϕ1∧ϕ2(ϑ) = I(π,α),ϕ1(ϑ|vars(ϕ1))� I(π,α),ϕ2(ϑ|vars(ϕ2))

I(π,α),©ϕ(ϑ) = I(π,α)1,ϕ(ϑ)

I(π,α),ϕ1Uϕ2(ϑ) =
⋂
i≥0

I(π,α)i,ϕ1(ϑ|vars(ϕ1)) �
⋂
j≥0

I(π,α)j ,ϕ2(ϑ|vars(ϕ2))

It is easy to check that for each concrete substitution θ ∈ I(π,α),ϕ(ϑ), ϑ � θ
and %(π,α),ϕ(ϑ) = %(π,α),ϕ(θ). The abstraction of a concrete substitution
does always exist, but there may be no concretization for some abstract
substitution. For instance, given a path (π, α) such that Dπ(i)(p(x)) = {i}
for each i ≥ 0, if C = N, then %(π,α),3p(x)(θ) = θ for any θ ∈ [{x}�N], but
I(π,α),3p(x)(⊥x) = ∅. However, for a finite LKS satisfying FIP that has only
a finite set of states and a finite set of transitions, each abstract substitution
has a corresponding concrete substitution (provided C is an infinite set).

Lemma 4.2. Given a finite parameterized LKS K̄ satisfying FIP over a
set of parameters C, a universally quantified LTLR formula ∀x ϕ, and an
abstract substitution ϑ ∈ [x�C⊥], for each path (π, α), I(π,α),ϕ(ϑ) 6= ∅.

Proof. It suffices to show, by structural induction on ϕ, that for each variable
x ∈ vars(θ), I(π,α),ϕ(ϑ)|{x} is cofinite if ϑ(x) = ⊥, and the singleton {ϑ(x)}
otherwise. When ϕ = p(x) or ϕ = δ(x), it is obvious by definition since
K̄ satisfies FIP. The case of ϕ = ϕ1 ∧ ϕ2 comes from the fact that the
intersection of two cofinite sets is cofinite. For ϕ1Uϕ2, it is enough to
mention that: (i) the set of suffixes {(π, α)i | i ≥ 0} is finite when K̄ is
finite, and (ii) a finite intersection of cofinite sets is cofinite. The other cases
are clear by definition and the induction hypothesis.

69

Consequently, for a finite LKS K̄ satisfying FIP, we can determine the
satisfaction of ∀x ϕ by using a (possibly small) finite set R of substitutions.

Theorem 4.2. Given a finite parameterized LKS K̄ satisfying FIP over a
set of parameters C, a universally quantified LTLR formula ∀x ϕ, and a path
(π, α), for any set %(π,α),ϕ([x�C]) ⊆ R ⊆ [x�C⊥] of substitutions:

K̄, (π, α) |= ∀x ϕ ⇐⇒ (∀ϑ ∈ R) K̄⊥, (π, α) |= ϑ(ϕ).

Proof. First, K̄, (π, α) |= ∀x ϕ iff K̄, (π, α) |= θ(ϕ) for each θ ∈ [x�C], and
by Lemma 4.1, iff K̄⊥, (π, α) |= ϑ(ϕ) for each ϑ ∈ %(π,α),ϕ([x�C]). That is,
K̄, (π, α) |= ∀x ϕ iff (∀ϑ ∈ %(π,α),ϕ([x � C])) K̄⊥, (π, α) |= ϑ(ϕ). Next, by
Lemma 4.2, if ϑ ∈ [x� C⊥] − %(π,α),ϕ([x� C]), then there exists a concrete
substitution θ ∈ [x � C] such that %(π,α),ϕ(ϑ) = %(π,α),ϕ(θ), which implies
K̄⊥, (π, α) |= ϑ(ϕ) iff K̄, (π, α) |= θ(ϕ).

Such a path-realized set R satisfying %(π,α),ϕ([x�C]) ⊆ R ⊆ [x�C⊥] can
be easily constructed from a given path (π, α). For two sets I1 and I2 of
substitutions, let I1 ⊕ I2 = {θ1 ⊕ θ2 | θ1 ∈ I1, θ2 ∈ I2} (recall that θ1 ⊕ θ2 is
the combined substitution of θ1 and θ2, as defined in Definition 4.10).

Definition 4.13. Given a parameterized LKS K̄ over a set of parameters
C and a universally quantified LTLR formula ∀x ϕ, the path-realized set
R(π,α),ϕ ⊆ [vars(ϕ)�C⊥] for a path (π, α) is defined by:

R(π,α),p(x) = Dπ(0)(p(x)) ∪ {⊥x}

R(π,α),δ(x) = Dα(0)(δ(x)) ∪ {⊥x}

R(π,α),¬ϕ = R(π,α),ϕ

R(π,α),ϕ1∧ϕ2 = R(π,α),ϕ1 ⊕R(π,α),ϕ2

R(π,α),©ϕ = R(π,α)1,ϕ

R(π,α),ϕ1Uϕ2 =
⋃
i≥0

R(π,α)i,ϕ1 ⊕
⋃
j≥0

R(π,α)j ,ϕ2

Notice that R(π,α),ϕ is guaranteed to be finite if the underlying LKS K̄ is
finite and satisfies FIP. Since R(π,α),ϕ is the aggregation of all possible values
of %(π,α),ϕ, by Theorem 4.2, we have the following localization lemma, stating
that R(π,α),ϕ is a complete set of abstract substitutions.

Lemma 4.3. Given a finite parameterized LKS K̄ satisfying FIP over C, a
universally quantified LTLR formula ∀x ϕ, and a path (π, α):

(∀θ ∈ [x�C],∃ϑ ∈ R(π,α),ϕ) K̄, (π, α) |= θ(ϕ) ⇐⇒ K̄⊥, (π, α) |= ϑ(ϕ).

70

4.3.2 Automata-based Characterization

The satisfiability of a universally quantified LTLR formula ∀x ϕ for a finite
LKS K̄ satisfying FIP is now reduced to the satisfiability of ϑϕ on the LKS
K̄⊥ for each path-realized substitution ϑ ∈ R(π,α),ϕ. To model check a
propositional temporal formula φ under parameterized fairness assumptions
∀y1 ψ1, . . . ,∀ym ψm, we can just consider the formula (ψ̂1 ∧ · · · ∧ ψ̂m)→ φ,
where ψ̂i is the conjunction of all path-realized instances of ψi. This method
can also be applied to verify a more general class of parameterized LTLR
formulas ∀x ϕ. However, it is not on-the-fly, since constructing such a
formula requires to traverse the entire (reachable) state space. Furthermore,
the exponential blowup in generating the Büchi automaton for the formula
(ψ̂1 ∧ · · · ∧ ψ̂m)→ φ can easily make such a generation unfeasible.

We can however have an efficient on-the-fly algorithm to model check a
formula ϕ under parameterized fairness assumptions of the forms

(∀y) �3Φ→ �3Ψ, (∀y) 3�Φ→ �3Ψ,

where Φ and Ψ are Boolean formulas with no temporal operators and their
atoms are state propositions or spatial action patterns. The satisfaction of
such a parameterized fairness formula ∀y ψ does not vary if we skip finitely
many steps of a path. Therefore, by Lemma 4.3, we can consider only the
set Rinf

(π,α),ψ of infinitely often path-realized substitutions, given by:

Rinf
(π,α),ψ = {ϑ ∈ R(π,α),ψ | ϑ ∈ R(π,α)i,ψ for infinitely many i ∈ N},

which is identical to R(π,α)N ,ψ for a sufficiently large number N ∈ N by
which all substitutions with finite occurrences are skipped. Accordingly:

Corollary 4.2. Given a finite LKS K̄ satisfying FIP over C, a parameterized
fairness formula ∀y ψ, and a path (π, α), for any Rinf

(π,α),ψ ⊆ R ⊆ [x�C⊥],
K̄, (π, α) |= ∀x ψ iff (∀ϑ ∈ R) K̄⊥, (π, α) |= ϑ(ψ).

Therefore, from a set of parameterized fairness formulas, we can construct
an equivalent set G of propositional fairness formulas, by instantiating each
parameterized fairness formula ∀x ψ with the path-realized substitutions in
Rinf
ψ , the union of Rinf

(π,α),ψ for each path (π, α) in K̄. Since a weak fairness
formula 3�Φ → �3Ψ can be expressed as an equivalent strong fairness
formula �3True → �3(¬Φ ∨ Ψ), we can regards G as a set of strong
fairness formulas. Such strong fairness conditions can be incorporated into
the acceptance conditions of a transition-based Streett automaton.

71

Definition 4.14. A Streett automaton is a 5-tuple S = (Q,Q0, P,∆,F),
where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, P is an
alphabet of transition labels, ∆ ⊆ Q×P ×Q is a labeled transition relation,
and F ⊆ 2∆×∆ is an acceptance condition.

A run σ = q0
l0−−→ q1

l1−−→ q2
l2−−→ · · · is accepted by S, where q0 ∈ Q0, iff

for each pair (G,H) ∈ F , whenever σ has transitions in G infinitely many
times, σ has transitions in H infinitely many times.

Definition 4.15. Given an LKS K̄ = (S,AP,L,ACT ,→K̄), a set of initial
states S0 ⊆ S of K̄, and a set of propositional strong fairness formulas
G = {�3Φi → �3Ψi | 1 ≤ i ≤ f}, we can construct the fair Streett
automaton SG(K̄[S0]) = (S, S0, 2AP]ACT ,∆,FG) such that:7

∆ = {s L(s)]Λ−−−−−→ s′ | s Λ−−→K̄ s
′}

FG = {(∆Φi ,∆Ψi) | 1 ≤ i ≤ f}, where ∆Φ = {s B−−→ s′ ∈ ∆ | B |= Φ}.

Each path (π, α) of an LKS K̄ is in one-to-one correspondence with the run
π(0) L(π(0))]α(0)−−−−−−−−−→ π(1) L(π(1))]α(1)−−−−−−−−−→ π(2) L(π(2))]α(2)−−−−−−−−−→ · · · of the Streett
automaton SG(K̄[S0]). Also, (π, α) satisfies all fairness conditions in G
iff the corresponding run of (π, α) is accepted by SG(K̄[S0]). Therefore,
to verify an LTLR formula ϕ under parameterized fairness conditions, if
B¬ϕ = (Q, Q0, 2AP]ACT , δ, F),8 then we can make use of the product
Streett automaton SG(K̄[S0]) ×B¬ϕ = (S × Q,S0 × Qo, 2AP]ACT ,∆δ,FGF),
where (s, b) L(s)]Λ−−−−−→ (s′, b′) ∈ ∆δ iff s L(s)]Λ−−−−−→ s′ ∈ ∆ and b L(s)]Λ−−−−−→ b′ ∈ δ,
and FGF = {(G× δ,H × δ) | (G,H) ∈ FG} ∪ {(∆× δ,∆× F)}.

Theorem 4.3. Given a finite LKS K̄ satisfying FIP, an LTLR formula
ϕ, and a set G of parameterized fairness formulas, there exists a Streett
automaton S = SG(K̄[S0]) ×B¬ϕ such that L(S) = ∅ ⇐⇒ K̄, S0 |=G ϕ,
G = {ϑ(ψ) | ∀y ψ ∈ G , ϑ ∈ Rinf

ψ }, and |S| = O(|K̄| · 2|ϕ|).

It is worth noting that without parameter abstraction, a naive selection
of such instantiated fairness conditions does not guarantee the equivalence
with the parameterized fairness conditions. For example, in a concurrent
object system, the fairness formula (∀x) �3¬enabled(x) → �3execute(x)
is always false, since execute(o) is false for any “nonexistent” object o in the
system. But using only the existing objects in the system, their instantiated
formulas can all be true if such objects are always enabled.

7B |= Φ is defined inductively as follows: B |= p iff p ∈ B, B |= δ iff δ ∈ B, B |= ¬Φ
iff B 6|= Φ, and B |= Φ1 ∧ Φ2 iff B |= Φ1 and B |= Φ2, where p ∈ AP and δ ∈ ACT .

8We here consider a transition-based Büchi automaton B [66] in which F ⊆ δ is a set
of accepting transitions, instead of accepting states.

72

findFairSCC(Q, Q0, ∆)
2 while there is a reachable state q ∈ Q from Q0 that has not been visited do
3 S := computeNextSCC(Q, q, ∆);
4 if fairnessSatisfied(S) then
5 return S
6 else if S is maximal and contains bad transitions then
7 QS := the set of states in S;
8 ΛS := the set of bad transitions for unsatisfied acceptance conditions in S;
9 QS

0 := the set of states that occur in ΛS;
10 mark each state in QS as unvisited;
11 return findFairSCC(QS, {q} ∪QS

0 , ∆− ΛS) unless ⊥
12 end if
13 end while;
14 return ⊥;

Figure 4.1: Streett Emptiness Checking Algorithm for S = (Q,Q0, P,∆,F)

4.3.3 On-The-Fly Model Checking Algorithm

This section presents an on-the-fly model checking algorithm to verify an
LTLR formula ϕ of an LKS K̄ under parameterized fairness assumptions,
based on checking the emptiness of the product Streett automaton

S = SG(K̄[S0])×B¬ϕ.

To check the emptiness of the Streett automaton S, the basic idea is to find a
reachable strongly connected component (SCC) satisfying all the acceptance
conditions of S [83]. An acceptance condition (Φi,Ψi) is satisfied in a SCC
S iff whenever S contains a transition s1 B−−→ s2 such that B |= Φi, there
exists some transition s′1 B′−−→ s′2 ∈ S such that B′ |= Ψi. If some (Φi,Ψi) is
not satisfied in S, then there exists some bad transitions of S that satisfy
Φi ∧ ¬Ψi and therefore prevent the satisfaction of (Φi,Ψi).
The emptiness checking algorithm specified in Fig. 4.1 is to find a SCC

with no bad transitions. The computeNextSCC (Q, q,∆) function in Line 3
identifies each SCC S in the graph (Q, ∆) containing the state q, which can
be implemented by using any on-the-fly algorithm to find a SCC, such as
Tarjan’s algorithm [161] or Couvreur’s algorithm [66]. If S satisfies all the
acceptance conditions (Line 4), then we can generate a counterexample given
by a fair cycle from S using breadth-first search [122]. Otherwise, S must
include some bad transitions. If S is a maximal SCC (MSCC) so that there
exists no other SCC strictly containing S, then the whole S is traversed
again, except for the bad transitions ΛS (Line 11), which leads to dividing
S into multiple smaller subcomponent with no such bad transitions.

73

Theorem 4.4. Given a Streett Automaton S = (Q,Q0, P,∆,F), assuming
the correctness of an underlying SCC finding algorithm, if there exists a
reachable nonempty SCC satisfying F , then findFairSCC (Q,Q0,∆) finds it.

Proof. Suppose that there exists a nonempty SCC T ∈ (Q,∆) satisfying
all the acceptance conditions in F and being reachable from Q0. Because
the underlying SCC finding algorithm is correct, T is a subcomponent of a
MSCC S = (QS,∆S) given by computeNextSCC (Q, q,∆) with a reachable
state q from Q0. Furthermore, since T does not contain any bad transitions
ΛS of S, we have T ⊆ (QS,∆S − ΛS). This means that whenever we
meet findFairSCC (QS, {q} ∪ QS

0 ,∆ − ΛS) in Line 11, T is contained in
(QS,∆S − ΛS) and is reachable from {q} ∪QS

0 .

In order to make this algorithm on-the-fly under parameterized fairness
conditions, we have to check fairnessSatisfied(S) in Line 4 using only states
and transitions in S, without generating all instantiated fairness conditions
for the entire system. Given parameterized fairness formulas ∀xi ψi, with
ψi = �3Φi → �3Ψi,9 since Φi and Ψi have no temporal operators:

R(π,α)k,Φi =
⊕

p(y)∈Φi

(Dπ(k)(p(y)) ∪ {⊥y})⊕
⊕

δ(y)∈Φi

(Dα(k)(δ(y)) ∪ {⊥y}).

Therefore, for any path (π, α) whose infinite suffix is included in S, the
infinitely often path-realized set Rinf

(π,α),ψi is a subset of the set RS,ψi :

⋃
s Λ−−→K̄ s′∈S

⊕

p(y)∈Φi

(Ds(p(y)) ∪ {⊥y})⊕
⊕

δ(y)∈Φi

(DΛ(δ(y)) ∪ {⊥y})⊕

⊕
p(y)∈Ψi

(Ds(p(y)) ∪ {⊥y})⊕
⊕

δ(y)∈Ψi

(DΛ(δ(y)) ∪ {⊥y})

Thanks to Corollary 4.2, we only need to check fairness instances of ψi by
RS,ψi to determine the satisfaction of ∀xi ψi. That is, fairnessSatisfied(S)
can be computed on-the-fly by using only states and transitions in S.

Given a finite LKS K̄ satisfying FIP, an LTLR formula ϕ, and a set G

of parameterized fairness formula, the time complexity of the algorithm is
O(|G | · f · |K̄| · 2|ϕ|), where f = maxS,ψi∈G RS,ψi is the maximum number
of the path-realized substitutions for a parameterized fairness formula of a
single MSCC in the system, bounded by the total number of infinitely often
path-realized substitutions. The space complexity is also exponential in |ϕ|,
since in the worst case the whole state space can be a single SCC maintained
by the underlying Streett emptiness checking algorithm.

9Recall that 3�Φi → �3Ψi ≡ �3True → �3(¬Φi ∨Ψi).

74

4.4 The Maude Fair LTLR Model Checker

This section presents the Maude Fair LTLR model checker,10 developed as
an extension of the Maude LTLR model checker in Chapter 3. Our tool has
comparable performance to other explicit-state model checkers such as Spin
[108] and Pat [158], and is the first tool we are aware of which can model
check LTLR properties under localized fairness assumptions.

4.4.1 The Model Checker Interface

The Maude Fair LTLR model checker extends the predefined system module
LTLR-MODEL-CHECKER (see Section 3.4.2) that defines the main functionality
of the LTLR model checker. In particular, for LTLR model checking under
localized fairness assumptions, the function

modelCheckFair : State Formula FairnessSet ~> ModelCheckResult

takes an initial state, an LTLR formula, and a semicolon-separated set of
strong/weak fairness conditions, and returns either true—if the formula is
satisfied—or a counterexample. Each fairness condition is a (parametric)
term of sort Fairness of the forms:

fair(δ(y)), just(δ(y)), fair : Φ(y) => Ψ(z), just : Φ(y) => Ψ(z),

where δ(y) is a spatial action pattern, and Φ(y) and Ψ(z) are any Boolean
formulas without temporal operators, involving (possibly parametric) state
propositions and spatial action patterns. Fairness conditions fair(δ(y)) and
just(δ(y)), respectively, are shorthands for the fairness formulas

(∀y) �3enabled(δ(y))→ �3δ(y) (∀y) 3�enabled(δ(y))→ �3δ(y).

For example, the following command returns the model checking result of the
formula �¬deadlock → 3eating(0) under the given parameterized fairness
assumptions for the dining philosophers example in Section 3.4.2:

Maude> red modelCheckFair(init, []~ deadlock -> <> eating(0),
just({’wake : ’I \ I:Nat}) ;
fair({’grabF : ’I \ I:Nat}) ;
fair({’grabS : ’I \ I:Nat})) .

result Bool: true
10The tool is available at http://maude.cs.illinois.edu/tools/tlr.

75

http://maude.cs.illinois.edu/tools/tlr

Likewise, fairness conditions fair : Φ(y) => Ψ(z) and just : Φ(y) => Ψ(z),
respectively, are shorthands for the strong and weak fairness formulas:

(∀y ∪ z) �3Φ(y)→ �3Ψ(z), (∀y ∪ z) 3�Φ(y)→ �3Ψ(z).

They can be useful when some fairness conditions cannot be expressed by
rule annotations.11 The Maude syntax for fairness conditions is as follows:

sorts Fairness FairnessType .
ops fair just : -> FairnessType .
op _:_=>_ : FairnessType Formula Formula -> Fairness [ctor] .

ops fair just : Action -> Fairness .
eq fair(A:Action) = fair : enabled(A:Action) => A:Action .
eq just(A:Action) = just : enabled(A:Action) => A:Action .

sort FairnessSet . subsort Fairness < FairnessSet .
op noFairness : -> FairnessSet [ctor] .
op _;_ : FairnessSet FairnessSet

-> FairnessSet [ctor comm assoc id: noFairness] .

In our tool, localized fairness assumptions with basic action patterns can
be simply declared by rule annotations, and can be applied for LTLR model
checking using the Full Maude interface. A localized fairness specification
(J ,F) of a system module is given by a metadata attribute metadata "..."

for each rule, which contains a semicolon-separated list of fairness items. For
a rule l : q −→ r if cond, a fairness item just(x1, . . . , xn) declares the basic
action pattern {′l : ′x1\x1; . . . ; ′xn\xn} in the weak fairness specification
J , where x1, . . . , xn ∈ vars(q). Similarly, a fairness item fair(x1, . . . , xn)
declares the basic action pattern {′l : ′x1\x1; . . . ; ′xn\xn} in the strong
fairness specification F . For example, the localized fairness specification
(J = { { ′wake : ′I\I} },F = { { ′grabF : ′I\I}, { ′grabS : ′I\I} }) for the
dining philosophers model in Example 4.1 can be succinctly represented by
the metadata rule attributes as follows:

rl [wake]: p(I,think) => p(I,wait0) [metadata "just(I)"] .
crl [grabF]: p(I,wait0) || c(J) => p(I,wait1)

if adj(I,J) = true [metadata "fair(I)"] .
crl [grabS]: p(I,wait1) || c(J) => p(I,eat)

if adj(I,J) = true [metadata "fair(I)"] .
rl [stop]: p(I,eat) => p(I,think) || c(lc(I)) || c(rc(I)) .

11We may have objects a, b, c, d, and e, but we may only want to specify fairness
requirements for a, c, and e, but not for b and d. Or Φ(y) and Ψ(z) may not correspond
to the fairness requirements for a rule application and may specify other fairness properties.

76

The Full Maude interface provides several commands for LTLR model
checking under localized fairness specifications. Given a state t, an LTLR
formula ϕ, and a localized fairness specification (J ,F) declared using rule
attributes, the parameterized-fair model checking command

(pfmc t |= ϕ .)

model checks ϕ from the initial state t under the parameterized fairness
assumptions (J ,F). For the dining philosophers example, the following
command returns the model checking result of �¬deadlock → 3eating(0)
under the above localized fairness specification:

Maude> (pfmc init |= []~ deadlock -> <> eating(0) .)
ltlr model check under localized fairness in DINING-PHILOS-PROP:
init |= []~ deadlock -> <> eating(0)

result Bool :
true

There also exists a model checking command (mc t |= ϕ .) that does not
consider a localized fairness specification by rule annotations.
In addition, each model checking command allows the user to specify

additional fairness conditions as follows, which can be useful when some
fairness conditions cannot be expressed by rule annotations:

(pfmc t |= ϕ under FairnessSet .)

(mc t |= ϕ under FairnessSet .)

Notice that the Full Maude command (mc t |= ϕ under FairnessSet .)

and the Core Maude command ‘red modelCheck(t,ϕ,FairnessSet) .’ are
equivalent to each other. E.g., for the dining philosophers example:

Maude> (mc init |= []~ deadlock -> <> eating(0) under
just({’wake : ’I \ I:Nat}) ;
fair({’grabF : ’I \ I:Nat}) ;
fair({’grabS : ’I \ I:Nat}) .)

ltlr model check in DINING-PHILOS-PROP :
init |= <> answer(b)

under fairness :
just({’wake : ’I \ I:Nat}) ;
fair({’grabF : ’I \ I:Nat}) ;
fair({’grabS : ’I \ I:Nat})

result Bool :
true

77

Fairness N Weak Only (False) Strong/Weak (True)
States Time States Time

Maude
6 913 < 0.1 5777 1.8
7 2418 0.1 24475 11.5
8 11092 0.9 103681 77.6

Pat
6 1596 1.0 18101 3.9
7 5718 5.1 69426 16.1
8 21148 33.5 260998 79.0

Spin
6 672 < 0.1

> 30 minutes7 2765 0.2
8 9404 0.8

Table 4.1: Dining philosophers for the property 2¬deadlock → 3eating(1)

4.4.2 Experimental Results

In this section we compare the performance of the Maude Fair LTLR model
checker with two other explicit-state model checkers Pat [158] and Spin
[108]. Since they only support unparameterized fairness, the comparison
with those tools used a model with unparameterized fairness assumptions.
We used the classical dining philosophers problem described in Example 2.5,
which requires both strong and weak fairness conditions to verify the liveness
property 2¬deadlock → 3eating(1). This model is specified as the Maude
model in Example 2.10, as the following Promela model for Spin:
bit fork[N];
proctype phil(int id) {

think: atomic {fork[id] == 0 -> fork[id] = 1; }
one: atomic {fork[(id+1)%N] == 0 -> fork[(id+1)%N] = 1; }
eat: fork[(id+1)%N] = 0; fork[id] = 0; goto think;

}

and as the following CSP model for Pat (borrowed from the Pat manual):
Phil(i) = get.i.(i+1)%N -> get.i.i -> eat.i

-> put.i.(i+1)%N -> put.i.i -> Phil(i);
Fork(x) = get.x.x -> put.x.x -> Fork(x)

[] get.(x-1)%N.x -> put.(x-1)%N.x -> Fork(x);
College() = ||x:{0..N-1}@(Phil(x) || Fork(x));

Table 4.1 shows the verification results, where “N” denotes the number
of philosophers and “Time” is the running time in seconds. The experiment
was conducted on an Intel Core 2 Duo 2.66 GhZ with 8GB RAM running
Mac OS X 10.6. We can observe that in the weak-fairness cases, our tool is
comparable to Spin, and for the strong/weak fairness cases, it shows similar
performance as Pat. For Spin, we had to encode strong fairness conditions
into the LTL formula since Spin only supports weak fairness.

78

4.5 Case Study: the Evolving Dining Philosophers

This section shows how annotated rewrite theories can naturally specify
localized fairness assumptions (see Appendix A.1 for more examples). The
evolving dining philosophers problem [117] is similar to the classical dining
philosophers problem, described in Example 2.5. However, in the evolving
version, a philosopher can join or leave the table, so that the number of
philosophers can change dynamically. Therefore, it can be difficult to specify
exact fairness conditions before exploring the entire (reachable) state space,
because we cannot know how many philosophers will appear, but the fairness
conditions depend on each philosopher in the system.
In this model, a philosopher is represented as a term ph(I, S, C) with

I the philosopher’s id, S the philosopher’s status, and C the number of
chopsticks held. A philosopher holding two chopsticks is considered to be
always eating. Likewise, a chopstick with id I is represented as a term
stk(I). The configuration of the system is described by a set of philosophers
and chopsticks, built by an associative-commutative set union operator _;_.
The state of the system is represented as a triple < P, N, CF > of sort PState,
where P is a global counter regarding the dynamic behavior of the system,
N is the current number of philosophers, and CF is a set of philosophers and
chopsticks. The signature is defined by the following functional module:

fmod PHILO-SYNTAX is
protecting NAT . sorts Philo Status Chopstick .
op ph : Nat Status Nat -> Philo [ctor] .
ops think hungry : -> Status [ctor] .
op stk : Nat -> Chopstick [ctor] .
sorts Conf PState . subsorts Philo Chopstick < Conf .
op none : -> Conf [ctor] .
op _;_ : Conf Conf -> Conf [ctor comm assoc id: none] .
op <_,_,_> : Nat Nat Conf -> PState [ctor] .

endfm

With a fixed number N of philosophers, the behavior of philosophers is
given by the following system module that also declares the localized fairness
specification (J = {{′wake : ′I\I}}, F = {{′grab : ′I\I}}), meaning that:
(i) if a philosopher I is continuously able to wake up, then the philosopher
must wake up infinitely often, and (ii) if a philosopher I can grab a chopstick
infinitely often, then the philosopher must grab a chopstick infinitely many
times. The function left(I) returns the chopstick’s id on the left-hand side
of the philosopher I, and the function right(I,N) returns the chopstick’s
id on the right-hand side of the philosopher I:

79

mod PHILO-STATIC is
protecting PHILO-SYNTAX .
vars P N C : Nat . var I J : NzNat . var CF : Conf .
op left : Nat -> Nat . op right : Nat Nat -> Nat .
eq left(I) = I . eq right(I, N) = s(I rem N) .
rl [wake]: ph(I,think,0) => ph(I,hungry,0) [metadata "just(I)"] .

crl [grab]: < P, N, ph(I,hungry,C) ; stk(J) ; CF >
=> < P, N, ph(I,hungry,C + 1) ; CF >

if J == left(I) or J == right(I,N) [metadata "fair(I)"] .
rl [stop]: < P, N, ph(I,hungry,2) ; CF >

=> < P, N, ph(I,think,0) ;
stk(left(I)) ; stk(right(I,N)) ; CF > .

endm

We now specify the dynamic behavior of philosophers in the evolving
dining philosopher problem. Although there is no limit to the number of
philosophers in the original problem, we can give an unpredictable bound
using the Collatz conjecture [67]. The counter P in the state symbolizes
a philosophical problem, and philosophers keep thinking the problem by
changing the number P to: (i) 3 · P + 1 for P odd, or (ii) P/2 for P even.
For the current number N of philosophers, new philosophers can join the
group only if P is divided by 4 · N, or N is a multiple of 3.12 No more
philosophers can join after the number P eventually goes to 1. We assume
that only the last philosopher can leave the group for simplicity. To keep
consistency, whenever a philosopher joins or leaves the table, the related
chopsticks should not be held by another philosopher.

mod PHILO-DYNAMIC is
protecting PHILO-STATIC . vars P N C : Nat .
op collatz : Nat -> Nat . vars I J : NzNat . var CF : Conf .
eq collatz(P)
= if P rem 2 == 0 then (P quo 2) else (3 * P + 1) fi .

crl [solve]: < P, N, ph(I,think,0) ; CF >
=> < collatz(P), N, ph(I,think,0) ; CF > if P > 1 .

crl [join] : < P, N, ph(N,think,0) ; CF >
=> < P, s(N), ph(N,think,0) ;

ph(N + 1,think,0) ; stk(N + 1) ; CF >
if (P rem (4 * N) == 0) or (N rem 3 == 0) .

crl [leave]: < P, N, CF ; ph(N,think,0) ; stk(N) >
=> < P, N - 1, CF > if N > 2 .

endm

12These conditions make the total number of philosophers more unpredictable. The
second condition is needed because any number P in a Collatz sequence cannot be a
multiple of 3 unless P is the initial number.

80

The following system module PHILO-CHECK declares the state proposition
eating(I), where eating(I) is satisfied if the philosopher I is eating. The
initial state init describes the case of 2 philosophers with the global counter
97, which generates the longest Collatz sequence (taking 118 steps before
reaching 1) for any starting number less than 100.

mod PHILO-CHECK is
protecting PHILO-DYNAMIC . including SATISFACTION .
subsort PState < State .
vars P N : Nat . var I : NzNat . var CF : Conf .

op eating : Nat -> Prop [ctor] .
eq < P, N, ph(I,hungry,2) ; CF > |= eating(I) = true .

op init : -> State .
eq init
= < 97, 2, ph(1,think,0) ; stk(1) ; ph(2,think,0) ; stk(2) > .

endm

We are interested in verifying the formula �(¬deadlock → 3eating(1)).
Without fairness assumptions, the model checker generates the following
counterexample in which only the philosopher 2 performs actions while the
other philosopher keeps idle and no new philosopher joins:

Maude> (mc init |= [] ~ deadlock -> <> eating(1) .)
ltlr model check in PHILO-CHECK :
init |= []~ deadlock -> <> eating(1)

result ModelCheckResult :
counterexample(
{< 97,2,stk(1); stk(2); ph(1,think,0); ph(2,think,0)>,
{’solve : ’I \ 1 ; ’N \ 2 ; ...}}
{< 292,2,stk(1); stk(2); ph(1,think,0); ph(2,think,0)>,
{’solve : ’I \ 1 ; ’N \ 2 ; ...}}
...
{< 1,2,stk(1); stk(2); ph(1,think,0); ph(2,think,0)>,
{’wake : ’I \ 1}}
,
{< 1,2,stk(1); stk(2); ph(1,hungry,0); ph(2,think,0)>,
{’wake : ’I \ 2}}
{< 1,2,stk(1); stk(2); ph(1,hungry,0); ph(2,hungry,0)>,
{’grab : ’I \ 2 ; ’J \ 1 ; ...}}
{< 1,2,stk(2); ph(1,hungry,0); ph(2,hungry,1)>,
{’grab : ’I \ 2 ; ’J \ 2 ; ...}}
{ < 1,2,ph(1,hungry,0); ph(2,hungry,2)>,
{’stop : ’I \ 2 ; ’N \ 2 ; ...}})

81

However, when we assume the localized fairness specification given in the
rule attributes, the model checker can verify the formula:

Maude> (pfmc init |= [] ~ deadlock -> <> eating(1) .)
ltlr model check under localized fairness in PHILO-CHECK :

init |= []~ deadlock -> <> eating(1)
result Bool :
true

There are at most 7 philosophers in the reachable state space from the
initial state, so that a total of 14 ground fairness conditions are instantiated
by realized substitutions. However, we cannot know how many fairness
conditions would be required to prove the formula before exploring the state
space. Furthermore, the previous model checkers in Maude cannot verify
the formula with those 14 fairness conditions in a reasonable time, because
of the exponential blowup when generating the Büchi automaton for the
negation of the formula that explicitly contains those fairness conditions in
the antecedent of an implication.

4.6 Concluding Remarks

This chapter has addressed the need of model checking under parameterized
fairness assumptions. Such parameterized fairness assumptions occur very
often in practice, but up to now verification under such assumptions has
not been supported by existing model checking techniques and tools. We
have presented a logical framework and an efficient on-the-fly algorithm for
model checking LTLR properties under parameterized fairness assumptions.
We have implemented this parameterized-fair model checking algorithm in
the Maude Fair LTLR model checker, which shows reasonable performance
when compared with other existing model checkers that support fairness. In
particular, our tool can deal with fairness conditions for dynamic systems
in which the number of relevant parameter entities cannot be predicted.
Furthermore, the user interface provides a convenient and succinct way of
specifying localized fairness. In the following chapter, we show how an
infinite-state system can be verified using rewriting-based model checking
techniques, as already hinted at in several case studies.

82

Part II

Approximation Methods

83

CHAPTER 5

INFINITE-STATE MODEL CHECKING

This chapter1 presents a number of abstraction methods for model checking
infinite-state systems specified as rewrite theories, particularly for LTLR
formulas. Equational abstractions define quotients of the system by adding
extra equations. Folding abstractions systemically collapse the state space
of the system according to simulation preorders, and they do not generate
any spurious counterexamples for safety properties. Narrowing-based logical
abstractions symbolically represent the system’s state space by means of
terms with logical variables. Predicate abstractions construct finite-state
abstractions of the system using state predicates, and can be automatized
for rewrite theories by semantic unification and variant narrowing. These
abstraction methods can be used in combination to effectively reduce an
infinite-state system into a finite-state abstraction.

5.1 Introduction

Concurrent systems are often infinite-state systems for two reasons: (i) they
may include unbounded data types, such as integers and stacks, so that the
number of reachable states can be infinite; and (ii) they can be parameterized
by certain system entities, such as processes or inputs, and therefore they
define an infinite family of different systems. Rewriting logic is a well-suited
formalism for specifying both types of infinite systems, as illustrated by
several case studies in Chapters 3 and 4. In particular, the verification of
infinite-state systems is important for software systems and protocol designs,
since they are typically infinite-state.

1Some of the ideas presented in this chapter are based on the papers [14, 21, 23], joint
work with José Meseguer and Santiago Escobar.

84

To automatically verify a temporal logic property ϕ of an infinite-state
system S by model checking, the algorithms for finite-state systems, such as
those in Chapters 3 and 4, cannot be directly used; instead, two approaches
can be generally applied:

1. symbolic techniques, which describe infinite sets of states in a symbolic
form, such as regular languages and logic formulas in a decidable logic,
to verify the satisfaction of ϕ in S; and

2. abstraction techniques, such as existential abstractions and predicate
abstractions, which collapse S into a finite-state system A in such a
way that the satisfaction A |= ϕ implies the satisfaction S |= ϕ.

These two techniques have complementary strengths. On the one hand, a
symbolic technique can directly verify the infinite-state system S. However,
they may not always terminate, and may only be applicable under some
restrictions on S and ϕ; to overcome these problems, symbolic techniques
are often combined with abstraction techniques. On the other hand, an
abstraction technique allows the use of efficient finite-state model checking
algorithms, but may generate spurious counterexamples in A that do not
correspond to any behaviors in the original system S, showing that A 6|= ϕ,
while in fact S |= ϕ holds. In such cases, abstraction refinement methods
[55, 105] can be used to find a less abstract, yet still finite, abstraction A′

where we may show A′ |= ϕ if indeed S |= ϕ holds.
Both types of infinite-state model checking techniques have been recently

developed for rewrite theories. First, in narrowing-based symbolic methods
[86, 142], infinite sets of states are represented by terms t(x1, . . . , xn) with
logical variables x1, . . . , xn, so that the pattern t(x1, . . . , xn) describes the
(typically infinite) set of all its ground instances. Then, narrowing—that
generalizes term rewriting by performing unification instead of matching—
defines transitions between two logical states. Because such a logical state
space can still be infinite, they are combined with folding abstractions to
collapse a pattern t(x1, . . . , xn) into a more general pattern u(y1, . . . , ym)
such that t(x1, . . . , xn) is a substitution instance of u(y1, . . . , ym). Second,
equational abstraction [139] provides a way to define existential abstraction
[56, 60] for a rewrite theoryR = (Σ, E,R). A set of extra equationsG defines
the equivalence relation ≡G on states such that [t]E ≡G [t′]E iff t =E∪G t′,
implying the abstraction function α : [t]E 7→ [t]E∪G, where the abstract
system is simply the rewrite theory R/G = (Σ, E ∪ G,R). This chapter
further develops these previous efforts, and also presents new methods, to
use rewriting logic for LTLR model checking of infinite-state systems.

85

5.1.1 Main Contributions

First, this chapter extends both narrowing-based symbolic model checking
and equational abstraction to linear temporal logic of rewriting (LTLR). As
explained in Chapter 3, state-based temporal logics, such as LTL, are not
expressive enough to deal with properties involving events, but LTLR is a
perfect match (at the level of property specification) for rewriting logic (at
the level of system specification). Extending those methods requires taking
into account simulation relations between concrete and abstract transitions,
as well as between states.
Second, this chapter shows that equational abstractions can be bisimilar

under certain conditions, and that folding abstractions can be faithful in
the sense that they do not generate any spurious counterexamples for safety
properties. Moreover, this chapter generalizes folding abstractions to any
simulation relations on (labeled) Kripke structures, whereas [86] considers
only matching relations between logical states. Folding abstractions are
closed under composition, and strictly more general than bisimulations since
they are not faithful for general temporal properties.
Third, this chapter explains how narrowing-based model checking can

be combined with equational abstraction. Even when folding abstractions
are applied, narrowing may generate an infinite number of logical states.
Therefore, equational abstractions are applied to further reduce such an
infinite logical state space. This is supported by the recently developed
method to automatically derive unification algorithms modulo equational
theories by variant narrowing [87]. In case the state space is still infinite,
this chapter presents a bounded logical model checking algorithm that can
model check a system up to a given depth and that can detect if a finite
state space exists within the specified depth.
Fourth, this chapter presents a new method to automatically generate a

predicate abstraction for a rewrite theory R. Predicate abstraction is one of
the most widely used abstraction methods; however, except for [151] based
on interactive theorem proving, predicate abstraction of rewrite theories has
remained undeveloped. We systematically exploit rewriting and unification
techniques to fully automate the predicate abstraction procedure, although
it may produce an over-approximation. Since unification problems modulo
equations are only semi-decidable in general [12], this chapter also presents
effective unsatisfiability checking procedure, which, although incomplete,
is automatic and can be used in practice to prove the unsatisfiability of
unification problems module equations.

86

5.1.2 Related Work

Narrowing-based symbolic model checking is related to other infinite-state
model checking techniques that symbolically represent the system’s state
space, such as regular languages [2, 41], tree automata [100, 146], string
or multiset grammars [40, 164], Presburger arithmetic [46], constraint logic
programming [69], etc. Similarly, they can be combined with abstraction
techniques, e.g., [42, 47, 99]. We refer to [14, 86] for a comparison with
narrowing-based symbolic model checking. Maude-NPA [85] uses similar
approaches based on narrowing and folding, but is a more specialized tool
supporting reachability analysis for cryptographic protocols. To the best of
our knowledge, our work proposes the first symbolic model checking method
to verify state/event-based properties of infinite-state systems.
Equational abstractions and folding abstractions can be viewed as part of

a broader class of abstractions techniques, such as [56, 65, 114], which can
sometimes collapse an infinite-state system into a finite-state one, and are
related to abstraction techniques for parameterized systems [58, 152]. Usual
abstraction techniques do not typically provide bisimulations between the
abstract and concrete systems, and when they do provide them, they rely
on manual proofs, instead than on simple criteria (such as those given in
Theorem 5.2) for bisimilar equational abstractions.
Predicate abstraction was first introduced in [102], and has been widely

applied to both conventional programming languages (e.g., [33, 167, 57, 77]),
and formal specifications (e.g., [68, 156, 120]). For rewrite theories, predicate
abstraction has not been much developed, except for the quite different
semi-automatic method in [151], which generated proof obligations for an
interactive theorem prover. Finally, our method to check unsatisfiability
of equational constraints for disunification is related to the techniques in
[9, 74] for checking unfeasibility of conditional critical pairs in the context
of proving confluence of conditional rewrite rules.

There also exist many infinite-state model checking methods to exploit
an order relation 4, e.g., [3, 84, 95]. Those methods typically assume that
4 is well quasi-ordered (which implies well-foundedness of 4), whereas we
do not impose such conditions on 4. Indeed, matching modulo equations,
used for folding in narrowing-based model checking, is not well-founded in
general. Nevertheless, the use of well quasi-ordered relations can guarantee
termination of infinite-state model checking procedures for safety properties,
while our approach uses combinations of different abstractions to achieve
termination of infinite-state model checking procedures.

87

5.1.3 Structure of this Chapter

This chapter is organized as follows. Section 5.2 presents rewriting logic
specifications of infinite-state systems that are used later in this chapter
to illustrate our methods. Section 5.3 presents equational abstractions of
rewrite theories for LTLR formulas, and shows simple criteria for equational
abstractions to be bisimilar. Section 5.4 presents folding abstractions that
can be used to verify LTLR properties of infinite-state systems, and proves
that folding abstractions can be faithful for safety properties. Section 5.5
explains how LTLR properties can be model checked symbolically using
narrowing, and shows that narrowing-based model checking can be used in
combination with folding and equational abstractions. Section 5.6 presents
an automatic method to generate a predicate abstraction of a conditional
rewrite theory based on unification modulo equations. Finally, Section 5.7
presents some concluding remarks.

5.2 Infinite-State System Examples

This section presents rewriting logic specifications of three infinite-states
concurrent systems, used to illustrate our methods throughout this chapter.
These specifications are given by, slightly restricted, topmost order-sorted
rewrite theories, because our narrowing-based symbolic model checking and
predicate abstraction methods require rewrite theories being topmost, and
because the underlying E-unification procedure [87] currently only supports
order-sorted equational logic. However, such restrictions are not necessary
for equational abstractions and folding abstractions.

Definition 5.1. A rewrite theory R is topmost iff there exists a sort State
at the top of one of the connected component of (S,≤) such that: (i) for
each rule l : q −→ r if condition, both q and r have the top sort State; and
(ii) no operator in Σ has State or any of its subsorts as an argument sort.

In a topmost rewrite theory R = (Σ, E,R), all rewrites with rules in R

must take place at the top of the term. Many concurrent systems, including
object-oriented systems and communication protocols, can be specified by
topmost rewrite theories [137, 142]. As a matter of fact, most of the rewriting
logic specifications appeared in this thesis are topmost, or can be easily
transformed into topmost rewrite theories. Therefore, being expressible as
a topmost rewrite theory is not a strong restriction in practice.

88

5.2.1 Lamport’s Bakery Algorithm

We presents a topmost order-sorted rewrite theory R specifying Lamport’s
bakery algorithm for mutual exclusion of an arbitrary number of processes
(adapted from [86]), and its corresponding LKS K̄(R, k)P for a state kind
k and an associated equational theory P that defines state propositions AP
and spatial action patterns ACT . Each state of the system has the form

n ; m ; [i1, d1] . . . [ik, dk],

given by the operator _; _; _ : Nat Nat ProcSet → State, where n is the
current number in the bakery’s number dispenser, m is the number currently
being served, and [i1, d1] . . . [ik, dk] is a set of customer processes, each with
a name il and in a mode dl. A mode can be idle (not yet picked a number),
wait(n) (waiting with number n), or crit(n) (being served with number n).
The behavior is specified by the following topmost rewrite rules:

vars N M I J K L : Nat . var PS : ProcSet .

rl [wake]: N ; M ; [I,idle] PS => s N ; M ; [I,wait(N)] PS .
rl [crit]: N ; M ; [I,wait(M)] PS => N ; M ; [I,crit(M)] PS .
rl [exit]: N ; M ; [I,crit(M)] PS => N ; s M ; [I,idle] PS .

where natural numbers of sort Nat are modeled as multisets of s with the
multiset union operator __ : Nat Nat→ Nat (empty syntax), satisfying laws
of commutativity and associativity, and the empty multiset 0 (for example,
0 = 0, 1 = s, and 3 = s s s).

For the mutual exclusion �ex?, meaning that at most one process can
enter the critical section, the state proposition is defined by the following
equations, where the variable WS of sort ProcWaitSet stands for a set of
processes whose status is either idle or wait(n):

eq N ; M ; WS |= ex? = true .
eq N ; M ; [I,crit(K)] WS |= ex? = true .
eq N ; M ; [I,crit(K)] [J,crit(L)] PS |= ex? = false .

The sort ProcWaitSet can be defined in an order-sorted signature as follows,
where sort ModeWait denotes modes idle and wait(n):

sorts ProcWait ProcWaitSet Proc ProcSet .
subsorts ProcWait < Proc ProcWaitSet < ProcSet .
op [_,_] : Nat ModeWait -> ProcWait . op [_,_] : Nat Mode -> Proc .
op none : -> ProcWaitSet [ctor] .
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm id: none] .
op __ : ProcSet ProcSet -> ProcSet [assoc comm id: none] .

89

0 ; 0 ; [0,idle]
{enabled(wake(0)), ex?}

s ; 0 ; [0,crit(0)]
{in.crit(0), ex?}

s s ; s ; [0,wait(s)]
{ex?}

s ; 0 ; [0,wait(0)]
{ex?}

s ; s ; [0,idle]
{enabled(wake(0)), ex?} ...

{wake(0)}
∅

∅
{wake(0)}

Figure 5.1: An infinite path from the initial state 0 ; 0 ; [0,idle] in the
LKS K̄(R, k)P for the bakery algorithm.

We are also interested in the liveness property “process 0 is eventually
served,” under the fairness assumption “if process 0 can eventually wake up
forever, it must wake up infinitely often,” expressed as the LTLR formula

(32enabled(wake(0))→ 23wake(0))→ 3in.crit(0),

where the spatial action pattern wake(0) holds if the wake rule is applied
for process 0 (i.e., the variable I in the wake rule is matched to 0), and the
state proposition in.crit(0) holds in a state where process 0 is being served.
The state proposition in.crit(0) is defined as follows, where the variable MW

has sort ModeWait for modes idle and wait(n), and the variable NZPS of sort
NzProcSet denotes a set of processes with non-zero identifiers:

eq N ; M ; [0,crit(K)] NZPS |= in.crit(0) = true .
eq N ; M ; [0,MW] NZPS |= in.crit(0) = false .

Similarly, the sort NzProcSet can be defined in an order-sorted signature as
follows, where sort NzNat denotes non-zero natural numbers:

sorts NzProc NzProcSet .
subsorts NzProc < Proc NzProcSet < ProcSet .
op [_,_] : NzNat Mode -> NzProc .
op __ : NzProcSet NzProcSet -> NzProcSet [assoc comm id: none] .

For the set of state propositions AP = {in.crit(0), ex?, enabled(wake(0))}
and the set of spatial action patterns ACT = {wake(0)}, we can construct
the corresponding LKS K̄(R, k)P for the bakery algorithm specification R.
For example, given the initial state 0 ; 0 ; [0,idle], we obtain the infinite
path in Figure 5.1 within K̄(R, k)P that contains an infinite number of
different states. Notice that this system is infinite-state in two ways: (i) the
counters n and m are unbounded; and (ii) the system is parameterized by
(an unbounded number of) customer processes.

90

repeat
l1: flag [i] := 1
l2: while turn 6= i do

if flag [turn] = 0 then turn := i
l3: flag [i] := 2

l4: for j 6= i do
if flag [j] = 2 then goto l1

crt : /∗ critical region ∗/
l5: flag [i] := 0

forever

Figure 5.2: Dijkstra’s Mutual Exclusion Algorithm (for a process i) [129]

5.2.2 Dijkstra’s Mutual Exclusion Algorithm

We present a topmost rewrite theory specifying Dijkstra’s mutual exclusion
algorithm for an arbitrary number of processes. There are n processes with
n ≥ 2, and two shared variables: (i) flag[1 . . . n] is an array of values {0, 1, 2}
for each process 1 ≤ i ≤ n, and (ii) turn is an integer between 1 and n. The
behavior is summarized by the pseudo code from [129] in Figure 5.2.
For narrowing-based symbolic model checking, we represent each state

as a multiset of triples 〈{f1, p1, t1} · · · {fk, pk, tk}〉. Each triple {fi, pi, ti}
represents a process with fi a value of flag[i], pi a program counter, and ti
a turn specifier that can be either on (i.e., turn = i) or off (i.e., turn 6= i).
Only one process can be turned on at a time. The behavior is then specified
by the following topmost rewrite rules, where the variable WAITPS of sort
WaitProcSet denotes a set of processes whose flag is either 0 or 1:

rl [l1] : < {F,l1,T} PS > => < {1,l2,T} PS > .
rl [l2] : < {F,l2,off} {0,S,on} PS > => < {F,l2,on} {0,S,off} PS > .
rl [l2’]: < {F,l2,on} PS > => < {F,l3,on} PS > .
rl [l3] : < {F,l3,T} PS > => < {2,l4,T} PS > .
rl [l4] : < {F,l4,T} {2,S,T’} PS > => < {F,l1,T} {2,S,T’} PS > .
rl [l4’]: < {F,l4,T} WAITPS > => < {F,crt,T} WAITPS > .
rl [l5] : < {F,crt,T} PS > => < {0,l1,T} PS > .

Mutual exclusion can be expressed by the formula �ex?, and the state
proposition ex? is defined as follows in a similar way to the Bakery example,
where the variable NCPS of sort NCrtProcSet denotes a set of processes that
are not in the critical section (i.e., their program counters are not crt):

eq < NCPS > |= ex? = true .
eq < {F, crt, T} NCPS > |= ex? = true .
eq < {F, crt, T} {F’, crt, T’} PS > |= ex? = false .

This system has a finite number of reachable states for a “fixed” initial state;
but the system is parameterized by an unbounded number of processes, and
therefore is actually an infinite-state system.

91

〈0, 0〉 ∅ 〈s(0), 0〉 {reading} 〈s3(0), 0〉 {reading} · · ·

〈0, s(0)〉 {writing} 〈s2(0), 0〉 {reading} 〈s4(0), 0〉 {reading}

Figure 5.3: Infinite Kripke structure for the readers-writers problem.

5.2.3 Readers-Writers Problem

In the readers-writers problem, there exist a number of reader and writer
processes that try to access the same critical resource. Several readers can
access the resource at one time, but no other processes can access it if
another process holds the resource for writing. This section presents two
rewriting logic specifications of the readers-writers problem: one uses only
unconditional rewrite rules, and the other also uses conditional rules.
First, we present an unconditional order-sorted topmost rewrite theory

specifying a simplified version of the readers-writers problem (adapted from
[61]). Each state of the system is modeled as a pair 〈R,W 〉 ∈ N2 in which
R is the number of readers and W is the number of writers, given by the
operator 〈_, _〉 : Nat Nat→ State. Natural numbers are expressed in Peano
notation using the successor function s : Nat → Nat and the zero constant
0 of sort Nat. The behavior is defined by the following rewrite rules:

rl [ew]: < 0, 0 > => < 0, s(0) > . rl [lw]: < R, s(W) > => < R, W > .
rl [er]: < R, 0 > => < s(R), 0 > . rl [lr]: < s(R), W > => < R, W > .

Mutual exclusion is expressed by the LTL formula �¬(reading ∧writing),
meaning that a reader and a write cannot enter the critical section at the
same time, where the state propositions are defined as follows:

eq < s(R), W > |= reading = true . eq < 0, W > |= reading = false .
eq < R, s(W) > |= writing = true . eq < R, 0 > |= writing = false .

This system has an infinite number of (reachable) states, because the
number of readers R is unbounded. For example, given the set of state
propositions AP = {reading,writing}, we obtain the infinite path from the
state 〈0, 0〉 in Figure 5.3 within the Kripke structure K(R,State)P .

Next, we present a conditional topmost rewrite theory specifying a model
of the readers-writers problem with explicit shared variables and processes,
adapted from [4]. Each state has the form 〈n, b | p1; · · · ; pn〉, given by the
operator 〈_, _|_〉 : Nat Bool ProcSet → State, where n denotes the number
of readers, b is a Boolean flag to denote no readers and no writers, and
p1; · · · ; pn is a multiset of processes, each in a status pi ∈ {idle, read,write}.
The behavior of the system is specified by the following rewrite rules:

92

rl [ew]: < N, true | idle ; PS > => < N, false | write ; PS > .
rl [lw]: < N, false | write ; PS > => < N, true | idle ; PS > .

crl [er]: < N, B | idle ; PS >
=> < s(N), B’ | read ; PS > if c(N,B,B’) .

crl [lr]: < s(N), B | read ; PS >
=> < N, B’ | idle ; PS > if c(N,B’,B) .

where the function c(n, b, b′) returns true iff b = true and b′ = false when
n = 0, or b = b′ when n > 0, defined by the following equations:

eq c(0, true, false) = true . eq c(s(N), B, B) = true .
eq c(0, false, B) = false . eq c(s(N), true, false) = false .
eq c(0, B, true) = false . eq c(s(N), false, true) = false .

Mutual exclusion is again expressed by the formula �¬(reading∧writing),
and the state propositions are defined by the following equations, where the
variable RS denotes a set of processes in status idle or read, and WS denotes
a set of processes in status idle or write:

eq < N, B | read ; PS > |= reading = true .
eq < N, B | WS > |= reading = false .
eq < N, B | write ; PS > |= writing = true .
eq < N, B | RS > |= writing = false .

This system is finite-state for a fixed set of processes; but the system is
actually infinite-state, since the number of processes is unbounded.

5.3 Equational Abstraction

When a system specified as a rewrite theory R = (Σ, E,R) has an infinite
number of reachable states, one of the simplest ways to collapse the reachable
state space into a finite one is equational abstraction [139]. A set of equations
G can be added to R to obtain the equivalence relation ≡G on states TΣ/E,k
for a certain state kind k ∈ Σ, namely, [t]E ≡G [t′]E ⇐⇒ t =E∪G t′. For
the Kripke structure K(R, k)P = (S,AP,L,−→K) associated to the rewrite
theory R = (Σ, E,R), this equivalence relation ≡G defines the quotient
abstraction K/≡G = (S/≡G,AP,L,−→K/≡G) such that

[s1]≡G −→K/≡G [s2]≡G ⇐⇒ (∃s′1 ∈ [s1]≡G , s′2 ∈ [s2]≡G) s′1 −→K s′2,

and R/G = (Σ, E ∪G,R) is the abstract specification associated to K/≡G.
This can be considered as a special form of an existential abstraction [56, 60]
with the abstraction function α : [t]E 7→ [t]E∪G.

93

This section shows how equational abstraction can be applied for LTLR
properties to reduce an infinite state space of a rewire theory R. That is,
for an LTLR formula ϕ, if the equations G preserve the meaning of the state
propositions and the spatial action patterns in ϕ, then:

K̄(R/G, k)P , [t]E∪G |= ϕ =⇒ K̄(R, k)P , [t]E |= ϕ

for an initial state [t]E , where K̄(R/G, k)P is the labeled Kripke structure
associated to R/G. However, a counterexample in R/G can be a spurious
counterexample that has no counterpart in R. Therefore, this section also
presents simple criteria for equational abstractions to be bisimilar so that
there exist no spurious counterexamples.

5.3.1 Simulation Relations for LKSs

For model checking techniques, an abstraction Ŝ of a concurrent system S
typically preserves every behavior of the original system S, in terms of a
simulation relation between S and Ŝ. In the following definition we extend
the notion of simulation relations for Kripke structures [60] to one for LKSs,
which also takes into account spatial action patterns.

Definition 5.2. Given two LKS K̄i = (Si,AP,Li,ACT ,−→K̄i), i = 1, 2, a
binary relation H ⊆ S1 × S2 is a simulation from K̄1 to K̄2 iff:

• if s1Hs2, then L1(s1) = L2(s2), and

• if s1Hs2 and s1 Λ−−→K̄1
s′1 in K̄1, then there exists a state s′2 ∈ S2 such

that s′1Hs′2 and s2 Λ−−→K̄2
s′2 in K̄2.

A simulation H is a bisimulation iff H−1 is also a simulation, and is total
iff for any s1 ∈ S1 there exists s2 ∈ S2 such that s1Hs2.

As expected, if an LKS K̄2 simulates K̄1, then each infinite path in K̄1

has a corresponding path in K̄2, as shown in the following lemma.

Lemma 5.1. Given a simulation H from an LKS K̄1 to K̄2, if s1Hs2, then
for each path (π1, α) of K̄1 beginning at s1, there exists a corresponding path
(π2, α) beginning at s2 such that π1(i)H π2(i) for each i ∈ N.

Proof. We construct π2 by induction. Let π2(0) = s2. Clearly, π1(0)H π2(0).
Next, suppose that π1(k)H π2(k) for some k ∈ N. Since π1(k)H π2(k) and
π1(k) α(k)−−−→K̄ π1(k+ 1), there exists a state s′2 such that π1(k+ 1)H s′2 and
π2(k) α(k)−−−→K̄ s′2. Then, we choose π2(k + 1) = s′2.

94

Suppose that s1
0H s2

0 for a simulation H from K̄1 to K̄2. If there exists a
counterexample (π1, α1) in K̄1 starting from s1

0, then by the above lemma,
there exists a corresponding counterexample (π2, α2) in K̄2 starting from s2

0
such that L1(π1(i)) = L2(π2(i)) and α1(i) = α2(i) for i ∈ N. Therefore:

Lemma 5.2. Given an LTLR formula and a simulation H from an LKS
K̄1 to K̄2, if s1

0H s2
0, then K̄2, s

2
0 |= ϕ =⇒ K̄1, s

1
0 |= ϕ. In particular, if H

is a bisimulation, then K̄2, s
2
0 |= ϕ ⇐⇒ K̄1, s

1
0 |= ϕ.

Using this expanded notion of simulation relations, in a similar way to the
case of Kripke structures, we can also define quotient abstractions of labeled
Kripke structures for LTLR model checking as follows:

Definition 5.3. For an LKS K̄ = (S,AP,L,ACT ,−→K̄) and an equivalence
relation ≡ ⊆ S2 such that s1 ≡ s2 implies L(s1) = L(s2), the quotient
abstraction is the LKS K̄/≡ = (S/≡,AP,L≡,ACT ,−→K̄/≡) such that

• L≡([s]≡) = L(s); and

• [s1]≡ Λ−−→K̄/≡ [s2]≡ ⇐⇒ (∃s′1 ∈ [s1]≡, s′2 ∈ [s2]≡) s′1 Λ−−→K̄ s′2.

For any concrete transition s1 Λ−−→K̄ s2 in K̄, we can easily see that there
exists an abstract transition [s1]≡ Λ−−→K̄/≡ [s2]≡ in the quotient abstraction
K̄/≡, where s1 ∈ [s1]≡ and s2 ∈ [s2]≡. Therefore, the membership relation
∈ ⊆ S × S/≡ is a total simulation from K̄ to K̄/≡, and by Lemma 5.2, for
any LTLR formula ϕ and an initial state s0 ∈ S, we have:

K̄/≡, [s0]≡ |= ϕ =⇒ K̄, s0 |= ϕ.

5.3.2 Equational Abstractions for LTLR

Consider a rewrite theoryR = (Σ, E,R) and its associated equational theory
P = (Π, D) that defines a set of state propositions AP and a set of spatial
action patterns ACT .2 A set G of equations always defines the equivalence
relation ≡G such that [t]E ≡G [t′]E ⇐⇒ t =E∪G t

′. Therefore, in principle,
the quotient abstraction K̄(R, k)P/≡G of an LKS K̄(R, k)P associated to the
original rewrite theory R always exists, according to Definition 5.3, provided
that t ≡G t′ implies LP([t]E) = LP([t]′]E). However, it is not straightforward
to conclude that the equational abstraction R/G = (Σ, E ∪ G,R) indeed
corresponds to the quotient abstraction K̄(R, k)P/≡G.

2Recall that the extended equational theory (Σ∪Π, E∪D) should protect (Σ, E), that
is, TΣ∪Π/E∪D,s ' TΣ/E,s for each sort s ∈ Σ.

95

In fact, by the definition of the LKS K̄(R, k)P (explained in Section 3.2.3),
if R has a deadlock state from which no one-step rewrites exists, then
K̄(R, k)P/≡G is not equivalent to K̄(R/G, k)P . The reason is that for each
deadlock state [t]E , the LKS K̄(R, k)P adds the self loop

[t]E {deadlock}−−−−−−−−→K̄ [t]E

labeled by event deadlock. Consider a deadlock state [t1]E and a one-step
rewrite λ : [t2]E −→1

R [t′2]E from a state [t2]E in R. For a set G of equations,
if t1 =E∪G t2, then there exists a one-step rewrite [t1]E∪G −→1

R/G [t′2]E∪G in
the abstract theory R/G by definition. Therefore, in the LKS K̄(R/G, k)P ,
there can be no transition from [t1]E∪G labeled by {deadlock}, whereas
K̄(R, k)P/≡G contains such a deadlock transition from [t1]E∪G.

Example 5.1. Consider the simple client-server communication model in
Example 4.2. Then, the state [[a] [b, a, 1, f(a, b, 1)]]E with one server a and
one client b is a deadlock state in the original model, since the client b has
already received the answer f(a, b, 1). Therefore, the LKS K̄(R, k)P contains
the deadlock transition

[[a] [b, a, 1, f(a, b, 1)]]E {deadlock}−−−−−−−→K̄ [[a] [b, a, 1, f(a, b, 1)]]E .

However, this state is no longer deadlock state in the abstract model R/G,
if we add the following extra equation G:

eq [C,S,N,M] [S] S <-{C,N} = [C,S,N,M] [S] .

Because [[a] [b, a, 1, f(a, b, 1)]]E∪G = [[a] [b, a, 1, f(a, b, 1)] a <-{b, 1}]E∪G, the
rewrite rule loss : I<-{J,M} −→ null, which removes any message in the
configuration, can be applied to [[a] [b, a, 1, f(a, b, 1)]]E∪G, and thus there is
no deadlock transition from [[a] [b, a, 1, f(a, b, 1)]]E∪G in K̄(R/G, k)P .

Consequently, to apply equational abstraction, we require that a rewrite
theory R is k-deadlock free (i.e., there exist no deadlock terms of kind k).
Note that as explained in [61, 139], a rewrite theory R can be transformed
into a semantically equivalent deadlock-free theory, provided that its rules
have no rewrites in the conditions, by simply adding the rule

crl [deadlock]: {X} => {X} if not enabled(X) .

where X is a variable of kind k, the function enabled(t) returns true iff a
rewrite rule can be applied to the term t, and {_} : k → k′ is an encapsulation
operator with a new state kind k′.

96

To define an equational abstraction of R using a set G of equations, we
also need that t ≡G t′ =⇒ LP([t]E) = LP([t]′]E). This condition can be
ensured by showing that true 6=E∪G false [139]: if t =E∪G t

′ but p ∈ LP([t]E)
and p /∈ LP([t]′]E), then true =E (t |= p) =E∪G (t′ |= p) =E false. Similarly,
if true 6=E∪G false, then any two one-step proof terms with λ =E∪G λ

′ satisfy
the same set of spatial action patterns. Consequently:

Theorem 5.1. Given a k-deadlock free rewrite theory R = (Σ, E,R), a set
of equations G, and an associated equational theory P = (Π, D) defining AP
and ACT , assuming that true 6=E∪D∪G false, for an LTLR formula ϕ and
[t]E ∈ TΣ/E,k: K̄(R/G, k)P , [t]E∪G |= ϕ =⇒ K̄(R, k)P , [t]E |= ϕ.

Proof. Let HG = {([t]E , [t]E∪G) | t ∈ TΣ/E,k}. It suffices to show that HG

is a total simulation from K̄(R, k)P to K̄(R/G, k)P , [t]E∪G. Suppose that
[t]E Λ−−→K̄(R) [t′]E . Since R is k-deadlock free, by definition, there exists a
one-step rewrite λ : [t]E −→1

R [t′]E and Λ = {δ ∈ ACT | λ |= δ =E∪D true}.
Since [t]E ⊆ [t]E∪G and [t′]E ⊆ [t′]E∪G, there exists a one-step rewrite
λ : [t]E∪G −→1

R/G [t′]E∪G, and thus [t]E∪G Λ−−→K̄(R/G) [t′]E∪G.

In addition to all the above-mentioned conditions that must be checked
to verify the correctness of an equational abstraction, the quotient rewrite
theory R/G = (Σ, E∪G,R) must satisfy the executability conditions defined
in Chapter 2.2.4, which can be checked using the formal tools in the Maude
environment [61]. This is further discussed in Section 5.3.4.

Example 5.2. For the Bakery algorithm example in Section 5.2.1, consider
the set G of extra equations (that also remove process identifiers):

eq [I,MD] = [MD] .
eq s N ; s M ; [idle] [idle] = N ; M ; [idle] [idle] .
eq s N ; s M ; [wait(s K)] [idle] = N ; M ; [wait(K)] [idle] .
eq s N ; s M ; [crit(s K)] [idle] = N ; M ; [crit(K)] [idle] .
eq s N ; s M ; [wait(s K)] [wait(s L)] = N ; M ; [wait(K)] [wait(L)] .
eq s N ; s M ; [wait(s K)] [crit(s L)] = N ; M ; [wait(K)] [crit(L)] .
eq s N ; s M ; [crit(s K)] [crit(s L)] = N ; M ; [crit(K)] [crit(L)] .

For AP = {ex?, enabled({′wake})} and ACT = {{′wake}},3 we obtain the
abstract LKS K̄(R/G, k)P in Figure 5.4 having a finite number of reachable
states from the abstract initial state [0 ; 0 ; [idle] [idle]]E∪G with two
processes. Since the formula �ex? holds in K̄(R/G, k)P , by Theorem 5.1,
�ex? also holds in K̄(R, k)P from the corresponding initial state.

3Recall that {′wake} is a spatial action pattern in SP(R), defined in Section 3.2.1,
meaning that a rule with label wake has been applied.

97

s ; 0 ; [idle] [0,crit(0)]
{ex?, enabled({′wake})}

s s ; 0 ; [wait(s)] [crit(0)]
{ex?}

0 ; 0 ; [idle] [idle]
{ex?, enabled({′wake})}

s ; 0 ; [idle] [wait(0)]
{ex?, enabled({′wake})}

s s ; 0 ; [wait(s)] [wait(0)]
{ex?}

{wake(0)}

∅

{wake(0)}

{wake(0)}
∅

∅
∅

Figure 5.4: The reachable states in the abstract LKS K̄(R/G, k)P .

5.3.3 Bisimilar Equational Abstractions

As usual for abstraction techniques, equational abstractions may generate
spurious counterexamples, since they only define simulations, and in general
are not bisimilar to their original system.

Example 5.3. For the Bakery example in Section 5.2.1, now consider the
set G = {sN = 0} of abstraction equations. Then, there exists the following
spurious counterexample of �ex? in the abstract LKS K̄(R/G, k)P :

0 ; 0 ; [0,idle] [0,idle] −→ 0 ; 0 ; [0,idle] [0,wait(0)]

−→ 0 ; 0 ; [0,wait(0)] [0,wait(0)] −→ 0 ; 0 ; [0,crit(0)] [0,wait(0)]

−→ 0 ; 0 ; [0,crit(0)] [0,crit(0)].

Therefore, we introduce bisimilar equational abstractions, which ensure a
bisimulation from K̄(R, k)P to its quotient abstraction K̄(R/G, k)P .

Lemma 5.3. Given a k-deadlock free rewrite theory R = (Σ, E,R), an
associated equational theory P = (Π, D) defining AP and ACT , and a set of
equations G with true 6=E∪D∪G false, there is a total bisimulation from an
LKS K̄(R, k)P to K̄(R/G, k)P , if the following holds for t1, t′1, t2 ∈ TΣ/E,k:

λ1 : [t1]E −→1
R [t′1]E ∧ t1 =E∪G t2

=⇒ (∃t′2 ∈ TΣ/E,k) λ2 : [t2]E −→1
R [t′2]E ∧ t′1 =E∪G t

′
2 ∧

(λ1 |= δ) =E∪D (λ2 |= δ) for each δ ∈ ACT .

Proof. We only need to prove that HG = {([t]E , [t]E∪G) | t ∈ TΣ/E,k} is
a simulation from K̄(R/G, k)P to K̄(R, k)P . First, notice that =E∪G is a
bisimulation for R with respect to −→1

R, since =E∪G is symmetric. Suppose
that λ1 : [u]E∪G −→1

R/G [u′]E∪G and [t]E ⊆ [u]E∪G (i.e., [t]E HG [u]E∪G).
By definition of one-step rewrites, for some v ∈ [u]E∪G and v′ ∈ [u′]E∪G,
there exists λ1 : [v]E −→1

R [v′]E . Since v =E∪G t, by the assumption, there
exists a one-step rewrite λ2 : [t]E −→1

R [t′]E such that v′ =E∪G t′, and λ1

and λ2 satisfies the same set of spatial action patterns.

98

A rewrite theory R/G is called a bisimilar equational abstraction of R if
the set G of equations satisfies the conditions in Lemma 5.3. For a topmost
unconditional rewrite theory R, a bisimilar equational abstraction with a
set G of topmost equations—of the form t = t′ with t, t′ ∈ TΣ(X)State—can
be easily identified by checking that the application of an equation in G does
not interfere with the application of a rewrite rule.

Theorem 5.2 (Necessary/Sufficient Conditions for Bisimilarity). Given a
topmost unconditional k-deadlock free rewrite theory R = (Σ, E,R) and an
associated equational theory P = (Π, D) defining AP and ACT , for a set G
of topmost equations, R/G is a bisimilar equational abstraction iff for each
rule l : q −→ r and each equation u = v ∈ G or v = u ∈ G, the following
condition holds for a substitution σ : X → TΣ(X):

σ(u) =E σ(q) ∧ (l(σ) |= δ) =E∪D b for some b ∈ {true, false}

=⇒ (∃θ : X → TΣ(X)) σ(v) =E θ(q) ∧ σ(r) =E∪G θ(r) ∧

(l(σ) |= δ) =E∪D (l(θ) |= δ) for each δ ∈ ACT .

Proof. The above condition can be expressed by the following diagram,
where the truth value of δ for l(σ) is decided into either true or false:

∀σ : X → TΣ(X). σ(u) =E σ(q) −→ σ(r)∥∥
G

∥∥
E∪G

∃θ : X → TΣ(X). σ(v) =E θ(q) −→ θ(r)

(⇐) Suppose that λ1 : [t1]E −→1
R [t′1]E and t1 =E∪G t2. If =k

G/E denotes k
applications of equations in G modulo E, then t1 =n

G/E t2 for some n ∈ N.
We prove by induction on n ∈ N that (∃t′2) λ2 : [t2]E −→1

R [t′2]E , t′1 =E∪G t
′
2,

and (λ1 |= δ) =E∪D (λ2 |= δ) for each δ ∈ ACT . When n = 0, it is immediate
since t1 =E t2 and then λ1 : [t2]E −→1

R [t′1]E . For n > 0, assume that if
t1 =n

G/E w for w ∈ TΣ/E,State, then (∃w′) λ′2 : [w]E −→1
R [w′]E , t′1 =E∪G w′,

and (λ1 |= δ) =E∪D (λ′2 |= δ) for each δ ∈ ACT . If t1 =n
G/E w =1

G/E t2,
then λ′2 : [w]E −→1

R [w′]E and by using the condition in the statement,
(∃t′2) λ2 : [t2]E −→1

R [t′2]E , w′ =E∪G t′2, and (λ′2 |= δ) =E∪D (λ2 |= δ) for
each δ ∈ ACT . Finally, we have that t′1 =E∪G w

′ =E∪G t
′
2, and for δ ∈ ACT ,

(λ1 |= δ) =E∪D (λ′2 |= δ) =E∪D (λ2 |= δ), and the conclusion follows.
(⇒) If R/G is a bisimilar equational abstraction and λ1 : [t1]E −→1

R [t′1]E ,
then for t2 ∈ TΣ/E,State obtained by one application of G (i.e., t1 =1

G/E t2),
(∃t′2 ∈ TΣ/E,State) λ2 : [t2]E −→1

R [t′2]E , t′1 =E∪G t′2, and for δ ∈ ACT ,
(λ1 |= δ) =E∪D (λ2 |= δ), which implies the condition in the statement.

99

The reason why only a set G of topmost equations is allowed for bisimilar
equational abstractions is to avoid problems caused by repeated variables
in rewrite rules. For instance, consider R = {f(X,X) −→ h(X)}, E = ∅,
and G = {a = b}. This topmost rewrite theory satisfies the condition of the
previous theorem except G being topmost. Then, given the term f(a, a),
f(b, a) =G f(a, a) but now f(b, a) cannot be rewritten with R. This process
to check the conditions in Theorem 5.2 can easily be automated in a way
similar to that used by the Maude coherence checker [75], which checks
similar conditions between equations and rules. We show an example of
bisimilar equational abstractions in Section 5.5 below.

5.3.4 Executability Conditions

For an equational abstraction R/G to be a practical abstraction, it needs
to be computable; that is, as explained in Section 2.2.4, for an equational
abstraction R/G = (Σ, E ∪ B ∪ G,R) with B a set of structural axioms,
E ∪ G is sort-decreasing, and ground terminating, confluent, and coherent
modulo B, and R is ground coherent with E ∪G modulo B. Moreover, we
also need that a one-step rewrite and its canonical one-step rewrite satisfy
the same set of of spatial action patterns (i.e., E ∪B ∪G preserves ACT).

Definition 5.4. Given R = (Σ, E ∪ B,R) and an associated equational
theory P = (Π, D) defining AP and ACT , R is ground P-coherent with E
modulo B iff for R/B = (Σ, B,R) and t, t′ ∈ TΣ, if λ : [t]B −→1

R/B [t′]B,
then there is λ′ : [canE/B(t)]B −→1

R/B [t′′]B with canE/B(t′) =B canE/B(t′′)
and (∀δ ∈ ACT) (λ |= δ) =E∪B∪D (λ′ |= δ).

Even if R is computable, R/G may not be computable, since the rules in
R can be not ground P-coherent with E ∪ G modulo B. In this case, we
can try to “complete” the rewrite rules to have a semantically equivalent
theory R′/G = (Σ, E ∪ B ∪ G,R′) such that [t]E∪B∪G →1

R/G [t′]E∪B∪G iff
[t]E∪B∪G →1

R′/G [t′]E∪B∪G, manually or using some tools [61, 75].

Example 5.4. For the client-server communication model in Example 4.2,
the extra abstraction equation G = {I<-{C,N} I<-{C,N} = I<-{C,N}}
causes a lack of coherence for the reply, rec, and loss rules, because they can
consume only a single message but it is equivalent to an arbitrary number
of identical messages by G. For example, t = a <-{b, 1} a <-{b, 1} [a] is
rewritten to t′ = a <-{b, 1} [a] b <-{a, f(a, c, 1)} by the reply rule, whereas
[canE∪G/B(t)]B = a <-{b, 1} [a] is rewritten to t′′ = [a] b <-{a, f(a, c, 1)} by
the same rule but [canE∪G/B(t′)]B 6= [canE∪G/B(t′′)]B.

100

We can add extra versions R′ of these rules to eliminate the cases of a
lack of coherence (see Appendix A.1.1). For example, by the extra reply rule

rl [reply]: S <-{C,N} [S] => S <-{C,N} [S] C <-{S,f(S,C,N)} .

the term [canE∪G/B(t)]B = a <-{b, 1} [a] can now be rewritten to the term
t′′′ = a <-{b, 1} [a] b <-{a, f(a, c, 1)} such that

[canE∪G/B(t′)]B = [canE∪G/B(t′′′)]B.

Furthermore, each spatial action pattern in SP(R) is preserved by both G
and R′, since G does not “completely” remove any message, and since each
extra rule in R′ has the same set of variables with the correlated rewrite rule
in R. Consequently, R ∪R′ is ground P-coherent with E ∪G modulo B.
It is worth noting that all the extra rules in R′ can be simulated by the

original equational abstraction R/G = (Σ, E ∪B ∪G,R), and therefore the
extended equational abstraction R′/G = (Σ, E∪B∪G,R∪R′) is semantically
equivalent to R/G. For example, a one-step rewrite

[S <-{C,N} [S]]E∪B∪G →1
R/G [S <-{C,N} [S] C <-{S, f(S,C,N)}]E∪B∪G

holds in the original equational abstraction R/G for the extra reply rule,
since [S <-{C,N} [S]]E∪A∪G = [S <-{C,N} S <-{C,N} [S]]E∪A∪G.

5.4 Folding Abstraction

We can reduce a (labeled) Kripke structure to a simpler (labeled) Kripke
structure using a folding preorder 4 between states.

Definition 5.5. Given a transition system A = (A,−→A) with a set of
states A and a transition relation −→A ⊆ A2, a folding preorder 4 ⊆ A2 is
a reflexive and transitive relation that defines a simulation from A to A.

Each state a ∈ A can be collapsed into a previously seen state b ∈ A, while
traversing A from a set of initial states I ⊆ A, whenever b is more general
than a according to the folding preorder a 4 b. Such a folded transition
system has in general much fewer states than the original system, and can
collapse an infinite-state space to a finite-state space. This section explains
how a folding abstraction of an LKS K̄ can be used to verify LTLR properties
of K̄, while generating no spurious counterexamples for safety properties.

101

5.4.1 Folded Transition Systems

We can iteratively construct a folding abstraction of a transition system
A = (A,−→A) from a set of initial states I ⊆ A using a folding preorder
4 ⊆ A2 as shown in Definition 5.6 below. For a set of states B ⊆ A, let
PostA(B) = {a ∈ A | ∃b ∈ B. b −→A a} (i.e., the successors of B) and
Post∗A(B) =

⋃
i∈N(PostA)i(B) (i.e., the reachable states from B).

Definition 5.6. Given a transition system A = (A,−→A) and a folding
preorder 4 on A, the folding abstraction from I ⊆ A is the transition system

Reach4A(I) = (Post∗A4(I), −→Reach4A(I)),

where Post∗A4(I) =
⋃
i∈N PostiA4(I) such that Postn+1

A4 (I) is the successor
set of PostnA4(I) not subsumed by previously seen states:

Post0
A4(I) = I,

Postn+1
A4 (I) = {a ∈ PostA(PostnA4(I)) | ∀l ≤ n ∀b ∈PostlA4(I). a 64 b},

and −→Reach4A(I)=
⋃
i∈N −→

4
A,i such that −→4A,n+1 defines the transitions

from s ∈ PostnA4(I) to t ∈ PostlA4(I) for 0 ≤ l ≤ n+ 1, up to n+ 1 steps:

−→4A,0 = ∅,

−→4A,n+1 = {(a, a′) ∈ PostnA4(I)×
⋃

0≤i≤n+1
PostiA4(I) | ∃b ∈ PostA(a). b 4 a′}.

Example 5.5. Consider the simplified specification of the readers-writers
problem in Section 5.2.3, and a folding preorder 4rw between states defined
by comparing the number of readers as follows:

〈R,W 〉 4rw 〈R,W 〉 ∧ 〈sk(R), 0〉 4rw 〈s(R), 0〉 for k ≥ 1.

Then, we obtain the finite folding abstraction Reach4rw
A ({〈0, 0〉}) from the

initial state 〈0, 0〉 in the right-hand side of Figure 5.5.

〈0, 0〉 11

��

〈s(0), 0〉rr

��

〈s3(0), 0〉

}} ��

· · ·

��
〈0, s(0)〉

SS

〈s2(0), 0〉

TT ==

〈s4(0), 0〉

TT BB 〈0, 0〉 11

��

〈s(0), 0〉rr
WW

〈0, s(0)〉

SS

Figure 5.5: An infinite transition system from the initial state 〈0, 0〉 (left),
and its folded transition system by the folding preorder 4rw (right).

102

Each reachable state a ∈ Post∗A(I) in A has a corresponding abstract
state â ∈ Post∗A4(I) in the folding abstraction Reach4A(I) as follows.

Lemma 5.4. Given a transition system A = (A,−→A), a folding preorder
4 ⊆ A2, and a set of states I ⊆ A, for each reachable state s ∈ Post∗A(I),
there exists a corresponding state ŝ ∈ Post∗A4(I) such that s 4 ŝ.

Proof. For a reachable state a ∈ Post∗A(I) of A, there exists a finite path
πa : [n] → A with length n ∈ N, where [n] = {0, 1, . . . , n}, beginning in I

and ending at a (i.e., πa(0) ∈ I and πa(n − 1) = a). We show this lemma
by induction on the length of πa. First, if |πa| = 0, then

a ∈ I = Post0
A4(I) ⊆ Post∗A4(I), and a 4 a.

Next, suppose that for any path π with length n beginning in the set of
initial states I, there exists an abstract state bn−1 ∈ Post∗A4(I) such that
π(n− 1) 4 bn−1. Consider a path πa with length n+ 1 such that πa(0) ∈ I
and πa(n) = a. By induction hypothesis, there exists bn−1 ∈ Post∗A4(I)
such that πa(n − 1) 4 bn−1. Notice that bn−1 ∈ PostkA4(I) for some k ∈ N
by definition. Since 4 is a simulation from A to A:

πa(n− 1) ∈ Post∗A(I) −→A πa(n) ∈ Post∗A(I)
4 4

bn−1 ∈ PostkA4(I) −→A ∃ bn ∈ PostA(PostkA4(I))

There are two possibilities. If bn ∈ Postk+1
A4 (I), we found bn ∈ Post∗A4(I)

such that a = πa(n) 4 bn. Otherwise, there exist l ≤ k and u ∈ PostlA4(I)
such that bn 4 u, since by definition

Postk+1
A4 (I) = {a ∈ PostA(PostkA4(I)) | ∀l ≤ k ∀u ∈PostlA4(I). a 64 u}.

That is, we found u ∈ Post∗A4(I) such that a = πa(n) 4 bn 4 u. Therefore,
for each reachable state a ∈ Post∗A(I) of A, there exists a corresponding
abstract state â ∈ Post∗A4(I) such that a 4 â.

Let ReachA(I) = (Post∗A(I),−→A ∩Post∗A(I)2) be a reachable subsystem
of a transition system A = (A,−→A) that only contains reachable states
of A from a set of initial states I. Then, a folding abstraction Reach4A(I)
of A from I by any folding preorder 4⊆ A2 simulates the entire reachable
subsystem ReachA(I) without folding.

103

Lemma 5.5. Given a transition system A = (A,−→A), a folding preorder
4 ⊆ A2, and a set of initial states I ⊆ A, the folding preorder 4 is a total
simulation from ReachA(I) to Reach4A(I).

Proof. Suppose a 4 b and a −→A a′ for a, a′ ∈ Post∗A(I) and b ∈ Post∗A4(I).
By definition, b ∈ PostkA4(I) for some k ∈ N. Since 4 is a simulation from
A to A, there exists b′ ∈ PostA(PostkA4(I)) such that b −→A b′ and a′ 4 b′:

a ∈ Post∗A(I) −→A a′ ∈ Post∗A(I)
4 4

b ∈ PostkA4(I) −→A ∃b′ ∈ PostA(PostkA4(I))

There are also two possibilities. If b′ ∈ Postk+1
A4 (I), we have b −→4A,k+1 b

′

such that a′ 4 b′. Otherwise, by definition of Postk+1
A4 (I), there exist l ≤ k

and b′′ ∈ PostlA4(I) such that b′ 4 b′′, in a similar way to the proof of
Lemma 5.4. By definition of −→4A,k+1, we then have b −→4A,k+1 b

′′ again,
where a′ 4 b′ 4 b′′. Therefore, the folding preorder 4 is a simulation from
ReachA(I) to Reach4A(I). Also, 4 is total by Lemma 5.4.

Now consider an LKS K̄ = (S,AP,L,ACT ,−→K̄) and a folding preorder
4 ⊆ S2. Since K̄ is an instance of the transition system (S,−→K̄), the
folding preorder 4 defines a total simulation between the transition systems
ReachK̄(I) andReach4K̄(I) by Lemma 5.5. However, if 4 is also a simulation
relation in terms of labeled Kripke structures, then by Definition 5.2, any
two corresponding transitions by 4 satisfy the same set of state propositions
and spatial action patterns. Therefore, the folding relation 4 also defines
a total simulation between the labeled Kripke structures ReachK̄(I) and
Reach4K̄(I). For model checking of an LTLR ϕ, only reachable states can
contribute to the satisfaction of ϕ. Consequently, by Lemma 5.2:

Theorem 5.3. Given an LKS K̄ = (S,AP,L,ACT ,−→K̄), a set of initial
states S0 ⊆ S, and a folding preorder 4 ⊆ S2 that also defines a simulation
from K̄ to K̄, for an LTLR formula ϕ and s0 ∈ S0:

Reach4K̄(S0), s0 |= ϕ =⇒ K̄, s0 |= ϕ

Example 5.6. Consider the folding preorder 4rw in Example 5.5 for the
simplified specification of the readers-writers problem in Section 5.2.3. Since
4rw preserves the state propositions reading and writing, while ACT = ∅,
4rw also defines a simulation preorder on the corresponding LKS. Since the
formula �¬(reading ∧writing) holds in the folding abstraction, it also holds
in the original (infinite-state) system by Theorem 5.3.

104

5.4.2 Faithfulness for Safety Properties

A folding abstractionReach4K̄(I) is in general an over-approximation of K̄. If
an LTLR formula ϕ is not satisfied in Reach4K̄(I), it can generate a spurious
counterexample for ϕ. Nonetheless, if a folding preorder 4 is symmetric,
then 4 becomes a total bisimulation by Lemma 5.5, so that both satisfy
exactly the same set of LTLR formulas.

Corollary 5.1. Given an LKS K̄ = (S,AP,L,ACT ,−→K̄), a symmetric
folding preorder 4 ⊆ S2, and a set of initial states S0 ⊆ S, for any LTLR
formula ϕ and s0 ∈ S0, K̄, s0 |= ϕ iff Reach4K̄(S0), s0 |= ϕ.

Furthermore, a folding abstraction is faithful for invariants; that is, if
there is a counterexample for any invariant �Φ in a folding abstraction
Reach4K̄(I), where Φ is a Boolean formula over AP and ACT containing no
temporal operators, there exists a real counterexample in the concrete LKS
K̄. This faithfulness follows from the fact that each state in Reach4K̄(I) is
still reachable from I in the original LKS K̄ by construction,

Lemma 5.6. Given a transition system A = (A,−→A), a folding preorder
4 ⊆ A2, and a set of initial states I ⊆ A, we have Post∗A4(I) ⊆ Post∗A(I).

Proof. Recall that Post∗A4(I) =
⋃
i∈N PostiA4(I). Therefore, it suffices to

show that PostkA4(I) ⊆ Post∗A(I) for k ∈ N, by induction on k. First, by
definition, Post0

A4(I) = I ⊆ Post∗A(I). Suppose that PostnA4(I) ⊆ Post∗A(I)
for some n ∈ N. Since Postn+1

A4 (I) ⊆ PostA(PostnA4(I)), for a′ ∈ Postn+1
A4 (I),

there exists a ∈ PostnA4(I) such that a −→A s′. By induction hypothesis,
a ∈ Post∗A(I), and thus a′ ∈ Post∗A(I). Hence, Postn+1

A4 (I) ⊆ Post∗A(I).
Therefore, PostkA4(I) ⊆ Post∗A(I) for each k ∈ N.

If a folding abstractionReach4K̄(I) does not satisfy an invariant, then there
exists an error state s ∈ Post∗K̄4(I) inReach4K̄(I) that violates the invariant.
Because the error state s is again reachable from I in the original Kripke
structure K̄ by Lemma 5.6, we can construct a concrete counterexample in
K̄ by a backward search from s to I. Consequently:

Theorem 5.4 (Faithfulness for Invariants). Given an LKS K̄, a set of initial
states S0 ⊆ S, a folding preorder 4 ⊆ S2, for any invariant �Φ and s0 ∈ S0:

Reach4K̄(S0), s0 |= �Φ ⇐⇒ K̄, s0 |= �Φ.

For example, for the folding abstraction in Example 5.5, any counterexample
found (if any) for invariants is not spurious.

105

K̄
//a/¬p //

88b/¬p
{{

// c/p
tt

Reach4K̄(S0)
//a/¬p //
TT

c/p
tt

Figure 5.6: An LKS K̄ with S = {a, b, c}, S0 = {a}, and L(c) = {p}, and its
folded abstraction Reach4K̄(S0), where the dashed arrow denotes b 4 a.

A folding abstraction Reach4K̄(S0) is not a faithful abstraction for general
LTLR formulas. For example, consider the simple LKS K̄ with only one
state proposition p in Figure 5.6. Even though 4 is a folding preorder, for
the formula © © p, K̄, a |= © © p, but Reach4K̄(S0), a 6|= © © p. As
shown in Figure 5.6, there exists a spurious counterexample (¬p,¬p,¬p) in
Reach4K̄(S0). However, folding abstractions provide faithful model checking
procedures for safety LTLR formulas. For a safety LTL formula ϕ, there
is a finite automaton F¬ϕ that recognizes counterexamples for ϕ [32, 118].
Hence, as explained in Chapter 3, for a safety LTLR formula ϕ, there also
exists a finite automaton F¬ϕ that recognizes its counterexamples.

Definition 5.7. A finite automaton is a 5-tuple F = (Q,Q0, 2AP , δ, F) with
Q a finite set of states, Q0 ⊆ Q a set of initial states, 2AP an alphabet of
transition labels, δ ⊆ Q× 2AP ×Q a transition relation, and F ⊆ Q a set of
final states. The language accepted by F is the set L(F) of finite runs of
F starting in Q0 and ending in F .

Therefore, given an LKS K̄ and a set of initial states S0 ⊆ S, the model
checking problem of a safety LTLR formula ϕ can be characterized by using
a finite automaton F¬ϕ associated to the negated formula ¬ϕ. Similarly,
the state/event product of K̄ and F is the finite automaton

K̄[S0]⊗F = (S ×Q,S0 ×Q0, 2AP∪ACT , δK̄, S × F)

such that (s, b) L(s)∪Λ−−−−−→ (s′, b′) ∈ δK̄ iff s Λ−−→K̄ s′ and b L(s)∪Λ−−−−−→ b′ ∈ δ.
Then, by the exactly same argument as Chapter 3, for a safety LTLR formula
ϕ, we have K̄, S0 |= ϕ ⇐⇒ L(K̄[S0]⊗F¬ϕ) = ∅.
Since the emptiness checking of the finite automaton K̄[S0]⊗F¬ϕ can be

characterized by the reachability analysis of its final states, we can apply
our previous result (Theorem 5.4) to faithfully abstract the synchronous
product K̄[S0]⊗F¬ϕ. For a folding preorder 4 of K̄, let the product preorder
4F ⊆ (S ×Q)2 be defined by the equivalence:

(s, b) 4F (s′, b′) ⇐⇒ s 4 s′ ∧ b = b′.

106

Lemma 5.7. Given a finite automaton F , and a folding preorder 4 and
a set of initial state S0 ⊆ S for an LKS K̄, the product preorder 4F is a
folding preorder for the synchronous product K̄[S0]⊗F .

Proof. Suppose that (s1, b1) L(s1)∪Λ−−−−−−→ (s′1, b′1) ∈ δK̄ and (s1, b1) 4F (s2, b2).
By definition, s1 Λ−−→K̄ s′1, s1 4 s2, and b1 = b2. Since 4 is a simulation from
K̄ to K̄, there exists s′2 ∈ S such that s2 Λ−−→K̄ s′2 and s′1 4 s′2. Therefore,
(s2, b2) L(s2)∪Λ−−−−−−→ (s′2, b′1) ∈ δK̄, and (s′1, b′1) 4F (s′2, b′1). Since s1 4 s2

implies L(s1) = L(s2), (s2, b2) L(s1)∪Λ−−−−−−→ (s′2, b′1) ∈ δK̄. Therefore, 4F is a
simulation to K̄[S0]⊗F and K̄[S0]⊗F .4

As a result, together with Theorem 5.4, for a safety LTLR formula ϕ,
L
(
Reach4F¬ϕ

K̄[S0]⊗F¬ϕ
(S0 ×Q0)

)
= ∅ iff L(K̄[S0]⊗F¬ϕ) = ∅. Consequently:

Theorem 5.5 (Faithfulness for Safety Properties). Given a labeled Kripke
structure K̄ = (S,AP,L,ACT ,−→K̄), a folding preorder 4 ⊆ S2, and a set
of initial states S0 ⊆ S, for a safety LTLR formula ϕ, there exists a finite
automaton F¬ϕ with Q0 a set of initial states such that:

L
(
Reach4F¬ϕ

K̄[S0]⊗F¬ϕ
(S0 ×Q0)

)
= ∅ ⇐⇒ K̄, S0 |= ϕ.

In order words, the product finite automaton Reach4F¬ϕ
K̄[S0]⊗F¬ϕ

(S0×Q0) can
be used to faithfully model check the safety LTLR formula ϕ.
The product automaton Reach4F¬ϕ

K̄[S0]⊗F¬ϕ
(S0 × Q0) can also be used to

construct a faithful abstraction of K̄ for a safety LTLR formula ϕ, when F¬ϕ

is deterministic. For Reach4F¬ϕ
K̄[S0]⊗F¬ϕ

(S0×Q0) = (Q̂, Q̂0, 2AP∪ACT , δ̂, F̂), we
can construct the LKS K̄[F¬ϕ, S0] = (Q̂,AP, L̂,ACT ,→K̄[F¬ϕ]), where:

• L̂((s, b)) = L(s) for each (s, b) ∈ Q̂, and

• (s, b) Λ−−→K̄[F¬ϕ] (s′, b′) iff (s, b) L(s)∪Λ−−−−−→ (s′, b′) ∈ δ̂.

Lemma 5.8. There exists a total simulation from ReachK̄(S0) to the LKS
K̄[F¬ϕ, S0] induced by Reach4F¬ϕ

K̄[S0]⊗F¬ϕ
(S0 ×Q0).

Proof. Let H = {(s, (t, b)) ∈ S × Q̂ | s 4 t}. Suppose that s Λ−−→K̄ s′ and
sH (t, b). For a state b ∈ Q of F , there is b′ ∈ Q with (s, b) L(s)∪Λ−−−−−→ (s′, b′)
in K̄[S0]⊗F . Since 4F is a total simulation from ReachK̄(S0)[S0]⊗F to
Reach4F

K̄[S0]⊗F
(S0×Q0) by Lemma 5.5 and Lemma 5.7, for some (t′, b′) ∈ Q̂,

(t, b) L(t)∪Λ−−−−−→ (t′, b′) in Reach4F

K̄[S0]⊗F
(S0 × Q0), and (s′, b′) 4F (t′, b′). By

definition, s′ 4 t′, and therefore s′H(t′, b′).
4Recall that for two finite automata Fi = (Qi, Qi0, P, δi, Fi), i = 1, 2, H ⊆ Q1 ×Q2 is

a simulation iff for each q1Hq2, q1
a−→ q′1 implies ∃q′2 ∈ B. q2

a−→ q′2 and q′1Hq′2.

107

Suppose that F is deterministic and F ′ is any (possibly nondeterministic)
finite automaton such that L(F) = L(F ′). If L(K̄[F , S0] ⊗F ′) 6= ∅, then
there exists a reachable accepting state ((s, b), b′) of K̄[F , S0] ⊗ F ′, and
clearly, (s, b) is also reachable in K̄[S0] ⊗F . Because L(F) = L(F ′) and
F is deterministic, the state b is also an accepting state of F . That is,
L(K̄[S0]⊗F) 6= ∅, and L(K̄[S0]⊗F ′) 6= ∅ by the equivalence. Therefore:

Theorem 5.6 (Safety-Faithful Abstraction). Given an LKS K̄, a folding
preorder 4 ⊆ S2, a safety LTLR formula ϕ, and a set of initial states
S0 ⊆ S, there exists an abstract LKS K̄[F¬ϕ, S0] for a deterministic finite
automaton F¬ϕ that never generates spurious counterexamples for ϕ.

5.4.3 Safety Model Checking Procedure

A faithful folding abstraction for a safety LTLR property can be constructed
on-the-fly by iteratively increasing its depth. Such depth-bounded model
checking is useful for dealing with folding abstractions which may be infinite,
since, as usual for abstractions of infinite-state systems, we cannot ensure a
priori whether the folding abstraction will be finite. Therefore, we construct
a k-step folding abstraction of K̄ whose states are reachable in k-steps from
a set of initial states I ⊆ S. Such a depth k is iteratively incremented until
a certain bound or until reaching a fixed-point if it exists.

Definition 5.8. Given a transition system A = (A,−→A), a set of initial
states I ⊆ A, and a folding preorder 4 on A, the k-step folding abstraction
from I is the transition system Reach4,kA (I) = (Post≤kA4(I),−→Reach4,kA (I)),

where Post≤kA4(I) =
⋃

0≤i≤k PostiA4(I) and −→Reach4,kA (I)=
⋃

0≤i≤k −→
4
A,i.

For a (∞-step) folding abstraction Reach4A(I), we can easily see that if
its state set Post∗A4(I) is finite, there exists a bound n ∈ N such that
Reach4,jA (I) = Reach4A(I) for any j ≥ n. Therefore, unlike typical bounded
model checking methods (e.g., [38]), our folding-based method can easily
detect if Reach4,nA (I) is complete or not.

The safety model checking procedure of a safety LTLR property ϕ for an
LKS K̄ with a set of initial states S0 and a folding preorder 4 consists in
checking Sk = Reach4F¬ϕ ,k

K̄[S0]⊗F¬ϕ
(S0 × Q0) for each k ∈ N, where F¬ϕ is a

finite automaton that recognizes the finite counterexamples of ϕ, iteratively
from 0 until one of the following termination conditions holds: (i) Sk is
complete (a fixpoint is found), (ii) a counterexample is found in Sk, or
(iii) k is greater than a given maximum bound n. Our depth-bounded model
checking method can be briefly described as follows:

108

1. Apply a standard explicit-state model checking algorithm to check
whether Sk contains an accepting state.

2. If Sk contains an accepting state, then there exists a counterexample
of ϕ in K̄ by Theorem 5.5. Stop and return a counterexample that can
be constructed by a backwards search in K̄ from the accepting state.

3. Suppose that there is no counterexample of ϕ in Sk.

(a) If k is greater than the maximal bound n, stop and report that
K̄ does not violate ϕ until the current bound n.

(b) Otherwise, compute Sk+1: (i) if Sk+1 = Sk, then stop and
return true (the safety LTLR formula ϕ holds in K̄); (ii) if not,
increment the depth-bound k by 1 and go to the first step.

Example. We illustrate how Dijkstra’s algorithm in Section 5.2.2 can be
verified by using our folding abstraction method. To collapse an unbounded
number of processes to a bounded number we define two folding preorders
by comparing a number of processes with specific patterns. If P k denotes k
P processes, the preorders are defined by:

〈f, l1, off〉k+1 PS 4l1 〈f, l1, off〉 PS

〈f, l2, off〉k+1 PS 4l2 〈f, l2, off〉 PS

Note that the infinite set of initial states {〈0, l1, off〉k+1 〈0, l1, on〉 | k ∈ N}
is collapsed into the finite set {〈0, l1, off〉 〈0, l1, on〉} by the preorder 4l1 .
These preorder relations are not simulations in the original system. To

make the folding preorders simulations between an infinite state space and a
finite state space we define a variant of the system that is stuttering bisimilar
[32] to the original system5 by adding the following rules:

rl [l1’] : < {F,l1,off} PS >
=> < {F,l1,off} {1,l2,off} PS > .

rl [l2’] : < {F,l2,off} {0,S,on} PS >
=> < {F,l2,off} {F,l2,on} {0,S,off} PS > .

Both 4l1 and 4l2 clearly preserve the state proposition ex?. Also, the
preorder 4l1 preserves transitions, since the newly added rules preserve
{F,l1,off} processes, and similarly so does 4l2 .6

5This extension is necessary to have a simulation between an infinite state space and a
finite state space. However, it can be avoided by using a symbolic representation in which
a single pattern can describe an infinite number of related states (see Section 5.5).

6This is similar to coherence completion for equational abstractions in Section 5.3.4.

109

〈0, l1, on〉 〈0, l1, off〉 〈1, l2, off〉

�� ++

��

��
〈0, l1, off〉 〈1, l3, on〉

〈0, l1, on〉 〈0, l1, off〉

44

//

**

〈0, l1, off〉 〈1, l2, on〉 //

++

33

〈0, l1, off〉 〈1, l2, on〉 〈1, l2, off〉

〈0, l1, on〉 〈1, l2, off〉

OO

//

33

〈1, l2, on〉 〈1, l2, off〉

Figure 5.7: The finite 2-step folding abstraction by the folding preorder
4l1 ;4l2 for the Dijkstra’s mutex algorithm from the set of initial states
{〈0, l1, off〉k+1 〈0, l1, on〉 | k ∈ N} with an unbounded number of processes.

By the composed folding preorder 4l1 ;4l2 , the 2-step folding abstraction
is shown in Figure 5.7 from the initial state {〈0, l1, off〉 〈0, l1, on〉}, which
represents the infinite set of initial states

{〈0, l1, off〉k+1 〈0, l1, on〉 | k ∈ N}

with an unbounded number of processes. Since there is no state containing
two crit processes in the 2-step folding abstraction, we can ensure that
there exists no counterexample of �ex? of length less than or equal to 2.
In fact, by using the composed folding preorder 4l1 ;4l2 , we can obtain
the folding abstraction with only 15 states from the abstract initial state
{〈0, l1, off〉 〈0, l1, on〉} with no state containing two crit processes. Hence,
by Theorem 5.3 and the stuttering bisimulation, the mutual exclusion �ex?
is also satisfied in the original system for an unbounded number of processes
from the infinite set of initial states {〈0, l1, off〉k+1 〈0, l1, on〉 | k ∈ N}.

5.5 Narrowing-based Logical Abstraction

Narrowing [110, 112] generalizes term rewriting by allowing free variables in
terms and by performing unification instead of matching. An E-unifier of
an equation t = t′ is a substitution σ such that

σt =E σt
′ and dom(σ) ⊆ vars(t) ∪ vars(t′),

and CSUE(t = t′) denotes a complete set of E-unifiers such that for any
E-unifier ρ of t = t′, there is a more general substitution σ ∈ CSUE(t = t′),
i.e., (∃η) ρ =E η ◦ σ. We assume that there exists a finitary E-unification
algorithm to find a finite complete set CSUE(t = t′) (e.g., there is a finitary
E-unification algorithm if E has the finite variant property [64, 87]).

110

Definition 5.9. For a topmost unconditional rewrite theory R = (Σ, E,R),
each rule l : q −→ r ∈ R specifies a topmost narrowing step t l,σ,R t′ (or
t R t′) iff there exists an E-unifier σ ∈ CSUE(t = q) such that t′ = σ(r).

Throughout this section we assume that a rewrite theory R is a topmost
unconditional order-sorted State-deadlock free rewrite theory.

Such a rewrite theory R = (Σ, E,R) also specifies a logical transition
system N (R) [86]. The states of N (R) are elements of the free algebra
TΣ/E(X)State, and its transitions are specified by topmost narrowing steps
 R. A state of N (R) is not a concrete state (i.e., ground term), but a state
pattern t(x1, . . . , xn) with logical variables x1, . . . , xn, representing the set
of all concrete states [θt]E that are its ground instances. Using such logical
representation, this section presents narrowing-based LTLR model checking
for infinite-state systems. A special form of folding abstractions can be
automatically applied for narrowing-based model checking. Since the logical
state space can still be infinite, we also show how equational abstraction can
be combined with narrowing-based model checking.

5.5.1 Spatial Action Patterns for Narrowing

Spatial action patterns for rewriting define their matching one-step proof
terms, representing the corresponding one-step rewrites (see Chapter 3). For
a topmost rewrite theory R = (Σ, E,R), one-step proof terms have the form
l(θ), indicating that a rule l : q −→ r has been applied with a substitution θ
(at the top position of the term), where dom(θ) ⊆ vars(q)∪vars(r). To define
spatial action patterns for narrowing steps, we also need an appropriate
notion of one-step proof terms for narrowing. Consider a topmost narrowing
step t l,σ,R t′ using a rule l : q −→ r. Intuitively, the rule label l and the
restriction of the substitution σ to the variables in the rule7 give the one-step
proof term for the narrowing step t l,σ,R t

′.

Definition 5.10. Given a topmost rewrite theory R = (Σ, E,R), for a
topmost narrowing step t l,σ,R t

′ using a rule l : q −→ r, its one-step proof
term is given by l(σ|vars(q)∪vars(r)), often denoted by l(σl).

The following lemma implies that a one-step proof term l(σl) for narrowing
faithfully captures its corresponding one-step proof terms l(θ) for rewriting,
in the sense that θ =E η ◦σl for some substitution η. This lemma is adapted
from the soundness and completeness results of topmost narrowing [142].

7Since one-step proof terms for rewriting only contain variables in rules, we restrict
one-step proof terms for narrowing in the same way.

111

Lemma 5.9. Given a topmost rewrite theory R = (Σ, E,R), a non-variable
term u, and a substitution ρ, assuming no variable in u appears in the rules:

(∃t′, θ) l(θ) : ρu −→R t′

⇐⇒ (∃u′, σ, η) u l,σ,R u
′ ∧ ρ|vars(u) =E (η ◦ σ)|vars(u),

where θ =E (η ◦ σ)|dom(θ) and t′ =E ηu
′.

Proof. (⇒) Suppose that l(θ) : ρu −→R t′ for a topmost rule l : q −→ r,
where dom(θ) ⊆ vars(q) ∪ vars(r). Then, θq =E ρu and t′ = θr. Since no
variable in u appears in l : q −→ r, we have dom(θ) ∩ vars(u) = ∅. Thus,
we can define the substitution θ ∪ ρ|vars(u) with domain dom(θ) ∪ vars(u)
such that (θ ∪ ρ|vars(u))|dom(θ) = θ and (θ ∪ ρ|vars(u))|vars(u) = ρ|vars(u).
Because θ ∪ ρ|vars(u) is an E-unifier of q = u, there exist substitutions
σ ∈ CSUE(u = q) and η′ satisfying (θ ∪ ρ|vars(u))|vars(q)∪vars(u) =E η′ ◦ σ
with domain vars(q)∪ vars(u). Therefore, u l,σ,R u

′ for u′ = σr. Next, let
η be the extended substitution such that ηx = η′x if x ∈ vars(q) ∪ vars(u),
and ηx = θx otherwise. Then, we have:

ρ|vars(u) =E (η ◦ σ)|vars(u) and θ =E (η ◦ σ)|dom(θ),

since dom(θ) ∩ vars(u) = ∅ and dom(θ) ⊆ vars(q) ∪ vars(r). Furthermore,
t′ = θr =E (η ◦ σ)r = ηu′.
(⇐) Suppose that u l,σ,R u

′ and ρ|vars(u) =E (η ◦ σ)|vars(u). Then, for a
topmost rule l : q −→ r, σ ∈ CSUE(u = q) and u′ = σr. Since σu =E σq

and (vars(q) ∪ vars(r)) ∩ vars(u) = ∅, l(σ|vars(q)∪vars(r)) : σu −→R u′.
Therefore, l(η ◦σ|vars(q)∪vars(r)) : (η ◦σ)u −→R ηu′, where (η ◦σ)u =E ρu,
since rewrites are stable under substitutions.

The semantics of a spatial action pattern can be defined by means of
equations using the auxiliary operator _|=_ : ProofTerm Action → Bool.
By definition, δ ∈ TΣ/E,Action is matched to a one-step proof term γ iff
(γ |= δ) =E true. For a topmost rewrite theory R, a one-step proof term
l(θ) can be represented as a term {′l : ′x1\θx1 ; . . . ; ′xm\θxm} of sort
ProofTerm, as explained in Section 3.2.1.

Example 5.7. Consider the bakery example in Section 5.2.1. A topmost
narrowing step from the term N ; N ; [0,idle] by the wake rule gives the
following one-step proof term:

{’wake : ’N \ N ; ’M \ N ; ’I \ 0 ; ’PS \ none}.

112

For narrowing-based model checking we further require that there exists
a finitary E-unification procedure. If a spatial action pattern δ is identified
by a one-step proof term pattern uδ (that is, (γ |= δ) =E true iff γ is a
substitution instance of uδ),8 and if uδ has complement patterns u1, . . . , uk

(i.e., any ground one-step proof term is an instance of exactly one term in
{uδ, u1, . . . , uk}), then δ can be defined by the equations:

uδ |= δ = true, u1 |= δ = false, . . . , uk |= δ = false.

Since the right-hand sides are all constants, these equations have the finite
variant property, and thus they provide a finitary E-unification algorithm
[64, 87]. Of course, this method can also be applied for “pattern-like” state
propositions, as already illustrated in Section 5.2.
Several effective methods have been developed to check when a term t

has complements and to compute such complement patterns, not only in
the free case [121], but also modulo the associative and commutative (AC)
axioms and modulo permutative theories [92, 93]. Hence, for unconditional
rewrite theories with axioms B such as those used in [92, 93, 121], we can
determine under fairly general conditions if a one-step proof term pattern
uδ of δ has complements, compute such complement patterns, and define
pattern satisfaction of δ by equations.

Example 5.8. Consider the spatial action pattern wake(0) in the bakery
example of Section 5.2.1. The positive case can be defined by the equation:

eq {’wake : ’I \ 0; SUBST} |= wake(0) = true .

For the negative cases, wake(0) does not hold when the rule label is not
’wake or the value of ’I is not 0. Therefore, they can be defined by the
complement patterns of 0 and ’wake as follows.

eq {’wake : ’I \ s J ; SUBST} |= wake(0) = false .
eq {’crit : SUBST} |= wake(0) = false .
eq {’exit : SUBST} |= wake(0) = false .

The use of order-sorted signatures can greatly facilitate the existence of
complement patterns that may not exist in an unsorted setting, as also
illustrated in Section 5.2. For example, the unsorted term y + 0 + 0 for a
signature with a constant 0, a unary s, and an AC symbol + is shown not
to have complements in [92], but can be easily shown to have complements
when the signature is refined to an order-sorted signature.

8The spatial action patterns in SP(R) are identified in this way, and their negative
cases can be automatically defined by owise equations (see Chapter 3); however, the
underlying E-unification procedure [87] does not support such owise equations.

113

5.5.2 Narrowing-based Labeled Kripke Structures

For a set of state propositions AP and a set of spatial action patterns ACT
defined by an associated equational theory P, we can define for a topmost
rewrite theory R = (Σ, E,R) a corresponding narrowing-based logical LKS
N̄ (R)P . Each state of N̄ (R)P is a term in which the truth of every state
proposition is decided into either true or false. A transition of N̄ (R)P is
specified by using a topmost narrowing step R, but further instantiated
into possibly several transitions, so that the truth bi of each state proposition
pi, where 1 ≤ i ≤ n, and the truth bn+j of each spatial action pattern δj ,
where 1 ≤ j ≤ m, are decided into true or false.

Definition 5.11. Given a topmost rewrite theory R = (Σ, E,R) and finite
sets AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm} defined by an associated
equational theory P = (Π, D), the narrowing-based logical labeled Kripke
structure is N̄ (R)P = (N(R)AP ,AP,LP ,ACT ,−→N̄ (R)), where:

• [t]E ∈ N(R)AP iff [t]E ∈ TΣ/E(X)State − X , and for every p ∈ AP,
either (t |= p) =E∪D true or (t |= p) =E∪D false;

• LP([t]E) = {p ∈ AP | (t |= p) =E∪D true}; and

• [t]E Λ−−→N̄ (R) [t′]E iff there exist a term u, a substitution ζ, and Boolean
values b1, . . . , bn+m ∈ {true, false} such that

t l,σ,R u ∧ t′ = ζu ∧

Λ = {δ ∈ ACT | (ζ(l(σl)) |= δ) =E∪D true} ∧

ζ ∈ CSUE∪D
(∧
1≤i≤n

(u |= pi) = bi ∧
∧

1≤j≤m
(l(σl) |= δj) = bn+j

)
.

Example 5.9. Consider the bakery example in Section 5.2.1. For the logical
initial state N ; N ; [0,idle], we obtain within the logical LKS N̄ (R)P the
infinite path in Figure 5.8, which captures an infinite number of concrete
paths in K̄(R,State)P from each ground instance of N ; N ; [0,idle].

N ; N ; [0,idle]
{enabled(wake(0)), ex?}

s N ; N ; [0,crit(N)]
{in.crit(0), ex?}

s s N ; s N ; [0,wait(s N)]
{ex?}

s N ; N ; [0,wait(N)]
{ex?}

s N ; s N ; [0,idle]
{enabled(wake(0)), ex?} ...

{wake(0)}
∅

∅ {wake(0)}

Figure 5.8: A path from N ; N ; [0,idle] in the logical LKS N̄ (R)P .

114

For a narrowing-based LKS N̄ (R)P , each logical state is related to a
concrete state in K̄(R,State)P in terms of the E-subsumption relation. The
E-subsumption t 4E t′ holds iff there exists a substitution σ with t =E σt

′,
meaning that t′ is more general than t modulo E.

Lemma 5.10. Given a topmost rewrite theory R = (Σ, E,R) and finite
sets AP and ACT defined by P = (Π, D), the E-subsumption 4E is a total
simulation from the concrete LKS K̄(R,State)P to N̄ (R)P .

Proof. Suppose that [t]E Λ−−→K̄(R) [t′]E and t 4E u for u ∈ N(R)AP . Given
AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}, fix b1, . . . , bn+m ∈ {true, false}
such that for 1 ≤ i ≤ n and 1 ≤ j ≤ m:

bi =E∪D (t′ |= pi) and bn+j =E∪D (l(θ) |= δj)

By definition, there is an one-step rewrite l(θ) : t −→R t′. Therefore, by
Lemma 5.9, there exists a narrowing step u l,σ,R u′ such that t′ =E ηu′

and θ =E (η ◦ σ)|dom(θ). Hence, there exists

ζ ∈ CSUE(
∧

1≤i≤n(u′ |= pi) = bi ∧
∧

1≤j≤m(l(σl) |= δj) = bn+j).

By definition, [u]E Λ−−→N̄ (R) [ζu′]E . Since
∧

1≤i≤nη
(
(u′ |= pi) =E∪D bi

)
and∧

1≤j≤mη
(
(l(σl) |= δj) =E∪D bn+j

)
, η 4E ζ, and t′ =E ηu 4E ζu′.

This lemma implies that, by Lemma 5.2, any LTLR formula ϕ satisfied in
a narrowing-based LKS N̄ (R)P from a logical state t is also satisfied in the
concrete LKS K̄(R, State)P from each ground instance of t. However, 4E is
not a bisimulation between K̄(R,State)P and N̄ (R)P in general.

Example 5.10. Consider the bakery example in Section 5.2.1. Although
0 ; 0 ; [I,wait(0)] 4E N ; M ; PS1 holds, there exists a transition

N ; M ; PS1
{wake(0)}−−−−−−−→N̄ (R) s N ; M ; PS2 [0,wait(N)],

in N̄ (R)P with the substitution PS1\ PS2 [0,idle], but no corresponding
transition exists from 0 ; 0 ; [I,wait(0)] in K̄(R,State)P . However, any
finite path in N̄ (R)P can be instantiated to a corresponding concrete path in
K̄(R,State)P ; e.g., the above transition can be instantiated as the transition

0 ; 0 ; [0,idle] {wake(0)}−−−−−−−→K̄(R) s ; 0 ; [0,wait(0)]

As hinted at in the above example, for any finite logical path in N̄ (R)P ,
there exists a corresponding concrete path in K̄(R, State)P .

115

Lemma 5.11. For a finite logical path u1
Λ1−−→N̄ (R) · · ·

Λn−1−−−−→N̄ (R) un of
N̄ (R)P , there exists a concrete path t1

Λ1−−→K̄(R) · · ·
Λn−1−−−−→K̄(R) tn in the

concrete LKS K̄(R,State)P such that ti 4E ui for each 1 ≤ i ≤ n.

Proof. Since u1
Λ1−−→N̄ (R) u2, by definition, there are substitutions σ1 and

ζ1 such that u1 l1,σ1,R u
′
2 by a rule l1 : q1 → r1 ∈ R and u2 = ζ1u

′
2. Since

σu1 =E σq1 and u2 = ζ1u
′
2 = (ζ1 ◦ σ1)r1, (ζ1 ◦ σ1)u1 −→R u2. Similarly,

(ζ2 ◦σ2)u2 −→R u3, (ζ3 ◦σ3)u3 −→R u4, etc. By composing them, we have:

(ζn−1◦σn−1◦· · ·◦ζ2◦σ2◦ζ1◦σ1)u1 −→R · · · −→R (ζn−1◦σn−1)un−1 −→R un.

Let ρ be a ground substitution instantiating every variable in the path,
which exists since we assume that TΣ,s 6= ∅ for each sort s. Then, the path
(ρ◦ζn−1◦σn−1◦· · ·◦ζ2◦σ1)u1 −→R · · · −→R (ρ◦ζn−1◦σn−1)un−1 −→R ρun
gives a desired concrete path in K̄(R, State)P .

Recall that counterexamples of safety properties are characterized by finite
sequences [32, 60]. Therefore, the above lemma guarantees that N̄ (R)P
does not generate spurious counterexamples for safety properties, since any
finite counterexample in N̄ (R)P has a corresponding real counterexample
in K̄(R, State)P . Together with Lemma 5.2 and Lemma 5.10, we have:

Theorem 5.7. Given a topmost rewrite theory R = (Σ, E,R) and finite
sets AP and ACT defined by an associated equational theory P = (Π, D),
for a safety LTLR formula ϕ and a pattern t ∈ N(R)AP :

N̄ (R)P , [t]E |= ϕ ⇐⇒ (∀θ : X → TΣ) K̄(R,State)P , [θt]E |= ϕ.

5.5.3 Abstract Narrowing-based Model Checking

A narrowing-based logical LKS N̄ (R)P can have an infinite number of logical
reachable states (e.g., see Figure 5.8). Hence, to reduce such an infinite-state
narrowing-based LKS N̄ (R)P to a finite logical LKS, this section presents
folding abstractions and equational abstractions of N̄ (R)P , as special cases
of those in Sections 5.3 and 5.4. Both folding abstraction and equational
abstraction can be seamlessly combined to verify non-trivial infinite-state
systems by narrowing-based model checking. Furthermore, since equational
abstractions can be bisimilar and folding abstractions are faithful for safety
properties, a combination of these abstractions can give a faithful abstraction
that generates no spurious counterexamples for safety properties.

116

Folding Abstractions. A folding abstraction of a transition system A
collapses each state a into a more general state b according to a folding
preorder a 4 b. To construct a folding abstraction of a narrowing-based
LKS N̄ (R)P using the E-subsumption preorder 4E , we need to show that
4E is a total simulation from N̄ (R)P to N̄ (R)P .

Lemma 5.12. Given a topmost rewrite theory R = (Σ, E,R) and a support
theory P = (Π, D), 4E is a total simulation from N̄ (R)P to N̄ (R)P .

Proof. Suppose that [t]E Λ−−→N̄ (R) [t′]E and t = ρu for a substitution ρ (i.e.,
t 4E u). Given AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}, by definition,
there are substitutions σ and ζ such that t l,σ,R t

′′ by l : q −→ r ∈ R and
t′ = ζt′′, where σ ∈ CSUE(t = q) and for some b1, . . . , bn+m ∈ {true, false}:

ζ ∈ CSUE∪D
(∧

1≤i≤n(t′′ |= pi) = bi ∧
∧

1≤j≤m(l(σl) |= δj) = bn+j
)

(5.1)

Since t′′ = σr and σt =E σq, we have t′ = ζt′′ = (ζ ◦ σ)r, and therefore
l(ζ ◦ σ) : (ζ ◦ σ)t −→R t′. Since t = ρu, l(ζ ◦ σ) : (ζ ◦ σ ◦ ρ)u −→R t′. By
Lemma 5.9, there exists a narrowing step u l,ς,R u′ such that t′ =E ηu′

and (ζ ◦ σ)|vars(q)∪vars(r) =E (η ◦ ς)|vars(q)∪vars(r). This implies:

ζt′′ =E ηu
′ and ζ(l(σl)) =E η(l(ςl). (5.2)

Hence, ν ∈ CSUE∪D(
∧

1≤i≤n(u′ |= pi) = bi ∧
∧

1≤j≤m(l(ςl) |= δj) = bn+j)
exists. By definition, [u]E Λ−−→N̄ (R) [νu′]E . Notice that by (5.1) and (5.2),∧

1≤i≤nη
(
(u′ |= pi) =E∪D bi

)
and

∧
1≤j≤mη

(
(l(ςl) |= δj) =E∪D bn+j

)
hold.

Therefore, η 4E ν, and t′ =E ηu 4E νu′.

Therefore, by Lemma 5.5, given a set of initial states S0 ⊆ S, 4E defines a
total simulation from ReachN̄ (R)P (S0) to Reach4EN̄ (R)P

(S0). Consequently,
by Theorem 5.3, for an LTLR formula ϕ and a pattern t ∈ N(R)AP :

Reach4EN̄ (R)P
({[t]E}), [t]E |= ϕ =⇒ N̄ (R)P , [t]E |= ϕ

Example 5.11. For the bakery example in Section 5.2.1, both formulas
�ex? and (32enabled(wake(0)) → 23wake(0)) → 3in.crit(0) hold in the
folding abstraction Reach4EN̄ (R)P

({N ; N ; [0,idle][s,idle]}) of Figure 5.9.
Specifically, ex? holds in every state, and any infinite path continuously
staying in the first row violates the fairness assumption. Therefore, both
properties are also satisfied in any corresponding concrete system.

117

N ; N ; [0,idle][s,idle]
{enabled.wake(0), ex?}

s N ; N ; [0,idle][s,crit(N)]
{enabled.wake(0), ex?}

s N ; N ; [0,idle][s,wait(N)]
{enabled.wake(0), ex?}

s s N ; N ; [0,wait(s N)][s,wait(N)]
{ex?}

s N ; N ; [0,wait(N)][s,idle]
{ex?}

s s N ; N ; [0,wait(s N)][s,crit(N)]
{ex?}

s s N ; N ; [0,wait(N)][s,wait(s N)]
{ex?}

s N ; N ; [0,crit(N)][s,idle]
{in.crit(0), ex?}

s s N ; N ; [0,crit(N)][s,wait(s N)]
{in.crit(0), ex?}

∅

{wake(0)}

∅

{wake(0)}

∅

{wake(0)}

∅

∅

∅

∅

∅

∅

∅

∅

Figure 5.9: A folding abstraction for the bakery algorithm using the folding
relation 4E , where a double-headed arrow denotes a “folded” transition.

Equational Abstractions. A folding abstraction of a narrowing-based
LKS N̄ (R)P may not be finite in general. For the bakery example, there is
an infinite path within the folding abstraction of Figure 5.10 from the initial
state N ; N ; [0,idle] IS for an unbounded number of processes, where the
variable IS denotes a set of idle processes. To further reduce an infinite-state
narrowing-based LKS, we can apply equational abstraction. An equational
abstraction N̄ (R/G)P simulates the original narrowing-based LKS N̄ (R)P ,
in a similar way to the ground cases in Section 5.3.

N ; N ; [0,idle] IS
{enabled.wake(0), ex?}

s s s N ; N ; [0,wait(N)]
[I1,wait(s N)][I2,wait(s s N)] IS2

{ex?}

s N ; N ; [0,wait(N)] IS
{ex?}

...

s s N ; N ; [0,wait(N)][I1,wait(s N)] IS1
{ex?}

{wake(0)}
id

∅ IS/IS1[I1, idle] ∅

IS1/IS2[I2, idle]

Figure 5.10: An infinite path in the folding abstraction from the initial state
N ; N ; [0,idle] IS for the bakery algorithm with an unbounded number of
processes, where IS stands for a set of idle processes.

118

Lemma 5.13. Given a topmost rewrite theory R = (Σ, E,R), finite sets
AP and ACT defined by P = (Π, D), and a set G of equations, there exists
a total simulation from N̄ (R)P to N̄ (R/G)P , provided true 6=E∪D∪G false.

Proof. Let HG = {([t]E , [t]E∪G) | t ∈ N(R)AP}. Suppose that t =E∪G u and
[t]E Λ−−→N̄ (R) [t′]E . Given AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}, by
definition, there exist substitutions σ and ζ such that t l,σ,R t′′ by a rule
l : q −→ r ∈ R and t′ = ζt′′, where σ ∈ CSUE(t = q), t′′ = σr, and for some
Boolean values b1, . . . , bn+m ∈ {true, false}:

ζ ∈ CSUE∪D
(∧

1≤i≤n(t′′ |= pi) = bi ∧
∧

1≤j≤m(l(σl) |= δj) = bn+j
)
.

Because σ ∈ CSUE(t = q) and t =E∪G u hold, there exists a substitution
σ′ ∈ CSUE∪G(u = q) such that σ =E∪G σ′. Then, u l,σ′,R/G u′ holds
using the same rule l : q −→ r, where u′ = σ′r =E∪G σr = t′′. Notice that
(t′′ |= pi) =E∪D∪G (u′ |= pi) and (l(σl) |= δj) =E∪D∪G (l(σ′l) |= δj). Hence,

∃ζ ′ ∈ CSUE∪D∪G
(∧

1≤i≤n(u′ |= pi) = bi ∧
∧

1≤j≤m(l(σ′l) |= δj) = bn+j
)

with ζ =E∪D∪G ζ ′. Therefore, [u]E∪G Λ−−→N̄ (R/G) [ζ ′u′]E∪G. Also, since
(Σ ∪ Π, E ∪G ∪D) protects (Σ, E ∪G), ζ ′u′ =E∪G ζt′′ = t′. Further, since
true 6=E∪D∪G false, [t′]E and [ζ ′u′]E∪G satisfy the same state propositions.
Therefore, HG is a total simulation from N̄ (R)P to N̄ (R/G)P .

Example 5.12. For the bakery example in Section 5.2.1, in order to verify
the liveness property (32enabled(wake(0)) → 23wake(0)) → 3in.crit(0),
consider the set of state propositions AP = {in.crit(0), enabled(wake(0))}
and the set of spatial action patterns ACT = {wake(0),wake}, with the extra
spatial action pattern wake that holds if the wake rule is applied.
We can obtain the finite-state folded abstract logical LKS in Figure 5.11

from the initial state N ; N ; IS for an unbounded number of processes (where
IS denotes a set of idle processes), by adding the following equations,9 which,
intuitively, collapses extra waiting processes with non-zero identifiers that do
not introduce new behaviors:

eq [NZ,D] = [D] . --- remove non-zero identifiers
eq s s s N M ; M ; PS [wait(s N M)] [wait(s s N M)]
= s s N M ; M ; PS [wait(s N M)] .

9These equations G do not satisfy the finite variant property (see the conditions on
[87]). However, all the reachable logical states from the given initial state N ; N ; IS have
a finite set of most general G-variants, which is enough to have a finitary G-unification
procedure for the reachable logical state space.

119

s N ; N ; IS
[0,crit(N)]
{in.crit(0)}

s s N ; N ; IS
[0,crit(N)]
[wait(s N)]
{in.crit(0)}

N ; N ; IS
[0,idle]

{enabled.wake(0)}

s N ; N ; IS
[0,wait(N)]

∅

s s N ; N ; IS
[0,wait(N)]
[wait(s N)]

∅

s N ; N ; IS
[0,idle]
[crit(N)]

{enabled.wake(0)}

s s N ; N ; IS
[0,wait(s N)]

[crit(N)]
∅

s s s N ; N ; IS
[0,wait(s N)]

[crit(N)]
[wait(s s N)]

∅

s N ; N ; IS
[0,idle]
[wait(N)]

{enabled.wake(0)}

s s N ; N ; IS
[0,wait(s N)]

[wait(N)]
∅

s s s N ; N ; IS
[0,wait(s N)]

[wait(N)]
[wait(s s N)]

∅

s s N ; N ; IS
[0,idle]
[crit(N)]

[wait(s N)]
{enabled.wake(0)}

s s s N ; N ; IS
[0,wait(s s N)]

[crit(N)]
[wait(s N)]

∅

s s s s N ; N ; IS
[0,wait(s s N)]

[crit(N)]
[wait(s N)]

[wait(s s s N)]
∅

s s N ; N ; IS
[0,idle]
[wait(N)]

[wait(s N)]
{enabled.wake(0)}

s s s N ; N ; IS
[0,wait(s s N)]

[wait(N)]
[wait(s N)]

∅

s s s s N ; N ; IS
[0,wait(s s N)]

[wait(N)]
[wait(s N)]

[wait(s s s N)]
∅

∅

{wake} {wake}

∅

{wake,
wake(0)}

{wake}

{wake}

∅

{wake}

∅

{wake,
wake(0)}

{wake}

∅

{wake}

∅

{wake}

∅

∅

{wake,
wake(0)}

{wake}

∅

{wake} {wake}

∅

∅

{wake,
wake(0)}

{wake} ∅

{wake} {wake}

∅

∅

{wake,
wake(0)}

{wake} ∅

{wake} {wake}

∅

Figure 5.11: A folded equational abstraction for the bakery algorithm.

We can easily see that there is a counterexample of the property 3in.crit(0)
under the fairness condition 32enabled.wake(0)→ 23wake(0) in which the
wake rule is continuously applied forever. Because there exists only a finite
number of processes, the wake rule cannot be continuously applied forever.
Therefore, we need an extra assumption to avoid this unrealistic behavior.
If we assume the extra fairness condition 23¬wake, then the property

3in.crit(0) is now satisfied, because any infinite path staying in the first
column forever violates 32enabled.wake(0) → 23wake(0), and any path
staying in a self loop forever violates 23¬wake. Consequently, under the
fairness assumptions 32enabled.wake(0)→ 23wake(0) and 23¬wake, the
formula 3in.crit(0) is satisfied for an unbounded number of processes.

120

Example 5.13. Consider a variant of the bakery algorithm model of Section
5.2.1 in which process identifiers have been removed. The rewrite rules and
the equations for the state proposition ex? are now given as follows:

rl [wake]: N ; M ; [idle] PS => s N ; M ; [wait(N)] PS .
rl [crit]: N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS .
rl [exit]: N ; M ; [crit(M)] PS => N ; s M ; [idle] PS .

eq N ; M ; WS |= ex? = true .
eq N ; M ; [crit(K)] WS |= ex? = true .
eq N ; M ; [crit(K)] [crit(L)] PS |= ex? = false .

Then, the following abstraction equation used in Example 5.12 actually
defines a bisimilar equational abstraction, because this equation satisfies the
bisimilarity conditions in Theorem 5.2:

eq s s s L M ; M ; PS0 [wait(s L M)] [wait(s s L M)]
= s s L M ; M ; PS0 [wait(s L M)] .

When ACT = ∅, the bisimilarity conditions can be simplified as follows: for
each rewrite rule l : q −→ r and each equation u = v ∈ G or v = u ∈ G:

∀σ ∈ CSUE(l = u). σ(u) =E σ(q) −→ σ(r)∥∥
G

∥∥
E∪G

∃θ : X → TΣ(X). σ(v) =E θ(q) −→ θ(r)

If we consider the wake rule, then CSUE(l = u) has the single E-unifier
σ = {N 7→ s s s M L, PS 7→ PS1[wait(s M L)][wait(s s M L)], PS0 7→ PS1[idle]},
where E denotes the equational axioms. Then, σv =E θl and σr =E∪G θr

hold for the substitution θ = {N 7→ s s M L, PS 7→ PS1[wait(s M L)]}. For the
other direction of the equation, CSUE(l = v) also has the single E-unifier
σ′ = {PS 7→ PS2[wait(s M L)], PS0 7→ PS2[idle], N 7→ s s M L} and for the
substitution θ′ = {N 7→ s s s M L, PS 7→ PS2[wait(s M L)] [wait(s s M L)]}, we
have σ′u =E θ

′l and σ′r =E∪G θ
′r. The cases for the other rules are similar.

To verify the invariant �ex? for an unbounded number of processes, we
can then construct the finite abstract folded logical transition system from
the initial state N ; N ; IS in Figure 5.12, where AP = {ex?} and ACT = ∅.
By Theorem 5.4 and Lemma 5.3, it is faithful for the property �ex?. Since
�ex? holds in the abstract system, it is also satisfied for any corresponding
concrete system with an unbounded number of processes.

121

N ; N ; IS

s N ; N ; IS [wait(N)] s N ; N ; IS [crit(N)]

s s N ; N ; IS [wait(N)] [wait(s N)] s s N ; N ; IS [crit(N)] [wait(s N)]

IS/IS1[idle]
id

IS1/IS2[idle]

id

id
id

IS2/IS3[idle]

id

IS2/IS3[idle]

Figure 5.12: A folded bisimilar equational abstraction when AP = {ex?}.

5.5.4 The Maude LTL Logical Model Checker

This section illustrates the Maude LTL10 logical model checker with two
examples. This tool uses the existing narrowing framework in Full Maude
to compute narrowing ;σ,R,E [72]. However, the core algorithms for the
folding graph construction and the LTL model checking are implemented at
the C++ level within the Maude system. Our tool uses a depth-bounded
model checking procedure, which applies an on-the-fly technique to reuse
the previously generated states for the next step, in a way similar to the
model checking procedure presented in Section 5.4.3. The tool is available
at http://maude.cs.illinois.edu/tools/lmc.
Our tool provides the following two commands for logical model checking

an LTL formula ϕ from an initial state t with the maximum bound n ∈ N:

(lmc [n] t |= ϕ .) and (lfmc [n] t |= ϕ .)

This bound n is used to limit the depth of the k-step folding abstraction
Reach4,kN (R)P ({[t]E}). If a bound n is not specified in the command, then
infinity is considered as the bound. Each command uses a different folding
relation: the E-renaming equivalence ≈E for the lmc command, and the
E-subsumption 4E for the lfmc command. The E-renaming equivalence
t ≈E t′ holds iff t and t′ are equivalent up to variable renaming, implying
that t 4E t′ and t′ 4E t. Since ≈E is a symmetric folding relation, folding
abstractions by ≈E are bisimilar to the original system.
If the tool returns a counterexample, there are three possibilities according

to the underlying folding preorder 4. If 4 is the E-renaming equivalence ≈E
or ϕ is an invariant, it is a real counterexample. If 4 is the E-subsumption
4E and ϕ is a general LTL formula, it may be a spurious counterexample.
Of course, if an equation abstraction has been applied, then it is a real
counterexample only for a bisimilar equational abstraction.

10Currently, our logical model checker only supports LTL formulas, and does not yet
support LTLR formulas nor parameterized fairness.

122

http://maude.cs.illinois.edu/tools/lmc

Lamport’s Bakery Algorithm. For the bakery algorithm specification
in Section 5.2.1, the following model checking command verifies that, using
the folding preorder 4E , the mutual execution �ex? is satisfied from the
initial state N ; N ; [0,idle] [s,idle] [s s,idle] for three processes:

Maude> (lfmc N:Nat ; N:Nat ; [0,idle] [s,idle] [s s,idle] |= [] ex? .)
logical model check in BAKERY-SAFETY-SATISFACTION :
N:Nat ; N:Nat ; [0,idle] [s,idle] [s s,idle] |= [] ex?

result: true

For an unbounded number of processes, the following command partially
verifies using ≈E that the mutual execution �ex? is satisfied from any initial
state with the pattern N ; N ; IS within the bound 10:

Maude> (lmc [10] N ; N ; IS:ProcIdleSet |= [] ex? .)
logical model check in BAKERY-SATISFACTION :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
no counterexample found within bound 10

This command does not terminate if the bound is not specified, since ≈E
is not strong enough to collapse the reachable transition system to a finite
system. The bound should be specified to ensure the termination even with
4E , since, as already shown in Figure 5.10, for such a logical initial state
the folding logical approximation is infinite:

Maude> (lfmc [50] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY-SATISFACTION :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
no counterexample found within bound 50

When the subsumption 4E is applied, with the equational abstraction
shown in Example 5.12, the mutual exclusion �ex? can be verified from
the initial pattern N ; N ; IS:ProcIdleSet as follows,11 where, as shown in
Figure 5.12, five logical states are generated in less than one second on an
Intel Core i5 2.4 GHz with 4GB RAM:

Maude> (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY-SATISFACTION-ABS :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result: true
11Note that the module BAKERY-SATISFACTION-ABS extends the previous module

BAKERY-SATISFACTION with the abstraction equation.

123

Dijkstra’s Algorithm. Consider the topmost rewrite theory specifying
Dijkstra’s mutual exclusion algorithm in Section 5.2.2. Recall that this
system is infinite-state since the number of processes is unbounded. Indeed,
given the initial state pattern < IS:InitProcSet > to denote an unbounded
number of processes, where the variable IS stands for a set of processes with
flag 0 and program counter l1, the reachable logical state space is infinite
even with the folding relation 4E .
However, we can obtain a finite-state folded abstract logical LKS from the

initial state < IS:InitProcSet > by adding the following equation, which
also satisfies the bisimilarity conditions in Theorem 5.2:

eq < {F,l2 ,off} {F,l2 ,off} PS >
= < {F,l2,off} PS > .

The mutual exclusion �ex? can then be verified for an unbounded number
of process by the following command, where 15 logical spaces are generated
in less than two seconds on the same machine:

Maude> (lfmc < IS:InitProcSet > |= [] ex? .)
logical folding model check in DIJKSTRA-MUTEX-SATISFACTION-ABS:
< IS:InitProcSet > |= [] ex?

result: true

5.6 Predicate Abstraction

For a set of state predicates AP for a system S, the predicate abstraction
S/AP has set of states 2AP , and an abstract transition s→ s′ between states
s, s′ ∈ 2AP exists iff there exists a concrete transition u → v in the system
S such that u (resp. v) satisfies exactly the predicates in s (resp. in s′).
Since it may not always be possible to prove the existence of such a concrete
transition, an over-approximation α(S/AP), which adds extra transitions
when in doubt, may instead be used.
This section shows how a predicate abstraction of a topmost conditional

rewrite theory R = (Σ, E,R) can be constructed for LTLR properties by
solving E-equality constraints using E-unification. Because E-unification
problems are generally only semi-decidable, this chapter also presents a
sound, terminating, but incomplete, procedure to check unsatisfiability of
E-equality constraints. Finally, based on these procedures, this chapter
presents a predicate abstraction algorithm to automatically construct a
predicate abstraction of a rewrite theory, which may generate an over-
approximation if such procedures fail to give an answer.

124

5.6.1 P-Abstractions of Rewrite Theories

Consider a rewrite theory R = (Σ, E,R), and a set of state propositions
AP = {p1, . . . , pn} and a set of spatial action patterns ACT = {δ1, . . . , δm},
defined by an equational theory P = (Π, D). In predicate abstraction,
abstract states are subsets of AP = {p1, . . . , pn}, and an abstract transition
s Λ−−→ s′ ∈ 2AP × 2ACT × 2AP is defined if there exists a concrete one-step
rewrite λ : t −→R t′ in R such that:

s = {p ∈ AP | (t |= p) =E∪D true}

s′ = {p ∈ AP | (t′ |= p) =E∪D true}

Λ = {δ ∈ ACT | (λ |= δ) =E∪D true}

(5.3)

Our approach is motivated by the following observation. For a topmost
rewrite theory R = (Σ, E,R), a concrete one-step rewrite l(σ) : t −→R t′

exists iff for a rule (l : q −→ r if C) ∈ R and a ground substitution σ:

t =E σq ∧ t′ =E σr ∧ (∀u = v ∈ C) σu =E σv (5.4)

For {x1, . . . , xm} = vars(q) ∪ vars(r) ∪ vars(C), a one-step proof term l(σ)
is represented as the term {′l : ′x1\σx1; . . . ; ′xm\σxm}, that is,

l(σ) = σ({′l : ′x1\x1; . . . ; ′xm\xm}). (5.5)

The abstraction s Λ−−→ s′ of t −→R t′ is given by Condition (5.3). Since
t =E σq and t′ =E σr by Condition (5.4), we can replace t and t′ in (5.3)
by σl and σr, respectively. Therefore, we obtain:

• s = {p ∈ AP | (σq |= p) =E∪D true},

• s′ = {p ∈ AP | (σr |= p) =E∪D true},

• (∀u = v ∈ C) σu =E σv, and

• Λ = {δ ∈ ACT | (σ({′l : ′x1\x1; . . . ; ′xm\xm}) |= δ) =E∪D true}.

That is, s Λ−−→ s′ holds if there exist a rewrite rule (l : q −→ r if C) ∈ R
and a ground substitution σ that satisfy these E-equality constraints. Let
p∈_ : 2AP → {true, false} and δ ∈_ : 2ACT → {true, false} be the truth
functions defined as follows:

(p∈ s) =

true if p ∈ s

false if p /∈ s,
(δ ∈Λ) =

true if δ ∈ Λ

false if δ /∈ Λ.

125

Definition 5.12. For a topmost rewrite theory R = (Σ, E,R) and finite
sets of state propositions AP and spatial action patterns ACT defined by
an associated equational theory P = (Π, D), the P-abstract labeled Kripke
structure is the LKS K̄(R/P) = (2AP ,AP, id2AP ,ACT ,−→R/P), where:

• id2AP : 2AP → 2AP is the identity labeling function, and

• s Λ−−→R/P s′ iff there exists a rewrite rule (l : q −→ r if C) ∈ R such
that the following constraints are E ∪D-satisfiable:∧
p∈AP

(q |= p) = (p∈ s) ∧
∧
p∈AP

(r |= p) = (p∈ s′) ∧
∧

u=v∈C
u = v ∧

∧
δ∈ACT

({′l : ′x1\x1; . . . ; ′xm\xm} |= δ) = (δ ∈Λ)
(†)

If there exists a finitary E ∪D-unification algorithm (e.g., E ∪D has the
finite variant property), the satisfiability of (†) can be decided by checking
for the emptiness of the finite complete set of the corresponding E-unifiers.
For a set of equations E ∪B with B a set of structural axioms, if E ∪B has
the finite variant property, there is a finitary E ∪ B-unification algorithm
to find finite CSUE∪B(t = t′) [64, 87]. As explained in [64], E ∪ B has the
finite variant property iff for every term t there exists a bound n such that
the canonical form of θt for a normalized substitution θ is reachable from t

by applying E modulo B less than n times.
Checking satisfiability of the constraints (†) by E-unification is in general

undecidable [12]. Therefore, K̄(R/P) may not have an effective procedure
to precisely decide its transitions. In practice, there are three cases:

1. For some rule in R, we can prove the satisfiability of (†) for (s, s′,Λ),
in which case we know that s Λ−−→R/P s′ holds.

2. For every rule in R, we can prove the unsatisfiability of (†) for (s, s′,Λ),
in which case we know that s Λ−−→R/P s′ does not hold.

3. Otherwise, we cannot decide whether s Λ−−→R/P s′ holds or not. In this
case we can add s Λ−−→α(R/P) s

′ to an LKS α(K̄(R/P)) approximating
(and therefore simulating) R/AP with possibly more transitions.

By definition, an LKS α(K̄) = (S,AP,L,ACT ,−→α(K̄)) is an approximation
of K̄ = (S,AP,L,ACT ,−→K̄) iff −→K̄ ⊆ −→α(K̄). Notice that the identity
function idS : S → S is a simulation from K̄ to α(K̄). In Section 5.6.2 we
propose some procedures for checking unsatisfiability of (†).

126

Theorem 5.8. Given a topmost rewrite theory R = (Σ, E,R) and finite
sets of AP and ACT defined by P = (Π, D), for an LTLR formula ϕ and an
initial state t ∈ TΣ,State, if s = LAP([t]E), then

α(K̄(R/P)), s |= ϕ =⇒ K̄(R, State)P , [t]E |= ϕ.

Proof. It suffices to show that the state-labeling function LP of the LKS
K̄(R,State)P , where LP([u]E) = {p ∈ AP | (u |= p) =E∪D true}, is a total
simulation from K̄(R, State)P to K̄(R/P). Then, (id2AP ◦LP) = LP becomes
a simulation from K̄(R,State)P to α(K̄(R/P)), since id2AP is a simulation
from K̄(R/P) to α(K̄(R/P)).
Suppose that a transition t Λ−−→R t′ exists in K̄(R,State)P . By definition,

for a rewrite rule (l −→ r if C) ∈ R, there is a ground substitution σ such
that t =E σl, t′ =E σr, Λ = {δ ∈ ACT | (l(σ) |= δ) =E∪D true} and for
each condition u = v ∈ C, σu =E σv, where l(σ) is represented as a term
σ({′l : ′x1\x1; . . . ; ′xm\xm}). Let s = LP([t]E) and s′ = LP([t′]E). Since
t =E σl and t′ =E σr, we have s = {p ∈ AP | (σl |= p) =E∪D true} and
s′ = {p ∈ AP | (σr |= p) =E∪D true}. Hence,

∧
p∈AP(σl |= p) =E∪D (p∈ s)

and
∧
p∈AP(σr |= p) =E∪D (p∈ s′) hold. That is, σ is a solution of (†), so

that s Λ−−→R/P s′. Therefore, LP is a desired total simulation.

However, since in general LP is not a bisimulation from K̄(R, State)P to
α(K̄(R/P)), there may exist spurious counterexamples in α(K̄(R/P)). As
usual for predicate abstraction methods, we can refine the P-abstraction by
adding extra state propositions to further specialize α(K̄(R/P)).

Example 5.14. We illustrate our ideas with the simplified version of the
readers-writers problem in Section 5.2.3. This system is infinite-state, since
the number of readers R is unbounded. We are interested in verifying the
mutual exclusion �¬(reading ∧ writing). The equations in Section 5.2.3
defining the state propositions satisfies the finite variant property since their
right-hand sides are constants. For the sets AP = {reading,writing} and
ACT = ∅, we obtain the finite P-abstract LKS K̄(R/P) in Figure 5.13,
where its abstract transitions are decided by using E-unification.

{writing} ∅ {reading} {reading, writing}

Figure 5.13: The P-abstract LKS with the initial state ∅ for the simplified
model of the readers-writers problem.

127

Trans
Rule 〈0, 0〉 �

〈0, s(0)〉
〈r, 0〉 �
〈s(r), 0〉

〈r, s(w)〉
� 〈r, w〉

〈s(r), w〉
� 〈r, w〉

∅ → {w} 〈0, 0〉 �
〈0, s(0)〉

∅ → {r} 〈0, 0〉 �
〈s(0), 0〉

{w} → ∅ 〈0, s(0)〉
� 〈0, 0〉

{w} → {w} 〈0, s(s(w))〉
� 〈0, s(w)〉

{r} → ∅ 〈s(0), 0〉
� 〈0, 0〉

{r} → {r} 〈s(r), 0〉 �
〈s(s(r)), 0〉

〈s(s(r)), 0〉
� 〈s(r), 0〉

{r, w} → {w} 〈s(0), s(w)〉
� 〈0, s(w)〉

{r, w} → {r} 〈s(r), s(0)〉
� 〈s(r), 0〉

{r, w} → {r, w} 〈s(r), s(s(w))〉
� 〈s(r), s(w)〉

〈s(s(r)), s(w)〉
� 〈s(r), s(w)〉

Figure 5.14: The rule instances for each abstract transition s→ s′ ∈ 2AP2.

Figure 5.14 shows the rule instances ζl � ζr for each rule l −→ r ∈ R,
transition s −→ s′ ∈ 2AP2, and E-unifier

ζ ∈ CSUE(
∧
p∈AP

(l |= p) = (p∈ s) ∧
∧
p∈AP

(r |= p) = (p∈ s′))

that represent the transitions of K̄(R/P) in Figure 5.13. The property
�¬(reading ∧ writing) holds from the initial state ∅ in K̄(R/P), since the
state {reading,writing} is not reachable. Therefore, �¬(reading ∧ writing)
also holds from 〈0, 0〉 in K̄(R,State)P , thanks to Theorem 5.8.
If we consider another LTL formula �3¬writing (i.e., infinitely often not

writing), there exists the spurious counterexample

∅ → {writing} → {writing} → · · · .

We can refine the P-abstraction by adding the state proposition 1w to further
specialize the abstract state space, meaning that there exists only one writer,
defined by the following three equations:

eq < R, s(0) > |= 1w = true . eq < R, 0 > |= 1w = false .
eq < R, s(s(W)) > |= 1w = false .

We obtain then the refined AP-abstract LKS in Figure 5.15 in which the
formula �3¬writing holds from the initial state ∅. Again, by Theorem 5.8,
�3¬writing also holds from 〈0, 0〉 in the concrete LKS of Figure 5.3.

128

{writing, 1w} ∅ {reading}

{writing} {reading, writing, 1w} {reading, writing}

Figure 5.15: Refined P-abstract LKS for the readers-writers problem.

5.6.2 Effective Procedures for Equality Constraints

This section presents an effective procedure to check the unsatisfiability of
E-equality constraints for predicate abstractions. Since the problem is in
general only semi-decidable [12], we are interested in a sound, but possibly
incomplete, terminating procedures that can be easily automated, so that
an over-approximation α(K̄(R/P)) can be built when the procedure fails
to give an answer. A semi-decidable E-unification algorithm does not give
such a procedure because it may not terminate when no solution exists.
Our method relies on the fact that a state proposition p (or a spatial

action pattern δ) is defined using only a subset of equations Ep ⊆ E, so
that solving constraints for p may only involve Ep, not all of E. Therefore,
if a finitary Ep-unification algorithm is available, then we can discharge
the constraints for p using Ep-unification. After resolving all such solvable
constrains, we apply a sound procedure based on E-reduction to test if the
remaining constraints are inconsistent.

Decomposition of Constraints. In practice, the equational semantics
of a state proposition p or a spatial action pattern δ can be restricted to a
certain subset of the equations E. As assumed, E decomposes as E = Eo∪B
with B a set of equational axioms and Eo convergent modulo B (that is,
sort-decreasing, terminating, confluent, and coherent modulo B).

Definition 5.13. Let Ω ⊆ Σ be a set of free constructors for Eo modulo
B.12 Given a set of patterns U = {u1, . . . , un} ⊆ TΣ(X), we define:

JUK = {t ∈ TΣ(X) | (∃σ : X → TΩ(X),∃u ∈ U) t =B σu},

EU = {u = v ∈ Eo | u, v ∈ JUK}.

We call Eo syntactically independent iff EU is convergent modulo B and:
(i) any proper subterm v of u ∈ U is strongly Eo, B-irreducible (i.e., γv is
a normal form for any normalized substitution γ; see Definition 4.9), and
(ii) CSUB(t = u) = ∅ for each equation (t = t′) ∈ Eo − EU and u ∈ U .

12That is, TΣ/E∪B |Ω ' TΩ/B .

129

Example 5.15. For the simplified readers-writers problem in Section 5.2.3,
every state proposition p has its syntactically independent patterns Up; e.g.,
for the state proposition reading, Ure = {(S:State |= reading), true, false}
and EUre = {〈s(r), w〉 |= reading = true, 〈0, w〉 |= reading = false}.

We are interested in finding a subset of equations G ⊆ E with a finitary
unification algorithm that can make E-solvability of a constraint u = v in
(†) decidable by using G-unification. An E-equality constraint u = v is
G-solvable for G ⊆ E iff σu =E σv implies σu =G σv for any substitution
σ. Since G ⊆ E, if u = v is G-solvable, then σu =E σv ⇐⇒ σu =G σv.

Proposition 5.1. If Eo is syntactically independent with respect to U , then
for any u, v ∈ JUK, an E-equality constraint u = v is EU ∪B-solvable.

Proof. Since we assume that TΣ(X)s 6= ∅ for each sort s, a constraint u = v

is Eo ∪B-solvable iff for some normalized ground substitution σ : X → TΩ,
canEo/B(σu) =B canEo/B(σv), where canEo/B(t) denotes an Eo/B-canonical
form of the term t. Because σu, σv ∈ JUK, by Ω-terms being free modulo B,
convergence of EU modulo B, and the conditions (i)–(ii) in Definition 5.13,
canEo/B(σu) =B canEU/B(σu) and canEo/B(σv) =B canEU/B(σv). The
lifting lemma for narrowing modulo B (e.g., see [142]) then forces u = v to
be EU ∪B-solvable by narrowing with EU modulo B.

Even when EU ∪B does not have the finite variant property, there may still
exist a subset ẼU ⊆ EU where ẼU ∪B has the finite variant property and a
constraint u = v is ẼU ∪B-solvable (see Section 5.6.3 for an example).

For a set of E-equality constraints D, if G ⊆ E has a finitary G-unification
algorithm and a constraint u = v ∈ D is G-solvable, then CSUG(u = v) is
finite, and u = v is E-satisfiable iff CSUG(u = v) 6= ∅. Therefore, we can
decompose the problem D into finding ζ ∈ CSUG(u = v) and solving one of
the remaining constraints {ζu = ζv | u = v ∈ D − {u = v}}.

Lemma 5.14. Given a set of E-equality constraints D, if u = v ∈ D is
G-solvable, then D is E-satisfiable iff there exists ζ ∈ CSUG(u = v) such
that {ζu = ζv | u = v ∈ D − {u = v}} is E-satisfiable

Proof. Suppose that there is a substitution ρ such that
∧
u=v∈D ρu =E ρv.

Since u = v is G-solvable, ρu =G ρv also holds. Therefore, there exists a
substitution ζ ∈ CSUG(u = v) such that (∃η) ρ =G η ◦ ζ. Since G ⊆ E,
ρ =E η ◦ ζ. Therefore,

∧
u=v∈D−{u=v} η(ζu) =E η(ζv) holds.

We can repeatedly apply this procedure to solve each G-solvable constraint
in (†) to determine s Λ−−→R/P s′, provided that G has a finitary unification
algorithm. If there exists no solution, then s Λ−−→R/P s′ does not hold.

130

Unfeasibility of Constraints. Applying Lemma 5.14, a set of E-equality
constraints D can be transformed into an equivalent set F that contains no
G-solvable constraints. We now present a sound but incomplete procedure
to test for E-unsatisfiability of F . We have assumed that E decomposes
as a disjoint union E = Eo ∪ B, where a finitary B-unification algorithm
exists and Eo is convergent, and TΣ,s 6= ∅ for each sort s ∈ Σ. Therefore,
we can use the canonical term algebra CanΣ,Eo/B (see Section 2.2.4), whose
elements are B-equivalence classes of Σ-terms in Eo/B-canonical form, and
which is an initial Eo∪B-algebra. That is, F is E-satisfiable iff there exists a
normalized ground substitution θ such that (CanΣ,Eo/B, qB ◦ θ) |= F , where
qB : TΣ → TΣ/B is the quotient map t 7→ [t]B for B.
Given the set X of the variables in F , let X̄ = {x̄ | x ∈ X} be the set

in which each variable x ∈ X of sort s is turned into the constant x̄ of the
same sort s, where X̄ ∩ Σ = ∅, and let F̄ = {ū = v̄ | u = v ∈ F} be the
set of the ground constraints obtained from F by replacing each x ∈ X by
x̄ ∈ X̄. Recall that a Σ∪ X̄-algebra is exactly a pair (A, a) with a valuation
a : X̄ → A. Therefore, if (CanΣ,Eo/B, qB ◦ θ) |= F , then the valuation qB ◦ θ̂,
with θ̂(x̄) = θ(x) for x ∈ X, gives us a Σ ∪ X̄-algebra (CanΣ,Eo/B, qB ◦ θ̂)
satisfying both E and F̄ . Soundness of equational logic then ensures that
whenever (Σ ∪ X̄, E ∪ F̄) ` (∀∅) ū = v̄, where vars(u) ∪ vars(v) ⊆ X, we
must have (CanΣ,Eo/B, qB ◦ θ̂) |= (∀∅) ū = v̄.
Our sound procedure for testing unsatisfiability of F is based on the idea

of obtaining a proof of the form (Σ ∪ X̄, E ∪ F̄) ` (∀∅) ū = v̄, where u
and v are strongly Eo, B-irreducible Σ-terms and CSUB(u = v) = ∅. This
gives a contradiction to the assumption that F is satisfiable; if F is satisfied
by a normalized substitution θ, then (CanΣ,Eo/B, qB ◦ θ̂) |= ū = v̄ holds,
that is, [θu]B = [θv]B, since u and v are strongly Eo, B-irreducible, but
CSUB(u = v) = ∅ implies [θu]B 6= [θv]B.

A practical way of obtaining such a proof (Σ∪X̄, E∪F̄) ` (∀∅) ū = v̄ is by
rewriting modulo B. We can use the set of rewrite rules E�

o ∪F̄� with E�
o the

oriented equations and for a B-compatible order � [74] on ground terms,
and F̄� = {canEo/B(w̄) → canEo/B(w̄′) | w = w′ ∈ F or w′ = w ∈ F,

canEo/B(w̄) � canEo/B(w̄′)}. If we obtain ū ←→∗
E�
o ∪F̄�,B

v̄ by rewriting
modulo B, then we have a fortiori derived (Σ ∪ X̄, E ∪ F̄) ` (∀∅) ū = v̄ by
equational reasoning. In summary:

Theorem 5.9. For a set of E-equality constraints F , if there exist strongly
Eo, B-irreducible Σ-terms u and v such that vars(u) ∪ vars(v) ⊆ vars(F),
CSUB(u = v) = ∅, and ū←→∗

E�
o ∪F̄�,B

v̄, then F is E-unsatisfiable.

131

Example 5.16. We consider the model of the readers-writers problem with
explicit shared variables and processes in Section 5.2.3. In order to verify
�¬(reading ∧ writing) for an unbounded number of processes, we need to
have two additional state propositions free and good:

eq < N, B | PS > |= free = B .
eq < N, B | PS > |= good = good(N, PS) .

where good(n,PS) returns true iff n is equal to the number of readers in PS :

eq good(s(N), read ; PS) = good(N, PS) .
eq good(N, write ; PS) = good(N, PS) .
eq good(N, idle ; PS) = good(N, PS) . eq good(0, WS) = true .
eq good(s(N), WS) = false . eq good(0, read ; PS) = false .

Notice that every state proposition has syntactically independent equations.
Hence, we can easily see that every constraint for c, reading, writing, and
free is solvable by a set of equations satisfying the finite variant property.
However, the equations defining good do not have the finite variant property.
We can obtain a finite K̄(R/P) in which only two states {reading, good}

and {writing, good} are reachable from the initial state {free, good}. For
example, from {free, good}, after resolving each Ep ∪ B-solvable constraint,
we have the following sets of the remaining constraints:

〈0, true | idle ; IS〉 |= good = true ∧ 〈s(0), false | read ; IS〉 |= good = b1,

〈s(n), true | idle ; IS〉 |= good = true ∧ 〈s(s(n)), true | read ; IS〉 |= good = b2,

〈n, true | idle ; IS〉 |= good = true ∧ 〈n, false | write ; IS〉 |= good = b3,

where IS is a variable of sort ProcIdleSet and b1, b2, b3 ∈ {true, false}. By
normalizing each constraint after replacing the variables into the constants,
we have the following oriented constraint sets

{true → true, true → b1}

{true → false, b2 → false}

{good(n, IS)→ true, good(n, IS)→ b3}

Notice that the cases of b1 = false, b2 ∈ {true, false}, and b3 = false are
unsatisfiable. That is, {free, good} has only two next states {reading, good}
and {writing, good}. Similarly, the state {reading, good} has the next states
{free, good} and {reading, good}, and {writing, good} has the next states
{free, good} and {writing, good}. Therefore, �¬(reading ∧ writing) holds in
K̄(R/P) from {free, good}. Thanks to Theorem 5.8, the formula also holds
in K̄(R,State)P for an unbounded number of processes.

132

findNextStates(s ∈ 2AP):
NextStates := ∅;
for each s′ ∈ 2AP do
for each (l −→ r if C) ∈ R do
CTR := getConstraints(s, s′, l, r, C); // the set of constraints (†)
(D,F,G) := findSolvable(CTR); // G-solvable equations
if isSatisfiable(D,F,G) then add s′ to NextStates;

return NextStates;

isSatisfiable(D, F , G):
if D 6= ∅ then
choose u = v from D;
for each ζ ∈ CSUu(G) = v) do
if isSatisfiable(ζ(D − {u = v}), ζF , G) then return true;

return false;
else
return (if F = ∅ then true else ¬ testUnsatisfiable(F));

Figure 5.16: Predicate Abstraction Algorithm for R = (Σ, E,R).

Predicate Abstraction Algorithm. Figure 5.16 shows an algorithm to
generate a predicate abstraction α(K̄(R/P)) of a topmost rewrite theory
R = (Σ, E,R). There exists a transition s Λ−−→R/P s′ in α(K̄(R/P)) iff
s′ ∈ findNextStates(s), where the function findNextStates(s) returns a set
of next abstract states from s ∈ 2AP . The function findNextStates uses a
number of subroutines that correspond to the methods in Sections 5.6.1 and
5.6.2. Given a set of E-equality constraints CTR, using Proposition 5.1, the
function findSolvable(CTR) returns a triple (D,F,G) such that D is a set of
G-solvable constraints, G has the finite variant property, and CTR = D∪F .
Then, using Lemma 5.14, the function isSatisfiable(D,F,G) returns false if
the set of constraints D∪F is unsatisfiable, and testUnsatisfiable(F) returns
true if F is shown to be unsatisfiable using Theorem 5.9.
To compute findSolvable(CTR) using Definition 5.13, we need a set of

patterns U ⊆ TΣ(X) such that any proper subterm of u ∈ U is strongly
Eo, B-irreducible, CSUB(t = u) = ∅ for each t = t′ ∈ E − EU and u ∈ U ,
and G = {u = v ∈ Eo | u, v ∈ JUK} has the finite variant property. A term
appeared in the equations corresponding to the set of constraints CTR can
be used to obtain a pattern in U . We can check by performing narrowing
with Eo modulo B—available in Full Maude [72]—one step to check if a term
t is strongly Eo, B-irreducible. Also, there exists a semi-decision procedure
to check if a set of equations G has the finite variant property [53]; therefore,
we apply this procedure with a time limit for checking if a set of equations
G has the finite variant property.

133

∅ {in-wait}

{in-crit} {in-wait, in-crit}

∅
{wake}

∅
∅∅ {wake}

∅
∅

∅

∅

{wake}

Figure 5.17: P-abstract LKS for the livelock freedom property.

5.6.3 Case Study

We illustrate our predicate abstraction method with the bakery algorithm
example in Section 5.2.1. We are first interested in verifying the livelock
freedom “if some process is waiting, then some (possibly different) process
eventually enters the critical section” under the fairness assumption “the
wake rule is not taken infinitely many times,” expressed as the LTLR formula

�3¬wake → �(in-wait → 3in-crit).

The state propositions are defined by the following equations that satisfy
the finite variant property, where WS is a variable of sort ProcWaitSet to
denote a set of processes with status idle or wait(n), and CS is a variable of
sort ProcCritSet to denote a set of processes with status idle or crit(n):

eq N ; M ; [I,wait(K)] PS |= in-wait = true .
eq N ; M ; CS |= in-wait = false .
eq N ; M ; [I,crit(K)] PS |= in-crit = true .
eq N ; M ; WS |= in-crit = false .

We obtain the P-abstract LKS in Figure 5.17 using E-unification, because
a finitary E-unification algorithm is available. Since in-crit holds in every
state in the second row, we can easily see that any infinite path not satisfying
the formula 3in-crit has the suffix {in-wait,wake} → {in-wait,wake} →
{in-wait,wake} → · · · , which violates the fairness assumption �3¬wake.
Indeed, when a system has a finite (but unbounded) number of processes,
there is no infinite path with that suffix. Therefore, the livelock freedom
formula �3¬wake → �(in-wait → 3in-crit) holds in the P-abstract LKS
from the initial state ∅. By Theorem 5.8, the formula also holds in the
concrete LKS K̄(R,State)P from any initial state [t]E with LP([t]E) = ∅ for
an unbounded number of processes.
We now consider the mutual exclusion �ex?. We need three extra state

propositions to define a predicate abstraction: mcrit, bound, and uniq. First,
the state proposition mcrit holds in a state n ; m ; PS if at most one process
in PS enters the critical section with number m:

134

eq N ; M ; WS |= mcrit = true .
eq N ; M ; [I,crit(M)] WS |= mcrit = true .
eq N ; M ; [I,crit(s K M)] WS |= mcrit = false .
eq N ; s K M ; [I,crit(K)] WS |= mcrit = false .
eq N ; M ; [I,crit(K)] [I’,crit(K’)] PS |= mcrit = false .

Next, the state proposition bound holds in a state n ; m ; PS if any ticket
number of a process in PS is less than n, defined by the equations:

eq N ; M ; PS |= bound = bd(N, PS) . --- Eb

eq bd(N, [I,wait(N K)] PS) = false . --- Eb

eq bd(N, [I,crit(N K)] PS) = false . --- Eb

eq bd(s N K, [I,wait(K)] PS) = bd(s N K, PS) .
eq bd(s N K, [I,crit(K)] PS) = bd(s N K, PS) . eq bd(N, IS) = true .

Finally, the state proposition uniq holds in a state n ; m ; PS if no duplicate
ticket numbers of processes exist in PS , defined by the equations:

eq N ; M ; PS |= uniq = uq(PS) . --- Eq

eq uq([I,wait(K)] [I’,wait(K)] PS) = false . --- Eq

eq uq([I,wait(K)] [I’,crit(K)] PS) = false . --- Eq

eq uq([I,crit(K)] [I’,crit(K)] PS) = false . --- Eq

eq uq([I,wait(K)] [I’,wait(s M K)] PS) = uq([I,wait(K)] PS) .
eq uq([I,wait(K)] [I’,crit(s M K)] PS) = uq([I,wait(K)] PS) .
eq uq([I,crit(K)] [I’,wait(s M K)] PS) = uq([I,crit(K)] PS) .
eq uq([I,crit(K)] [I’,crit(s M K)] PS) = uq([I,crit(K)] PS) .
eq uq([I,idle] PS) = uq(PS) . eq uq([I,wait(K)]) = true .
eq uq([I,crit(K)]) = true . eq uq(none) = true .

Every state proposition clearly has syntactically independent equations.
In particular, the equations defining ex? and mcrit have the finite variant
property, because their right-hand sides are all constants. The equations
defining bound and uniq do not have the finite variant property, but the
equations Eb ∪ B and Eq ∪ B that define the negative cases of bound and
uniq do have the finite variant property. Furthermore:

Lemma 5.15. For a term u ∈ TΣ(X)State, a constraint (u |= bound = false)
is Eb ∪B-solvable, and (u |= uniq = false) is Eq ∪B-solvable.

Proof. A state term u has the form n ; m ; tprocs. For some substitution σ,
if σu |= bound =E false, then σtprocs contains a process with ticket number
greater than or equal to n. Since Eb ∪ B reduces such a negative case to
false in 2 steps, σu |= bound =Eb∪B false. Similarly, if σu |= uniq =E false,
then σtprocs contains two processes with the same ticket number, and thus
σu |= uniq =Eq∪B false holds in 2 steps.

135

We obtain K̄(R/P) having a single reachable state from the given initial
state {ex?,mcrit, bound, uniq}. After resolving each constraint for ex? and
mcrit, from {ex?,mcrit, bound, uniq}, the remaining sets of constraints are
{lk |= bound = true, lk |= uniq = true, rk |= bound = bk, rk |= uniq = b′k}
for 1 ≤ j ≤ 5, where bk, b′k ∈ {true, false} and each lk →k rk is given by:

n ; m ; [i, idle] WS →1 s n ; m ; [i,wait(n)] WS

n ; m ; [i, idle] [j, crit(m)] WS →2 s n ; m ; [i,wait(n)] [j, crit(m)] WS

n ; m ; [i,wait(m)] WS →3 n ; m ; [i, crit(m)] WS

n ; m ; [i, crit(m)] WS →4 n ; sm ; [i, idle] WS

n ; m ; [i,wait(m)] [j, crit(m)] WS →5 n ; m ; [i, crit(m)] [j, crit(m)] WS

The case of k = 5 is unsatisfiable for any values of b5, b′5 ∈ {true, false},
since l5 |= uniq =E false, conflicting with the constraint l5 |= uniq = true.
For the cases of 1 ≤ k ≤ 4, if bk = false for bound, then its solution
ζ ∈ CSUEb∪B(rk |= bound = false) makes ζlk |= bound =E false. That is,
the cases of bk = false are unsatisfiable. Similarly, if b′k = false for uniq,
then ζ ∈ CSUEq∪B(rk |= uniq = false) makes either ζlk |= bound =E false or
ζlk |= uniq =E false, i.e., unsatisfiable. Therefore, {ex?,mcrit, bound, uniq}
has the one next state, itself. Clearly, �ex? holds in K̄(R/P), and thus
�ex? also holds in K̄(R,State)P for an unbounded number of processes.

5.7 Concluding Remarks

This chapter has presented various infinite-state model checking techniques
for verifying LTLR properties of rewrite theories: (i) equational abstractions
define quotients of the system by using equations, and can in some case define
bisimulations; (ii) folding abstractions collapse the system’s state space by
folding preorders; (iii) narrowing-based symbolic model checking methods
represent the infinite state space using logical terms, and are also naturally
amenable to folding abstractions; and (iv) predicate abstractions generate
finite-state abstractions of the system using state propositions. This work
can also be understood as a contribution that increases the expressive power
of these infinite-state model checking techniques for LTLR properties. These
methods can be faithful, automated, and used in combination to effectively
verify nontrivial infinite-state systems.
In future work we plan to implement a new LTLRmodel checker in Maude,

extending the fair LTLR model checker and the LTL logical model checker,
that supports predicate abstraction and narrowing-based model checking.

136

CHAPTER 6

MULTIRATE PALS

Distributed cyber-physical systems (DCPS), such as aeronautics and ground
transportation systems, are very hard to design and verify, due to network
delays, asynchronous communication, and clock skews. Therefore, the PALS
(“physically asynchronous, logically synchronous”) methodology has been
proposed to reduce the effort and cost involved in design and verification for
a single-rate virtually synchronous DCPS. This chapter1 presents Multirate
PALS, a multirate extension of PALS, which can reduce the design and
verification of a multirate virtually synchronous DCPS to the much simpler
task of designing and verifying its synchronous version. We illustrate the
ideas with a multirate DCPS for an airplane maneuvered by a pilot, who
turns the airplane to a specified angle by a distributed control system.

6.1 Introduction

Many cyber-physical systems such as cars, airplanes, robots, and networked
medical devices are distributed real-time systems in which many components
interact asynchronously through a network, yet must obey hard real-time
synchronization constraints which are essential to their correctness; that is,
they must be virtually synchronous. Such DCPS design and verification is
quite challenging, since to the usual complexity of a non-distributed CPS
one has to add the additional complexities of asynchronous communication,
network delays, and clock skews. In particular, any hopes of applying model
checking techniques in a direct manner to a DCPS look rather dim, due to
the huge state space explosion caused by the system’s concurrency.

1This chapter is based on [15, 16, 24, 25], joint work with Peter Ölveczky, José
Meseguer, and Joshua Krisiloff who provided the aerodynamics model for the case study.

137

The PALS (physically asynchronous, logically synchronous) pattern has
been developed for this reason [138, 143]. It can drastically reduce the
system complexity of a single-rate virtually synchronous DCPS. The key idea
of PALS is that if the underlying infrastructure provides some performance
bounds Γ on the computation times, networks delays, and imprecisions of
the local clocks, then the task of designing and verifying a DCPS can be
reduced to the much simpler task2 of designing and verifying the idealized
synchronous system that should be realized in a distributed way. This is
achieved by a model transformation E 7→ A(E ,Γ) that maps a synchronous
design E and performance bounds Γ to a distributed implementationA(E ,Γ),
which is correct-by construction as shown in [138].

However, the problem still remains that PALS assumes a single period
for the virtually synchronous system. This excludes many DCPSs, in fact
the majority, which do not operate at a single rate but are multirate. In
practice, different sensors and effectors need to operate at different rates;
and this necessitates using slower rates in the distributed control hierarchies
that orchestrate and synchronize their actions.
This chapter presents Multirate PALS as a formal mathematical model

providing a “formal pattern” that can drastically reduce the complexity of
designing, verifying, and implementing multirate DCPSs, where their main
architecture is one of hierarchical distributed control. Systems of this nature
are very common in avionics, motor vehicles, and robotics. Although these
systems are distributed, they must achieve virtual synchrony in real time,
since actual deadlines must be met in physical time for physical reasons.
This also poses strong requirements on the network infrastructures they can
use, since these must ensure message delivery and clock synchronization
within precise and tight enough bounds.
This chapter defines a Multirate PALS transformation E 7→ MA(E , T,Γ),

with underlying performance bounds Γ and global period T , that generalizes
the original single-rate PALS transformation to multirate systems. Further,
a DCPS often controls physical entities and is in fact a distributed hybrid
system: a collection of digital components that communicate asynchronously
with each other and that interact with their environment, whose continuous
dynamics is typically governed by differential equations. Therefore, this
chapter also investigates the suitability of Multirate PALS to design and
verify nontrivial virtually synchronous distributed hybrid systems.

2 For a simple avionics case study in [138], the number of system states for their simplest
possible distributed version with perfect clocks and no network delays was 3,047,832, but
the PALS pattern reduced the number of states to a mere 185.

138

6.1.1 Main Contributions

First, this chapter presents a modular way to specify multirate synchronous
systems using the composition of several formal patterns. That is, we define
component transformations, such as: (i) a transformation M 7→ M×k that
makes a state machine k times slower; (ii) a transformation M 7→ Mα that
adapts the inputs of machine M according to a adaptor function α; and
(iii) a transformation E 7→ MRSC(E) that maps a multirate ensemble E to
a single state machine equivalent to its synchronous composition, where E
is a mathematical model of a collection of interconnected state machines
running at different rates, yet synchronously in terms of their hyperperiod.
Second, based on these modular transformations, this chapter presents a

Multirate PALS model transformation (E , T,Γ) 7→ MA(E , T,Γ), which maps
a multirate ensemble E , together with period T and performance parameters
Γ, to a semantically equivalent model of distributed real-time components
MA(E , T,Γ). In particular, we prove that the DCPS designMA(E , T,Γ)—a
collection of multirate asynchronous components distributed in a network—
is bisimilar to the enormously simpler synchronous multirate ensemble E of
state machines. This bisimilarity provides a drastic reduction on the number
of states, making model checking verification possible in many cases where
it is unfeasible for the original DCPS.
Third, this chapter explains a general methodology to specify a DCPS

using Multirate PALS, in particular, distributed hybrid systems. We define
a modeling framework for formally specifying such Multirate PALS designs
in the Real-Time Maude specification language [149]. Given a specification
of a multirate ensemble E in Real-Time Maude, our framework defines an
executable semantics for the synchronous composition of E that can be used
to simulate and model check this multirate synchronous composition.
Finally, we use our methodology and the Real-Time Maude framework to

formally specify in detail a multirate distributed hybrid system consisting
of an airplane maneuvered by a pilot, who wants to turn the airplane in a
desired direction through a distributed control system, with effectors located
in the airplane’s wings and rudder. Our formal analysis revealed that the
original design did not achieve a smooth turn. This led to a redesign of the
system with new control laws satisfying the desired correctness properties.
This shows that the Multirate PALS methodology is not only effective for
formal DCPS verification, but can also be used effectively in the DCPS
design process, even before properties are verified. The Real-Time Maude
specifications for the framework and the case study are available at [13].

139

6.1.2 Related Work

The most closely related work is the paper [6] that proposes a different
multirate extension of PALS in terms of the AADL language. What is
not attempted in [6] is to give mathematical models of either synchronous
multirate systems or their multirate PALS transformation as distributed
real-time systems, and to justify why the synchronous multirate system
and its multirate PALS counterpart are equivalent. Moreover, our model
of multirate PALS and theirs are considerably different; for example, their
model lacks a systematic notion of input adaptor.
More generally, the PALS pattern can be seen as part of a broader body

of work on synchronizers, which allow (single-rate) synchronous systems to
be simulated by asynchronous ones. There are a number of synchronizers,
such as [10, 101, 163, 153] (see [138] for an overview and comparison). To
the best of our knowledge only Multirate PALS and the work in [6] propose
synchronizers for multirate systems where tight time bounds must be met.

Single-rate PALS is closely related to the time-triggered systems [116, 155],
where the goal is also to reduce an asynchronous real-time system to a
synchronous one. One important difference between the work in [116, 155]
and PALS comes from the different definitions of the synchronous models,
which have significant repercussions in the behaviors of the corresponding
asynchronous models. We refer to [157] for an in-depth comparison between
time-triggered systems and PALS.

6.1.3 Structure of the Chapter

This chapter is organized as follows. Section 6.2 defines a number of formal
patterns, leading to a formal definition of a hierarchical multirate machine
ensemble E and its synchronous composition MRSC(E). Section 6.3 presents
Multirate PALS as a model transformation from a multirate ensemble E with
period T and performance parameters Γ into a distributed real-time system
MA(E, T,Γ), and Section 6.3.3 proves the main bisimulation result between
MRSC(E) and MA(E, T,Γ). Section 6.4 shows how multirate distributed
hybrid systems can be modeled as multirate ensembles in Multirate PALS,
and presents a modeling and execution framework for multirate ensembles
in Real-Time Maude. Section 6.5 then illustrates the usefulness of Multirate
PALS and the drastic state space reductions gained using it, by means of
a case study that analyzes the turning maneuvers of an airplane. Finally,
some concluding remarks are given in Section 6.6.

140

12 12

6 4 3 3env6 env3

env12

Figure 6.1: A simple multirate system, with each machine and each separate
environment annotated by its period.

6

60 60

12 15 15

4 5 3 3

3 12 2

env60

env2

env12

env60

Figure 6.2: A hierarchical multirate system, with machines and separate
environments annotated by their periods.

6.2 Multirate Synchronous Models

Virtually synchronized cyber-physical systems are commonly implemented
as networked real-time systems consisting of distributed devices, controlled
by a hierarchy of distributed controllers. The devices and controllers may
operate at different rates, and in a perfectly synchronized distributed system,
the synchronous changes of the local control applications can happen only
at the hyperperiod boundary (i.e., at an interval equal to the least common
multiple of the local control periods) [6]. We therefore consider multirate
systems in which a set of components with the same rate may communicate
with each other and faster components, so that the period of the higher-level
components is a multiple of the period of each fast component, as illustrated
in Figure 6.1. Such a multirate system can itself be a subcomponent of
a larger system; in this way, we can capture complex hierarchical system
configurations, e.g., the multirate system in Figure 6.2.

141

M1

M3

M2

Figure 6.3: A machine ensemble.

6.2.1 Single-rate Ensembles

We first consider a single-rate synchronous model, since we define a multirate
synchronous model as a generalization of a single-rate synchronous model.
In this case, the synchronous model is defined by a synchronous composition
of a collection of nondeterministic typed machines, an environment, and a
wiring diagram that connects the machines [138].

Definition 6.1. A typed machine is a tuple M = (Di, S,Do, δM), where
Di = Di1 × · · · ×Din an input set, S a set of states, Do = Do1 × · · · ×Dom

an output set, and δM ⊆ (Di × S)× (S ×Do) a total transition relation.

That is, a typed machine M is a state machine with n input ports and m
output ports; an input to port k is an element of the set Dik , and an output
from port j is an element of the set Doj .
Typed machines can be “wired together” into arbitrary sequential and

parallel compositions by means of a “wiring diagram,” as the one shown in
Figure 6.3, where all the machines have the same rate.

Definition 6.2. A single-rate machine ensemble is defined by a 4 tuple
E = (J ∪ {e}, {Mj}j∈J , E, src), where:

• J 6= ∅ is a finite set of indices, and e 6∈ J is the environment index.

• {Mj}j∈J is a J-indexed family of typed machines.

• E = (De
i , D

e
o) is an environment, where De

i is the environment’s input
set and De

o is the environment’s output set.

• src is a surjective function that assigns to each input port (j, n) (input
port n of machine j) the “source” output port src(j, n), where: (i) an
output domain is a subset of the corresponding input domain; i.e., if
src(j, q) = (k, l), then Dk

ol
⊆ Dj

iq
; and (ii) there are no self-loops from

the environment to itself, i.e., if src(e, q) = (k, l), then k ∈ J .

142

A single-rate ensemble E has a lock-step synchronous semantics, in the
sense that the transitions of all the machines are performed simultaneously,
and whenever a machine has a feedback wire to itself and/or to any other
machine, then the output becomes an input at the next instant. This means
that any single-rate ensemble E is semantically equivalent to a single machine
ME , called the synchronous composition of ensemble E . For example, in
Figure 6.3, the synchronous composition of the typed machines M1, M2,
and M3 can be seen as the single machine enclosed by the outer box.

Definition 6.3. For a single-rate ensemble E = (J ∪ {e}, {Mj}j∈J , E, src),
its synchronous composition is ME = (DEi , SE , DEo , δE), where:

• DEi = De
o and DEo = De

i .

• SE = (Πj∈JSj)×(Πj∈JD
j
OF), where Dj

OF stores the “feedback outputs”
of machine Mj that will be used as input in the next iteration.

Formally, if Dj
o = Dj

o1 × · · · × Dj
omj

is the output set of Mj, then
Dj

OF = Dj
OF1
× · · · × Dj

OFmj
such that for each 1 ≤ m ≤ mj, if

(j,m) = src(l, q) for some l ∈ J , then DOFm = Dj
om, and otherwise,

DOFm = {∗}, where {∗} is a singleton set to denote “no information.”

• δE ⊆ (DEi × SE) × (SE ×DEo) “combines” the transitions of the single
machines {Mj}j∈J into a synchronous step.

Formally, let: (i) foj(~d′j) ∈ D
j
OF be the feedback output for machine

Mj generated from Mj’s output ~d′j ∈ Dj
o;3 (ii) inl(~d, {~dj}j∈J) ∈ Dk

i be
the input for machine Ml generated from its “connected” outputs using
an environment output ~d ∈ DEi and a collection of feedback outputs
{~dj}j∈J ∈ Πj∈JD

j
OF ;4 and (iii) ine({~d′j}j∈J) ∈ DEo be the environment

input generated from its “connected” outputs using machine outputs
{~dj}j∈J ∈ Πj∈JD

j
o.5 Then, for ~d ∈ DEi and ({sj}j∈J , {~dj}j∈J) ∈ SE :

((~d, ({sj}j∈J , {~dj}j∈J)), (({s′j}j∈J , {foj(~d′j)}j∈J), ine({~d′j}j∈J))) ∈ δE

iff ((inl(~d, {~dj}j∈J), sl), (s′l, ~d′l)) ∈ δMl
for each machine index l ∈ J .

Notice that δE is a total relation, since each δMl
is a total relation.

3If πm denotes the m-th projection from the Cartesian product Dj
OF , then a feedback

output function foj : Dj
o → Dj

OF is defined as follows: if ∃l ∈ J. (j,m) = src(l, q), then
πm(foj(d1, . . . , dmj)) = dm, and otherwise, πm(foj(d1, . . . , dmj)) = ∗, for 1 ≤ m ≤ mj .

4An input function ink : De
o × (

∏
j∈J D

j
OF) → Dk

i is formally defined as follows: for
1 ≤ n ≤ nk, if ∃l ∈ J. src(k, n) = (l, q), then πn(ink(~d, {~dj}j∈J)) = πq(~dl), and if
src(k, n) = (e, q), then πn(ink(~d, {~dj}j∈J)) = πq(~d).

5An environment input function ine : (
∏
j∈J D

j
o) → De

i is formally defined as follows:
for each 1 ≤ n ≤ ne, πn(ine({~d′j}j∈J)) = πr(~d′l) iff src(e, n) = (l, r).

143

We can associate a transition system defining the behaviors of a machine
ensemble that operates in a certain environment.

Definition 6.4. For a single-rate ensemble E = (J ∪ {e}, {Mj}j∈J , E, src),
the corresponding transition system is a pair

ts(E) = (SE ×DEi , −→E),

where (~s,~i) −→E (~s′, ~i′) iff an ensemble in state ~s and with input ~i from the
environment has a transition to state ~s′:6

(~s,~i) −→E (~s′, ~i′) ⇐⇒ ∃~o. ((~i, ~s), (~s′, ~o)) ∈ δE .

If L : SE × DEi → 2AP is a labeling function that assigns to each state
(~s,~i) ∈ SE × DEi the set L(~s,~i) of atomic propositions that hold in (~s,~i),
then the associated Kripke structure is K(E) = (SE ×DEi ,AP, L,−→E).

6.2.2 Machine Transformations

There are in essence two ways of composing machines with different periods
into a synchronous system in which all components operate in lock-step.
On the one hand, one can “speed up” the slower components, so that all
components operate at the fastest rate. On the other hand, one can “slow
down” the faster components so that all components run at the slow rate.
We follow the latter approach, since it is more natural to consider the system
at the slower rate of the “higher-level” components for the following reasons:

1. the PALS transformation operates at the slowest rate and is the crucial
one, so that slowing the system down provides the most adequate level
of abstraction to explain how this transformation is used;

2. the synchronous interaction between a fast component and slow ones
can be better understood by slowing down the fast component, since
this makes explicit that the decelerated fast machine now has tuples of
inputs and outputs that must be adapted in either direction to allow
it to communicate with slow components; and

6An environment can be constrained by means of a satisfiable predicate ce : De
o → Bool

so that ce(de1, . . . , deome) is true iff the environment can generate output (de1, . . . , deome)
[138]. In this case, the constrained transition system ts(E , ce) = (SE × DEi , −→Ece) is
defined by: (~s,~i) −→Ece (~s′, ~i′) ⇐⇒ ∃~o. ((~i, ~s), (~s′, ~o)) ∈ δE ∧ ce(~i′). However, we can
easily see that ts(E , ce) is exactly a subsystem of ts(E), since −→Ece ⊆ −→E .

144

3. for model checking purposes, a potentially huge state space reduction
accrues to slowing down all behaviors, since multiple “fast” transitions
are combined into a single slower transition, so that all intermediate
states can safely be ignored.

A fast machine that is slowed down, or decelerated, by a factor k performs
k internal transitions during one (slow) period. Because the fast machine
consumes an input and produces an output at each port in each of these
internal steps, the decelerated machine consumes and produces k-tuples of
inputs and outputs in each slow step. Hence, we define the k-step machine
pattern by which we can decelerate a fast machine by a factor k, where the
machine reads k inputs (in each port), performs a transition corresponding
to k “internal transition steps,” and outputs k-tuples of values:

Definition 6.5. For k ∈ N+, the k-step deceleration of a typed machine
M = (Di, S,Do, δM), with Di = Di1 × · · · ×Din and Do = Do1 × · · · ×Dom,
is M×k = ((Di1)k × · · · × (Din)k, S, (Do1)k × · · · × (Dom)k, δM×k), where

(
(((di11

, . . . , di1k), . . . , (din1
, . . . , dink)), s),

(s′, ((do11
, . . . , do1k

), . . . , (dom1
, . . . , domk)))

)
∈ δM×k

iff there exist states s1, . . . , sk−1 ∈ S such that

(((di11
, . . . , din1

), s), (s1, (do11
, . . . , dom1

))) ∈ δM
(((di12

, . . . , din2
), s1), (s2, (do12

, . . . , dom2
))) ∈ δM

...
...

(((di1k , . . . , dink), sk−1), (s′, (do1k
, . . . , domk))) ∈ δM .

When composing a fast machine and a slow machine, a k-tuple output
from the fast machine must be adapted so that it can be read by the slow
component. That is, the k-tuple may need to be transformed to a single
value (for example, the average of the k values, the first of the k values,
or any other function of the k values). Likewise, since the “slowed-down”
fast component expects a k-tuple of input values in each input port, the
single output from a slow component must be transformed to a k-tuple of
inputs to the fast machine; for example, transform an input value d to a
k-tuple (d,⊥, . . . ,⊥) for some “don’t care” value ⊥. Such a transformation
is formalized by the input adaptor pattern, specifying how a typed machine
with input adaptors can be transformed to an ordinary typed machine.

145

M{α1,..., αn}

α1 α2 αn...

M

Figure 6.4: The adaptor closure M{α1,...,αn} of the machine M .

Definition 6.6. An input adaptor α for M = (Di, S,Do, δM) is a family
of functions α = {αk : D′k → Dik}k∈{1,...,n}, where Di = Di1 × · · · ×Din. If
~d = (d1, . . . , dn) ∈ D′1 × · · · ×D′n, we define α(~d) = (α1(d1), . . . , αn(dn)).

A typed machine with an input adaptor can be regarded as another typed
machine, which corresponds to the “outer box” in Figure 6.4.

Definition 6.7. The adaptor closure of M = (Di, S,Do, δM) with an input
adaptor α = {αk : D′k → Dik}k∈{1,...,n} isMα = ((D′1×· · ·×D′n), S,Do, δMα),
where: ((~di, s), (s′, ~do)) ∈ δMα ⇐⇒ ((α(~di), s), (s′, ~do)) ∈ δM .

6.2.3 Multirate Ensembles

We define a multirate machine ensemble to be a network of typed machines
with different rates and input adaptors, where a set of “slow” components
with the same rate may communicate with each other and with a number of
faster components, whose periods divide the period of the slow components.
Since the “local” fast environments should be dealt with by the correlated
fast machines, we assume that fast local environments are already integrated
with their corresponding fast machines.7 That is, the environment at the
(slow) global level is only the environment of the high-level components.
Finally, we make the definition more abstract by considering only the relative
rates instead of the concrete periods. For example, the multirate “system”
in Figure 6.1 corresponds to the multirate ensemble in Figure 6.5.
We formally define multirate machine ensembles, using input adaptors

and k-step machines, and the associated multirate synchronous composition
pattern by which it can be composed into a single typed machine.

7Note that an environment may satisfy certain input-output constraints [138] and can
therefore be viewed as a nondeterministic typed machine. Therefore, a faster machine’s
environment and the fast machine itself form a simple 2-machine ensemble, whose ensemble
composition has now only input wires from (resp. output wires to) slow machines.

146

12 12

6 + env6 4 3 3 + env3

env12

rate=2 rate=3 rate=4 rate=4

Figure 6.5: A flat multirate ensemble (input adaptors not shown).

Definition 6.8. A flat multirate machine ensemble is defined by a tuple
E = (JS , JF , e, {Ml}l∈JS∪JF , E, src, rate, adap), where:

• JS is a nonempty set of (“slow machine”) indices and JF is a set of
(“fast machine”) indices such that JS ∩ JF = ∅, and e 6∈ JS ∪ JF is
the environment index;

• {Ml}l∈JS∪JF is a family of typed machines, and E = (De
i , D

e
o) is the

environment of the ensemble E;

• rate is a function rate : JF → N−{0, 1}, assigning to each fast machine
a value denoting how many times faster the machine runs compared
to the slow machines; and

• src is a wiring diagram such that there exist no connections between
fast machines, or between the environment and a fast machine; i.e., if
src(l, q) = (k, p), then l ∈ JS or k ∈ JS; and

• adap is a function that assigns an input adaptor to each l ∈ JF ∪ JS,

such that SR(E) is an ordinary (single-rate) typed machine ensemble:

SR(E) = (JS∪JF ∪{e}, {(Mj)adap(j)}j∈JS ∪{(M
×rate(j)
j)adap(j)}j∈JF , E, src).

As this definition indicates, we can reduce multirate ensembles to ordinary
single-rate ensembles of Definition 6.2 by using the k-machine and the input
adaptor patterns. The multirate synchronous composition pattern applied
to E is then the transformation E 7→ MRSC(E), assigning to a multirate
ensemble E the machine MRSC(E) = MSR(E), which is the synchronous
composition of the corresponding single-rate ensemble SR(E). Notice that
when the set JF is empty and the input adaptors are identity functions, a
multirate ensemble E becomes an ordinary single-rate ensemble.

Such a flat multirate ensemble can be extended to the hierarchical case
by allowing some fast components to be (hierarchical) multirate ensembles
themselves, as precisely stated in the following definition:

147

6

60 60

12 + env12 15 15

4 5 3 3

3
12 + env2 2

×3

[*3]

[/3]

×2

[*2]

×2

×3

[*2]

[*3]

[/3]

×5 ×5

×5
×3

[/5]
[*5]

[*5]
[/5]

[/3]
[*3]

[*5]
[/5]

[*4]
[/4]

env60 env60

Figure 6.6: A hierarchical multirate ensemble, where ×n denotes that the
machine has been decelerated by a factor n, [/n] denotes an input adaptor
that transforms an n-tuple into a single value, and [∗n] denotes an input
adaptor that transforms a single value to an n-tuple.

Definition 6.9. A hierarchical multirate ensemble of depth d is defined by
E = (JS , JF ,K, e, {Mj}j∈JS∪(JF−K), {Ese}se∈K , E, src, rate, adap), where:

• JS, JF , e, {Mj}s∈JS∪(JF−K), E, src, rate, and adap are given as in
Definition 6.8 of flat multirate ensembles, and must satisfy the same
constraints as in Definition 6.8;

• K ⊆ JF , where K is the subset of indices of the fast components that
are themselves subensembles; and

• each Ese for se ∈ K is a hierarchical multirate ensemble of depth dse,
and max({dse}se∈K) + 1 = d, with max(∅) = 0,

such that SR(E) is an ordinary (single-rate) machine ensemble:

SR(E) = (JS∪JF ∪{e}, {(Ms)adap(s)}s∈JS ∪{(M
×rate(f)
f)adap(f)}f∈JF , E, src)

with MSR(E) its synchronous composition, and where each Mse for se ∈ K
is itself the synchronous composition MSR(Ese) of the subcomponent Ese.

In this definition, a flat multirate ensemble is just a hierarchical multirate
ensemble of depth 1 with K = ∅. An ensemble Es is a subensemble of an
ensemble E defined above if either E = Es or Es is a subensemble of Ese for
some se ∈ K. An ensemble Es is a proper subensemble of E iff Es 6= E, and
Es is an immediate subensemble of E iff Es equals Ese for some se ∈ K. For
example, the hierarchical multirate system in Figure 6.2 can be seen as the
hierarchical multirate ensemble in Figure 6.6.

148

6.3 Multirate PALS Transformation

This section presents Multirate PALS as a formal architectural pattern
(E, T,Γ) 7→ MA(E, T,Γ) that transforms a multirate ensemble E, together
with its (global) period T and performance bounds Γ on network delays,
clock skews, and execution times, into a formal specification MA(E, T,Γ)
of a distributed real-time system where each machine performs at its own
rate. Multirate PALS ensures that the synchronous composition and the
distributed asynchronous real-time model satisfy the same properties.

6.3.1 System Assumptions

The PALS pattern is in general based on the facts that: (i) many network
infrastructures for safety-critical cyber-physical systems (e.g., the networks
in an airplane) can guarantee an upper bound on the network delays; and
that (ii) clock synchronization is well understood, so that we can assume that
the underlying infrastructure executes a clock synchronization algorithm
that guarantees a certain bound on the imprecision of the local clocks [138].
Therefore, PALS is parametrized by the following performance parameters
Γ = (ε, αmin, αmax, µmin, µmax) of the underlying network infrastructure:

• the difference between the time shown by a local clock and “real” time
is always strictly less than ε;

• the time required for processing input, executing a transition, and
generating output is always in the time interval [αmin, αmax];

• the point-to-point message transmission time is within the interval
[µmin, µmax], with 0 ≤ µmin ≤ µmax.

There exists an important difference between a single-rate system and a
multirate system: a fast component (with rate k) in the multirate setting
must perform k internal transitions during one (slow) period of the system.
In the synchronous composition MRSC (E) the fast machine performs all k
transitions “instantaneously,” whereas in the asynchronous real-time system
MA(E, T,Γ) the fast machine must operate according to its own fast period
T/k and therefore performs one transition at the beginning of each fast
period. It may happen that the fast component cannot finish all of its
internal transitions before the messages must be sent to the slow component
to ensure that they arrive before the beginning of the next round, even if T
satisfies the constraints of the PALS period, as depicted in Figure 6.7.

149

fast component

slow component

i · T (i+ 1) · T

a b

Figure 6.7: Timeline for multirate asynchronous PALS system with k = 4,
where diagonal arrows denote message transmission and short horizontal
lines denote the execution of a transition. The dashed diagonal arrow ‘b’
illustrates that the messages may arrive after the beginning of the next slow
round if the fast component waits until all internal transitions are finished
in a slow round before sending its messages; instead, the messages are sent
after the third fast transition has taken place (solid diagonal arrow ‘a’).

In order to ensure that the sending of messages can be delayed until all
fast transitions in a slow round have been performed, when αmaxf is the
maximal transition execution time for the fast component, the fast period
T/k must satisfy the constraint

T/k ≥ 2ε+ µmax + αmaxf .

Using adaptors, this quite stringent constraint can be avoided as follows.
If, in the worst case, there is not enough time for a fast machine Mf to
execute all of its k transitions before the messages must be sent to the slow
component, but can only send k′f < k inputs, then the slow component
should only consider these k′f values. The number of transitions that Mf

can perform in a global round before its output must be sent is given by:

k′f = 1 + b
(T monus (2ε+ µmax + αmaxf)) · k

T
c,

where x monus y = max(x − y, 0). That is, if the source of the ith input
port of a slow machine Mj is a fast machine f whose k′f is less than its rate
k, then the adaptor function adap(j)i must satisfy

adap(j)i(v1, . . . , vk′
f
, vk′

f
+1, . . . , vk) = adap(j)i(v1, . . . , vk′

f
, v′k′

f
+1, . . . , v

′
k)

for all values vl, 1 ≤ l ≤ k, and v′l, k′f + 1 ≤ l ≤ k, of appropriate types.
We call such input adaptor functions (k′f + 1)-oblivious. We assume that a
null value ⊥ has been added to each type, so that the “don’t care” values
vk′+1, . . . , vk can always be chosen to be ⊥.

150

6.3.2 Multirate Asynchronous Models

This section presents a high level summary of the asynchronous model
MA(E, T,Γ). The formal semantics of MA(E, T,Γ)—specified as a rewrite
theory in Real-Time Maude—can be found in Appendix B.1. Basically,
the asynchronous model MA(E, T,Γ) adds “wrappers” around each typed
machine in a multirate ensemble E, where typed machines and wrappers
in MA(E, T,Γ) perform at their own rate. These wrappers have an input
buffer, an output buffer, and a local clock that deviates by less than ε from
a global perfect clock, and some timers.
We first recall the asynchronous model A(E , T,Γ) in single-rate PALS for

a single-rate ensemble E [138]. The asynchronous model A(E , T,Γ) adds a
“PALS wrapper” around each machine in E , where all components have the
same period (the “PALS period” T). The behavior of such an asynchronous
component can be summarized as follows:

1. Received messages are stored in the input buffer.

2. When a new round begins (according to the local clock), it reads all
input from the input buffer, performs a “typed machine transition,”
which changes the “machine state” of the component and produces
output which is put into the output buffer.

3. The output backoff timer is set to a value b to ensure that messages
that are sent upon its expiration will not be received too early by
components with slow local clocks.

4. When the output backoff timer expires or when the execution of the
transition has finished (whichever comes last), the messages in the
output buffer are sent into the network.

As shown in the paper [138], all messages are read in a “round-consistent”
way as long as b ≥ 2ε monus µmin and T ≥ µmax + 2ε+ max(b, αmax).

In contrast, since Multirate PALS is based on a number of formal patterns,
for modularity and readability purposes we use multiple wrappers to define
the asynchronous modelMA(E, T,Γ) of a multirate ensemble E, where each
wrapper realizes the corresponding pattern in the distributed setting. For a
flat multirate ensemble E, as illustrated in Figure 6.8, the outermost wrapper
is the standard PALS wrapper, which encloses an input adaptor wrapper,
which encloses either a (slow) typed machine or a k-decelerated machine
wrapper, which in turn encloses an ordinary (fast) typed machine. The
behavior of a fast component with rate k can be summarized as follows:

151

Fast Machine

PALS wrapper
Input Adaptor

K-machine

Slow Machine

PALS wrapper
Input Adaptor

Figure 6.8: The wrapper hierarchies of a fast component (left) and a slow
component (right) for a flat multirate ensemble E.

1. The PALS wrapper communicates with the other components in the
network by sending and receiving messages. In particular, the PALS
wrapper stores messages received during a round in its input buffer.

2. When a new (slow) round begins, according to the local clock of the
PALS wrapper, the PALS wrapper puts the contents of its input buffer
into the input buffer of the input adaptor object that it wraps around.

3. The input adaptor wrapper applies the input adaptor function to get
k-tuples of inputs for each input value received, and then sends these
k-tuples to the layer immediately below, a k-machine wrapper.

4. The k-machine wrapper extracts the first value from each k-tuple input
and sends them to the layer immediately below (the typed machine).
At the beginning of each fast period, it sends the “next” input values
from the k-tuples to the layer below, until the end of the slow round.

5. The innermost layer is the typed machine itself. At the beginning of
each (fast) period, it reads its input from the layer above, performs a
transition that changes its state and generates some output. When the
execution is finished, the machine sends out the generated messages.

6. These output messages are picked up by the k-machine wrapper. If it
has received all k such sets of outputs before its timer expires, it sends
out the resulting k-tuples of outputs to its outer layer. However, the k-
machine wrapper may not be able to wait for all k rounds of outputs
before having to send the outputs, in which case it sends whatever
output sequences it has gotten when its timer expires, padded with
don’t care values ⊥ to obtain k-tuples.

7. The outputs from the k-machine wrapper are immediately picked up
by the input adaptor wrapper, which immediately propagates these
outputs to its outer wrapper, the PALS wrapper.

152

8. Whenever the PALS wrapper receives output from the layer below,
it sends them out into the network, provided that its output backoff
timer has expired. If the backoff timer has not expired, the outputs
are stored in the PALS wrapper’s output buffer, the contents of which
is sent into the network when the backoff timer expires.

The behavior of a slow controller component is a simplified version of the
behavior of a fast component. Since there is no k-machine wrapper around
a slow component, it communicates with the other components at its own
slow rate. The input adaptor wrappers apply adaptor functions that should
map tuples of inputs from the fast components, as well as single values from
the other slow controllers, to single input values.
For a hierarchical multirate ensemble E of some depth d, we recursively

construct MA(E, T,Γ) as follows. If d = 1, then we just construct the
flat asynchronous model MA(E, T,Γ). If d > 1, then for each immediate
subensemble Ese of E, we (recursively) construct MA(Ese, T/rate(se),Γ),
and then “integrate” those submodels intoMA(E, T,Γ). For an immediate
subensemble Ese of a hierarchical ensemble E, the slow components in E

become the environment of Ese.8 As a consequence, messages sent by the
slow components in the fast subsystemMA(Ese, T/rate(se),Γ) to the “local”
environment ese of the subensemble Ese must instead be addressed to the
appropriate slow component(s) in MA(E, T,Γ). Likewise, messages from
slow components inMA(E, T,Γ) to the fast component se must be addressed
to the appropriate component(s) insideMA(Ese, T/rate(se),Γ).
Moreover, the fast subsystem MA(Ese, T/rate(se),Γ) must communicate

with the slow components in MA(E, T,Γ) as if it were a fast component
communicating with a slow component. Consequently, such relatively slow
components in MA(Ese, T/rate(se),Γ) no longer communicate at a single
rate: they communicate at their own rate with the other components inside
the fast subsystemMA(Ese, T/rate(se),Γ), but at a rate that is slower than
their own by a factor rate(se) with the slow components inMA(E, T,Γ). We
can conceptually represent these components with the “divided” wrapper
structure in Figure 6.9a. In reality, such a (relatively) slow component in a
fast subensemble has two sets of wrappers as shown in Figure 6.9b: one set
of wrappers deals with inputs from, and outputs to, the components inside
the subcomponents, and the other set of wrappers deals with communication
with its environment (i.e., the slow components inMA(E, T,Γ)).

8Recall that any multirate ensemble E has an environment, where (i) only the slowest
components in E communicate with the environment, and (ii) the ensemble communicates
with its environment at its own rate (i.e., at the rate of its slowest components).

153

Fast PALS wrapper

Inner Input Adaptor

Typed Machine

Slow PALS wrapper

K-machine

Outer Input Adaptor

(a) Idealized wrapper structure

Typed Machine

K-machine

Fast PALS wrapper

Inner Input Adaptor

Outer Input Adaptor

Slow PALS wrapper

(b) Implementation

Figure 6.9: The wrapper structures of a relatively slow component.

Finally, the global states of MA(E, T,Γ) have the form {C; t}, where C
is the configuration consisting of hierarchical distributed components and
messages traveling between the different components, and t is the global
time. The environment E is also formalized as a typed machine surrounded
only by the PALS wrapper in C, since we assume that E can generate any
output and that E satisfies the same timing requirements as all other (slow)
objects. A message has the form (to o from o′ (p,d)), where o and o′ are
the components identifiers, p is the identifier of the receiving port, and d is
the data element. A transition {C1; t1} −→ {C2; t2} between global states
is specified by means of rewrite rules (see Appendix B.1 for details).

6.3.3 Correctness of the Multirate PALS Transformation

This section formalizes the relationship between the multirate synchronous
composition MRSC(E) and the multirate asynchronous systemMA(E, T,Γ).
Since each synchronous transition step in MRSC(E) corresponds to several
steps in MA(E, T,Γ), we follow [138] and define “bigger” transition steps
in MA(E, T,Γ), so that each of these bigger transitions corresponds to a
single step in MRSC(E). In particular, for single-rate PALS, the stable
states of A(E , T,Γ) of a single-rate ensemble E , where all components have
full input buffers and empty output buffers, are those asynchronous states
corresponding to states of the synchronous composition ME .

Definition 6.10. Given two transition systems (S1,−→1) and (S2,−→2), a
binary relation R ⊆ S1 × S2 is a bisimulation iff for any (s1, s2) ∈ R: (i) if
s1 −→1 s

′
1, then s2 −→2 s

′
2 and (s′1, s′2) ∈ R for some s′2 ∈ S2; and (ii) if

s2 −→2 s
′
2, then s1 −→1 s

′
1 and (s′1, s′2) ∈ R for some s′1 ∈ S1.

154

In single-rate PALS, the natural correspondence sync mapping stable
asynchronous states to synchronous states defines a bisimulation between
ts(E) = (SE ×DEi ,−→E) corresponding to the synchronous composition ME
and (Stable(A(E , T,Γ)),−→st) of stable asynchronous transitions. Recall
that the states in ts(E) consist of the value of the “state” of each single
machine in E , the values in all the “feedback” wires in E , and the values
of the inputs from the environment. The function sync maps stable states
in A(E , T,Γ) to states in ts(E) in the obvious way: the values of the input
buffers of the PALS wrappers of the stable state give the values in both
the feedback wires and the input from the environment in the synchronous
system, and the “local states” of the typed machine objects give the values
of the states of the machines in ts(E) [138].

For a multirate ensemble E, the synchronous composition MRSC(E) is
MSR(E), defined by just an ordinary single-rate machine ensemble SR(E)
(see Definitions 6.9). Therefore, by single-rate PALS:

Corollary 6.1. Given a multirate ensemble E, the function sync defines a
bisimulation between the transition systems (SSR(E)×DSR(E)

i ,−→SR(E)) and
(Stable(A(SR(E), T,Γ)),−→st), where SR(E) is a single-rate ensemble.

In order to obtain a bisimulation between (SSR(E) × D
SR(E)
i ,−→SR(E))

and a transition system corresponding to the multirate asynchronous system
MA(E, T,Γ), we define the transition system (Stable(MA(E, T,Γ)),−→st)
and prove that it is bisimilar to (Stable(A(SR(E), T,Γ)),−→st).

Definition 6.11. A state {conf ; t} reachable from an admissible initial
state (having consistent clocks and timers, formally defined in Appendix B.1)
in the asynchronous systemMA(E, T,Γ) is called stable iff:

• all the input buffers of the PALS wrapper objects in conf are full;

• all other input buffers and output buffers are empty;

• there are no (delayed or undelayed) messages in transit between the
components in the networks in conf , and

• there are no messages waiting to be transmitted between the different
layers of an object in conf .

We call conf a stable configuration if {conf ; t} is a stable state. The set
Stable(MA(E, T,Γ)) denotes the set of all stable states inMA(E, T,Γ).

155

This definition is similar to that of the stable states Stable(A(E , T,Γ))
of an asynchronous single-rate system A(E , T,Γ) in [138], except that those
models are not layered. A stable state is a state of the asynchronous system
MA(E, T,Γ) when a new “global” round of the system begins (by a “global”
or “slow” round of the system we mean a round with period T , where T is
the period of the slowest components in the ensemble). This definition also
implies that a fast component with rate k will be in a state where it has
finished all k “internal” fast rounds during a global period.
Intuitively, a transition in the synchronous composition MRSC(E) of a

multirate ensemble E corresponds to a sequence of asynchronous transitions
between two stable states in Stable(MA(E, T,Γ)). However, due to time
ticks, there could be a rewrite sequence from one stable state to another
(similar) stable state that does not correspond to a synchronous transition
in MRSC(E). Stable transitions are therefore defined as follows:

Definition 6.12. The “big step” transition system of a multirate ensemble E
is defined by: ts(Stable(MA(E, T,Γ))) = (Stable(MA(E, T,Γ)),−→st), where
{C ; t} −→st {C ′ ; t′} holds iff there exists a sequence of one-step rewrites
{C1 ; t1} −→1

R · · · −→1
R {Ck ; tk} such that:

• {C ; t} = {C1 ; t1} and {C ′ ; t′} = {Ck ; tk} are stable states,

• the rewrite sequence contains at least one application of a rule for a
“typed machine transition,” and

• if Cj is not a stable state, for 1 < j < k, then there exists no stable
state Cl for j < l < k (between Cj and Ck in the sequence).

As mentioned in Section 6.3.1, the asynchronous systems A(SR(E), T,Γ)
and MA(E, T,Γ) do not have the same behaviors. In particular, since a
fast component f in A(SR(E), T,Γ)9 can finish all of its k fast transitions
before messages are sent, whereas the same component in MA(E, T,Γ) is
only guaranteed to finish k′f ≤ k such transitions before the output tuple
resulting from those transitions must be sent out. Since such outputs to the
other (non-environment) components appear in (the feedback wire part of)
the next state in MSR(E) (and inputs in the input buffers in the next stable
state ofA(SR(E), T,Γ)), the stable states inMA(E, T,Γ) andA(SR(E), T,Γ)
therefore in general do not coincide.

9A(E , T,Γ) is formally defined as (non-layered) single-rate asynchronous systems
in [138]. However, we can also regard A(E , T,Γ) as the multirate systemMA(mr(E), T,Γ),
where mr(E) is the obvious multirate system corresponding to E with no fast components.

156

However, since the (k′ + 1)th to the kth data in such k-tuples do not
matter in the next round, due to the assumed (k′ + 1)-obliviousness of the
input adaptors, we can relate stable states relative to (k′+ 1)-obliviousness:

Definition 6.13. For any f ∈ JF , k′f the cutoff point of f defined above,
and data values d1, . . . , drate(f), d

′
k′
f

+1, . . . , d
′
rate(f), two messages

m1 = (to s from f (p,(d1, . . . , dk′
f
, dk′

f
+1, . . . , drate(f))))

m2 = (to s from f (p,(d1, . . . , dk′
f
, d′k′

f
+1, . . . , d

′
rate(f))))

are equivalent up to k′ + 1-obliviousness, denoted by m1 ≡obl m2. We can
also extend ≡obl to sets of messages in the obvious way: two sets of messages
msgs1 and msgs2 are ≡obl-equivalent if msgs2 can be obtained from msgs1

by replacing each message m in msgs1 with a ≡obl-equivalent message m′.

Then, the following lemma follows immediately from the definition of
(k′ + 1)-oblivious input adaptors:

Lemma 6.1. If the adaptor adap(j) for component j is (k′ + 1)-oblivious,
then adap(j)(~d1, . . . , ~dnj) = adap(j)(~d′1, . . . , ~d′nj), for any two (complete sets
of) ≡obl-equivalent sets of messages for component j.

Two stable states can therefore be considered to be “equivalent” if they
only differ in ≡obl-equivalent inputs:

Definition 6.14. Let ∼obl ⊆ Stable(MA(E, T,Γ))×Stable(A(SR(E), T,Γ))
relate two stable states by sma ∼obl sa iff: (i) their corresponding input
buffers are the same up to ≡obl-equivalence of sets messages, and (ii) for
each component c in E, the value of the state attribute of c in sma is the
same as the value of the state atribute of c in sa.

We now introduce the following notation to denote asynchronous objects
inMA(E, T,Γ) used for brevity in this proof:

• PALST,Γ(α(M)) denotes a layered object for a flat slow component
(illustrated in Figure 6.8): i.e., a PALS wrapper object with period T ,
which encloses an input adaptor object for adaptor α, which encloses
a typed machine object modeling the behaviors of machine M .

• PALST,Γ(α(k(M))) denotes a layered object for a flat fast component
(illustrated in Figure 6.8): i.e., the PALS wrapper object with period
T , which encloses an input adaptor object for input adaptor α, which
again encloses a k-machine object with rate k, which finally encloses
a typed machine object modeling the behaviors of M .

157

• PALST,Γ(M) denotes the PALS wrapper object that encloses a single
typed machine object modeling the behaviors of M . In particular,
PALST,Γ(E) models the behaviors of an environment E, when the
environment is considered to be an ordinary typed machine.

Then, the asynchronous system MA(E, T,Γ) and its correlated single-rate
asynchronous system A(SR(E), T,Γ) of a flat multirate machine ensemble
E = (JS , JF , e, {Ml}l∈JS∪JF , E, src, rate, adap) can be represented by:

MA(E, T,Γ) = {PALST,Γ(adap(j)(rate(j)(Mj))) | j ∈ JF } ∪

{PALST,Γ(adap(j)(Mj)) | j ∈ JS} ∪ {PALST,Γ(E)},

A(SR(E), T,Γ) = {PALST,Γ((M×rate(j)
j)adap(j)) | j ∈ JF } ∪

{PALST,Γ((Mj)adap(j)) | j ∈ JS} ∪ {PALST,Γ(E)}.

Notice that we have the same asynchronous “components” in MA(E, T,Γ)
and A(SR(E), T,Γ), but they are implemented differently.

InMA(E, T,Γ), components can be considered in isolation during a single
(slow) round. The next state of a component is only determined by its own
current state and the inputs in the input buffer of its PALS wrapper at the
start of the current (slow) round. The PALS wrapper also operates at the
slow rate, and only transmits inputs to the inner layers once in each round (at
the start of the slow round). Therefore, we can consider a local asynchronous
system corresponding to only a single component inMA(E, T,Γ).

Definition 6.15. A local asynchronous system of M = (Di, S,Do, δM) is
defined as follows, where EM = (Do, Di) is its local environment:

• MA(α(M), T,Γ) = {PALST,Γ(α(M)), PALST,Γ(EM)} for a flat slow
component PALST,Γ(α(M));

• MA(α(k(M)), T,Γ) = {PALST,Γ(α(k(M))), PALST,Γ(EM)} for a flat
fast component PALST,Γ(α(k(M))); and

• MA(M,T,Γ) = A(M,T,Γ) = {PALST,Γ(M), PALST,Γ(EM)} for a
non-layered component PALST,Γ(M).

We can furthermore “locally” relate two asynchronous components with
the same period T and performance bounds Γ as follows:

Definition 6.16. Two components PALST,Γ(c1) and PALST,Γ(c1) with the
same local environment EM are behaviorally ∼obl-equivalent iff ∼obl is a
bisimulation between ts(Stable(MA(c1, T,Γ))) and ts(Stable(MA(c2, T,Γ))).

158

The following important decomposition lemma allows us to analyze each
component in isolation for showing thatMA(E, T,Γ) and A(SR(E), T,Γ) are
behaviorally ∼obl-equivalent to each other.

Lemma 6.2. If each component in MA(E, T,Γ) is ∼obl-equivalent to the
corresponding component in A(SR(E), T,Γ), then ∼obl is also a bisimulation
between ts(Stable(MA(E, T,Γ))) and ts(Stable(A(SR(E), T,Γ))).

Proof. Let sma ∈ Stable(MA(E, T,Γ)) and sa ∈ Stable(A(SR(E), T,Γ)) be
stable states of MA(E, T,Γ) and A(SR(E), T,Γ), respectively, such that
sma ∼obl sa. Suppose that sma −→st s

′
ma; i.e., for each component cma,j :

1. it performs a transition based on the input messages msgsma,j in the
input buffer of its PALS wrapper,

2. it sends output messages msgs′ma,j into the network through the PALS
wrapper (that will arrive at the designated input buffers before the
next stable state, according to results of single-rate PALS [138]), and

3. meanwhile, it receives new input messages msgs′′ma,j that will be used
in the next stable transition from s′ma.

Let Oma,j ∈ sma and O′ma,j ∈ s′ma be the PALS objects for each component
cma,j in the stable state sma and s′ma, respectively. Now, consider a stable
state {Oma,j OEj ; tj} ∈ Stable(MA(cma,j , T,Γ)) of the local asynchronous
system MA(cma,j , T,Γ). Since OEj can generate outputs msgs′′ma,j , there
exists a local stable transition {Oma,j OEj ; tj} −→st {O′ma,j O

′
Ej

; t′j} in
which O′Ej contains the output messages msgs′ma,j in its input buffer of the
PALS wrapper, generated from cma,j .
Let Oa,j ∈ sa be the PALS object for the corresponding component ca,j

in A(SR(E), T,Γ) in the stable state sa. Since sma ∼obl sa, by definition,
{Oma,j OEj ; tj} ∼obl {Oa,j OEj ; t̃j} for any stable state {Oa,j OEj ; t̃j} in
Stable(A(ca,j , T,Γ)). Because cma,j is behaviorally ∼obl-equivalent to ca,j ,
there exists a stable transition {Oa,j OEj ; t̃j} −→st {O′a,j Õ′Ej ; t̃′j} such
that {O′ma,j O

′
Ej

; t′j} ∼obl {O′a,j Õ′Ej ; t̃′j}. Consider a stable configuration
C ′a = {O′a,j | ca,j is a component in A(SR(E), T,Γ)}. We can easily see that
there exists a stable transition10 sa −→st {C ′a ; t′} in A(SR(E), T,Γ) such
that s′ma ∼obl {C ′a ; t′}. Consequently, sma ∼obl sa and sma −→st s

′
ma implies

that sa −→st s
′
a and s′ma ∼obl s′a for some s′a ∈ Stable(A(SR(E), T,Γ)). The

“vice versa” direction is entirely similar.
10Since O′Ej ∼obl Õ

′
Ej

for each j, the outputs of each component in A(SR(E), T,Γ) are
pairwise ≡obl-equivalent. Thus, in the next stable state, these outputs have reached the
input buffers of the PALS wrappers, which will also be pairwise ≡obl-equivalent.

159

The following two lemmas state that for each component j ∈ JS ∪JF of a
flat multirate machine ensemble E, the single-rate object in A(SR(E), T,Γ)
is behaviorally ∼obl-equivalent to the multirate object in MA(E, T,Γ) (the
proofs of the lemmas are given in Appendix B.2).

Lemma 6.3. For a slow machine Mj in a flat multirate machine ensemble
E, j ∈ JS, the correlated local asynchronous systemsMA(adap(j)(Mj), T,Γ)
and A((Mj)adap(j), T,Γ) are behaviorally ∼obl-equivalent.

Lemma 6.4. For a fast machine Mf in a flat multirate machine ensemble
E, f ∈ JF , the local asynchronous systemsMA(adap(f)(rate(f)(Mf)), T,Γ)
and A((M×rate(f)

f)adap(f), T,Γ) are behaviorally ∼obl-equivalent.

Consequently, ∼obl is a bisimulation between ts(Stable(MA(E, T,Γ))) and
ts(Stable(A(SR(E), T,Γ))) by Lemma 6.2. Because sync is a bisimulation
between ts(Stable(A(SR(E), T,Γ))) and ts(SR(E)) (by Corollary 6.1), the
following theorem follows from the fact that bisimulations compose:

Theorem 6.1. For a flat multirate ensemble E, the relation ∼obl ; sync is
a bisimulation between ts(Stable(MA(E, T,Γ))) and ts(SR(E)).

Notice that by the above theorem, ∼obl ; sync is a bisimulation between
ts(Stable(MA(E, T,Γ))) and ts(Stable(A(MSR(E), T,Γ))) as well. Therefore,
the bisimilarity for a hierarchical ensemble can be proved by induction on
depth d, using the flat case as a base case (see Appendix B.2).
This correspondence can be lifted to temporal logic properties. For a set

AP of atomic propositions, a labeling function L : SSR(E) × DSR(E)
i → 2AP

defines which predicates hold in a state of ts(SR(E)), giving rise to a Kripke
structure K(SR(E)) = (SSR(E) × D

SR(E)
i ,AP, L,−→SR(E)). This labeling

function can be extended to (sync ; L) : Stable(MA(E, T,Γ))→ 2AP , yielding
the corresponding Kripke structure

K(Stable(MA(E, T,Γ))) = (Stable(MA(E, T,Γ)),AP, (sync ; L),−→st).

However, ts(SR(E)) and K(Stable(MA(E, T,Γ))) may not satisfy the same
temporal logic properties for sync-related initial states in general, since the
input components in the feedback wires in the former may have “complete”
k-tuples, whereas the latter may have some different “don’t care” value
⊥ in (k′ + 1)-oblivious inputs. As already mentioned, since the machines
cannot see the difference between such ≡obl-equivalent inputs once their
input adaptors have been applied to the inputs, we require that the atomic
propositions cannot distinguish between two states that only differ in their
≡obl-equivalent feedback inputs. Formally:

160

Definition 6.17. A labeling function L : SSR(E) × DSR(E)
i → 2AP cannot

distinguish between ≡obl-equivalent inputs iff the condition

L
(
(~s, {~dj}j∈JS ∪ {(df1 , . . . ,dfmf)}f∈JF), ~di

)
= L

(
(~s, {~dj}j∈JS ∪ {(d

′
f1 , . . . ,d

′
fmf

)}f∈JF), ~di
)
,

holds, where the feedback output (df1 , . . . ,dfmf) denotes the feedback output
from the fast machine with index f , whenever each dfl, 1 ≤ l ≤ mf , is
equivalent to d′fl up to (k′f +1)-obliviousness for k′f its output cutoff number,
that is, for some values dfl1 , . . . , dflrate(f)

, d′fl
k′
f

+1
, . . . , d′flrate(f)

:

dfl = (dfl1 , . . . , dflk′
f

, dfl
k′
f

+1
, . . . , dflrate(f)

)

d′fl = (dfl1 , . . . , dflk′
f

, d′fl
k′
f

+1
, . . . , d′flrate(f)

).

Since this requirement is equivalent to requiring that s ∼obl s′ implies
(sync ; L)(s) = (sync ; L)(s′), it follows that bisimilar states satisfy the same
atomic propositions. Since it is well-known that bisimilar Kripke structures
satisfy the same CTL∗ formulas (see, e.g., [60]), we obtain the following:

Theorem 6.2. If L cannot distinguish between ≡obl-equivalent inputs, then
for any formula ϕ ∈ CTL∗(AP) and for any stable initial configuration
{C0 ; t0} of the form described in Definition B.1, we have

K(Stable(MA(E, T,Γ))), {C0 ; t0} |= ϕ

⇐⇒ K(SR(E)), sync({C0 ; t0}) |= ϕ

6.4 Multirate PALS Methodology

As mentioned in the introduction, many distributed cyber-physical systems,
including the airplane control system in Section 6.5, interact with physical
entities exhibiting continuous dynamics, and are therefore distributed hybrid
systems. In Multirate PALS, any “local” environment of faster components
is assumed to have been incorporated into the corresponding typed machine
itself, as explained in Section 6.2.3. This section shows how such physical
environments can be integrated into their controlling typed machines within
Multirate PALS, and then presents a generic framework for both specifying
and executing a multirate ensemble in Real-Time Maude.

161

6.4.1 Physical Environments

We can reasonably assume that a controller component is tightly integrated
with its physical environment, and contains the sensors and actuators. Even
if the sensors and actuators are remote (instead of included in the controller)
and therefore there also exists a network delay between sensor/actuator and
controller, the system can still be modeled by having another typed machine,
containing the sensors and actuators and tightly integrated with its physical
environment, that interacts with the controller like any other machine.
Our methodology can be summarized as follows. First, a (local) controller

component M is represented by a nondeterministic typed machine that is
parameterized by different behaviors of environments; that is, the behavior
of M is defined for any possible environment behavior. Second, its physical
environment EM defines the continuous behaviors of a certain environment,
and also defines how the environment EM reacts to actuator commands
from the controller component M . Then, the environment restriction of M
by EM defines an ordinary typed machine M � EM whose transitions are
constrained by the behavior of the specified environment EM .

The state of a physical environment EM at a certain point can generally
be represented as a tuple of the values (v1, v2, . . . , vl) ∈ Rl of the physical
parameters x1, . . . , xl of interest. For example, the Newtonian dynamics of a
single object involves the parameters (x, y, z, t) ∈ R4 for a position (x, y, z) of
the object at time t. A physical environment EM is called l-dimensional iff
its state space is a subset of Rl. As usual in physical dynamics, the behavior
of a physical environment EM can be expressed by differential equations
and continuous functions involving its parameters x1, . . . , xl, which indeed
specify trajectories of the parameters x1, . . . , xl.

Definition 6.18. A trajectory of duration T is a function τ : [0, T] → R.
The set TT denotes the set of all trajectories of duration T ∈ R. For an
l-tuple of trajectories ~τ = (τ1, . . . , τl) ∈ T lT , let ~τ(x) = (τ1(x), . . . , τl(x)).

That is, a trajectory τ : [0, T] → R defines the continuous behavior of a
physical parameter in a period of duration T . Such a trajectory is normally
a continuous function, but can also be more general. We refer to [128] for
more details about general trajectories for hybrid systems.
A machine M collects the state (v1, . . . , vl) of its physical environment

EM using its sensors, and affects the physical environment EM through its
actuators. Since we consider “periodic” digital components with period T ,
EM can be modeled as a periodic dynamic system that specifies any possible
trajectories of its physical state during its period T .

162

0 · T 1 · T 2 · T 3 · T 4 · T

v0
τ0

c0

v1 τ1

c1 v2
τ2

c2
v3

τ3

c3

τ ′3

τ ′1

c′1
v′2

τ
′
2

c′2

v′3 τ ′′3

c′′3

Figure 6.10: A periodic dynamic system in which its physical state follows
the continuous trajectory τi from the value vi to vi+1 according to the control
command ci from the controller during each period; e.g., ((c0, v0), τ0) ∈ Λ,
((c1, v1), τ1) ∈ Λ, and ((c′1, v1), τ ′1) ∈ Λ.

Definition 6.19. An l-dimensional periodic dynamic system is a tuple
EM = (C, P, T, Λ) where:

• C is a set of control commands, representing “actuator outputs” from
the corresponding controller;

• P ⊆ Rl is a set of all possible values of the “physical parameters”
x1, . . . , xl of EM ;

• T ∈ R>0 is the period of EM ;

• Λ ⊆ (C × P) × T lT is a total physical transition relation that defines
possible trajectories ~τ ∈ T lT of duration T for each control command
c ∈ C beginning at each physical state ~v ∈ P , satisfying:

(
(c,~v), ~τ

)
∈ Λ =⇒ ~τ(0) = ~v ∧ (∀t ∈ [0, T]) ~τ(t) ∈ P

That is, if the current physical state of the environment EM is ~v at the
beginning of a period and its controller M gives an actuator output c
to EM , then the physical state of EM follows the continuous trajectory
~τ during period T , as illustrated in Figure 6.10.

Then, a generic discrete controller M for the periodic dynamic system
EM = (C,P, T,Λ) is specified as just an ordinary nondeterministic typed
machine M = (Di, S,Do, δM) with period T , where the physical parameters
of EM are also included in M ’s state, and the control commands to EM
(i.e., actuator outputs) depend (only) on the current state of M . Such a
relationship between M and EM is captured by two projection functions:

163

Definition 6.20. Given a machine M = (Di, S,Do, δM) and a periodic
dynamic system EM = (C,P, T,Λ):

• A command function πC : S → C determines the control command to
the physical environment EM .

• A environment state function πP : S → P represents the observed
environment state.

That is, the controller machine M is defined as a highly nondeterministic
machine which takes all possible environment behaviors into account. Then,
the environment restriction M � EM (formally defined below) restricts the
behaviors of M to those that “fit” with the environment EM .

The same discrete controller can be placed in many different physical
environments that share the same physical parameters but show different
behaviors. The behavior of M = (Di, S,Do, δM) is nondeterministically
defined for any possible behaviors of the physical parameters as follows:

• At the start of each period, M is in state s ∈ S, which determines the
control command πC(s) to its physical environment, and the physical
state πP (s) at the beginning of the current round.

• The actuator output πC(s) takes effect on its environment from the
beginning of the current round and lasts until the end of the round.

• δM nondeterministically decides the output ~do ∈ Do and the next state
s′ ∈ S, based on the current state s ∈ S and the input ~di ∈ Di.

• The next state s′ also determines the physical state πP (s′) and the
control command πC(s′) for the beginning of the next period. That is,
δM also updates the physical parameters to their (expected) values at
the end of the current period/beginning of the next period.

• πP (s′) gives the values of the physical parameters at the beginning of
the next round, while the physical values (continuously) change from
the current physical state πP (s), according the control command πC(s)
until the beginning of the next round.

• However, since the behavior of those physical parameters has not been
specified yet, the transition relation δM assumes that the values of the
physical parameters in the current state s can be changed to any real
numbers in the next state s′, and assigns such nondeterministically
chosen values to the physical parameters in the next state s′.

164

When the behavior of those physical parameters in machineM is specified
by a periodic dynamic system EM = (C,P, T,Λ), the transition relation
δM�EM of the restricted machine M � EM is a subset of δM that also follows
the physical constraints Λ given by EM . That is, M � EM captures each
observable moment of the EM ’s continuous behavior for M .

Definition 6.21. Given a typed machine M = (Di, S,Do, δM), a physical
environment EM = (C,P, T,Λ), a control command function πC : S → C,
and an environment state function πP : S → P , the environment restriction
is the typed machine M � EM = (Di, S,Do, δM�EM) such that:

(
(~di, s), (s′, ~do)

)
∈ δM�EM

iff
(
(~di, s), (s′, ~do)

)
∈ δM holds and there exists a trajectory ~τ ∈ T lT such that

(
(πC(s), πP (s)), ~τ

)
∈ Λ ∧ ~τ(0) = πP (s) ∧ ~τ(T) = πP (s′).

That is, for the control command πC(s), the next physical state πP (s′) must
be reachable from the current physical state πP (s) by a valid trajectory ~τ of
the physical environment EM .

Notice that M can be considered to be a typed machine parameterized by
different behaviors of physical parameters, and its environment restriction
M � EM defines the actual behavior ofM when it is placed in the particular
physical environment specified by the periodic dynamic system EM .

We model a distributed cyber-physical system as a multirate machine
ensemble E, where each machine is regarded as the environment restriction
M � EM of a controller typed machine M by its physical environment EM .
Therefore, the Multirate PALS transformation can in principle generate a
correct-by-construction distributed asynchronous model MA(E, T,Γ) from
the synchronous model E. However, there are two “hybrid system” problems
that Multirate PALS cannot handle at the moment:

• The physical environments of different distributed components in the
system can be physically correlated to each other. For example, if
we consider two adjacent rooms, the temperature of one room can
immediately affect the temperature of the other room.

• In the asynchronous model MA(E, T,Γ) different components read
their sensor values at slightly different times, due to the clock skews.
The “continuous behavior” of MA(E, T,Γ) can therefore be slightly
different from the synchronous model E.

165

Providing general solutions for those challenges remains a topic for future
work. We therefore assume that any “physical correspondences” between
any different physical environments are faithfully captured by the ensemble
connections in E. Also, we assume that the system is stable in the sense that
small differences in the “sensor/effector timing” caused by the clock skews
do not affect the correctness of the system.

Example 6.1 (Digital Thermostat). Figure 6.11 shows a digital thermostat
controller, operating at a certain frequency to control the temperature of a
room, specified by the typed machine

M = (R2, {son, soff} × R, {∗}, δM)

where each state (s, x) ∈ {son, soff} × R contains the “current” temperature
x of the room (i.e., the temperature at the beginning or at the end of the
current period), {∗} is a singleton set to denote that there is no output port,
and for any x′ ∈ R, the transition relation δM is defined by:

(
(tmax, tmin), (son, x)), ((if x ≤ tmax then son else soff fi, x′), ∗)

)
∈ δM(

(tmax, tmin), (soff, x)), ((if x < tmin then son else soff fi, x′), ∗)
)
∈ δM .

At each step, M receives two inputs (tmax, tmin) ∈ R2 from other typed
machines, where tmax is the desired maximum temperature and tmin is the
desired minimum temperature. Based on these inputs and its current state
(s, x), the machine makes a transition to the next state (s′, x′), where x′ ∈ R
can be any value since the behavior of the physical parameter x has not been
specified yet. During its period until the next step, M gives a command out

to turn the heater on/off, according to its state s.

tmax

tmin

out

x

son soff

out← on out← off

x > tmax

x ≤ tmax

x < tmin

x ≥ tmin

Figure 6.11: A digital thermostat controller modeled as a typed machine
with two input ports (for the maximum temperature tmax and the minimum
temperature tmin) and no output ports. Its physical environment is modeled
by one environment parameter (the current temperature x), and one control
command (the switch of the heater out).

166

The physical environment EM of the nondeterministic controller M is
specified by the periodic dynamic system EM = ({on, off }, R, T, Λ) with
period T , control commands {on, off }, R for the current temperature x, and
the physical transition relation Λ ⊆ ({on, off } × R)× TT given by:

(
(out, v), x)

)
∈ Λ

⇐⇒ (∃x : [0, T]→ R) x(0) = v ∧ ẋ =

K(h− x) if out = on

−Kx if out = off ,

where K,h ∈ R are constants depending on the size of the room and the
power of the heater, respectively. That is, if the heater is on, the temperature
x rises according to the differential equation ẋ = K(h−x), and if the heater
is off, the temperature x falls according to the differential equation ẋ = −Kx.
The physical environment EM conforms to the controller machine M with

the environment projection functions πC : ({son, soff} ×R)→ {on, off } and
πP : ({son, soff} × R)→ R where

πC(son, x) = on, πC(soff, x) = off , πP (s, x) = x.

The environment restriction is M � EM = (R2, {son, soff}×R, {∗}, δM�EM),
where ((tmax, tmin), (s, x)), ((s′, x′), ∗)) ∈ δM�EM iff

(
(tmax, tmin), (s, x)), ((s′, x′), ∗)

)
∈ δM

∧ ∃τ ∈ TT . ((πC(s), x), τ) ∈ Λ ∧ τ(0) = x ∧ τ(T) = x′.

The combined thermostat behavior, specified by the environment restriction
M � EM , is illustrated in Figure 6.12.

Step
1 · T 2 · T 3 · T 4 · T 5 · T 6 · T

EM x0 x1 x2 x3 x4 x5 x6

M
son son son soff soff soff soff

Figure 6.12: The behavior of the digital thermostat controller M integrated
with its physical environment EM , where xi+1 is the next temperature after
period T elapsed from xi according to the given differential equation.

167

6.4.2 The Real-Time Maude Framework

This section presents a generic framework for specifying and executing a
hierarchical multirate ensemble in Real-Time Maude. Given a specification
of typed machines, their periods, input adaptors, and a wiring diagram
that defines the connections between output ports and input ports, the
framework produces an executable model of the synchronous composition
of the ensemble which can be used to simulate and formally verify this
synchronous composition. If the system has “local” physical environments,
then they should be integrated with the corresponding controller machines,
as explained in the previous section.

Representing Multirate Machine Ensembles. A multirate machine
ensemble can naturally be specified in an object-oriented style, where the
machines and the (sub)ensembles are modeled as objects. That is, the global
state has the form {Ensemble} where Ensemble is an object representing the
entire multirate machine ensemble.
A typed machine is represented as an object instance of a subclass of the

class Component, which has the attributes period and ports. The attribute
period denotes the period of the typed machine, and ports contains the
input and output “ports,” represented as a multiset of Port objects.

class Component | period : Time,
ports : Configuration .

We assume that any (input and output) data are terms of a supersort
Data, which also contains the constant bot, denoting the “don’t care” value
⊥ used in the input adaptor functions.

sort Data .
op bot : -> Data [ctor] .

A port is modeled by an object instance of the class Port, whose attribute
content contains the data content as a list of values. The subclasses InPort
and OutPort denote input and output ports, respectively.

class Port | content : List{Data} .
class InPort .
class OutPort .
subclass InPort OutPort < Port .

Component and port identifiers are terms of the subsorts ComponentId
and PortId, respectively, of the sort Oid of object identifiers.

sorts ComponentId PortId .
subsorts ComponentId PortId < Oid .

168

To define the transition relation, the user must define the following built-in
operator delta, for each single (atomic) machine, by means of equations (for
deterministic transitions) or rewrite rules (for nondeterministic transitions):

op delta : Object ~> Object .

The operator delta is declared to be a partial function using the kind
[Object]. That is, a term containing the delta operator will only have a
kind, but not a sort. This is used to ensure that a transition equation/rule
in a composition is only applied when the transitions have been performed
in all subcomponents (see below).

A multirate machine ensemble is modeled as an object instance of the class
Ensemble, where the connections attribute denotes the wiring diagram and
the subcomponents attribute denotes the typed machines in the ensemble.
We support the specification of hierarchical multirate ensembles by declaring
Ensemble to be a subclass of Component, whose attribute ports denotes the
ports to its external “environment.”

class Ensemble | subcomponents : Configuration,
connections : Set{Connection} .

subclass Ensemble < Component .

The rate of each component in the subcomponents attribute is implicitly
given by the period of the component. The period of the entire ensemble (in
its period attribute) must be equal to the period of the slowest components
in the ensemble. To define the input adaptor for each input port of a single
component, the user must declare the following built-in function adaptor

by equations, where sort NeList{Data} denotes a non-empty list of data:

op adaptor : ComponentId PortId NeList{Data} -> NeList{Data} .

A wiring diagram of an ensemble is modeled as a semicolon-separated set
of connections. A connection is a term pi –-> po of sort Connection, where
pi and po are the source and target port names, respectively:

sorts Connection PortName . subsort PortId < PortName .
op _._ : ComponentId PortId -> PortName [ctor] .
op _-->_ : PortName PortName -> Connection [ctor] .

A term C1 .P1 –-> C2 .P2 represents a connection from an output port P1

of a component C1 to an input port P2 of a component C2. A connection
between an environment port P and a port P2 of a subcomponent C2 is
represented as a term P –-> C2.P2 (for an environment input) or a term
C2.P2 –> P (for an environment output), where both sides are input ports
or output ports. Section 6.5.3 illustrates how our airplane control system is
represented as an ensemble object.

169

prepareDelta
(

M1 M2

)
=E M1 M2deltak1 () deltak2 ()

Figure 6.13: The prepareDelta function; the operator delta is distributed
to each subcomponent i ∈ {1, 2} as many times as its rate ki.

Defining Synchronous Compositions. Because an ensemble object of
class Ensemble is also an instance of class Component, the transitions of
the synchronous composition of the ensemble can be defined using the same
operator delta. The following rewrite rule defines the transition relation of
the synchronous composition specified in Definition 6.3:

var C : ComponentId . var OBJ : Object . var KOBJ : [Object] .

ops transferInputs transferResults : Object -> Object .
op prepareDelta : Object ~> Object .

crl [sync]: delta(< C : Ensemble | >) => transferResults(OBJ)
if KOBJ := prepareDelta(transferInputs(< C : Ensemble | >))
/\ KOBJ => OBJ .

using the three auxiliary functions transferInputs, prepareDelta, and
transferResults. The meaning of the rule can be summarized as follows:

1. Each input port in the ensemble C receives a value from its source
output port (transferInputs).

2. Appropriate input adaptors are applied to each input port, and then
the operator delta of each subcomponent is applied multiple times
according to its rate as illustrated in Figure 6.13 (prepareDelta); the
resulting term is assigned to the variable KOBJ of kind [Object].

3. Any term of sort Object resulting from rewriting the term given in
KOBJ in zero or more steps can be nondeterministically assigned to
the variable OBJ; since the operator delta does not yield terms of this
sort, these objects are “quiescent” objects where all the operations in a
round have been performed. That is, the variable OBJ will only capture
a term containing no delta in which all the transition relations for the
subcomponents in the ensemble C are completely evaluated.

4. The new outputs in the subcomponent objects are transferred to the
environment ports (transferResults).

170

When the system is specified by one top-level component for a multirate
ensemble of (nondeterministic) typed machines, the dynamics of the system
is specified by the following conditional tick rewrite rule that models an
iteration of the synchronous composition of the ensemble:

crl [step]: {< C : Ensemble | period : T >} => {OBJ’} in time T
if OBJ := clearOutput(< C : Ensemble | >
/\ delta(OBJ) => OBJ’ .

For the top-level ensemble C, the outputs generated in the previous round
is cleared by the clearOutputs function and the resulting term is assigned
to the variable OBJ of sort Object. Then, in a similar way to the sync rule
above, any possible term of sort Object resulting from rewriting delta(OBJ)

in zero or more steps can be nondeterministically assigned to the variable
OBJ’ of sort Object where delta is completely evaluated by rewrite rules.

Executing Subcomponents using Partial Order Reductions. The
transition of the synchronous composition is performed by distributing the
operator delta to all the subcomponents, and then executing the transitions
concurrently in the different typed machines. However, this straight-forward
solution is computationally expensive, since the Maude engine computes
all possible interleavings caused by applying the rewrite rules for delta in
different orders. It is totally unnecessary to explore all these interleavings
caused by executing the transitions concurrently in the different components
during one period, since the PALS synchronous semantics ensures that the
behaviors of the subcomponents are independent of each other during the
execution of the transitions in a single round, as illustrated in Figure 6.14.
Therefore, we can equally well “schedule” the execution of delta to avoid
these interleavings, which amounts to partial order reduction [60].

M1 M2deltak1 () deltak2 ()

M1 M2deltak2 ()

M1 M2deltak1 ()

M1 M2

∗

∗

∗

∗ · · ·

∗

∗
· · ·

Figure 6.14: The two different execution orders that give the same result.

171

For a multirate ensemble, we define a scheduling queue that gives a certain
execution order to compute the transitions of the subcomponents. It is
basically a list of component objects in which only the first component can
execute its (nondeterministic) delta rewrite rules. We can specify such
evaluation strategies for component lists by using the frozen attribute of
the list cons operator _::_ as follows:

sort ObjectQueue .
op nil : -> ObjectQueue [ctor] .
op _::_ : Object ObjectQueue -> ObjectQueue [ctor frozen(2)] .

Since the second argument of the operator _::_ is declared frozen, for any
list constructed by the operator, it allows rule rewriting only inside its first
item. The point is that we can put the objects in some list

object1 :: (object2 :: (. . . :: objectn) . . .),

which means that the rewrite rules are first applied to object1, and only when
no rewrite rule can be applied to object1 do we start applying rewrite rules
to object2, and so on. If some component is deterministic so that its delta
is defined using only equations, then those equations can still be applied
even though the component object is in the middle of the list.
When the first item in the scheduling queue is fully evaluated, it is removed

from the queue so that the next item can be rewritten by rewrite rules:

sort DetConfig .
subsort Configuration < DetConfig .
op _|_ : ObjectQueue Configuration -> DetConfig [ctor] .
var COMPS : Configuration . var QUEUE: [ObjectQueue] .

ceq (OBJ :: QUEUE) | COMPS = QUEUE | (COMPS OBJ) .
eq nil | COMPS = COMPS .

where DetConfig is a supersort of Configuration to denote a pair of scheduling
queues and ordinary configurations for objects and messages.

Definition of the prepareDelta Function. The prepareDelta function
used in the sync rule defines the transitions of the synchronous composition
of an ensemble (the other functions transferInput and transferResult

are explained in Appendix B.3). Rather than just distributing the delta

operator over each subcomponent, the prepareDelta function constructs a
scheduling queue of the subcomponents, where, for each subcomponent, its
input adaptor function and the delta operator are applied:

172

var NDL : NeList{Data} . var QUEUE: [ObjectQueue] .

op prepareDelta : Object ~> Object .
op prepareDelta : Time Configuration ObjectQueue ~> DetConfig .
op prepareDelta : Time Oid Configuration ObjectQueue ~> DetConfig .

eq prepareDelta(< C : Ensemble | period : T, machines : COMPS >)
= < C : Ensemble | machines : prepareDelta(T, COMPS, nil) > .

eq prepareDelta(T, COMPS, QUEUE)
= if COMPS == none

then (QUEUE | none)
else prepareDelta(T, minCid(COMPS), COMPS, QUEUE) fi .

eq prepareDelta(T, C, < C : Component | period : T’ > COMPS, QUEUE)
= prepareDelta(T, COMPS, k-delta(quo(T,T’),

applyAdaptors(< C : Component | >)) :: QUEUE) .

The function quo(T, T’) returns the integer quotient of T and T ′, and
minCid(COMPS) returns the smallest component identifier within COMPS in
alphabetical order, assuming that there are no duplicate identifiers in an
ensemble at the same level. For n subcomponents there exist in general n!
different scheduling queues, which one we choose does not matter.
The k-delta function applies the operator delta for the component (in

the second argument) as many times as its rate (in the first argument); e.g.,
k-delta(3, OBJ) is reduced to delta(delta(delta(OBJ))):

op k-delta : Nat Object ~> Object .

eq k-delta(s N, < C : Component | >)
= k-delta(N, delta(< C : Component | >)) .

eq k-delta(0, < C : Component | >) = < C : Component | > .

The applyAdaptors function distributes the adaptor operator for input
adaptors (taking a component identifier, a port identifier, and a non-empty
list of data) over the input ports of the component:

op applyAdaptors : Object -> Object .
op applyAdaptors : ComponentId Configuration -> Configuration .

eq applyAdaptors(< C : Component | ports : PORTS >)
= < C : Component | ports : applyAdaptors(C, PORTS) > .

eq applyAdaptors(C, < P : InPort | content : NDL > PORTS)
= < P : InPort | content : adaptor(C, P, NDL) >
applyAdaptors(C, PORTS) .

eq applyAdaptors(C, PORTS) = PORTS [owise] .

173

6.5 Case Study: an Airplane Turning Control System

To smoothly turn an airplane, the airplane’s ailerons and its rudder need
to move in a synchronized way. An aileron is a flap attached to the end of
the left or the right wing, and a rudder is a flap attached to the vertical
tail. However, the (distributed) controllers for the ailerons and the rudder
typically operate at different frequencies. A turning algorithm should give
instructions to those device controllers in order to achieve a smooth turn.

6.5.1 The Aerodynamics Model

When an aircraft makes a turn, it rolls towards the desired direction of the
turn, so that the lift force caused by the two wings acts as the centripetal
force and the aircraft moves in a circular motion. The turning rate dψ can
be given by a function of the aircraft’s roll angle φ:

dψ = (g/v) ∗ tanφ (6.1)

where ψ is the direction of the aircraft, g is the gravity constant, and v is
the velocity of the aircraft [63]. The ailerons are used to control the rolling
angle φ of the aircraft by generating different amounts of lift force in the
left and the right wings. Figure 6.15 describes such a banked turn using the
ailerons (the aircraft figures in this section are borrowed from [63]).
However, the rolling of the aircraft causes a difference in drag on the

left and the right wings, which produces a yawing moment in the opposite
direction to the roll, called adverse yaw. This adverse yaw makes the aircraft
sideslip in a wrong direction with the amount of the yaw angle β, as described
in Figure 6.16. This is countered by the aircraft’s rudder, which generates
the side lift force on the vertical tail that opposes the adverse yaw.

Figure 6.15: Forces acting in a turn of an aircraft.

174

Figure 6.16: Adverse yaw.

The aerodynamics of turning an aircraft involves many factors, such as
shape, pitch, speed, acceleration, temperature, air pressure, and so on.
Therefore, we make the following assumptions to simplify the model:

• The wings have no dihedral angle (i.e., they are flat with respect to
the horizontal axis of the aircraft).

• The altitude does not change, which can be separately controlled by
the elevator (a flap attached to the horizontal tail of the aircraft).

• The aircraft maintains a constant speed by separately controlling the
thrust power of the aircraft.

• There are no external influences, such as wind or turbulence.

The roll angle φ and the yaw angle β can then be modeled by the following
differential equations (where a differential equation dy2 = f(x) is interpreted
by: dy =

√
f(x) if f(x) ≥ 0 and dy =

√
−f(x) if f(x) < 0) [8]:

dφ2 = (Lift Right − Lift Left) / (Weight ∗ Length of Wing) (6.2)

dβ2 = Drag Ratio ∗ (Lift Right − Lift Left) / (Weight ∗ Length of Wing)

+ Lift Vertical / (Weight ∗ Length of Aircraft). (6.3)

The lift force from the left, the right, or the vertical tail wing is given by
the following linear equation:

Lift = Lift constant ∗ Angle (6.4)

where, for Lift Right and Lift Left, Angle is the angle of the aileron, and for
Lift Vertical, Angle is the angle of the rudder. The lift constant depends on
the geometry of the corresponding wing, and the drag ratio is given by the
size and the shape of the entire aircraft.

175

Main
controller
(60 ms,

rate = 1)

Left wing subcontroller
(15 ms, rate = 4)

Rudder subcontroller
(20 ms, rate = 3)

Right wing subcontroller
(15 ms, rate = 4)

goalψ ψ

goalL

αL

goalV

αV

goalR

αR

EMain

ELeft

ERudder

ERight

ψ

φ

β

rateL

αL

rateV

αV

rateR

αR

Figure 6.17: The distributed controllers for the airplane control system.

6.5.2 Architecture of the Distributed Controllers

We consider an airplane control system with the four distributed controllers
operating at different frequencies: the main controller, and the left wing, the
right wing, and the rudder subcontrollers. The main controller has a 60 ms
period, the left and the right wing controllers have a 15 ms period (rate 4),
and the rudder controller has a 20 ms period (rate 3). The distributed
controllers, their physical environments, and the connections between the
components are illustrated in Figure 6.17.
Each subcontroller moves the surface of the wing towards the goal angle

specified by the main controller, and sends back the current angle of the
wing, while the angle of the wing is modeled by its physical environment.
For example, the left wing subcontroller receives the goal angle goalL from
the main controller, sends the current angle αL to the main controller, and
determines the moving rate rateL of the wing for its physical environment
ELeft . In the meantime, the angle of the left wing changes according to the
differential equation α̇L = rateL during its 15 ms period. The right wing
and the rudder subcontrollers are similar.
Given a desired direction goalψ specified by the pilot, the main controller

should determine the angles of the (devices of the) subcontrollers needed
to make a smooth turn. The physical environment EMain maintains the
position of the aircraft (ψ, φ, β), where ψ is the current direction, φ is the
roll angle, and β is the yaw angle. The continuous dynamics of those angles
in EMain are specified by the aeronautics equations (6.1–6.3) above, which
are parameterized by the current wing angles (αL, αV , αR). For each step of
the main controller (period 60 ms), it receives the goal direction goalψ, the
wing angles (αL, αV , αR), and the position (ψ, φ, β), and sends the new goal
angles (goalL, goalV , goalR) to the subcontrollers.

176

The behavior of such a physical environment can be specified by a periodic
dynamic system. For example, the physical environment ELeft of the left
wing subcontroller can be modeled as the 1-dimensional periodic dynamic
system ELeft = (R, (−180◦, 180◦], 15 ms, ΛELeft), where:

• the control command set is R for the moving rate rateL;

• the state set is (−180◦, 180◦] to maintain the angle of the left wing;

• the physical transition relation ΛELeft ⊆ (R × (−180◦, 180◦]) × T15 is
given by:

(
(rateL, αL0), αL

)
∈ ΛELeft iff there exists αL ∈ T15 such that

α̇L = rateL ∧ αL(0) = αL0 .

That is, if the current wing angle is αL0 at the beginning of the round
and the moving rate is rateL, then the trajectory αL of the wing angle
changes according to the differential equation α̇L = rateL during its
15 ms period, where the initial value αL(0) is the current angle αL0 .

For the main controller, EMain is specified by the 6-dimensional periodic
dynamic system EMain = ({∗}, (−180◦, 180◦]6, 60 ms,ΛEMain), where:

• the control command set is {∗}, since there is no control command;

• the state set is (−180◦, 180◦]6 to denote the direction angle ψ, the roll
angle φ, the yaw angle β, the left wing angle αL, the right wing angle
αR, and the rudder angle αV ;

• the physical transition relation ΛEMain ⊆ ({∗}×(−180◦, 180◦]6)×T 6
60 is:(

(∗, (ψ0, φ0, β0, αL0, αR0, αV 0)), (ψ, φ, β, αL, αR, αV)
)
∈ δEMain iff there

exist trajectories ψ, φ, β, αL, αR, αV ∈ T60 such that:

ψ̇ = (g/v) ∗ tanφ

∧ φ̇2 = (Cl · αR − Cl · αL)/(W · LWing)

∧ β̇2 = Cd · (Cl · αR − Cl · αL)/(W · LWing) + Cl · αV /(W · LAircraft)

∧ (ψ0, φ0, β0, αL0, αR0, αV 0) = (ψ(0), φ(0), β(0), αL(0), αR(0), αV (0)),

where the first three lines denote the differential equations (6.1–6.3).
That is, given the current physical values ψ0, φ0, β0, αL0, αR0, αV 0 at
the beginning of the round, the trajectories ψ, φ, and β of the position
angles change according the aeronautics equations during its 60 ms
period, provided that the trajectories αL, αR, and αV of the wing
angles are given, where the initial values of the trajectories are the
current values at the beginning of the round.

177

Pilot console
(600 ms,

rate = 1)

The Airplane Turning Control System (60 ms, rate = 10)

Main controller
�

EMain
(60 ms, rate = 1)

Left wing subcontroller � ELeft
(15 ms, rate = 4)

Rudder subcontroller � EMain
(20 ms, rate = 3)

Right wing subcontroller � EMain
(15 ms, rate = 4)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

Figure 6.18: The architecture of the airplane turning control system.

We specify the airplane turning control system as a multirate ensemble E

with four typed machines, as illustrated in Figure 6.18. Each machine in the
ensemble E incorporates its physical environment, where the behaviors of
the physical parameters are specified by the corresponding periodic dynamic
systems. For example, the main controller component now also maintains
the position angles (ψ, φ, β) of the aircraft, and updates the angles using the
aeronautics equations for each 60 ms period, according to the received wing
angles (αL, αV , αR) in its input port. The “external” environment for the
entire airplane turning control system is the pilot console, which is modeled
by another typed machine. The pilot console component is connected to the
main controller on the outside of the control system.

The synchronous model in Figure 6.18 is actually a discrete approximation
of the original model in Figure 6.17. The physical environment EMain of the
main controller is physically related to the physical environments of the
subcontrollers ELeft , ERudder , and ERight , since the aeronautic equations
depend on the continuous behavior of the wing angles. Such “continuous
trajectories” of values cannot be captured by typical ensemble connections,
since any communication through ensemble connections is one-step delayed
but those continuous values should be immediately delivered. Therefore, in
order to compute the airplane position (ψ, φ, β) in EMain , we use the “fixed”
angles (αL, αV , αR) received in the input ports of the main controller, instead
of using continuous trajectories of the wing angles during a 60 ms period.
This also resolves the “nondeterministic” behavior problem of EMain shown
above, since the wing angles are provided by the main controller. It is
important that the system is stable, so that the small differences caused by
the approximation do not significantly affect the behavior of the system.

178

6.5.3 Modeling the Airplane Turning Control System

This section formally specifies the multirate ensemble E defining the airplane
control system, using the framework introduced in Section 6.4.2 to specify
and execute multirate synchronous ensembles in Real-Time Maude. This
specification is indeed stable, since it only uses continuous control functions.
Section 6.5.4 exploits the equivalence E ' MA(E, T,Γ) to verify properties
about the asynchronous realizationMA(E, T,Γ).

Parameters and Data Types. The following parameters are chosen to
be representative of a small general aircraft. The speed of the aircraft is
assumed to be 50m/s and the gravity constant is g = 9.80555m/s2.

eq planeSize = 4.0 . eq weight = 1000.0 .
eq wingSize = 2.0 . eq virtLiftConst = 0.6 .
eq horzLiftConst = 0.4 . eq dragRatio = 0.05 .

An angle of a wing is given by a floating-point number. The function
angle returns the value between −180◦ and 180◦:

subsort Float < Data .

op angle : Float -> Float . var F : Float .
eq angle(F)
= if F > 180.0

then angle(F - 360.0)
else angle(F + 360.0) fi .

Subcontrollers. The subcontrollers for the ailerons and the rudder are
modeled as object instances of the following class SubController:

class SubController | curr-angle : Float,
goal-angle : Float,
diff-angle : Float .

subclass SubController < Component .

The behavior of each subcontroller is straight-forward: in each iteration,
it reads its input from the main controller, denoting the (updated) desired
goal angle or ⊥, moves the corresponding aileron/rudder towards the goal
angle, and outputs its current angle to the main controller. In particular, a
subcontroller increases or decreases the curr-angle toward the goal-angle,
but the difference in a single (fast) round should be less than or equal to
the maximal angle diff-angle. The transition function delta is therefore
defined by the following equation:

179

vars CA GA DA CA’ GA’ : Float . vars LI LO : List{Data} .
ops input output : -> PortId [ctor] .

ceq delta(
< C : SubController |

ports : < input : InPort | content : D LI >
< output : OutPort | content : LO >,

curr-angle : CA,
goal-angle : GA,
diff-angle : DA >)

=
< C : SubController |
ports : < input : InPort | content : LI >

< output : OutPort | content : LO CA’ >,
curr-angle : CA’,
goal-angle : GA’ >

if CA’ := angle(moveAngle(CA, GA, DA))
/\ GA’ := angle(if D == bot then GA else D fi) .

op moveAngle : Float Float Float -> Float .
eq moveAngle(CA,GA,DA)
= if abs(GA + (- CA)) > DA

then CA + DA * sign(GA + (- CA)) else GA fi .

The function delta updates the goal angle according to the input D received
from the main controller, and keeps the previous goal if it receives bot

(that is, ⊥). The function moveAngle(CA, GA, DA) gives the angle that is
increased or decreased from the current angle CA to the goal angle GA up to
the maximum angle difference DA. Finally, its (updated) current angle CA’

is sent to the main controller through the output port output.

Main Controller. The main controller is modeled as an object instance of
the class MainController below. The velocity attribute denotes the speed
of the aircraft. The curr-yaw, curr-roll, and curr-dir attributes model
the position sensors of the aircraft by indicating the current yaw angle β,
roll angle φ, and direction ψ, respectively. The goal-dir attribute denotes
the goal direction given by the pilot.

class MainController | velocity : Float,
goal-dir : Float,
curr-yaw : Float,
curr-rol : Float,
curr-dir : Float .

subclass MainController < Component .

180

In each iteration, the main controller reads its input (the reported angles
from the device controllers and input from the pilot), computes and sends the
new desired angles to the device controllers, and updates its state attributes
curr-yaw, curr-roll, and curr-dir according to the aeronautics equations
above. The goal-dir is also updated if a new goal direction arrives in the
input port from the external environment (i.e., the pilot console). The
transition function delta of the main controller is then defined as follows:

vars VEL LA RA TA CY CR CD GD RA’ TA’ CY’ CR’ CD’ GD’ : Float .
vars PI LI RI TI PO LO RO TO : List{Data} . var IN OUT : Data .
ops input output inLW inRW inTW outLW outRW outTW : -> PortId [ctor] .

ceq delta(
< C : MainController |

ports : < input : InPort | content : IN PI >
< inLW : InPort | content : LA LI >
< inRW : InPort | content : RA RI >
< inTW : InPort | content : TA TI >
< output : OutPort | content : PO >
< outLW : OutPort | content : LO >
< outRW : OutPort | content : RO >
< outTW : OutPort | content : TO >,

velocity : VEL, period : T,
curr-yaw : CY, curr-rol : CR,
curr-dir : CD, goal-dir : GD >)

=
< C : MainController |

ports : < input : InPort | content : PI >
< inLW : InPort | content : LI >
< inRW : InPort | content : RI >
< inTW : InPort | content : TI >
< output : OutPort | content : PO OUT >
< outLW : OutPort | content : LO (- RA’) >
< outRW : OutPort | content : RO RA’ >
< outTW : OutPort | content : TO TA’ >,

curr-yaw : CY’, curr-rol : CR’,
curr-dir : CD’, goal-dir : GD’ >

if CY’ := angle(CY + dBeta(LA,RA,TA) * float(T))
/\ CR’ := angle(CR + dPhi(LA,RA) * float(T))
/\ CD’ := angle(CD + evalPsi(CR, dPhi(LA,RA), VEL, float(T)))
/\ GD’ := angle(if IN == bot then GD else GD + IN fi)
/\ RA’ := angle(horizWingAngle(CR’, goalRollAngle(CR’,CD’,GD’)))
/\ TA’ := angle(tailWingAngle(CY’))
/\ OUT := dir: CD’ roll: CR’ yaw: CY’ goal: GD’ .

181

The first four lines in the condition compute new values for curr-yaw,
curr-roll, curr-dir, and goal-dir, based on values in the input ports.
A non-⊥ value in the input port is added to goal-dir. The variables RA’
and TA’ denote new angles of the ailerons and the rudder, computed by
the control functions explained below. Such new angles are queued in the
corresponding output ports, and will be transferred to the subcontrollers at
the next synchronous step, since they are feedback outputs.
The new values of the yaw angle β, the roll angle φ, and the direction angle

ψ are defined by the aeronautical differential equations (6.1-6.3). Since we
assume discrete movements of the ailerons and the rudder as explained in
Section 6.5.2, their moving rate β̇ and φ̇ are approximated as some constant
values during each period of the main controller. Consequently, given the
current yaw angle β0 and the current roll angle φ0, the angles are also
approximated as the linear equations β(t) = β0 + β̇ · t and φ(t) = φ0 + φ̇ · t.
Notice that these linear approximations are closely related to the Euler’s
method to numerically solve differential equations. In the delta equation
of the main controller, the first two lines of the condition compute the new
angles using the linear equations for β(t) and φ(t).

Assuming that the moving rate φ̇ is constant, we can actually solve the
differential equation for the direction angle ψ. For the current direction ψ0,
the direction angle ψ is given by the following function:

ψ(x) = ψ0 +
∫ x

0

g

v
tan(φ0 + φ̇ · t) dt

= ψ0 +
g ·
(

log(cosφ0)− log(cos(φ̇ · x+ φ0))
)

φ̇ · v

The third line of the condition in the above delta equation of the main
controller computes the new direction GD’ using the function ψ(t), where
the evalPsi function evaluate the second term of the function.
Finally, the new angles of the ailerons and the rudder are computed by

using three control functions. The function horizWingAngle computes the
new angle for the aileron in the right wing, based on the current roll angle
and the goal roll angle. The angle of the aileron in the left wing is always
exactly opposite to the one of the right wing. The function goalRollAngle

computes the desired roll angle φ to make a turn, based on the current roll
angle and the difference between the goal direction and the current direction.
The function tailWingAngle computes the new rudder angle based on the
current yaw angle. We define those control functions by linear equations as
follows, where CR is a current roll angle and CY is a current yaw angle:

182

eq goalRollAngle(CR, CD, GD)
= sign(angle(GD - CD)) * min(abs(angle(GD - CD)) * 0.3, 20.0) .

eq horizWingAngle(CR, GR)
= sign(angle(GR - CR)) * min(abs(angle(GR - CR)) * 0.3, 45.0) .

eq tailWingAngle(CY)
= sign(angle(- CY)) * min(abs(angle(- CY)) * 0.8, 30.0) .

That is: (i) the goal roll angle is proportional to the difference GD - CD

between the goal and current directions (with the maximum 20◦), (ii) the
aileron angles are proportional to the difference GR - CR between the goal
and current roll angles (with the maximum 45◦), and (iii) the rudder angle
is proportional to the difference − CY between the goal and current yaw
angles (with the maximum 30◦), where the goal yaw angle is always 0◦.

Pilot Console. The pilot console, the environment for the aircraft turning
control system, is modeled as an object instance of the class PilotConsole:

class PilotConsole | scenario : List{Data} .
subclass PilotConsole < Component .

The attribute scenario contains a list of goal angles to be transferred to the
main controller. The pilot console keeps sending goal angles in the scenario
to its output port until no more data remains, while a nondeterministically
generated value can be added to the value in the scenario output. Note that
the pilot console receives the position information from the main controller
in its input port, but it does not affect the behavior of the pilot console.
In the conditional rule below, the new desired direction sent by the pilot

is angle(F + F’), where F is the first angle in the pilot’s scenario attribute,
and F’ is an angle that is nondeterministically assigned to 0.0, 10.0, -10.0,
60.0, or -60.0. The equation below shows that if the scenario is empty,
then the pilot console sends ⊥ through its output port.

op pVar : -> Data . rl pVar => 0.0 . rl pVar => 10.0 .
rl pVar => -10.0 . rl pVar => 60.0 . rl pVar => -60.0 .

crl delta(< C : PilotConsole |
ports : < input : InPort | content : IN LI >

< output : OutPort | content : LO >,
scenario : F LI >)

=> < C : PilotConsole |
ports : < input : InPort | content : LI >

< output : OutPort | content : LO OUT >,
scenario : LI >

if pVar => F’ /\ OUT := angle(F + F’) .

183

eq delta(< C : PilotConsole |
ports : < input : InPort | content : IN LI >

< output : OutPort | content : LO >,
scenario : nil >)

= < C : PilotConsole |
ports : < input : InPort | content : LI >

< output : OutPort | content : LO bot >,
scenario : nil > .

The Airplane System. An initial state of the airplane turning control
system is then represented as the ensemble object in Figure 6.19, where
the top-level ensemble airplane includes the pilot console pilot and the
ensemble csystem for the airplane turning control system. Notice that each
feedback output port in the ensemble contains some default value, whereas
other ports are empty (nil). For example, the output port outLW of the
main controller main contains the initial value bot, which will be delivered
to the left wing subcontroller left in the first synchronous step.

Input Adaptors. In the ensemble object csystem, the left and right wing
subcontrollers (with 15 ms period) are 4 times faster than the main controller
(with 60 ms period), and the rudder subcontroller (with 20 ms period) is 3
times faster than the main controller. Therefore, to transform a tuple of
data into a single value for the main controller, we define input adaptors for
the main controller that choose the last value from the input vector:
eq adaptor(main, P:PortId, LI D) = D .

The subcontrollers receive a single value from the main controller for a
“slow” synchronous step, but the left and right wing subcontrollers require
a 4-tuples of data, and the rudder subcontroller needs a 3-tuple of data in
each step. Therefore, we define the input adaptors for the subcontrollers
that generate a vector with extra ⊥’s as follows:

eq adaptor(left, input, D) = D bots(3) .
eq adaptor(rudder, input, D) = D bots(2) .
eq adaptor(right, input, D) = D bots(3) .

Similarly, in the top ensemble airplane, since the ensemble csystem is
10 times faster than the pilot console, the input adaptor for the ensemble
csystem generates a vector with 9 extra ⊥’s, and the input adaptor for the
pilot console takes the last value from the received input vector:
eq adaptor(pilot, input, LI D) = D .
eq adaptor(csystem, input, D) = D bots(9) .

184

< airplane : Ensemble |
period : 600,
ports : none,
connections : (pilot . output --> csystem . input ;

csystem . output --> pilot . input),
machines :(

< pilot : PilotConsole |
period : 600,
ports : < input : InPort | content : nil >

< output : OutPort | content : bot >,
scenario : nil >

< csystem : Ensemble |
period : 60,
ports : < input : InPort | content : nil >

< output : OutPort | content : nil >,
connections : (input --> main . input ;

main . output --> output ;
left . output --> main . inLW ;
main . outLW --> left . input ;
right . output --> main . inRW ;
main . outRW --> right . input ;
rudder . output --> main . inTW ;
main . outTW --> rudder . input),

machines :
(< main : MainController |

period : 60,
ports : < input : InPort | content : nil >

< inLW : InPort | content : nil >
< inRW : InPort | content : nil >
< inTW : InPort | content : nil >
< output : OutPort | content : nil >
< outLW : OutPort | content : bot >
< outRW : OutPort | content : bot >
< outTW : OutPort | content : bot >,

velocity : 50.0, goal-dir : 0.0,
curr-yaw : 0.0, curr-rol : 0.0, curr-dir : 0.0 >

< left : SubController |
period : 15,
ports : < input : InPort | content : nil >

< output : OutPort | content : 0.0 >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 1.0 >

< right : SubController |
period : 15,
ports : < input : InPort | content : nil >

< output : OutPort | content : 0.0 >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 1.0 >

< rudder : SubController |
period : 20,
ports : < input : InPort | content : nil >

< output : OutPort | content : 0.0 >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 0.5 >) >

)
>

Figure 6.19: An initial state of the airplane turning control system.

185

Figure 6.20: The simulation results for the three turning scenarios: the
direction (left), the roll angle (top right), and the yaw angle (bottom right).

6.5.4 Formal Analysis

This section explains how we have formally analyzed the Real-Time Maude
model of the multirate synchronous design of the airplane turning control
system, and how the turning algorithm has been improved as a result of our
analysis. The two main requirements that the system should satisfy are:

• Safety: during a turn, the yaw angle should always be close to 0.

• Liveness: the airplane should reach the goal within a reasonable time,
and with both the roll angle and the yaw angle close to 0.

First Analysis Results. We first analyze deterministic behaviors where
the airplane turns +60◦ to the right.11 In this case, the pilot (console) can
send different sequences of commands to the control system to achieve this
ultimate goal. We consider the following variations:

1. The pilot gradually increases the goal direction by +10◦ six times.

2. The pilot sets the goal direction to +60◦ immediately.

3. The goal direction is at first −30◦, and then it is suddenly set to +60◦.

Figure 6.20 shows the Real-Time Maude simulation results for these three
scenarios up to 6 seconds (10 steps of the pilot). The graphs in Figure 6.20
show that the airplane reaches the desired 60◦ direction in a fairly short
time in all three scenarios, but the yaw angle seems to be quite unstable.

11A turn of positive degrees is a right turn, and one of negative degrees a left turn.

186

Figure 6.21: The simulation results of the redesigned model: the direction
(left), the roll angle (top right), and the yaw angle (bottom right).

New Control Functions. There are two main reasons why the yaw angle
is not sufficiently close to 0◦ during a turn. First, since the control functions
are linear, the new angles for the ailerons and the rudder are not small
enough when the yaw angle is near 0◦. Second, the roll angle is sometimes
changing too fast, so that the rudder cannot effectively counter the adverse
yaw. Therefore, we modify the control functions as follows:

ceq horizWingAngle(CR, GR)
= sign(FR) * (if abs(FR) > 1.0 then min(abs(FR) * 0.3, 45.0)

else FR ^ 2.0 * 0.3 fi) if FR := angle(GR - CR) .
ceq tailWingAngle(CY)
= sign(FY) * (if abs(FY) > 1.0 then min(abs(FY) * 0.8, 30.0)

else FY ^ 2.0 * 0.8 fi) if FY := angle(- CY) .
ceq goalRollAngle(CR, CD, GD)
= if abs(FD * 0.32 - CR) > 1.5 then CR + sign(FD * 0.32 - CR) * 1.5

else FD * 0.32 fi if FD := angle(GD - CD) .

When the difference between the goal and the current angles (FR or FY) is
less than or equal to 1◦, the functions horizWingAngle and tailWingAngle

are now not proportional to the difference, but proportional to the square
of the difference. This implies that if the difference is close to 0◦, then the
result becomes much smaller than before. Furthermore, the goal roll angle
can be changed at most 1.5◦ at a time, so that there is no more abrupt
rolling. Then, we obtain the Real-Time Maude simulation results of the
redesigned model with the new control functions in Figure 6.21, where the
yaw angle now shows a much stabler behavior than before.

187

Verifying the New Control Functions. To analyze whether the new
control functions ensure a smooth turn, we define some auxiliary functions.
The function sysOut(Object) returns the content of the output port of the
airplane control system, and safeYawAll(OutputDataList) checks whether
every output data in the given list has a yaw angle less than 1.0◦:

eq sysOut(
< airplane : Ensemble | machines :

(< csystem : Ensemble |
ports : < output : OutPort | content : LI > PORTS >

COMPS) >) = LI .
eq safeYawAll(D LI) = abs(yaw(D)) < 1.0 and safeYawAll(LI) .
eq safeYawAll(nil) = true .

The following Real-Time Maude search command can verify that there is
no dangerous yaw angle reachable within 27 seconds for Scenario 3, where
model(Scenario) gives the initial state of the system with a list of directions
Scenario for the pilot console (the number of states explored is 46):

Maude> (tsearch [1] {model(-30.0 90.0)} =>* {SYSTEM}
such that not safeYawAll(sysOut(SYSTEM)) in time <= 27000 .)

No solution

Although each state of the transition system captures only the slow steps of
the top ensemble (i.e., every 600 ms), safeYawAll also checks all fast steps
of the main controller (every 60 ms), since it accesses the history of the main
controller’s status in the output port of the top ensemble.
The system requirement (i.e., the airplane reaches the desired direction

with a stable status while keeping the yaw angle close to 0◦) can be expressed
as the LTL formula �(¬stable → (safeYaw U (reach ∧ stable))). When
the function stableAll(OutputDataList) returns true only if both the yaw
angle and the roll angle are less than 0.5◦ for every output data in the given
list, the atomic propositions in the formula can be defined as follows:

eq {SYSTEM} |= safeYaw = safeYawAll(sysOut(SYSTEM)) .
eq {SYSTEM} |= stable = stableAll(sysOut(SYSTEM)) .

ceq {SYSTEM} |= reach = abs(angle(goal(D) - dir(D))) < 0.5
if D := last(sysOut(SYSTEM)) .

We have verified that all three scenarios satisfy the above LTL property
with the new control functions, using the time-bounded LTL model checking
command of Real-Time Maude. For example, the following command shows
the case for Scenario 3 (the number of states explored is 13):

188

Maude> (mc {model(-30.0 90.0)} |=t
[] (~ stable -> (safeYaw U reach /\ stable))

in time <= 7200 .)
Result Bool : true

Finally, we have verified nondeterministic behaviors in which the pilot
sends one of the turning angles −60.0◦, −10.0◦, 0◦, 10◦, and 60.0◦ to the
main controller for 6 seconds. The following model checking command then
shows that the redesigned system satisfies the above LTL formula up to
18 seconds, where one of the five angles is nondeterministically chosen and
added to the angle 0◦ at each step of the pilot console:

Maude> (mc {model(0.0 0.0 0.0 0.0 0.0 0.0)} |=t
[] (~ stable -> (safeYaw U (reach /\ stable)))

in time <= 18000 .)
Result Bool : true

This model checking analysis took 75 minutes on Intel Core i5 2.4 GHz with
4 GB memory, and the number of states explored was 335, 363.12 It is a
huge state space reduction compared to the distributed asynchronous model,
since: (i) asynchronous behaviors are eliminated thanks to Multirate PALS,
and (ii) any intermediate fast steps for the sub-components are merged into
a single-step of the system’s top-level ensemble.

6.5.5 Model Checking the Asynchronous System

To demonstrate the performance benefits obtained by Multirate PALS, this
section compares the execution times and the number of states explored for
model checking the synchronous model and the distributed asynchronous
model. Instead of directly using the asynchronous model in Section 6.3.2,
this section uses a highly simplified model with the following assumptions:
(i) the time domain is discrete and all clocks are perfectly synchronized; (ii) a
machine takes zero time to perform a transition, including processing I/O;
(iii) each message is instantaneously delivered to its recipient; and (iv) when
a component sends output messages into the network, it sends all of them at
the same time, instead of sending them one by one. This simplified model
is also formally specified in Real-Time Maude (see Appendix B.4).

12Only the outermost “big-step” transitions contribute to the state space. However,
computing each “big-step” transition involves computing many “small-step” transitions
that do not contribute to the state space, while different small-step computation paths
can lead to the same big-step state, because of nondeterministic behaviors. Therefore, the
model checking involves computing significantly more than 335,363 behaviors.

189

Model N
T ≤ 1,200ms T ≤ 1,800ms T ≤ 2,400ms T ≤ 3,000ms
states time states time states time states time

Sync

2 7 0.2 13 0.2 25 0.3 49 0.5
3 13 0.2 28 0.3 73 0.6 202 1.6
4 21 0.3 57 0.5 169 1.3 593 4.4
5 31 0.3 116 0.9 471 3.3 2,111 15

Async

2 12,552 1.6 25,088 3.2 50,144 6.3 100,256 13
3 25,088 3.1 56,512 7.5 150,576 22 420,288 84
4 41,816 9 117,232 30 351,680 117 1,238,648 611
5 62,752 35 240,784 168 983,960 998 4,415,784 8,679

Table 6.1: The number of reachable states and the execution times (in
seconds) up to time bound T with N nondeterministic pilot choices.

We have compared the number of reachable states in the both models for
various nondeterministic pilot choices. In this analysis, the goal direction
was initially set to 60◦, but the pilot can nondeterministically choose one of
the five angles 0◦, 10◦, −10◦, 60◦, −60.0◦, and add it to the goal direction
every 600 ms. These experiments were conducted on an Intel Xeon 2.93
GHz with 24 GB memory. Table 6.1 summarizes the experiment results
with different time bounds and different nondeterministic choices. For each
N in the table we use the first N angles from 0◦, 10◦, −10◦, 60◦, −60.0◦ in
order. Table 6.1 illustrates how quickly the state space explodes, even for
the unrealistically simplified asynchronous model. The number of reachable
states up to 3,000ms in the synchronous model is 2,111 with 5 choices.
However, even for only 2 nondeterministic choices, the asynchronous model
generates 12,552 states within time bound 1,200ms.

6.6 Concluding Remarks

This chapter has proposed Multirate PALS as an answer to the big challenge
of designing, verifying, and implementing a virtual synchronous multirate
DCPS. To achieve this in a rigorous way, we have defined the mathematical
semantics of synchronous multirate ensembles and of several key component
transformations, which together allow us to give a precise mathematical
definition of a Multirate PALS transformation E 7→ MA(E, T,Γ) and to
prove the bisimilarity of the distributed implementation MA(E, T,Γ) with
E. We have also shown that Multirate PALS can be well-supported by
Real-Time Maude to formally specify and verify multirate distributed hybrid
systems. We have illustrated its power by showing how it can be used to
verify properties about the turning maneuvers of an airplane.

190

Part III

Applications to Modeling
Languages

191

CHAPTER 7

MULTIRATE SYNCHRONOUS AADL

The Multirate PALS pattern, introduced in Chapter 6, reduces the problem
of designing and verifying virtually synchronous distributed cyber-physical
systems to the much simpler tasks of designing and verifying their underlying
synchronous designs. In order to make this Multirate PALS methodology
available within an industrial modeling environment, this chapter1 presents
the modeling language Multirate Synchronous AADL, which can be used to
specify multirate synchronous designs using the AADL modeling standard.
This chapter then defines the formal semantics of Multirate Synchronous
AADL in Real-Time Maude, and integrates Real-Time Maude verification
into the OSATE tool environment for AADL. We exemplify such formal
verification with avionics and aeronautical systems.

7.1 Introduction

Modeling languages are widely used for designing and analyzing embedded
systems. Since design errors are much more expensive than coding errors, it
has been generally agreed that system verification should first be carried out
at the level of designs by verifying the model representing a system design.
However, modeling languages tend to be weak on the formal analysis side; if
they can be endowed with formal analysis capabilities “under the hood” with
minimal disruption to the established modeling processes, formal methods
can be more easily adopted and many design errors can be detected early
in the design phase, resulting in higher quality systems and in substantial
savings in the development and verification processes.

1This chapter is based on [26, 28, 31], joint work with Peter Ölveczky, José Meseguer,
and Abdullah. Al-Nayeem.

192

The Architecture Analysis & Design Language (AADL) [91] is a widely
used industrial modeling standard for embedded real-time systems, such as
avionics and automative systems. AADL models describe cyber-physical
systems made up of distributed components that communicate with each
other. To make formal verification of AADL models possible, there exist
several approaches to give a formal semantics for a behavioral fragment of
AADL, such as [36, 43, 52, 111, 147]. However, due to the combinatorial
explosion caused by the distributed nature of cyber-physical systems, even
for simple models, straightforward model checking of AADL models quickly
becomes unfeasible. The point is that the inherent difficulties of verifying
distributed cyber-physical systems do not disappear at the level of models:
they are common to both models and code.
To tame the combinatorial explosion the PALS (“physically asynchronous,

logically synchronous”) pattern [7, 138] has been proposed to support the
model checking of a wide class of distributed cyber-physical systems by
drastically reducing the state space. The key idea behind PALS is that the
intended behavior of many distributed cyber-physical systems is that they
should be virtually synchronous, since they are controlled in a periodic way
(conceptually there is a logical period during which all components perform
a transition and send data to each other). However, PALS is limited by the
unrealistic requirement that all components have the same period. This has
led us to develop Multirate PALS that generalizes PALS to the multirate
case. The Multirate PALS transformation (explained in Chapter 6) reduces
the design and verification of a multirate distributed system of this kind to
that of its much simpler synchronous counterpart.
Taking advantage of Multirate PALS for verifying distributed designs in

AADL by model checking the corresponding synchronous design requires:

• defining appropriate extensions of AADL, where such synchronous
models can be specified;

• giving a formal synchronous semantics to such language extensions,
e.g., using rewriting logic; and

• building tools as OSATE plugins that automate the model checking
verification of the synchronous models.

This can be very useful, because: (i) synchronous designs are much easier
to understand by engineers, (ii) they are much easier to model check, and
(iii) generation of their more complex distributed versions can be automated
and made correct by construction using Multirate PALS.

193

7.1.1 Main Contributions

First, this chapter defines the Multirate Synchronous AADL language as
a sublanguage of AADL, and presents a formal synchronous semantics for
this subset in Real-Time Maude. Multirate Synchronous AADL generally
identifies a set of AADL models that can be considered as synchronous;
hence, Multirate Synchronous AADL makes it possible to specify multirate
synchronous real-time systems in AADL. Then, using the Multirate PALS
transformation, it is possible to transform such a synchronous model into a
correct-by-construction asynchronous AADL model.
Second, this chapter presents the MR-SynchAADL tool as an OSATE2

plugin. The MR-SynchAADL tool is a simulation and LTL model checking
tool for Multirate Synchronous AADL. The tool automatically synthesizes a
Real-Time Maude [149] model from a Multirate Synchronous AADL model,
provides a requirements specification language to conveniently define LTL
properties of the Multirate Synchronous AADL model, and performs the
model checking within the OSATE modeling environment. This enables
a model-engineering process for important classes of distributed real-time
systems that combines the convenience of AADL modeling, the complexity
reduction of Multirate PALS, and formal verification in Real-Time Maude.
The MR-SynchAADL tool, the entire Real-Time Maude semantics, and

the Multirate Synchronous AADL specifications for the case studies are
available at http://maude.cs.illinois.edu/tools/synchaadl.

7.1.2 Related Work

The paper [94] formalizes the AADL data port protocol in Event-B. Despite
the title of the paper, it does not define a synchronous subset of AADL
and therefore does not provide an executable formal semantics of any such
subset. There exist a number of formalizations and verification tools for
different subsets of AADL (see, e.g., [36, 43, 52, 147]). These approaches
target ordinary (asynchronous) AADLmodels and do not define synchronous
subsets of AADL. In [111], the behaviors of single AADL threads are given by
synchronous Lustre programs. Since [111] also targets asynchronous AADL
models, the authors show how asynchronous computation can be encoded in
a synchronous language. This encoding does of course not reduce the state
space of the asynchronous system.

2The OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

194

http://maude.cs.illinois.edu/tools/synchaadl

7.1.3 Structure of this Chapter

This chapter is organized as follows. Section 7.2 briefly introduces AADL
and defines Multirate Synchronous AADL as an annotated sublanguage of
AADL. Section 7.3 presents the Real-Time Maude semantics of Multirate
Synchronous AADL. Section 7.4 presents the MR-SynchAADL tool that
supports both checking if a model is a legal Multirate Synchronous AADL
model and verifying Multirate Synchronous AADL models within OSATE.
Section 7.5 illustrates the effectiveness of the Multirate Synchronous AADL
language and the MR-SynchAADL tool with case studies, and Section 7.6
presents some concluding remarks.

7.2 Multirate Synchronous AADL

The Architecture Analysis & Design Language (AADL) [91] is an industrial
modeling standard used in avionics, aerospace, automotive, medical devices,
and robotics to describe an embedded real-time system as an assembly of
software components mapped onto an execution platform. The OSATE
modeling environment provides a set of Eclipse plug-ins for AADL.
An AADL model describes a system as a set of hardware and software

components. This chapter focuses on the software components of AADL,
since we use AADL to specify synchronous designs. Software components
include: (i) thread components that model the application software to be
executed; (ii) process components defining protected memory that can be
accessed by its thread and data subcomponents; and (iii) data components
representing data types. The dispatch protocol of a thread determines when
the thread is executed. For example, a periodic thread is activated at fixed
time intervals, and an aperiodic thread is activated when it receives an event.
System components are the top level components of AADL.
Multirate Synchronous AADL is defined as a subset of AADL, extended

with a property set MR_SynchAADL, in such a way that: (i) for each “round” of
a thread, the exception is independent of the other threads, and (ii) output of
a thread generated in one round is available as input of the receiving thread
at the beginning at the next round (i.e., hierarchical multirate ensembles).
In AADL, such threads would be executed asynchronously; however, since
the threads are independent of each other in each round, the “final” states in
each round are the same in both asynchronous and synchronous executions.
Therefore, the AADL constructs in the (common) subset have the same
meaning in AADL and in Multirate Synchronous AADL.

195

7.2.1 Subset of AADL

Multirate Synchronous AADL is intended to model synchronous designs,
and therefore it focuses on the behavioral and structural subset of AADL:
hierarchical system, process, and thread components; ports and connections;
and thread behaviors defined in the behavior annex sublanguage [97].
In AADL, a component type specifies the component’s interface (e.g.,

ports) and properties (e.g., periods), and a component implementation then
specifies the internal structure of the component as a set of subcomponents
and a set of connections linking their ports. An AADL construct may have
properties describing its parameters, declared in property sets.

Example 7.1. The following type declarations define a system component
Controller and a process component CtrlProcess. The system component
has one data input port, one data output port, and 12 ms period:

system Controller
features
input: in data port Base_Types::Float;
output: out data port Base_Types::Float;

properties
Period => 12 ms;

end Controller;

process CtrlProcess
features
pin: in data port Base_Types::Float;
pout: out data port Base_Types::Float;

end CtrlProcess;

The implementation impl of Controller is defined as follows. It contains
two processes in_proc and out_proc of type CtrlProcess. The input port
input and the output port output of Controller, respectively, are connected
to the input port pin of in_proc and the output port pout of out_proc. The
output port of in_proc and the input port of out_proc is also connected by
the connection c3, where its Timing property is declared to be Delayed:

system implementation Controller.impl
subcomponents
in_proc: process CtrlProcess; out_proc: process CtrlProcess;

connections
c1: port input -> in_proc.pin;
c2: port out_proc.pout -> output;
c3: port in_proc.pout -> out_proc.pin { Timing => Delayed; };

end Controller.impl;

196

The dispatch protocol is used to trigger an execution of a thread. In
Multirate Synchronous AADL, each thread must have periodic dispatch.
This means that, in the absence of immediate connections, the thread is
dispatched at the beginning of each period of the thread. Event-triggered
dispatch (such as aperiodic, sporadic, timed, and hybrid dispatch) is not
suitable to define a system in which all threads must execute in lock-step,
since the execution of one thread can trigger the execution of another thread.
In AADL, they are declared by the component properties:

Dispatch_Protocol => Periodic;
Period => time;

There are three kinds of ports in AADL: data ports, event ports, and
event data ports. Event and event data ports are used to dispatch event-
triggered threads, but can also be used with periodic dispatch in version 2
of AADL. The main difference is that an event (or event data) port may
contain a buffer of untreated received events, whereas a data port always
contains (at most) one element. Multirate Synchronous AADL only allows
data ports, since each component in multirate ensembles gets only one piece
of data in each input port (the user should only specify single machines and
the input adaptors, dealing with the k-tuples of inputs/outputs).

In Multirate Synchronous AADL, all outputs generated in one iteration
must be available at the beginning of the next iteration, and not before, since
output generated in one step becomes input of its destination component
in the next step in a multirate machine ensemble. This can be achieved in
AADL by having delayed connections, declared by the connection property
Timing => Delayed, for which the value from the sender is transmitted at
its deadline and is available to the receiver at its next dispatch.

Thread behavior is modeled as a guarded transition system using the
behavior annex sublanguage [97]. Each transition has the form

s -[guard]-> s′ {actions};

where s and s′ are states, and guard is a Boolean condition on the local
variables and the input ports. The actions performed when a transition is
applied may update local variables, call methods (subprograms), generate
new outputs to ports, and/or suspend the thread. Actions are built from
basic actions using sequencing, conditionals, and finite loops. When a thread
is activated, any enabled transition can be (nondeterministically) applied;
if the resulting state is not a complete state, another transition is applied,
until a complete state is reached (or the thread suspends).

197

7.2.2 The MR_SynchAADL Property Set

The additional features in Multirate Synchronous AADL are defined in the
following property set MR_SynchAADL:

property set MR_SynchAADL is
Synchronous: inherit aadlboolean

applies to (system, process, thread group, thread);
Nondeterministic: aadlboolean applies to (thread);
InputConstraints: list of aadlstring applies to (thread);
InputAdaptor: aadlstring applies to (port);

end MR_SynchAADL;

The main system component in a Multirate Synchronous AADL model
should declare the Boolean component property Synchronous to state that
the system component can be executed synchronously:

MR_SynchAADL::Synchronous => true;

In Multirate Synchronous AADL, we assume that the observable behavior
of an environment is defined by a nondeterministic machine, and that all
other threads are deterministic. A nondeterministic environment component
should add the Boolean component property Nondeterministic:

MR_SynchAADL::Nondeterministic => true;

The possible outputs in such a nondeterministic environment component
can often be defined by using an environment constraint ce so that ce(~o) is
true iff the environment can nondeterministically generate output ~o in any
iteration. The component property InputConstraints defines an input
constraint on a set of Boolean-valued outputs:

MR_SynchAADL::InputConstraints => ("Boolean formula");

The main feature needed to define a multirate ensemble is input adaptors
(explained in Chapter 6). Multirate Synchronous AADL provides a number
of predefined input adaptors. The 1-to-k input adaptors, mapping a single
value to a k-vector of values,3 include:

"repeat_input" (maps v to (v, v, . . . , v))
"use in first iteration" (maps v to (v,⊥, . . . ,⊥))
"use in last iteration" (maps v to (⊥, . . . ,⊥, v))
"use in iteration i" (maps v to (⊥, . . . ,⊥︸ ︷︷ ︸

i−1

, v,⊥, . . . ,⊥)).

3A fast component with rate k performs k internal transitions during one slow period.
Since the fast component expects a k-tuple of inputs, a single-value output from a slow
component is transformed to a k-tuple of inputs by a 1-to-k input adaptor.

198

The k-to-1 input adaptors, mapping k-vectors to single values,4 include:

"first" (maps (v1, . . . , vk) to v1)
"last" (maps (v1, . . . , vk) to vk)
"use element i" (maps (v1, . . . , vk) to vi)
"average" (maps (v1, . . . , vk) to (v1 + · · ·+ vk)/k)
"max" (maps (v1, . . . , vk) to max(v1, . . . , vk))
"min" (maps (v1, . . . , vk) to min(v1, . . . , vk))
"sum" (maps (v1, . . . , vk) to v1 + · · ·+ vk),

where the first two adaptors are special cases of the third one, and the
last four adaptors can be only applied for numerical inputs. In Multirate
Synchronous AADL, such an input adaptor is assigned to an input port as
a property MR_SynchAADL::InputAdaptor => input adaptor, e.g.:

goal_angle: in data port Base_Types::Float
{MR_SynchAADL::InputAdaptor => "use in first iteration";};

The "use in ..." 1-to-k adaptors generate some “don’t care” values ⊥.
Instead of explicitly having to define such default values, the fact that a
port p has an input “⊥” is manifested by p’fresh being false.

7.2.3 Case Study: Turning an Airplane

This section shows how the design of a virtually synchronous control system
in Chapter 6.5 for smoothly turning an airplane can be specified in Multirate
Synchronous AADL. In order to achieve a smooth turn of the airplane, the
controller must synchronize the movements of the airplane’s two ailerons
and its rudder. As shown in Figure 7.1, our system consists of four periodic
controllers with different periods. Note that Section 6.5 has also defined a
model of the control algorithm directly in Real-Time Maude, and we refer
to it for more details about the turning control algorithm.
The environment is the pilot console that allows the pilot to select a new

desired direction every 600 ms. The left wing controller receives the desired
angle goalL of the aileron from the main controller, and moves the aileron
towards that angle. The right wing (resp., the rudder) controller operates
in the same way for the right wing aileron (resp., the rudder). The main
controller receives the desired direction (from the pilot console) and the
current angle of each device (from the device controllers), computes the new
desired device angles, and sends them to the device controllers.

4A k-tuple output from a fast component is transformed a single value by a k-to-1
input adaptor so that it can be read by the slow component.

199

Pilot
console

(600 ms)

The Airplane Turning Control System (60 ms)

Main
controller
(60 ms)

Left wing subcontroller (15 ms)

Rudder subcontroller (20 ms)

Right wing subcontroller (15 ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

Figure 7.1: The architecture of our airplane turning control system.

The following AADL component declares the top-level “implementation”
of the system in terms of connections and subcomponents:

system implementation Airplane.impl
subcomponents
pilotConsole: system PilotConsole.impl;
turnCtrl: system TurningController.impl;

connections
C1: port pilotConsole.goal_dr -> turnCtrl.pilot_goal;
C2: port turnCtrl.curr_dr -> pilotConsole.curr_dr;

properties
MR_SynchAADL::Synchronous => true; Period => 600 ms;
Timing => Delayed applies to C1, C2;
Data_Model::Initial_Value => ("0.0") applies to
pilotConsole.goal_dr, turnCtrl.curr_dr;

end Airplane.impl;

The property declaration ‘Timing => Delayed applies to C1, C2’ states
that the inter-component connections C1 and C2 are delayed connections.
The property Data_Model::Initial_Value assigns the initial value to the
corresponding port. In Multirate Synchronous AADL, this property must
be declared for each “feedback” output port, unless its initial value is ⊥
(e.g., the output port goal_dr has initially the value 0.0).
The pilot may in any round nondeterministically add 0◦, 10◦, or −10◦ to

the current desired direction. The input port curr_dr receives the current
direction ψ from the turning system, which operates 10 times faster than
the pilot; we must therefore use an input adaptor to map the 10-tuple of
directions into a single value, for which it is natural to use the last value:

system PilotConsole -- "interface" of the pilot console
features
curr_dr: in data port Base_Types::Float

{MR_SynchAADL::InputAdaptor => "last";};
goal_dr: out data port Base_Types::Float;

end PilotConsole;

200

The implementation of PilotConsole contains the following thread that
defines the pilot behavior. When the thread dispatches, the transition from
state idle to select is taken. Since select is not a complete state, the
thread continues executing, by nondeterministically selecting one of the
other transitions, which assigns the selected angle change to the output port
goal_dr. Since the resulting state idle is a complete state, the execution
of the thread in the current dispatch ends:

thread implementation PilotConsoleThread.impl
properties
MR_SynchAADL::Nondeterministic => true;
Dispatch_Protocol => Periodic;

annex behavior_specification {**
states
idle: initial complete state; select: state;

transitions
idle -[on dispatch]-> select;
select -[]-> idle {goal_dr := 0.0};
select -[]-> idle {goal_dr := 10.0};
select -[]-> idle {goal_dr := -10.0};

**};
end PilotConsoleThread.impl;

The turning controller component consists of the main controller and the
three device subcontrollers. The desired change in the direction is received
from the pilot console in the input port pilot_goal. Since the turning
controller is 10 times faster than the pilot console, the controller will execute
10 “internal” iterations in a global period; hence the single input in the
input port pilot_goal from the pilot must be mapped into 10 values, and
we choose to use the input in the first local iteration:

system TurningController
features
pilot_goal: in data port Base_Types::Float

{MR_SynchAADL::InputAdaptor => "use in first iteration";};
curr_dr: out data port Base_Types::Float;

end TurningController;

The following TurningController implementation defines the structure
of the turning controller shown in Figure 7.1, where the subcontrollers are
specified as instances of Subcontroller.impl. Since the periods of the
device controllers are different, and since the rudder can move at most 0.5◦

in each 20 ms period, whereas the ailerons can move 1◦ in each 15 ms period,
we must define these values in the turning controller:

201

system implementation TurningController.impl
subcomponents
mainCtrl: system Maincontroller.impl;
leftCtrl: system Subcontroller.impl;
rightCtrl: system Subcontroller.impl;
rudderCtrl: system Subcontroller.impl;

connections
C1: port pilot_goal -> mainCtrl.goal_angle;
C2: port mainCtrl.curr_dr -> curr_dr;
C3: port leftCtrl.curr_angle -> mainCtrl.left_angle;
C4: port rightCtrl.curr_angle -> mainCtrl.right_angle;
C5: port rudderCtrl.curr_angle -> mainCtrl.rudder_angle;
C6: port mainCtrl.left_goal -> leftCtrl.goal_angle;
C7: port mainCtrl.right_goal -> rightCtrl.goal_angle;
C8: port mainCtrl.rudder_goal -> rudderCtrl.goal_angle;

properties
Period => 60 ms;
Timing => Delayed applies to C3, C4, C5, C6, C7, C8;

-- ailerons can move 1◦ in 15 ms
Period => 15 ms applies to leftCtrl, rightCtrl;
Data_Model::Initial_Value => ("1.0") applies to

leftCtrl.ctrlProc.ctrlThread.diffAngle,
rightCtrl.ctrlProc.ctrlThread.diffAngle;

-- rudder can move 0.5◦ in 20 ms
Period => 20 ms applies to rudderCtrl;
Data_Model::Initial_Value => ("0.5") applies to

rudderCtrl.ctrlProc.ctrlThread.diffAngle;

-- initial feedback output
Data_Model::Initial_Value => ("0.0") applies to

leftCtrl.curr_angle, rightCtrl.curr_angle,
rudderCtrl.curr_angle, mainCtrl.left_goal,
mainCtrl.right_goal, mainCtrl.rudder_goal;

end TurningController.impl;

The behavior of a subcontroller is straightforward: move the device toward
the goal angle up to diffAngle (declared in TurningController.impl),
update the goal angle if a new value has received in goal_angle, and report
back the current angle through curr_angle. Since the main controller is
slower than the device controller, the single input in goal_angle received
from the main controller must be adapted to a k-tuple; in this case, we use
the input in the first of the k internal iterations:

202

system Subcontroller
features
goal_angle: in data port Base_Types::Float

{MR_SynchAADL::InputAdaptor => "use in first iteration";};
curr_angle: out data port Base_Types::Float;

end Subcontroller;

thread implementation SubcontrollerThread.impl
subcomponents
currAngle: data Base_Types::Float;
goalAngle: data Base_Types::Float;
diffAngle: data Base_Types::Float;

properties
Data_Model::Initial_Value => ("0.0") applies to

currAngle, goalAngle;
annex behavior_specification {**

states
init: initial complete state;
move, update: state;

transitions
init -[on dispatch]-> move;
move -[abs(goalAngle - currAngle) > diffAngle]-> update {

if (goalAngle - currAngle >= 0)
currAngle := currAngle + diffAngle

else
currAngle := currAngle - diffAngle

end if};
move -[otherwise]-> update {currAngle := goal_angle};
update -[]-> init {

if (goal_angle’fresh) goalAngle := goal_angle end if;
curr_angle := currAngle};

**};
end SubcontrollerThread.impl;

The main controller is responsible for deciding the desired angles of the
devices, and also for updating the current state of the aircraft. The main
controller must adapt the tuples received from the device subcontrollers; the
controller naturally chooses the last value in these tuples, which denote the
most recent angle of the flap. The input from the pilot has already been
adapted in the turning control system, which has the same period as the
main controller. In the thread implementation below, the data components
define the current state (ψ, φ, β) and the speed of the airplane, and the
transitions compute the new values of the state variables and the output
ports (a part is replaced by ‘...’):

203

system Maincontroller
features

goal_angle: in data port Base_Types::Float;
left_angle: in data port Base_Types::Float;
right_angle: in data port Base_Types::Float;
rudder_angle: in data port Base_Types::Float;
curr_dr: out data port Base_Types::Float;
left_goal: out data port Base_Types::Float;
right_goal: out data port Base_Types::Float;
rudder_goal: out data port Base_Types::Float;

properties
MR_SynchAADL::InputAdaptor => "last" applies to
left_angle, right_angle, rudder_angle;

end Maincontroller;

thread implementation MaincontrollerThread.impl
subcomponents
currDir: data Base_Types::Float; currRol: data Base_Types::Float;
currYaw: data Base_Types::Float; goalDir: data Base_Types::Float;

properties
Data_Model::Initial_Value => ("0.0") applies to

currDir, currRol, currYaw, goalDir;
Dispatch_Protocol => Periodic;

annex behavior_specification {**
variables
d, x, y, z, w : Base_Types::Float;

states
init : initial complete state;
yaw, rollNdir, goal, aileron, rudder, output : state;

transitions
init -[on dispatch]-> yaw;
yaw -[]-> rollNdir { ... }; -- computes currYaw
rollNdir -[]-> goal { ... }; -- computes currRol and currDir
goal -[]-> aileron { -- updates goalDir

if (goal_angle’fresh)
goalDir := goalDir + goal_angle end if};

aileron -[]-> rudder { ... }; -- computes aileron angles
rudder -[]-> output { -- compute desired rudder angle
MathLib::angle!(- currYaw, x);
if (abs(x) > 1.0) MathLib::min!(abs(x) * 0.8, 30.0, d)
else d := x * x * 0.8 end if;
if (x<0) d:=-d endif; MathLib::angle!(d, rudder_goal)};

output -[]-> init {curr_dr := currDir}; **};
end MaincontrollerThread.impl;

204

7.3 Real-Time Maude Semantics

This section summarizes the formal semantics of Multirate Synchronous
AADL in Real-Time Maude (more details can be found in Appendix C.1).

7.3.1 Real-Time Maude Representation

The Real-Time Maude semantics is defined in an object-oriented style, where
a Multirate Synchronous AADL component instance is represented as an
object instance of a subclass of the following class Component:

class Component | features : Configuration,
subcomponents : Configuration,
connections : Set{Connection},
properties : PropertyAssociation .

The attribute features represents the ports of a component as a multiset
of Port objects; subcomponents denotes its subcomponents as a multiset
of Component objects; properties denotes its properties; and connections

denotes its connections. The hierarchical structure of AADL components is
reflected in the nested structure of objects in which an attribute of an object
contains its subcomponents as a multiset of objects.
A component whose behavior is given by its subcomponents, such as a

system or a process, is represented as an instance of a subclass of Ensemble:

class Ensemble .
class System .
class Process .
subclass System Process < Ensemble < Component .

The Thread class contains the attributes for the thread’s behavior. The
attribute variables denotes the local temporary variables of the thread
component, transitions denotes its transitions, currState denotes the
current state, and completeStates denotes its complete states. A transition
system is represented as a semicolon-separated set of transitions, each of
which has the form s -[guard]-> s′ {actions} with s a source state, s′ a
destination state, guard a Boolean condition, and {actions} an action block:

class Thread | variables : Set{VarId},
transitions : Set{Transition},
currState : Location,
completeStates : Set{Location} .

subclass Thread < Component .

205

The data subcomponents of a thread can specify the thread’s local state
variables, whose value attribute denotes its current value v, expressed as
the term [v], where the constant bot denotes the “don’t care” value ⊥:

class Data | value : DataContent .
subclass Data < Component .

sorts DataContent Value .
subsort Value < DataContent .
op bot : -> DataContent [ctor] .
op [_] : Bool -> Value [ctor] .
op [_] : Int -> Value [ctor] .
op [_] : Float -> Value [ctor] .

A data port is represented as an object instance of a subclass of the class
Port, whose content attribute contains a list of data contents (either a value
or ⊥) and properties can denote its input adaptor. The subclasses InPort
and OutPort denote input and output data ports, respectively. An input
data port also contains the cache to keep the previously received “value”;
if an input port p received ⊥ in the latest dispatch, then the thread can use
a value in the cache, while the expression p’fresh becomes false:

class Port | content : List{DataContent},
properties : PropertyAssociation .

class InPort | cache : DataContent .
class OutPort .
subclass InPort OutPort < Port .

A connection set of a component is a semicolon-separated set, each of
which has the form source --> target. A connection from an output port
p1 in a subcomponent c1 to an input port p2 in c2 is represented as a term
c1 .. p1 --> c2 .. p2. Similarly, a connection c .. p --> p′ (resp., p′ --> c .. p)
represents a level-up (resp., level-down) connection, linking a port p in a
subcomponent c with the corresponding port p′ in the “current” component
(the double dots .. is used to avoid parsing problems):

sort Connection FeatureRef .
subsort FeatureId < FeatureRef .
op _-->_ : FeatureRef FeatureRef -> Connection [ctor] .
op _.._ : ComponentRef FeatureId -> FeatureRef [ctor] .

sort ComponentRef .
subsort ComponentId < ComponentRef .
op _._ : ComponentRef ComponentRef -> ComponentRef [ctor assoc] .

206

Example 7.2. An instance of the TurningController.impl component in
our airplane controller example can be represented by the term:

< turnCtrl : System |
features : < pilot_goal : InPort | content : [0.0], cache : [0.0],

properties : InputAdaptor => {use in first iteration} >
< curr_dr : OutPort | content : [0.0], properties : none >

subcomponents : < mainCtrl : System | ... >
< leftCtrl : System | ... >
< rightCtrl : System | ... >
< rudderCtrl : System | ... >,

connections : leftCtrl .. curr_angle --> mainCtrl .. left_angle ;
rightCtrl .. curr_angle --> mainCtrl .. right_angle ;
rudderCtrl .. curr_angle --> mainCtrl .. rudder_angle ;
mainCtrl .. left_goal --> leftCtrl .. goal_angle ;
mainCtrl .. right_goal --> rightCtrl .. goal_angle ;
mainCtrl .. rudder_goal --> rudderCtrl .. goal_angle ;
pilot_goal --> mainCtrl .. goal_angle ;
mainCtrl .. curr_dr --> curr_dr,

properties : Period => {60} >

Similarly, an instance of the thread component SubcontrollerThread.impl

can be represented by the following term, where some identifiers in behavior
transitions are enclosed by {...} or [...] for parsing purposes:

< ctrlThread : Thread |
features : < goal_angle : InPort | content : bot, cache : [0.0],

properties : none >
< curr_angle : OutPort | content : [10.0], properties : none >

subcomponents : < currAngle : Data | value : [10.0], ... >
< goalAngle : Data | value : [0.0], ... >
< diffAngle : Data | value : [1.0], ... >,

connections : none,
properties : Period => {15},
variables : empty, currState : move, completeStates : init,
transitions :

init -[on dispatch]-> move { skip } ;
move -[abs([goalAngle] - [currAngle]) > [diffAngle]]-> update {

if (([goalAngle] - [currAngle]) >= [0])
{currAngle} := [currAngle] + [diffAngle]

else
{currAngle} := [currAngle] - [diffAngle]

end if } ;
move -[otherwise]-> update { {currAngle} := [goalAngle] } ;
update -[[true]]-> init {

if (fresh(goal_angle)) {goalAngle} := [goal_angle] end if ;
{curr_angle} := [currAngle] } >

207

7.3.2 Thread Behavior

The behavior of a single component is specified using the partial function
executeStep, by means of equations (for deterministic components) or rules
(for nondeterministic components):

op executeStep : Object ~> Object .

Since a term containing executeStep will not have a sort, this is used to
ensure that an equation or a rule is only applied to an object of sort Object
in which the transitions have already been performed in all subcomponents.
The following rule defines the behavior of nondeterministic threads (the
equation for deterministic threads is quite similar to this rewrite rule):

vars PORTS PORTS’ DATA DATA’ : Configuration .
var VARS : Set{VarId} . vars FMAP FMAP’ : FeatureMap .
vars L L’ : Location . var LS : Set{Location} .
var PROPS : PropertyAssociation . var TRS : Set{Transition} .

crl [execute]:
executeStep(< C : Thread | features : PORTS,

subcomponents : DATA,
currState : L,
completeStates : LS,
transitions : TRS,
variables : VARS,
properties : PROPS >)

=>
< C : Thread | features : writeFeature(FMAP’, PORTS’, none),

subcomponents : DATA’,
currState : L’ >

if Nondeterministic => true in PROPS
/\ PORTS’ | FMAP := readFeature(PORTS, none, empty)
/\ execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS)

=> L’ | FMAP’ | DATA’ .

The function readFeature returns a map from each input port to its current
value (i.e., the first value of the data content list), while removing the value
from the input port and using the cached value if the value is ⊥. Then, any
possible computation result of the thread’s transition system—based on the
temporary variables VARS, the input port values FMAP, the state variables
DATA, and the property values PROPS—is nondeterministically assigned to
the pattern L’ | FMAP’ | DATA’ using the operator execTrans, which defines
the semantics of behavior transitions. Finally, the function writeFeature

updates the content of each output port from the result.

208

The meaning of the operator execTrans is that transitions are repeatedly
applied until a complete state is reached:

crl [trans]:
execTrans(L, LS, TRS, VARS, FMAP | DATA | PROPS)

=>
if (L’ in LS) then L’ | FMAP’ | DATA’
else execTrans(L’, LS, TRS, VARS, FMAP’ | DATA’ | PROPS) fi

if (L -[GUARD]-> L’ ACTION) ; TRS’ :=
enabledTrans(L, TRS, FMAP | DATA | PROPS, empty)

/\ FMAP’ | DATA’ | PROPS :=
execAction(ACTION, VARS, FMAP | DATA | PROPS) .

The function enabledTrans finds all enabled transitions from the current
state L whose GUARD evaluates to true, and any of these enabled transitions
is nondeterministically assigned to the pattern (L -[GUARD]-> L’ ACTION).
The function execAction executes the actions of the chosen transition and
returns a new configuration. If the next state L’ is not a complete state
(else branch), then execTrans is applied again with the new configuration
(see Appendix C.1 for more details and definitions).

7.3.3 Ensemble Behavior

For ensemble components such as processes and systems, their synchronous
behavior is also defined by using executeStep:

crl [execute]: executeStep(< C : Ensemble | >)
=> transferResults(OBJ’)

if OBJ := applyAdaptors(transferInputs(< C : Ensemble | >))
/\ prepareExec(OBJ) => OBJ’ .

First, each input port of a subcomponent receives a value from its source
port (transferInputs). Second, an input adaptor is applied to each input
port (applyAdaptors). Third, the operator executeStep is applied multiple
times to each subcomponent according to its period (prepareExec). Next,
any term of sort Object resulting from rewriting prepareExec(OBJ) in zero
or more steps is nondeterministically assigned to OBJ’ of sort Object. Since
executeStep does not yield terms of this sort, OBJ’ will only capture an
object where executeStep has been completely evaluated. Finally, the new
outputs are transferred to the output ports of C (transferResults). This
rule is isomorphic to the sync rule for the multirate synchronous composition
in Section 6.4.2; we refer to it for more details about this rule.

209

A multirate synchronous step of the entire system is then formalized by
the following conditional tick rewrite rule:

crl [step]:
{< C : System | properties : Period => {T} ;

Synchronous => {true} ; PROPS,
features : none >}

=> {SYSTEM} in time T
if executeStep(< C : System | >) => SYSTEM .

Any term of sort Object, in which executeStep is completely evaluated,
resulting from rewriting executeStep(< C : System | >) in zero or more
steps can be nondeterministically assigned to the variable SYSTEM.

7.4 The MR-SynchAADL Tool

To support the modeling and verification of Multirate Synchronous AADL
models within OSATE, this section presents the MR-SynchAADL plugin
that: (i) checks whether a given model is a valid Multirate Synchronous
AADL model; (ii) provides a simple language to specify system requirements;
(iii) automatically synthesizes a Real-Time Maude model from a Multirate
Synchronous AADL model; and (iv) uses Real-Time Maude to both simulate
the execution of the Multirate Synchronous AADL model and model check
whether the model satisfies the given system requirements.
The MR-SynchAADL tool provides a requirements specification language

that allows the user to easily define system requirements, without having
to understand Real-Time Maude. The requirements specification language
defines a number of useful atomic propositions. The proposition

full component name @ location

holds in a state when the thread identified by the full component name is in
state location. A full component name is a component path in the AADL
syntax, a period-separated path of identifiers. Similarly, the proposition

full component name | Boolean expression

holds in a state if Boolean expression evaluates to true in the component.
Any Boolean expression can be used in the AADL behavior annex syntax
involving data components, feedback output ports, and property values.
The semantics of the requirements specification language is defined by using
equations in Real-Time Maude (see Appendix C.1).

210

In MR-SynchAADL, we can easily declare formulas and requirements for
Multirate Synchronous AADL models as LTL formulas, using the usual
Boolean connectives and temporal logic operators. They can be declared
using the following syntax, where LTL formulas can also contain references
to other “formulas” defined by formula statements:

formula name: proposition; formula name: LTL formula;
requirement name: LTL formula;

For the airplane turning control system example, the declaration

formula safeYaw:
turnCtrl.mainCtrl.ctrlProc.ctrlThread | abs(currYaw) < 1.0;

states that the proposition safeYaw holds when the current yaw angle in the
main controller is less than 1◦. The following requirement defines the safety
requirement of the system: the yaw angle should always be close to 0◦.

requirement safety: [] safeYaw;

Figure 7.2 shows the MR-SynchAADL window for the airplane example.
In the editor part, two requirements are specified using the requirements
specification language. The Constraints Check, the Code Generation,
and the Perform Verification buttons are used to perform, respectively,
the syntactic validation, the Real-Time Maude code generation, and the
LTL model checking. The Perform Verification has been clicked and the
results are shown in the “Maude Console.”

Figure 7.2: MR-SynchAADL window in OSATE.

211

7.5 Case Studies

This section presents two Multirate Synchronous AADL models and their
verification in OSATE using the MR-SynchAADL plugin. Section 7.5.1
shows how the Multirate Synchronous AADL model of the airplane turing
controller can be verified in MR-SynchAADL, and Section 7.5.2 presents a
Multirate Synchronous AADL model of the active standby system in [143]
(another avionics case study can be found in Appendix C.3).

7.5.1 The Airplane Turing Controller Revisited

As mentioned in Section 6.5.4, the airplane turing controller system must
satisfy the system requirement: the airplane must reach the desired direction
with a stable status within reasonable time, while keeping the yaw angle
close to 0◦. In order to verify whether the airplane can reach a specific
goal direction, we first consider a deterministic pilot given by the following
AADL implementation, where the pilot gradually turns the airplane 60◦ to
the right by adding 10◦ to the goal direction 6 times, instead of using the
nondeterministic pilot in Section 7.2.3:

thread implementation PilotConsoleThread.scenario
subcomponents
counter: data Base_Types::Integer;

properties
Data_Model::Initial_Value => ("0") applies to counter;

annex behavior_specification {**
states
idle: initial complete state;
select: state;

transitions
idle -[on dispatch]-> select;
select -[counter >= 6]-> idle;
select -[counter < 6]-> idle {
goal_dr := 10.0; counter := counter + 1};

**};
end PilotConsoleThread.scenario;

The desired requirement, with the additional constraint that the desired
state must be reached within 7,200ms, can be formalized as an LTL formula
in MR-SynchAADL as follows, where safeYaw is defined in Section 7.4,
stable holds if both roll and yaw angles are close to 0, and reachGoal

holds if the current direction is close to 60◦:

212

Bound (ms) #States Time (s) Bound #States Time
≤ 3,000 364 7 ≤ 4,800 9,841 189
≤ 3,600 1,093 21 ≤ 5,400 29,524 600
≤ 4,200 3,280 62 ≤ 6,000 88,573 2,323

Table 7.1: The model checking result for the nondeterministic pilot.

requirement safeTurn:
safeYaw U (stable /\ reachGoal) in time <= 7200;

formula stable: turnCtrl.mainCtrl.ctrlProc.ctrlThread |
abs(currRol) < 0.5 and abs(currYaw) < 0.5;

formula reachGoal: turnCtrl | abs(curr_dr - 60.0) < 0.5;

Figure 7.2 shows the model checking results for the two requirements safety
(� safeYaw, declared in Section 7.4) and safeTurn in our tool. In the
deterministic scenario, the airplane controller satisfies both properties as
displayed in the Maude console. These model checking analyses took 1.6
and 0.5 seconds, respectively, on Intel Core i5 2.4 GHz with 4 GB memory
and the numbers of states explored are 59 and 13.

We have verified the safety requirement for the nondeterministic pilot
and have summarized the results in Table 7.1, which shows a huge state
space reduction compared to the asynchronous model: for the same pilot
behavior and time bound 3,000ms, the number of reachable states in the
simplest possible distributed asynchronous model—with perfect local clocks
and no network delays—in Section 6.5.5 is 420,288, whereas there are only
364 reachable states in the Multirate Synchronous AADL model.

7.5.2 The Active Standby System

In integrated modular avionics (IMA), a cabinet is a chassis with a power
supply, internal bus, general purpose computing, etc. Aircraft applications
are implemented using the resources in the cabinets. There are always two
or more physically separated cabinets so that physical damage does not take
out the computer system. The active standby system considers the case of
two cabinets and focuses on the logic for deciding which side is active. Each
side can fail, and a failed side can recover after failure. In case one side fails,
the non-failed side should be the active side. The pilot can also toggle the
active status of the sides. The full functionality of each side depends on the
two sides’ perception of the availability of other system components.

213

ActiveStandbySystem.impl

sideOne:
Side1.impl

env: Environment.impl

sideTwo:
Side2.impl

side1ActiveSide

side2ActiveSide

manualSelection

side1Failed side2Failedside2FullyAvailside1FullyAvail

Figure 7.3: The architecture of the active standby system.

The architecture of the active standby system is in Figure 7.3, based on
a specification by Steve Miller and Darren Cofer at Rockwell-Collins [143].
Each time Environment dispatches, it nondeterministically sends 5 Boolean
values, one through each ports, so that two sides cannot fail at the same
time: i.e., it can send any one of 24 different 5-tuples in each round.

The following top-level system implementation declares the architecture
of the entire system in Figure 7.3, which contains the three subcomponents
sideOne, sideTwo, and env (a part is replaced by ‘...’):

system implementation ActiveStandbySystem.impl
subcomponents
sideOne: system Side1.impl; sideTwo: system Side2.impl;
env: system Environment.impl;

connections
C1: port sideOne.side1ActiveSide -> sideTwo.side1ActiveSide;
C2: port sideTwo.side2ActiveSide -> sideOne.side2ActiveSide;
C3: port env.side1FullyAvail -> sideOne.side1FullyAvail;
...
C9: port env.side1Failed -> sideOne.side1Failed;
C10: port env.side2Failed -> sideTwo.side2Failed;

properties
MR_SynchAADL::Synchronous => true;
Period => 2 ms;
Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8, C9, C10;
Data_Model::Initial_Value => ("true") applies to
env.side1FullyAvail, env.side2FullyAvail;

Data_Model::Initial_Value => ("false") applies to
env.side1Failed, env.side2Failed, env.manualSelection;

end ActiveStandbySystem.impl;

214

The environment thread has a single transition that sends the values of
the local variables to the corresponding output ports. These variables can
be assigned any values satisfying the input constraint not (s1F and s2F),
stating that both sides cannot fail at the same time:

system Environment
features
side1FullyAvail: out data port Base_Types::Boolean;
side2FullyAvail: out data port Base_Types::Boolean;
manualSelection: out data port Base_Types::Boolean;
side1Failed: out data port Base_Types::Boolean;
side2Failed: out data port Base_Types::Boolean;

end Environment;

thread implementation EnvironmentThread.impl
properties
MR_SynchAADL::InputConstraints => ("not (s1F and s2F)");
MR_SynchAADL::Nondeterministic => true;
Dispatch_Protocol => Periodic;

annex behavior_specification {**
states s0 : initial complete state;
variables s1FA, s2FA, mS, s1F, s2F: Base_Types::Boolean;
transitions
s0 -[on dispatch]-> s0 { side1FullyAvail := s1FA;
side2FullyAvail := s2FA; manualSelection := mS;
side1Failed := s1F; side2Failed := s2F; }; **};

end EnvironmentThread.impl;

The system sideOne contains an instance of the following thread that
defines the behavior of side 1. We show only one transition in this thread,
which takes the thread from state side2_active_t to side1_active. As
a result, the output 1 is sent through the port side1ActiveSide, and the
state variables prevSide2 and prevMS are assigned the values in the ports
side2ActiveSide and manualSelection, respectively:

thread Side1Thread
features
side1Failed: in data port Base_Types::Boolean;
side1FullyAvail: in data port Base_Types::Boolean;
side2FullyAvail: in data port Base_Types::Boolean;
manualSelection: in data port Base_Types::Boolean;
side2ActiveSide: in data port Base_Types::Integer;
side1ActiveSide: out data port Base_Types::Integer;

end Side1Thread;

215

thread implementation Side1Thread.impl
subcomponents
prevSide2: Base_Types::Integer; prevMS: Base_Types::Boolean;

properties
Dispatch_Protocol => Periodic;
Data_Model::Initial_Value => ("0") applies to prevSide2;
Data_Model::Initial_Value => ("false") applies to prevMS;

annex behavior_specification {**
states
init: initial complete state;
side1_failed, side2_failed, ..., side2_active: complete state;
...

transitions
...
side2_active_t -[side1Failed = false and side2ActiveSide != 0 and

side1FullyAvail = true and (side2FullyAvail = false or
(prevMS = false and manualSelection = true))]-> side1_active

{side1ActiveSide := 1;
prevSide2 := side2ActiveSide; prevMS := manualSelection;};
...

**};
end Side1Thread.impl;

The paper [143] describes five requirements of the active standby system.
This section explains how we have verified one of these requirements (R1):
Both sides should agree on which side is active, provided that the availability
of a side has not changed, neither side has failed, and the pilot has not
made a manual selection (see Appendix C.2 for the other properties). As
explained in [138], the requirement R1 is not satisfied in the active standby
system; instead, we have verified the following weaker property:

requirement R1: O ([] (
(noChangeAvail /\ O (neitherSideFailed /\ ~ manSelectPressed))

-> O (agreeOnActiveSide \/
O (neitherSideFailed -> agreeOnActiveSide))));

Side i thinks that side j is active if it sends the number j to its output
port sideiActiveSide. The formula agreeOnActiveSide holds when both
sides think that side 1 is active or side 2 is active:

formula agreeOnActiveSide:
(sideOne.sideProcess.sideThread | side1ActiveSide = 1 /\
sideTwo.sideProcess.sideThread | side2ActiveSide = 1)

\/ (sideOne.sideProcess.sideThread | side1ActiveSide = 2 /\
sideTwo.sideProcess.sideThread | side2ActiveSide = 2);

216

Side i has failed if it has received the value true in its sideiFailed port.
We also define a property that the pilot has made a manual selection:

formula side1Failed:
sideOne.sideProcess.sideThread | side1Failed = true;

formula side2Failed:
sideTwo.sideProcess.sideThread | side2Failed = true;

formula neitherSideFailed:
(~ side1Failed) /\ (~ side2Failed);

formula manSelectPressed:
sideOne.sideProcess.sideThread | manualSelection = true;

Likewise, the proposition sideiFullyAvailable holds if side i is fully
available. There is no change in availability if both sides are equally available
in the current state and in the next state:

formula side1FullyAvailable:
sideOne.sideProcess.sideThread | side1FullyAvail = true;

formula side2FullyAvailable:
sideTwo.sideProcess.sideThread | side2FullyAvail = true;

formula noChangeAvail:
(side1FullyAvailable <-> O side1FullyAvailable)

/\ (side2FullyAvailable <-> O side2FullyAvailable);

We have verified every requirement of the Multirate Synchronous AADL
model. Each model checking analysis, generating 203 system states, took
0.6 seconds on an Intel Xeon 2.93 GHz with 24GB RAM. Note that it is
unfeasible to model check the corresponding asynchronous design: as shown
in [138], the simplest possible asynchronous model (no message delays, no
execution times, etc.) has 3,047,832 reachable states. If the message delay
can be 1 then no model checking terminates in reasonable time.

7.6 Concluding Remarks

This chapter has explained how Multirate PALS has been made available
to AADL modelers by: (i) defining Multirate Synchronous AADL, which
allows the modelers to specify synchronous designs in AADL; (ii) giving a
formal semantics for Multirate Synchronous AADL, which allows simulation
and model checking of Multirate Synchronous AADL models; (iii) providing
an intuitive way of specifying temporal logic requirements that such models
should satisfy; and (iv) integrating both modeling and automated model
checking into the OSATE tool environment for AADL.

217

CHAPTER 8

PTOLEMY II DISCRETE-EVENT MODELS

This chapter presents1 a rewriting logic semantics for a significant subset
of Ptolemy II discrete-event (DE) models. This is a challenging task, since
DE models combine a synchronous fixed-point semantics with hierarchical
structure, explicit time, and a rich expression language. The code generation
features of Ptolemy II have been leveraged to automatically synthesize a
Real-Time Maude verification model from a Ptolemy II design model, and
to integrate the formal verification of the synthesized model into Ptolemy II.
This enables a model-engineering process that combines the convenience of
Ptolemy II DE modeling and simulation with formal verification in Maude.
We illustrate such formal verification of Ptolemy II models with case studies.

8.1 Introduction

Model-based design [113, 159, 160] emphasizes the construction of high-level
models for system design. Useful models typically provide simulations of
system functionality and performance during the design phases as a much
less costly alternative to building prototypes and testing them. Model-based
design generally raises the level of abstraction in system design; specifically,
for embedded software, from low-level languages (such as C++ and Java)
to high-level modeling formalisms where concepts like concurrency and time
are first-class notions. This makes it feasible to design systems that would
be hard to design using low-level methods. Ideally, models are translated
(code generated) automatically to produce deployable software. AADL,
introduced in Chapter 7, is one of such model-based design languages.

1This chapter is based on the papers [27, 29, 30], joint work with Peter Ölveczky,
Thomas Huining Feng, Stavros Tripakis, and Edward A. Lee.

218

Ptolemy II [79] is a well established open-source modeling and simulation
tool used in industry. A major reason for its popularity is Ptolemy II’s
powerful yet intuitive graphical modeling language that allows a user to
build hierarchical models that combine different models of computations.
In this chapter we focus on discrete-event (DE) models; such models are
explicit about the timing behavior of systems, which is an essential feature
for the high-level specification of embedded system applications [106, 107].
Discrete-event modeling is a widely used approach for system simulation
[96], and it has been proposed as basis for synthesis of embedded real-time
software [169]. The Ptolemy II DE models have a semantics rooted in the
fixed-point semantics of synchronous languages [125].
As already mentioned, many embedded systems—in areas such as avionics,

motor vehicles, robotics, and medical systems—are safety-critical systems,
whose failures may cause great damage to persons and/or valuable assets.
Models of such embedded systems should therefore be formally analyzed to
verify safety requirements. Instead of requiring designers to develop models
in some formal framework, a promising approach to formally verify design
models is to add formal analysis capabilities to the intuitive, often graphical,
informal modeling languages preferred by practitioners by:

• providing a formal semantics for the informal modeling language;

• leveraging the code generation features of the modeling framework to
automatically translate an design model to a formal model; and

• verifying the synthesized formal model, e.g., using Real-Time Maude.

However, as usual for many graphical modeling languages, Ptolemy II
DE models lack formal verification capabilities. Despite already having a
synchronous semantics in contrast to AADL, Ptolemy II DE models seem
to fall outside the class of languages which can be given an automata-based
semantics, because: (i) the variables range over infinite domains such as the
integers; (ii) certain Ptolemy II constructs use unbounded data structures;
(iii) executing a synchronous step requires fixed-point computations; and
(iv) Ptolemy II has a powerful expression language. Rewriting logic is in
this case a suitable formalism, since its expressiveness allows us to give
a formal semantics to languages with advanced functions and data types,
unbounded data structures, variables over unbounded domains, etc.

219

8.1.1 Main Contributions

This chapter defines a Real-Time Maude semantics for a significant subset of
hierarchical Ptolemy II DE models. A Ptolemy II DE model is a hierarchical
composition of actors with connections between the actors’ input ports and
output ports. The supported subset includes: (i) finite state machine (FSM)
actors, “guarded” transition systems with variables; (ii) composite actors,
Ptolemy II models encapsulated as single actors; (iii) modal model actors,
state machines where each state has a refinement actor, either a composite
actor or an FSM actor; and (iv) atomic actors, such as clock actors, timer
actors, delay actors, algebraic expression actors, etc.
This chapter shows how rewriting-based model checking of Ptolemy II DE

models is integrated into Ptolemy II, so that Ptolemy II DE models can be
formally analyzed from within Ptolemy II. We define a property specification
language so that the users can easily define their temporal logic requirements
without having to understand the underlying formal representation. Hence,
this provides a model-engineering process that combines the convenience of
Ptolemy II modeling with formal verification in Real-Time Maude. This
Real-Time Maude integration is officially available in version 8.0.1 (or later)
of Ptolemy II. The entire Real-Time Maude semantics, as well as the case
studies in this chapter, can be found in the Ptolemy II source code, available
at http://ptolemy.eecs.berkeley.edu/ptolemyII.

8.1.2 Related Work

The semantics of Ptolemy II is often given in terms of abstract semantics
which consists of a set of functions such as “initialize”,“fire”, “postfire”, and
so on [79, 125]. Denotational semantics of DE models based on metric spaces
are given in [48, 123, 127]. A different type of denotational semantics, based
on complete partial orders and domain theory, are given in [35, 126]. These
semantics differ from ours, e.g., in that they are not executable and therefore
cannot be used for formal model checking analyses.
A preliminary exploration of translations of synchronous reactive (that is,

untimed) Ptolemy II models into Kripke structures, which can be analyzed
by using the NuSMV model checker, and of DE models into communicating
timed automata is given in [51]. However, they require data abstraction to
map models into finite automata, in order to deal with integer variables in
FSM actors, and they do not use the code generation framework. We refer
to [29] for other model transformation approaches of embedded systems.

220

http://ptolemy.eecs.berkeley.edu/ptolemyII

8.1.3 Structure of this Chapter

This chapter is organized as follows. Section 8.2 introduces Ptolemy II
DE models and explains their operational semantics. Section 8.3 defines
the formal semantics of Ptolemy II DE models in Real-Time Maude, and
Section 8.4 explains how Real-Time Maude verification has been integrated
into Ptolemy II, allowing users to easily check desired system requirements.
Section 8.5 illustrates such formal verification of Ptolemy II models with
case studies, and Section 8.6 gives some concluding remarks.

8.2 Ptolemy II and its DE Model of Computation

Ptolemy II is a modeling environment for embedded systems to support
multiple modeling paradigms, called models of computations (MoCs), that
govern the interaction between concurrent components. Such MoCs include
FSM (finite state machine), dataflow, and DE (discrete events), and can be
composed to create heterogeneous models. A Ptolemy II model consists of
a set of interconnected actors. Ports represent points of communication for
an actor, and parameters are used to configure the operation of an actor.
A composition of actors can be encapsulated as an actor in its own right,

which may also have input and output ports. Such an actor, obtained by
composition, is called a composite actor. An output port of an inner actor
can be connected to an output port of its enclosing composite actor. An
input port of a composite actor can be connected to input ports of the
actors inside, which means that external inputs are transferred to those
inner actors. An actor that is not composite is called an atomic actor.

8.2.1 Discrete-Event Models

This chapter focuses on the formalization of Ptolemy II discrete-event (DE)
models. In DE, the data sent and received at actors’ ports are events. Each
event has two components: a tag and a value. According to the tagged signal
model [124], a tag t is a pair (τ, n) ∈ R≥0 × N, where τ is the timestamp
denoting the model time at which the event occurs, and n is the microstep
index. Microstep indices are useful for modeling multiple events with the
same timestamps happening in sequence, where earlier events may cause
later ones. Tags are totally ordered using a lexicographical order: that is,
(τ1, n1) ≤ (τ2, n2) iff τ1 < τ2, or τ1 = τ2 and n1 ≤ n2. Two events are
simultaneous if they have identical tags.

221

Q := empty; // initialize the global event queue to be empty.
for each actor A do
A.init(); // initialize actor A, and generate initial events in Q.

end for;
while Q is non-empty do
E := set of all simultaneous events at the head of Q;
remove E from Q;
initialize ports with values in E or "unknown";
while port values changed do

for each actor A do
A.fire(); // may change port values .

end for;
end while; // fixed-point reached for the current tag.
for each actor A do
A.postfire(); // updates state, and generates new events in Q.

end for;
end while;

Figure 8.1: Pseudo-code of Ptolemy II DE semantics.

The operational semantics of DE in Ptolemy II can be explained with the
pseudo-code in Figure 8.1. Events in the event queue are ordered by their
tags. Initially, the event queue is empty. At the beginning of the execution,
all actors are initialized, and some actors may post initial events to the event
queue. Operation then proceeds by iterations. In each iteration, the events
with the smallest tag are extracted from the event queue and presented
to the actors receiving them. Those actors are fired, i.e., they are invoked
to process their input events, and they may also output events through
their output ports. Finally, when the fixed-points for the port values have
been found, the actors that have received input or have been fed events
are executed, in the sense that their states are updated and that they may
generate future events that are inserted into the event queue (postfire).
The DE MoC in Ptolemy II is different from standard DE simulators,

since the Ptolemy II DE MoC incorporates a synchronous-reactive semantics
for processing simultaneous events [125]. When events are extracted from
the event queue for the receiving actors to process, the semantics for that
iteration is defined as the least fixed-point of the output values, in a way
similar to a synchronous model [78]. The outputs are first set to “unknown,”
and the actors receiving events are fired in an arbitrary order, possibly
repeatedly, until a fixed-point of all output values is reached. This semantics
allows Ptolemy II models to have feedback loops. If the model contains
causality cycles, the fixed-point may have ports with value unknown.

222

8.2.2 Ptolemy II Actors

This section explains a subset of the Ptolemy II actors whose semantics has
been formalized in Real-Time Maude. Their semantics is defined in terms
of the actions init, fire, and postfire (see also Appendix D.1 for more actors
whose Real-Time Maude semantics has been defined).

Current Time. Ptolemy II’s current time actor produces an output token
on each firing with a value that is the current model time. That is, the init
and postfire actions do nothing, and the fire action consumes an input event
and outputs an event given by the input event.

Timed Delay. A timed delay actor propagates an incoming event after a
given delay. If the delay parameter is 0.0, then there is a “microstep” delay
in the generation of the output event. The init and fire actions do nothing,
but postfire generates an event with a delay equal to the delay parameter.

Clock. Ptolemy II’s clock actors have as parameters a clock period, and
same-sized arrays values and offsets. In each period, a clock generates events
with given values and offsets within the period. If the period is p, then, for
each n ≥ 0 and i ≤ length(values), the clock generates an event with value
values(i) at time n · p + offsets(i). The init action posts an event to the
event queue with timestamp 0 for itself, the fire action is triggered by that
event and sends the value to the output port, and the postfire action posts
the next event, with timestamp equal to the beginning of the next period.

Set Variable. A set variable actor contains a name of a parameter in its
container actor. The fire action outputs the value of the parameter, and
postfire updates the variable if a new value has been received.

Finite State Machine (FSM) Actor. A finite state machine actor is a
transition system containing a finite set of states (or “locations”), a finite
set of “variables,” and a finite set of “guarded” transitions. A transition has
a guard expression, and can contain a set of output actions. Output actions
may assign values to the variables belonging to the FSM actor and/or may
send values to the output ports of the actor. It is assumed in Ptolemy II
that there is never more than one enabled transition when an FSM actor is
fired. If there is exactly one enabled transition, then it is chosen and the
actions contained by the transition are executed. Under the DE director,
only one transition step is performed in each iteration.

223

A0 A3 A4

A5
A2

A7
A1 A6

Figure 8.2: A hierarchical composition of actors, where A0–A7 are actors,
A0 and A3 are composite actors, and triangles are ports.

Composite Actors. Ptolemy II hierarchical models contain components
(or actors) that are themselves Ptolemy II models. Such a hierarchical model
can be seen as a single composite actor. The ports of a composite actor can
be connected to its inner actors so that the sub-model interacts with the
outside. Figure 8.2 illustrates a hierarchical composition of actors.
Each composite actor can have its own model of computation, given by

the director of the actor, to support heterogeneous modeling. If the director
of a composite actor is the same as the director of the parent actor, then it
is called a transparent actor. This chapter considers only transparent cases,
since we verify DE models. In these cases, a DE composite actor is fired
when a new value has arrived to its input port, and an inner actor of a DE
composite actor is fired when that inner actor receives some events at its
input ports or if it is fed an event from the (global) event queue.

Modal Models. Modal models are finite state machines where each state
has a refinement actor, either a composite actor or an FSM actor. The
input and output ports of the refinements are the same as those of the
modal model. The output ports of a modal model are regarded as both
input and output ports, so that the transitions of modal models may use
the evaluation result of refinement actors in the current computation step.

ModalModel

P1

P2

P3
S0 S1

S0
P1

P2

P3
S1

P1

P2

P3

CompositeActor

S0

S1

Controller

S0 S1

Figure 8.3: A modal model with 2 refinement states (left), and its equivalent
representation as a composite actor (right), where S0 and S1 are refinement
states and diamonds denote input/output ports.

224

A modal model can be seen as syntactic sugar for a composite actor with
frozen inner actors, as illustrated in Figure 8.3. That is, a modal model A is
semantically equivalent to a composite actor Ã that has the controller FSM
actor and the refinement actors as inner actors, so that: (i) the ports are
connected as indicated in Figure 8.3; (ii) the controller FSM actor is fired
after the refinement actors are fired; (iii) only the refinement inner actors
corresponding to the current state of the controller are evaluated, whereas
the other refinement actors are frozen, in the sense that their states do not
evolve and the values of their outports are ignored; and (iv) if an output
port of the controller actor has no value but its “coupled” input port has a
value, then the output port will have the same value as the input port.

Example 8.1 (A Simple Traffic Light). Figure 8.4 shows a Ptolemy II DE
model of a simple traffic light system. The traffic light system consists of
one car light and one pedestrian light at a pedestrian crossing. Each light is
represented as a set of set variable actors (Pred and Pgrn for the pedestrian
light, and Cred, Cyel, and Cgrn for the car light). A light is on iff the
corresponding variable has the value 1. The lights are controlled by two
FSM actors, CarLight and PedestrianLight, that send values to set the
variables; in addition, CarLight sends signals (that are delayed by one time
unit) to PedestrianLight through its Pgo and Pstop output ports.
Figure 8.5a shows the FSM actor PedestrianLight. This actor has three

input ports (Pstop, Pgo, and Sec), two output ports (Pgrn and Pred), three
internal states, and three transitions. This actor reacts to signals from the
car light (via the delay actors) by turning the pedestrian lights on and off.
For example, if the actor is in local state Pred and receives input through its
Pgo port, then it goes to state Pgreen, outputs the value 0 through its Pred

port, and outputs the value 1 through its Pgrn port.

Figure 8.4: A simple traffic light model in Ptolemy II.

225

(a) PedestrianLight (b) CarLight

Figure 8.5: The FSM actors for pedestrian lights and car lights.

Figure 8.5b shows the FSM actor CarLight. Assuming that the clock
actor sends a signal every time unit, we notice, e.g., that one time unit
after both the red and yellow car lights are on (Credyel), these are turned
off and the green car light is turned on by sending the appropriate values to
the variables (output: Cred = 0; Cyel = 0; Cgrn = 1). The car light then
stays green for two time units before turning yellow.

8.3 The Semantics of Ptolemy II DE Models

This section gives an overview of our Ptolemy II DE semantics in Real-Time
Maude (see Appendix D.3 for more details). Section 8.3.1 explains how a
generic Ptolemy II DE model is represented as a Real-Time Maude term,
Section 8.3.2 presents a semantic framework for specifying the DE semantics,
Section 8.3.3 uses this framework to define the semantics of each actor, and
Section 8.3.4 shows the semantics of the Ptolemy II expression language.

8.3.1 Representing Ptolemy II DE Models

The Real-Time Maude semantics is defined in an object-oriented style, where
the global state has the form of a multiset

{actors connections < global : EventQueue | queue : event queue >}

where: (i) actors are objects corresponding to the actor instances in the
model; (ii) connections are the connections between the ports of the actors;
and (iii) < global : EventQueue | queue : event queue > is an object with
the queue attribute that denotes the global event queue.

226

Each Ptolemy II actor is represented in Real-Time Maude as an object
instance of a subclass of the class Actor:

class Actor | ports : ObjectConfiguration,
parameters : ObjectConfiguration,
computation : Computation,
status : ActorStatus .

The ports attribute denotes the ports of the actor, and the parameters

attribute denotes the parameters of the actor. Both ports and parameters
are modeled as objects. The computation attribute denotes a “processor”
of the actor to compute expressions. The status attribute is used to denote
frozen actors for modal models: the status of an actor is either enabled or
disabled, depending on whether the actor is disabled as a result of being
contained in a refinement of a “frozen” state in a modal model.

A port is represented as an object with a name (a quoted identifier of sort
Qid), a value (a Ptolemy II expression of sort Exp), and a status (unknown,
present, or absent, denoting the “current” knowledge about whether there
is input or output in the current iteration for the fire action):

class Port | value : Exp,
status : PortStatus,

class InPort .
class OutPort .
subclass InPort OutPort < Port .

sorts PortId PortStatus .
subsort Qid < PortId < Oid . --- local port names
ops unknown present absent : -> PortStatus [ctor] .

A parameter is also represented as an object. The exp attribute denotes
an expression, which may include a variable that refers to either a parameter
or an input port, the value attribute denotes the value of such an expression
to be used in the current iteration (based on the parameter values computed
in the previous iteration), and the next-value attribute denotes the value
that will be used in the next iteration (initially noValue):

class Parameter | exp : Exp,
value : Value,
next-value : Value? .

sorts ParamId Value Value? Exp .
subsorts Qid < ParamId < Oid . --- parameter names
subsorts Value < Value? Exp.
op noValue : -> Value? [ctor] .

227

Composite actors are represented as object instances of CompositeActor,
which extends its superclass Actor with one attribute, innerActors, to
denote the inner actor objects and connections of the composite actor:

class CompositeActor | innerActors : ObjectConfiguration .
subclass CompositeActor < Actor .

To distinguish atomic actors from composite actors, each atomic actor is
modeled as an object instance of a subclass of the class AtomicActor:

class AtomicActor .
subclass AtomicActor < Actor .

A connection is given by a term po ==> pi1 ; ... ; pin of sort Connection,
where each pj has the form a ! p with a the relative name of an actor and p
a local port name. Such a connection connects the output port po to all the
input ports pi1 , . . . , pin . Since connections appear in configurations, and are
not messages, they are also declared to have sort ObjectConfiguration.
Some actors, such as current time actors, have an internal clock that

measures “model time.” Such actors are represented as object instances of
subclasses of the class TimeActor, a subclass of Actor, where the attribute
currentTime denotes the current model time:

class TimeActor | currentTime : Time .
subclass TimeActor < Actor .

Example 8.2 (Representing the Simple Traffic Light Model). Consider the
flat traffic light system given in Example 8.1. The TimedDelay2 delay actor
can be represented as an object instance of the class Delay, a subclass of the
class Actor, where a number N is expressed as the term # N :

< ’TimedDelay2 : Delay |
parameters : < ’delay : Parameter | exp : # 1.0, value : # 1.0,

next-value : noValue >,
ports : < ’input : InPort | value : # 0, status : absent >

< ’output : OutPort | value : # 0, status : absent >,
computation : noComputation, status : enabled >

The connection from the output port output of the Clock actor to the
input port Sec of the PedestrianLight actor and the input port Sec of the
CarLight actor is represented by the term

(’Clock ! ’output) ==> (’PedestrianLight ! ’Sec) ; (’CarLight ! ’Sec)

The entire state consists of two FSM actor objects, ten connections, two
delay objects, five set variable objects, and the global event queue object.

228

The Global Event Queue. The global event queue is represented as
an object < global : EventQueue | queue : queue >, where queue is a
::-separated list, ordered according to time until firing, of terms of the form:

set of events ; time to fire ; microstep.

Each event in the set of events is characterized by the “global port name,”
time to fire is the time until the events are supposed to fire, and microstep
is the additional “microstep” until the event fires.
Events communicated between an actor and the global event queue may

cross hierarchical boundaries, since the actor can be located deep down in the
actor hierarchy. This “traveling” of events is modeled as message passing:
inserting an event into the output port p of an actor with actor identifier g
corresponds to generating the message active-evt(event(g ! p, v)), and
an event generated by an actor is “sent” to the global event queue as a
message of the form schedule-evt(event, time,microstep):

msg active-evt : Event -> Msg .
msg schedule-evt : Event Time Nat -> Msg .

var PORTS OBJS : ObjectConfiguration . var CF : Configuration .
var QUEUE : EventQueue . var EVENT : Event .
var O : Oid . var P : PortId . var AI : ActorID .
var T : Time . var N : Nat . var V : Value .

eq active-evt(event(O ! P, V))
< O : Actor | ports : < P : Port | > PORTS >

= < O : Actor | ports : < P : Port | value : V,
status : present > PORTS > .

eq schedule-evt(EVENT, T, N)
< global : EventQueue | queue : QUEUE >

= < global : EventQueue | queue : add(EVENT, T, N, QUEUE) > .

where the function add inserts the new event (that should fire at time T and
microstep N from the current time) in the correct place of the event queue.
Such a schedule-evt message is propagated towards the top of the actor

hierarchy by the following equation, which moves the schedule-evtmessage
inside a composite actor one level up (the propagation of a active-evt

message from the global event queue to inner actors is explained below):

eq < O : CompositeActor |
innerActors : CF schedule-evt(event(AI ! P, V), T, N) >

= < O : CompositeActor | innerActors : CF >
schedule-evt(event((O . AI) ! P, V), T, N)} .

229

8.3.2 Specifying the Behavior of DE Models

The behavior of Ptolemy II DE models can be summarized as repeatedly
performing the following actions from an initial state:

1. Advance time until the first event(s) in the event queue should fire.

2. The events supposed to fire are added to the corresponding output
ports; the status of all other ports is set to unknown.

3. The fixed point of all ports is computed by gradually increasing the
knowledge about the presence/absence of inputs to and output from
ports until a fixed-point is reached (the fire action).

4. The actors with inputs or scheduled events are executed; states are
changed and new events are generated and inserted into the global
event queue (the postfire action).

Initial States. The initial state is given by the following term, where the
init function yields the initial event messages to the global event queue:

{< global : EventQueue | queue : nil > init(actors) connections }

The init function distributes over actor objects, and propagates to the inner
actors for composite actors. For each actor that generates initial events, init
produces schedule-evt messages, declared by the equations of the form:

eq init(< O : C | ... >) = schedule-evt(e, t,n) < O : C | ... > .

Advancing Time. The following tick rule advances time until the time
when the first events in the event queue are scheduled; that is, until the
time-to-fire of the first events in the event queue is 0:

var NZT : NzTime . vars CF CF’ : Configuration . var EVTS : Events .

rl [tick] :
{OBJS < global : EventQueue | queue : (EVTS ; NZT ; N) :: QUEUE >}

=> {delta(OBJS, NZT)
< global : EventQueue |

queue : (EVTS ; 0 ; N) :: delta(QUEUE, NZT) >} in time NZT .

The first element in the event queue has non-zero delay NZT, and time is
advanced by this amount NZT. As a consequence, the first component of the
event timer goes to zero, and the function delta is applied to all the other
objects (denoted by OBJS of sort ObjectConfiguration) in the system.

230

The function delta defines the effect of time elapse on the objects. Time
only affects the state of TimeActor objects, that have an “clock” attribute
currentTime, by increasing the value of currentTime according to the
elapsed time. For a composite actor, delta just propagates to its inner
actors. Time elapse does not affect other actors and connections:

eq delta(< O : TimeActor | currentTime : T > CF, T’)
= < O : TimeActor | currentTime : T + T’ > delta(CF, T’) .

eq delta(< O : CompositeActor | innerActors : CF > CF’, T)
= < O : CompositeActor | innerActors : delta(CF, T) > delta(CF’, T) .

eq delta(CF, T) = CF [owise] .

This function is also applied to the other elements in the event queue,
where it decreases the remaining time of each event set by the elapsed time
NZT, where x monus y equals max(0, x− y):

eq delta((EVTS ; T ; N) :: QUEUE, T’)
= (EVTS ; T monus T’ ; N) :: delta(QUEUE, T’) .

eq delta(nil, T) = nil .

The next rule is a “microstep tick rule” that advances “time” with some
microsteps if needed to enable the first events in the event queue:

crl [shortTick] :
{OBJS < global : EventQueue | queue : (EVTS ; 0 ; NZ) :: QUEUE >}

=> {OBJS < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >} .

Executing Steps. When the remaining time and microsteps of the first
events in the global event queue are both 0, the executeStep rule can be
applied to perform an iteration of the system:

rl [executeStep] :
{OBJS < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=> {update(< global : EventQueue | queue : QUEUE >
postfire(

portFixPoints(clearPorts(OBJS) releaseEvt(EVTS))))} .

The clearPorts function sets the status of evert port to unknown, and
releaseEvt produces the active-evt message for each event scheduled
to fire, so that those events are delivered into the output ports. The
portFixPoints function finds the fixed points for all the ports (the fire
action). The postfire function “executes” the steps by changing the states
of the objects and generating new events, and the update function updates
the value of each parameter of an actor for the next iteration. We first
define the general cases of these semantic functions that apply to any Actor

instances, and then define those for each actor in Section 8.3.3.

231

It is also important to notice that these functions are declared to be
partial functions, and the innerActors attribute of a composite actor is
declared to have sort ObjectConfiguration. Therefore, a term containing
these function symbols, or a term of a composite actor containing messages
in its innerActors attribute, will only have a kind, but not a sort:

op releaseEvt : Events ~> Configuration .
ops clearPorts portFixPoints : Configuration ~> Configuration .
ops postfire update : Configuration ~> Configuration .

Since the equations defining these functions only apply to terms of sort
Configuration, this ensures that each function can be computed only after all
messages are completely delivered and the “previous” function is computed
(e.g., portFixPoints can be computed after clearPorts is computed).

Computing Expressions. As already mentioned, parameters or ports
may include expressions that need to be computed before performing any
other actions. When computing the value of an expression, the following
values are used for the variables in the expression: (i) if the variable refers
to an input port, then the “current” value of the input port is used after
the status of the port has been determined to be either present or absent;
and (ii) if the variable refers to a parameter, then the “previous” value of
the parameter, computed at the end of the previous iteration, is used.
An expression is evaluated inside the computation attribute of an actor

using a computation configuration, given by either a pair of an expression
and a variable environment or a computation result:

sorts Computation ComputationID ComputationConfig ConfigItem .
op noComputation : -> Computation [ctor] .
op _/_ : ComputationID ComputationConfig -> Computation [ctor] .

op k : Exp -> ConfigItem [ctor] .
op env : EnvMap -> ConfigItem [ctor] .
op __ : ConfigItem ConfigItem -> ComputationConfig [ctor comm] .
op result : Value -> ComputationConfig [ctor] .

A variable environment is a semicolon-separated set x1 ←[v1; · · · ;xn ←[vn
of variable assignments, constructed by the function makeEnv from the input
ports and the parameters of an actor (see Appendix D.3 for its definition).
A variable for an unknown input port is initially set to “unknown” (denoted
by NAME <-?). For each unknown free variable in the variable environment,
the corresponding value is transferred when it is available, i.e., when the
status of an input port becomes present:

232

eq < O : Actor |
ports : < P : InPort | status : present, value : V > PORTS,
computation : CI / env(P <-? ; ENV) K:ConfigItem >

=
< O : Actor |

computation : CI / env(P <-| V ; ENV) K:ConfigItem > .

Roughly, when an actor need to evaluate an expression E for a semantic
function func (such as portFixPoints or postfire), the actor creates the
computation configuration of E using equations of the form:

eq func(< O : C | computation : noComputation, ... > ...)
= func(< O : C | computation : k(E) makeEnv(...), ... > ...) .

Our semantics of the Ptolemy II expression language (in Section 8.3.4) gives
the rewrite sequence k(E) env(x1 ←[v1; · · · ;xn ←[vn) −→R result(V), and
func can be continued with the evaluated value V :

eq func(< O : C | computation : result(V), ... > ...)
= func(< O : C | computation : noComputation, ... > ...) .

Postfire. The postfire function updates internal states and generates
future events that are inserted into the event queue. The postfire function
distributes over the actor objects in the configuration, and propagates to
the enabled inner actors of a composite actor (disabled actors should not
change their states or generate new events). Whenever postfire generates
a new event with value v that should fire at time t and microstep n from
the current time, it produces the schedule-evt message with the newly
generated event, declared by the equations of the form:

eq postfire(< O : C | status : enabled,
ports : < P : OutPort | > PORTS, ... >)

= < O : C | ... > schedule-evt(event(O ! P, v), t, n)

Finally, the following equation defines the default case when postfire

does not change the state of an actor and does not generate a new event,
provided that there exists no ongoing computation of an expression:

ceq postfire(OBJS) = OBJS if noComputation(OBJS) [owise] .

op noComputation : Configuration -> Bool . var CC : Computation .
ceq noComputation(< O : Actor | computation : CC > CF)
= false if CC =/= noComputation .

ceq noComputation(< O : CompositeActor | innerActors : CF > CF’)
= false if noComputation(CF) = false .

eq noComputation(CF) = true [owise] .

233

Computing the Fixed-Point for Ports. The idea behind the definition
of the function portFixPoints is simple. Initially, the only port information
are the events scheduled for this iteration. For each possible case when the
status of an unknown port can be determined to be present, there is an
equation of the following form (and similarly for deciding that a status of
an unknown port will be absent):

eq portFixPoints(
< O : ... | ports : < P : Port | status : unknown > PORTS, ... >
connections and other objects)

= portFixPoints(
< O : ... | ports : < P : Port | value : ...,

status : present > PORTS, ... >
connections and other objects) .

The fixed-point is reached when no such equation can be applied. Then, the
portFixPoints operator is removed by the owise construct, provided that
no computation of an expression is going on:2

ceq portFixPoints(OBJS) = OBJS if noComputation(OBJS) [owise] .

The following equation propagates port status from a known output port
to a connecting unknown input port. The present or absent status (and
possibly the fully evaluated value of sort Value) of the output port P of
enabled actor O is propagated to the input port P’ of the actor O’ through
the corresponding connection O ! P ==> (O’ ! P’) ; EPIS:

vars PORTS PORTS’ REST : ObjectConfiguration . vars O O’ : Oid .
var PS : PortStatus . var EPIS : EPortIdSet . vars P P’ : PortId .

ceq portFixPoints(
< O : Actor | status : enabled,

ports : < P : OutPort | status : PS, value : V > PORTS >
< O’ : Actor |

ports : < P’ : InPort | status : unknown > PORTS’ >
(O ! P ==> (O’ ! P’) ; EPIS) REST)

= portFixPoints(
< O : Actor | >
< O’ : Actor |

ports : < P’ : InPort | status : PS, value : V > PORTS’ >
(O ! P ==> (O’ ! P’) ; EPIS) REST)

if PS =/= unknown .

2The equations defining portFixPoints are terminating, because in each application
of such an equation (except for the ‘owise’ equation), the status of a port goes from
unknown to either present or absent. Confluence of the equations follows from the fact
that Ptolemy II DE models are assumed to be deterministic [125].

234

If some output port has status present but has a non-value expression
PE of sort ProperExp (i.e., expressions that can be further evaluated, defined
in Section 8.3.4), then the computation configuration is created to evaluate
the expression, and the resulting value is plugged back into the output port:

eq portFixPoints(
< O : Actor |

ports : < P : OutPort | status : present, value : PE > PORTS,
parameters : PARAMS, computation : noComputation > REST)

= portFixPoints(
< O : Actor | computation : #port(P) / makeEnv(PORTS PARAMS)

k(PE) > REST) .

eq portFixPoints(< O : Actor |
ports : < P : OutPort | > PORTS,
computation : #port(P) / result(V) > REST)

= portFixPoints(< O : Actor |
ports : < P : OutPort | value : V > PORTS,
computation : noComputation > REST) .

We start the fixed-point computation of inner actors in portFixPoints

of composite actors in the following cases: (i) some events from the event
queue are passed to some inner actors; or (ii) an input port of a composite
actor is connected to some inner actors and the status of the input port is
decided (i.e., either received some value or became absent).
In Case (i), when released events are propagated to some inner actor of

a composite actor, the portFixPoints computation of those inner actors
begins. The following equations describe the propagation of active-evts
from the event queue to inner actors. If there are some events toward an
inner actor of a composite actor, then all such events are passed to the inner
actors and portFixPoints of the inner actors is started:

ceq portFixPoints(
active-evt(event((O . AI) ! P, V))
< O : CompositeActor | innerActors : OBJS > CF)

= portFixPoints(
< O : CompositeActor |

innerActors : portFixPoints(MSGS OBJS) > CF’)
if fr(MSGS, CF’) := filterMsg(O, CF, active-evt(event(AI ! P, V))) .

where the function filterMsg separates the events toward inside from the
others, and returns a constructor fr(Events,Conf) which is a pair of the
desired events and the other configuration.

235

In Case (ii), when a composite actor passes a value (or the knowledge that
input will be absent) to its inner actors, if the inner fixed-point computation
has not started yet or already been finished, then portFixPointsmust again
be called to (re-) compute the fixed-point of the inner diagram (we use the
special name ‘parent’ to denote the containing actor of an actor):

ceq portFixPoints(
< O : CompositeActor |

ports : < P : InPort | status : PS, value : V > PORTS,
innerActors :

(parent ! P) ==> (O’ ! P’ ; EPIS)
< O’ : Actor | ports : < P’ : InPort | status : unknown >

PORTS2 > OBJS,
status : enabled > REST)

= portFixPoints(
< O : CompositeActor |

innerActors :
portFixPoints(*** (re-) start the inner fixed-point

(parent ! P) ==> (O’ ! P’ ; EPIS)
< O’ : Actor | ports : < P’ : InPort | status : PS,

value : V > PORTS2 > OBJS) >
REST) if PS =/= unknown .

Likewise, an inner actor can propagate the status of output ports to the
containing actor when the inner fixed-point is already finished:

ceq portFixPoints(
< O : CompositeActor |

ports : < P : OutPort | status : unknown > PORTS,
innerActors :

(O’ ! P’) ==> (parent ! P ; EPIS)
< O’ : Actor |

status : enabled,
ports : < P’ : OutPort | status : PS,

value : V > PORTS2 > OBJS > REST)
= portFixPoints(

< O : CompositeActor |
ports : < P : OutPort | status : PS, value : V > PORTS,
innerActors :

(O’ ! P’) ==> (parent ! P ; EPIS)
< O’ : Actor | > OBJS > REST) if PS =/= unknown .

For “inactive” cases (e.g., all input ports of an actor are absent or the
status of an actor is disabled), every output port is set to absent, unless it
has a scheduled event from the global event queue (see Appendix D.3.1).

236

8.3.3 DE Semantics of Actors

This section explains how the Real-Time Maude semantics of each actor
can be defined in a modular way. The syntax of each actor is specified by
declaring a suitable subclass of the class Actor in Real-Time Maude, and
the semantics of the actor is specified by declaring three semantic functions
for the actor: init, portFixPoints, and postfire. In this section we only
show the semantics of three actors, and refer to Appendix D.3.2 for the
semantics of other actors, including timed delays and modal models.

Current Time. A current time actor generates an output to denote the
current model time. Because the superclass TimeActor already contains the
current time, the currentTime subclass does not add any new attributes:

class CurrentTime .
subclass CurrentTime < AtomicActor TimeActor .

When the current time actor gets an input, it outputs the current model
time, given by its currentTime attribute. Furthermore, when its lone input
port is absent, its lone output port is also set to absent:

ceq portFixPoints(
< O : CurrentTime | ports : < P’ : OutPort | status : unknown >

< P : InPort | status : PS > PORTS,
currentTime : T, status : enabled > REST)

=
portFixPoints(
< O : CurrentTime |

ports : < P’ : OutPort | status : PS, value : # T >
< P : InPort | > PORTS > REST) if PS =/= unknown .

Since the init and postfire actions do nothing for current time actors, the
equations are not declared (i.e., the default owise equations are used).

Clocks. The Ptolemy II parameters of a clock actor (period, offsets, and
values) are represented in the parameters attribute. The only additional
attribute is the attribute index to keep track of the “index” of the offsets
and values arrays for the next event to be generated:

class Clock | index : Nat .
subclass Clock < AtomicActor .

A clock actor generates an initial event according to the parameters offsets
and values (i.e., the event with value values(0) at time offsets(0)), where
A(# n) denotes the nth element of an array A:

237

eq init(< O : Clock |
parameters : < ’offsets : Parameter | value : V1 >

< ’value : Parameter | value : V2 > PARAMS >)
=

< O : Clock | >
schedule-evt(event(O ! ’output, V2(# 0)), toTime(V1(# 0)), 0) .

A clock actor does not produce any output as a result of any input. Thus,
if the status of its output port is unknown (that is, the clock actor did not
schedule an event for this iteration), it should be set to absent:

eq portFixPoints(
< O : Clock |

ports : < P : OutPort | status : unknown > PORTS > REST)
=

portFixPoints(
< O : Clock |

ports : < P : OutPort | status : absent > PORTS > REST) .

If a clock actor produces an output, then the postfire function should
schedule the next event, and update the index variable as follows, where
A .’length(()) denotes the length of an array A:

ceq postfire(
< O : Clock |

ports : < P : OutPort | status : present > PORTS,
parameters : < ’offsets : Parameter | value : V1 >

< ’values : Parameter | value : V2 > PARAMS,
index : N, status : enabled >)

=
< O : Clock | index : N + 1 >
schedule-evt(event(O ! P, V2(#(N + 1))),

TIME-TO-FIRE,
if TIME-TO-FIRE == 0 then 1 else 0 fi)

if ((# N + # 1) lessThan (V1 . ’length(()))) == # true
/\ TIME-TO-FIRE := toTime((V1(#(N + 1))) - (V1(# N))) .

In the above equation, when the next index N + 1 is less than the length of
the offsets array, the clock actor generates an event with value values(N+1)
at time TIME-TO-FIRE = offsets(N + 1) − offsets(N). If TIME-TO-FIRE is
0, then the microstep of the event is 1, and otherwise, the microstep is 0.
A similar equation defines postfire when a new “cycle” is started, i.e.,
when the next index N + 1 equals the length of the offsets array. In this
case, the index becomes 0, the generated event has the value values(0) and
TIME-TO-FIRE = period − offsets(N) + offsets(0).

238

Finite State Machine (FSM) Actors. A FSM-Actor is characterized
by its current state (or locations), its transitions, and its local variables:

class FSM-Actor | currState : Location,
initState : Location,
transitions : TransitionSet .

subclass FSM-Actor < AtomicActor .

The attribute transitions denotes a semicolon-separated set of transitions,
each has the form id : s –> s′ {guard: g output: pi1 |-> ei1 ; . . . ; pik |-> eik
set: vj1 |-> ej1 ; . . . ; vjl |-> ejl} for a transition id, states/locations s and
s′, Boolean expression g, port names pi1 , . . . , pik , variable names vj1 , . . . , vjl ,
and expressions ei1 , . . . , eik and ej1 , . . . , ejl .
The portFixPoints function must check whether at most one transition

is enabled at any time by evaluating the guard expressions. Given a set of
transitions ti1 : s1 → s′1 {guard :g1 . . .}; · · · ; tin : sn → s′n {guard :gn . . .},
the guard expressions g1, . . . , gn can be computed at the same time using the
corresponding Ptolemy II record expression {ti1 <- g1, . . . , tin <- gn}. The
following equation sets all the guard expressions from the current state STATE
to be computed in the computation attribute, provided that there is some
input to the actor and some output port has status unknown:

vars STATE STATE’ : Location . var TRANSSET : TransitionSet .
var TG : Exp . var VREC : ValueRow . vars OL AL : ExpMap .

ceq portFixPoints(
< O : FSM-Actor |

status : enabled, parameters : PARAMS,
currState : STATE, transitions : TRANSSET,
ports : < P : InPort | status : present >

< P’ : OutPort | status : unknown > PORTS,
computation : noComputation > REST)

=
portFixPoints(
< O : FSM-Actor | computation : #guards / k(E) EV > REST)

if E := makeGuardExp(STATE, TRANSSET)
/\ EV := makeEnv(PARAMS PORTS < P : InPort | status : present >) .

In the following equation, only one transition from the current state STATE
is enabled (i.e., its guard expression is evaluated to true), and the function
updateOutPorts then updates the status and the values of the output ports
according to the current state and input, where the function noGuardTrue

returns true iff the rest of the guard expressions contains no record item of
the form ti <- true (i.e., no enabled transition ti):

239

ceq portFixPoints(
< O : FSM-Actor |

computation : #guards / result({TI <- # true, VREC}),
transitions : (TI : STATE --> STATE’

{guard: TG output: OL set: AL}) ; TRANSSET,
ports : PORTS > REST)

= portFixPoints(
< O : FSM-Actor | computation : noComputation,

ports : updateOutPorts(OL, PORTS) > REST) .
if noGuardExpTrue(VREC) .

On the other hand, if no transition is enabled, then every output port must
be set to absent as follows, where the function setUnknownOutPortsAbsent

sets the status of each output port with status unknown to absent:

ceq portFixPoints(
< O : FSM-Actor | computation : #guards / result({VREC}),

ports : PORTS > REST)
= portFixPoints(

< O : FSM-Actor | computation : noComputation,
ports : setUnknownOutPortsAbsent(PORTS) >

REST)
if noGuardExpTrue(VREC) .

For postfire, the guard expressions are first computed again in a similar
way. An FSM actor does not generate future events, but postfire updates
the internal state (location and parameters) of the actor if exactly one of its
transitions was enabled, and does nothing if no transition is enabled:

ceq postfire(
< O : FSM-Actor |

computation : #guards / result({TI <- # true, VREC}),
transitions : (TI : STATE --> STATE’

{guard: TG output: OL set: AL}) ; TRANSSET,
parameters : PARAMS >)

= < O : FSM-Actor | currState : STATE’,
computation : noComputation,
parameters : updateParam(AL, PARAMS) >

if noGuardExpTrue(VREC) .

ceq postfire(
< O : FSM-Actor | computation : #guards / result({VREC}) >)

= < O : FSM-Actor | computation : noComputation >
if noGuardExpTrue(VREC) .

More details, including the definitions of the functions updateOutPorts and
updateParam, can be found in Appendix D.3.2.

240

8.3.4 Expression Language Semantics

Ptolemy II provides a simple expression language to specify the values of
parameters, guards/actions in FSM actors, etc. The expression language
is similar to expression languages in widely used programming languages.
Expressions consist of constants (e.g., numbers), algebraic operators (e.g.,
arithmetic), and variables that refer to parameters and input ports.

The Ptolemy II expression language supports composite data types such
as arrays, records, and matrices. Arrays are lists of expressions in curly
brackets, e.g., {1, 2.0, "x"}. Records are lists of fields where each field
consists of a name and a value. For example, {a = 1, b = "foo"} is a record
with two fields, named a and b, with values 1 and "foo", respectively.
The Ptolemy II expression language also provides functional expressions.

A functional expressions is either a method call obj.method(arg1 , . . . , argn)
on objects or a general function call function_name(arg1 , . . . , argn). A new
function can be defined by giving a definition of form function(arg1:Type1,

. . . , argn:Typen) function_body_expression. In addition, the expression
language includes a set of built-in methods and functions, such as sin(),
cos(), A.length() for an array A, etc.

Algebraic Semantics. In our representation, Ptolemy II expressions are
terms of sort Exp. Values are expressions that cannot be further evaluated,
and are represented as terms of sort Value, a subsort of Exp. Variables
are terms of sort VarId in our semantics. Constants have sort Value, and
are represented by values in Real-Time Maude, prefixed with the # symbol.
Numerical constants are either rational numbers (including the integers) or
fixed-point constants. For example:

ops -_ ~_ !_ : Exp -> Exp . --- unary
ops _+_ _-_ _*_ _/_ _%_ _^_ : Exp Exp -> Exp . --- numerical
ops _&&_ _||_ : Exp Exp -> Exp . --- logical
...
op _?_:_ : Exp Exp Exp -> Exp [ctor prec 60] . --- conditional

We also define sort ProperExp to denote non-value expressions; that is, all
expressions that can be further evaluated are defined as ProperExp, e.g.:

sort ProperExp .
subsorts VarId < ProperExp < Exp .
ops -_ ~_ !_ : ProperExp -> ProperExp .
ops _+_ _-_ _*_ _/_ _%_ _^_ : ProperExp Exp -> ProperExp .
ops _+_ _-_ _*_ _/_ _%_ _^_ : Exp ProperExp -> ProperExp .
...

241

The algebraic semantics of each operator and data structure can be easily
defined by equations as a usual way. For example, logical expressions and
conditional expressions (condition ? exp1 : exp2) are defined as follows:

eq ! (# B) = #(not B) . --- negation
eq (# B) && (# B’) = # (B and B’) . --- and
eq (# B) || (# B’) = #(B or B’) . --- or
eq # true ? E : E’ = E . eq # false ? E : E’ = E’ .

K Semantics. The semantics of the Ptolemy II expression language is
defined in an actor by a computation configuration—a pair of an expression
E and a variable environment x1 ←[v1; · · · ;xn ←[vn—and specifies the
rewrite sequence k(E) env(x1 ←[v1; · · · ;xn ← [vn) −→R result(V) to the
value V of E based on the environment.
We define the entire semantics of the expression language by using the

K rewriting-based semantics framework [154], since it provides a more clear
way to describe interactions between expressions and actors. The semantics
is defined by repeating the following three steps until a single value remains,
given a computation configuration k(E) env(ENV):

1. Systemically construct a data structure, called a computation, which
is a y-separated lists T1 y T2 y · · ·y Tn of computational tasks to
“sequentially” evaluate the expression E;

2. Define an equation or a rule to evaluate the first and most elementary
task T1 in the list to a value V1 using the environment ENV ; and

3. Combine the completed task V1 with the next task T2, and obtain a
new computation T ′2 y T3 y · · ·y Tn.

For example, given the environment x ←[3, the expression x + 1 becomes
x y (� + 1) by Step 1, meaning that x will be evaluated first. By Step 2,
it becomes 3 y (� + 1), and then by Step 3, it becomes 3 + 1. Finally, by
the algebraic semantics of +, we have the value 4. The auxiliary operators
to construct computations, such as �+_, are called freezer operators.
Computations are represented as terms of sort K, constructed by the list

concatenation operator ->. In particular, an expression is an item of a
computation, and a computation configuration containing only a single value
V is immediately reduced to the configuration result(V):

sort K . subsort Exp < K .
op nil : -> K [ctor] . op _->_ : K K -> K [ctor assoc id: nil] .
eq k(V) env(ENV) = result(V) .

242

Our K-based semantics defines the following three types of equations:
(i) equations, called heating rules, to divide a non-value expressions E to a
sequence T1 y T2 y · · · y Tn of simpler tasks (for Step 1); (ii) equations
to fully evaluate “atomic” tasks, such as the equations for the algebraic
semantics of operators; and (iii) equations, called cooling rules, to combine
a completed task (i.e., a value) with the next task (for Step 3).

Variable Expressions. If the first item in a computation is a variable,
then the corresponding value is obtained from the environment (in Step 2):

var I : VarId . var ENV : EnvMap . var K : K .
vars V V’ : Value . vars E E’ : Exp . vars PE PE’ : ProperExp .

eq k(I -> K) env(I <-| V ; ENV) = k(V -> K) env(I <-| V ; ENV) .

Recall that each variable for an unknown input port is initially set to be
unknown in a variable environment. Intuitively, when an actor evaluates an
expression that contains a variable for an input port, the actor must wait
until the status of the input port is determined (by the fire action). Such a
“waiting” mechanism is naturally specified by the above equation.

Structural Equations. The heating and cooling equations for unary and
binary operators are defined by identifying non-value subexpressions of sort
ProperExp; e.g., for the negation operator ! and the addition operator +:

eq k(! PE -> K) = k(PE -> ![] -> K) . --- heating
eq k(V -> ![] -> K) = k(! V -> K) . --- cooling

eq k(PE + E’ -> K) = k(PE -> []+ E’ -> K) . --- heating (left)
eq k(V -> []+ E’ -> K) = k(V + E’ -> K) . --- cooling (left)
eq k(E + PE’ -> K) = k(PE’ -> E +[] -> K) . --- heating (right)
eq k(V’ -> E +[] -> K) = k(E + V’ -> K) . --- cooling (right)

For a conditional expression, only the first argument (i.e., the condition)
needs to be evaluated before computing the other arguments:

eq k(PE ? E : E’ -> K) = k(PE -> []? E : E’ -> K) . --- heating
eq k(V -> []? E : E’ -> K) = k(V ? E : E’ -> K) . --- cooling

Notice that declaring heating and cooling equations also requires defining
the corresponding freezer operators.3 We refer to Appendix D.3.3 for more
details on our expression language semantics, including other constructs.

3As explained in [154], the heating and cooling rules (and the freezer operators) can
be automatically generated from the syntax of the language.

243

Figure 8.6: Dialog window for the Real Time Maude code generation

8.4 Formal Verification in Ptolemy II

Although simuations of Ptolemy II models are very useful for prototyping
purposes, it is hard to use simulations to verify that a Ptolemy II model—
even though it is assumed to be deterministic—satisfies more advanced
safety and liveness properties. Indeed, the verification effort described in
Section 8.5 made us aware of a design flaw in the Ptolemy II model of the
fault-tolerant traffic light that had not been discovered during Ptolemy II
simulations. This section explains how the Real-Time Maude verification of
a Ptolemy II DE design model has been integrated into the Ptolemy II tool,
and how users can easily verify their Ptolemy II models without needing to
understand the Real-Time Maude representation.

Code Generation. Ptolemy II gives the user the possibility of adding a
“code generation button.” When the RTMaudeCodeGenerator button in a
Ptolemy II DE model is double-clicked, Ptolemy II opens a dialog window
which allows the user to start code generation and to formally analyze the
generated code. After clicking the Generate button in the dialog window,
the generated Real-Time Maude code and the analysis result are displayed.
Figure 8.6 shows the dialog window for the simple traffic light system in
Example 8.1. The two temporal logic properties discussed below have been
entered into the window. The Generate button has already been clicked and
the results of model checking those properties are displayed in the “Code
Generator Commands” box (see Appendix D.2 for details).

244

Predefined State Propositions. An LTL formula is constructed from
a set of state propositions. Having to define such state propositions makes
the verification process nontrivial for the Ptolemy II user, since it requires
some knowledge of the Real-Time Maude representation of the Ptolemy II
model, as well as the ability to define functions in Real-Time Maude. To
free the user from this burden, we have predefined several generic atomic
propositions for Ptolemy II models. For example, the state proposition
actorId | var1 = value1 , . . . , varn = valuen holds in a state if the value
of the parameter var i of an actor equals valuei for each 1 ≤ i ≤ n, where
actorId is its global actor identifier. Similarly, the propositions

actorId | port p is value actorId | port p is status

actorId ? boolean_expression

hold if, respectively, the port p of actor actorId has the value value, the port
p has status status, or the given boolean_expression is evaluated to true.
For FSM actors and modal models, the proposition actorId @ location is
satisfied iff the actor with global name actorId is in local state location.

An LTL formula may contain multiple occurrences of atomic propositions.
To avoid having to write long global actor names too many times, we can
simplify a formula with actor scope. The formula actorId : formula denotes
that formula should hold in the actor with the global identifier actorId. For
example, the formula o1. o2 : � (this @ l1 ∧ o4 . o5 @ l2) is equivalent
to � (o1. o2 @ l1 ∧ o1. o2. o4 . o5 @ l2), where this denotes the identity.
Consider the flat traffic light system given in Example 8.1, where each

traffic light is represented by set of variables. The safety property we
want to verify is that it is never the case that both the car light and the
pedestrian light show green at the same time. If the name of the model
is ’DE_SimpleTrafficLight, then using the predefined state propositions,
this safety property can be specified as the LTL formula:

[] ~ (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1))

We can also check the liveness property that both pedestrian and cars
can cross infinitely often. That is, it is infinitely often the case that the
pedestrian light is green when the car light is not green, and it is also
infinitely often the case that the car light is green when the pedestrian light
is not green, specified as the LTL formula:

’DE_SimpleTrafficLight : ([]<> (this | ’Pgrn = # 1, ’Cgrn = # 0) /\
[]<> (this | ’Pgrn = # 0, ’Cgrn = # 1))

245

Figure 8.7: Ptolemy II DE model of the railroad crossing.

8.5 Case Studies

This section presents three Ptolemy II DE models and shows how they have
been verified in Real-Time Maude from within Ptolemy II. Section 8.5.1
presents the benchmark railroad crossing example, Section 8.5.2 presents a
hierarchical model of a fault-tolerant traffic light system, and Section 8.5.3
presents an assembly line due to Misra [144].

8.5.1 Railroad Crossing

A gate at the intersection of the train track and a road should be lowered
when a train is in the intersection. Figure 8.7 shows a Ptolemy II DE model
RailroadSystem. This model consists of two finite state machine (FSM)
actors: a Train actor that models trains, and a Gate actor that controls the
gate. In addition, the model has Boolean variables Tin (denoting if a train is
in the intersection), Tleave (denoting if a train is leaving), Tapproaching
(denoting 1 if a train is approaching), and Gopen (denoting if the gate is
open). State changes are triggered by a Clock actor. These variables are
set by signals from the output ports of the train and the gate controller.

246

The Train actor has five states, and a local variable distance denoting
the distance between the train and the beginning of the intersection. The
Train has one input port Sec, and three output ports Tin, Tleave, and
Tapproaching. Initially, the state is Tinit. The actor stays in state far as
long as distance < −3, while the value of distance increases by 2 each time
there is input in the Sec port. When distance = −3, it takes a transition
to state approaching, and outputs 1 through its Tapproaching port. The
distance increases by 1 for each time unit in state approaching (as well as
in states within and leaving). When distance = 0, the actor goes to
state within, and emits a signal through its Tin port. When distance ≥ 3,
the train is leaving the intersection, and an output is emitted through the
Tleave port. When distance > 10, the train disappears and a signal with
value 0 is output through all three output ports. Finally, the actor goes to
state far again, and the value of distance is set to -10.

The Gate actor responds to input from the Train actor through its three
input ports Tapproaching, Tin, and Tleave by the necessary signal through
its Gopen output port. In particular, the Gate actor outputs 1 through the
Gopen output port whenever it goes to state open.
The main safety requirement of RailroadSystem is that whenever a train

is in the intersection, the gate must be closed. In our model, a train is in
the intersection when the ’Train actor is in state ’within, and the gate is
closed when the ’Gate actor is in state ’closed. We want to verify that it is
always the case that the former implies the latter, expressed as the following
LTL formula using the predefined propositions in Section 8.4:

� ((’RailroadSystem . ’Train @ ’within)
→ (’RailroadSystem . ’Gate @ ’closed))

Verification of this property through the Real-Time Maude code generation
and analysis interface in Ptolemy II yielded the expected result true, proving
that the desired property is satisfied in this Ptolemy II model.
We have also verified that the Train actor will reach the state within

within 7 time units from the start of system execution:

3 (’RailroadSystem . ’Train @ ’within) in time <= 7

The execution of each verification command in this case study took less than
one second on a 2.4 GHz Intel Core 2 Duo processor.

247

TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight

Figure 8.8: A hierarchical fault-tolerant traffic light system.

8.5.2 Hierarchical Traffic Light

This section describes the verification of the hierarchical Ptolemy II DE
model in [44], illustrated in Figure 8.8, that extends the flat traffic light
system in Example 8.1 to a fault-tolerant traffic light system consisting of
one car light and one pedestrian light.
The FSM actor Decision “generates” failures and repairs by alternating

between staying in state Normal for 15 time units and staying in state for
Abnormal for 5 time units. Whenever the actor takes a transition with target
Normal, it sends a signal through its Ok port, and whenever it reaches, or
stays in, state Abnormal, the actor sends a signal through its Error port.
The actor TrafficLight is a modal model; whenever it is in error mode

and receives a signal through its Ok port, the actor goes to normal mode,
and vice versa when it receives an Error event in normal mode. The FSM
actor refining the error mode has three states. In this mode, all lights are
turned off except for the blinking yellow light of the car light. The refinement
of the normal mode is the composite actor that consists of the FSM actors
CarLight and PedestrianLight, explained in Example 8.1, defining the
behavior of the two lights during normal operations.

248

The main properties we have verified are the safety and liveness properties
described in Section 8.4:

� (’HierarchicalTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1)),

’HierarchicalTrafficLight : (�3 (this | ’Pgrn = # 1, ’Cgrn = # 0) ∧
�3 (this | ’Pgrn = # 0, ’Cgrn = # 1)).

The following bounded response property states that if some error has
occurred (i.e., the decision actor generates an error), then the car light turns
yellow within one time unit:

’HierarchicalTrafficLight : ((’Decision | port ’Error is present)
=> <>le(1) (this | ’Cyel = # 1))

The following property states that not only will the car light turn yellow
within 1 time unit of a failure, but the other car lights will be turned off:

’HierarchicalTrafficLight : ((’Decision | port ’Error is present)
=> <>le(1) (this | ’Cyel = # 1, ’Cgrn = # 0, ’Cred = # 0))

Model checking this property returns a counter-example which shows that,
after a failure, the car light may also show red or green in addition to blinking
yellow. The reason for this flaw is that each time we enter the error mode,
the Error actor is not re-initialized.
The final bounded response property is that whenever the traffic light

goes to an error state, it is repaired within at most 6 time units:

’HierarchicalTrafficLight :
((’TrafficLight @ ’error) => <>le(6) (’TrafficLight @ ’normal))

Model checking the following property verifies that there is at least 16
time units between a repair of an error and the emergence of the next error:

(’HierarchicalTrafficLight : ’TrafficLight @ ’error)
separated by >= 16

Finally, model checking the following property verifies that there is at
least 3 time units between consecutive red pedestrian lights:

(’HierarchicalTrafficLight | ’Pred = # 1) separated by >= 3

The execution of each verification command took around seven seconds in
this case study on the same machine.

249

Figure 8.9: The assembly line example.

8.5.3 Assembly Line

We have simulated in Real-Time Maude the “assembly line” example of
Misra [144] in Figure 8.9. In this model, a clock Jobs generates a set of
jobs at certain times. The timed plotter JobArrivedTime records the actual
times (obtained through the currentTime) when the jobs arrived.

Each job is executed in three different ways (at Station1, Station2, and
Station3). First, a job gets assigned the time that it takes to execute
the first task of the job. This is done by the Ramp actor ServiceTimes1.
The actual “wait” is first done at the noninterruptible timer Station1. The
point of using a noninterruptible timer is that the count down does not start
if some other job is serviced.4 After finishing the first part,the job is then
assigned a duration of the second part in the ramp ServiceTimes2, and
waits accordingly at the noninterrruptible timer Station2. Finally, when
that wait is over, the process repeats for the third part of the task. The
timed plotter StationsFinishedTimes records the times when jobs finish
executing the first, the second, and the third part of the jobs.
In order to simulate the system up to time t in Real-Time Maude, we

write the time bound t in the Simulation bound item of the dialog window
(see Figure 8.6). The output shows the final state, where the timed plotter
object ’StationsFinishedTimes shows the times when events happened:

4For example, this can be compared to a gas station. It takes so long to fill up the gas
tank of your car, but if someone else is already pumping gas, you must also wait for that
car to stop pumping and to drive away.

250

{< ’AssemblyLine : CompositeActor | innerActors : (
< ’StationsFinishedTimes : TimedPlotter |
currentTime : 49,
event-history :
(source: ’Station1 ! ’output time: 9 value: # 1) ++
(source: ’Station1 ! ’output time: 19 value: # 1) ++
(source: ’Station2 ! ’output time: 21 value: # 2) ++
(source: ’Station3 ! ’output time: 23 value: # 3) ++
(source: ’Station1 ! ’output time: 31 value: # 1) ++
(source: ’Station2 ! ’output time: 36 value: # 2) ++
(source: ’Station1 ! ’output time: 37 value: # 1) ++
(source: ’Station2 ! ’output time: 38 value: # 2) ++
(source: ’Station3 ! ’output time: 39 value: # 3) ++
(source: ’Station3 ! ’output time: 40 value: # 3) ++
(source: ’Station2 ! ’output time: 45 value: # 2) ++
(source: ’Station3 ! ’output time: 49 value: # 3),

parameters : none, ... > ...), ... >
< global : EventQueue | queue : nil >} in time 49

For example, we see that Station2 finish each job at time 21, 36, 38 and
45, respectively. These results are the same as the results shown in the
Ptolemy II timed plotters after the Ptolemy II executions.

8.6 Concluding Remarks

This chapter has explained how the semantics of Ptolemy II DE models
can be formalized in Real-Time Maude. The expressiveness of Real-Time
Maude is necessary to define this semantics, including the use of unbounded
data structures, nested objects, and advanced membership equational logic
features such as partial functions and the owise construct. An additional
contribution of our work is the clarification of the semantics of modal models,
for which we have given a composite-actor semantics in Ptolemy II. We
have integrated Real-Time Maude verification into Ptolemy II, and have
defined useful atomic propositions, so that a Ptolemy II DE model can be
easily verified in Ptolemy II. This enables a model-engineering process that
combines the convenience of Ptolemy II modeling and simulation with formal
verification in Real-Time Maude.

251

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Rewriting-based model checking integrates the power of modeling languages
with the automatic nature of model checking, using the formal semantics of
different system specification languages, and exploiting the expressive power
of rewriting logic. The rewriting-based formal semantics automatically gives
the mathematical model RM of a system specification M .

In order to establish this rewriting-based model checking method, we have
needed to develop: (i) well-matched property specification languages with
efficient model checking algorithms, (ii) methods to deal with infinite-state
systems and the state space explosion problem, and (iii) fully integrated
model-engineering methods for practical applications.
Therefore, in this dissertation we presented the model checking algorithms

and tools for LTLR properties under localized fairness, various infinite-state
model checking techniques, the Multirate PALS methodology to reduce the
system complexity of multirate distributed cyber-physical systems, and fully
integrated model checking environments for two embedded system modeling
languages based on their formal rewriting-based semantics.

9.1 Summary

We presented the automata-theoretic foundations and a tool for model
checking properties of rewriting logic specifications in the linear temporal
logic of rewriting (LTLR), where LTLR extends LTL by just adding spatial
action patterns. We illustrated how spatial action patterns can be easily
defined by means of equations in a similar way as state propositions. This
strengthens and makes practical the claim that rewriting logic and LTLR
are well-matched as a tandem of logics.

252

We presented an efficient on-the-fly algorithm for model checking LTLR
properties under parameterized fairness. Parameterized fairness frequently
occurs in many concurrent systems, but model checking under parameterized
fairness has not been supported by existing model checking methods and
tools before our work. We have implemented this algorithm in the Maude
Fair LTLR model checker, developed as an extension of the Maude system
at the C++ level, and have shown that it has comparable performance to
that of other explicit-state model checkers that support fairness.
For infinite-state systems, we presented a number of infinite-state model

checking techniques to verify LTLR properties: equational abstractions to
define quotients of the system, folding abstractions to reduce the system by
folding preorders, narrowing-based symbolic model checking, and predicate
abstractions using E-unification. We showed that equational abstractions
can be bisimilar, and that folding abstractions can be faithful. We also
showed that narrowing-based model checking can be used together with
equational abstraction to further reduce the system’s logical state space.

For virtual synchronous multirate cyber-physical systems, we presented
Multirate PALS to drastically reduce the system complexity. We defined a
Multirate PALS transformation E 7→ MA(E, T,Γ) from a multirate ensemble
E to its distributed real-time implementationMA(E, T,Γ) with global period
T and performance parameters Γ, where E and MA(E, T,Γ) are bisimilar.
We showed how the Multirate PALS methodology can be used to formally
specify and verify multirate distributed hybrid systems.
In order to make the Multirate PALS methodology available within the

industrial modeling standard AADL, we defined the Multirate Synchronous
AADL language. We defined the formal semantics of Multirate Synchronous
AADL in rewriting logic. We have then developed the MR-SynchAADL
plugin, together with a simple requirements specification language, to fully
integrate rewriting-based model checking into the OSATE tool environment
for AADL. We illustrated the effectiveness of our tool with case studies.
Finally, we presented the fully integrated modeling and model checking

environment for Ptolemy II DE models. We defined the formal semantics
of a significant subset of Ptolemy II DE models in rewriting logic, and also
defined a simple property specification language for Ptolemy II DE models.
We have integrated rewriting-based model checking into Ptolemy II using
Ptolemy II’s code generation infrastructure, so that Ptolemy II DE models
can be easily verified from within Ptolemy II. This combines Ptolemy II’s
graphical modeling capability with rewriting-based formal verification.

253

9.2 Future Work

Richer Property Specification Languages. In this thesis LTLR under
parameterized fairness was mainly considered as a well-matched property
specification language for rewriting logic. Similarly, we can consider other
classes of property specification languages. For example, model checking
algorithms of TLR∗ under parameterized fairness have not been developed
yet. We can consider similar extensions for probabilistic or timed temporal
logics. Moreover, we can develop an efficient model checking algorithm
for a richer class of parameterized LTLR formulas, extending the class of
parameterized fairness assumptions, using parameter abstraction.

Infinite State Model Checking. In this thesis we presented bisimilar
and faithful abstractions to deal with spurious counterexamples. Instead,
we can also develop counterexample guided abstraction refinement methods
[55] for rewriting-based abstraction methods. Another promising research
direction is to combine our infinite-state model checking methods, based on
narrowing and E-unification, with SMT techniques [34]. For example, some
E-equality constraint that cannot be decided in the current framework can
be directly solvable using SMT solvers.

Multirate PALS. The Multirate PALS pattern is fully constructive and
can be automated as a theory transformation. Therefore, an obvious next
step is to automate the Multirate PALS transformation for the generic
rewriting-based framework in Section 6.4.2. Another immediate future work
is to generalize Multirate PALS to distributed hybrid system with physically
correlated environments. As discussed in Section 6.4, this is currently not
allowed in the Multirate PALS methodology. Additionally, we can combine
Multirate PALS with abstraction methods for hybrid systems [54].

Modeling Languages. For Multirate Synchronous AADL and Ptolemy II
DE models, larger subsets of the languages can be formalized. Also, other
model checking methods, such as statistical model checking, can be applied
to analyze probabilistic models of embedded systems. One useful but missing
feature in the current tools is to visualize counterexamples generated by
model checking in the modeling tools: this should be fairly easy to achieve
since our semantics preserves the structure of the design models. Finally,
developing rewriting-based model checking environments for other modeling
languages is also an interesting future research direction.

254

Part IV

Appendix

255

APPENDIX A

MORE LTLR CASE STUDIES AND
IMPLEMENTATION

A.1 More Case Studies

All the case studies for this chapter, including those in Chapters 3 and 4,
are available at http://maude.cs.illinois.edu/tools/tlr.

A.1.1 Fault-Tolerant Client-Server Communication

This section shows how the simple fault-tolerant client-server communication
model in Example 4.2 can be verified under localized fairness using our tool.
The configuration of the system is defined by the following module, where a
client is represented as a term [C,S,N,W], a server is represented as a term
[S], and a message is represented as a term I <- {J,N}:

fmod CLIENT-SERVER-SYNTAX is
protecting NAT .
sort Oid Nat? Conf . subsort Nat < Nat? .
op nil : -> Nat? [ctor] .
op f : Oid Oid Nat -> Nat . ops a b c : -> Oid [ctor] .
op null : -> Conf [ctor] .
op __ : Conf Conf -> Conf [ctor assoc comm id: null] .
op [_] : Oid -> Conf [ctor] . *** servers
op _<-{_,_} : Oid Oid Nat -> Conf [ctor] . *** messages
op [_,_,_,_] : Oid Oid Nat Nat? -> Conf [ctor] . *** clients

endfm

For example, the term [a] [b, a, 1, nil] [c, a, 2, nil] a <-{b, 1} describes a state
containing one server, two clients, and one message.

256

http://maude.cs.illinois.edu/tools/tlr

The behavior is defined by the following system module CLIENT-SERVER

in which the metadata attributes declare the localized fairness specification
(J = { {′req : ′C\C} }, F = { {′reply : ′S\S; ′C\C}, {′rec : ′C\C} }):

mod CLIENT-SERVER is
including CLIENT-SERVER-SYNTAX .
vars C S I J : Oid . vars N M : Nat .
rl [req] : [C,S,N,nil]

=> [C,S,N,nil] S <-{C,N} [metadata "just(C)"] .
rl [reply]: S <-{C,N} [S]

=> [S] C <-{S,f(S,C,N)} [metadata "fair(S,C)"] .
rl [rec] : C <-{S,M} [C,S,N,nil]

=> [C,S,N,M] [metadata "fair(C)"] .
rl [dupl] : I <-{J,M} => I <-{J,M} I <-{J,M} .
rl [loss] : I <-{J,M} => null .

endm

This system has an infinite number of reachable states from any initial
state due to the req and dupl rules, but we can define a finite-state equational
abstraction (see Section 5.3) by adding extra equations and rules in the
following module (with similar metadata attributes):

mod CLIENT-SERVER-ABS is
including CLIENT-SERVER . vars C S I : Oid . vars N M : Nat .
eq I <-{C,N} I <-{C,N} = I <-{C,N} .
rl [reply]: S <-{C,N} [S] => S <-{C,N} [S] C <-{S,f(S,C,N)}

[metadata "fair(S,C)"] .
rl [rec] : C <-{S,M} [C,S,N,nil] => C <-{S,M} [C,S,N,M]

[metadata "fair(C)"] .
rl [loss] : I <-{C,N} => I <-{C,N} .

endm

One of the key properties of this system is that any client should eventually
receive the answer from its server, expressed as the formula 3answered(b)
for client b, where the state proposition answered(b) means that client b has
a non-nil value in its fourth component:

mod CLIENT-SERVER-CHECK is
protecting CLIENT-SERVER-ABS . including LTLR-MODEL-CHECKER .
subsort Conf < State .
vars C S : Oid . vars N M : Nat . var CF : Conf .
op answered : Oid -> Prop [ctor] . op init : -> State .
eq [C,S,N,M] CF |= answered(C) = true .
eq CF |= answered(C) = false [owise] .
eq init = [a] [b,a,1,nil] [c,a,2,nil] .

endm

257

By model checking the formula 3answered(b) without fairness, we can
find a counterexample in the abstract model, where the rule rec has never
been applied for client b even though it is infinitely often enabled:

Maude> red modelCheck(init, <> answered(b)) .
result ModelCheckResult: counterexample(
{[a][b,a,1,nil][c,a,2,nil], {’req}}
{[a] a <-{b,1} [b,a,1,nil] [c,a,2,nil], {’loss}}
{[a] [b,a,1,nil] [c,a,2,nil], {’req}}
{[a] a <-{c,2} [b,a,1,nil] [c,a,2,nil], {’reply}}
{[a] c <-{a,f(a,c,2)} [b,a,1,nil] [c,a,2,nil], {’rec}}
{[a] [b,a,1,nil] [c,a,2,f(a,c,2)], {’req}}
{[a] a <-{b,1} [b,a,1,nil][c,a,2,f(a,c,2)], {’reply}}
,
{[a] b <-{a,f(a,b,1)} [b,a,1,nil][c,a,2,f(a,c,2)], {’req}}
{[a] a <-{b,1} b <-{a,f(a,b,1)} [b,a,1,nil][c,a,2,f(a,c,2)], {’reply}})

The following command gives the model checking result of the formula
3answered(b) under the given localized fairness specification:

Maude> (pfmc init |= <> answered(b) .)
ltlr model check under localized fairness in CLIENT-SERVER-CHECK:
init |= <> answered(b)

result Bool :
true

A.1.2 An Unordered Communication Channel

This section illustrates a simple communication channel in which messages
can get out of order. We specify the protocol as a rewrite theory slightly
modified from [75]. In this protocol, a sender communicates with a receiver
through an unordered channel. In order to achieve in-order communication
in spite of the unordered nature of the channel, the sender sends each data
item in a message together with a sequence number; and the receiver sends
back an ack message indicating that it has received the item.
The state of the system is a 5-tuple {Buf S ,CtrS | Channel | BufR,CtrR},

where Buf S is a buffer for the sender containing the current list of items to
be sent, BufR is a buffer for the receiver storing the sequence of items
already received, CtrS and CtrR are counters keeping track of the sequence
number, and Channel is the unordered channel modeled by a multiset of
messages. The protocol is specified by the following system module, where
the imported module NAT-LIST defines a list data structure for numbers
with the list-constructor ; and the list-append operator @:

258

mod UNORDERED-CHANNEL is
protecting NAT-LIST .
vars N M J K : Nat . vars L P : List . var C : Conf .

sorts Conf Msg ChannelState . subsort Msg < Conf .
op null : -> Conf [ctor] .
op __ : Conf Conf -> Conf [ctor assoc comm id: null] .
op ack : Nat -> Msg [ctor] .
op [_,_] : Nat Nat -> Msg [ctor] .
op {_,_|_|_,_} : List Nat Conf List Nat -> ChannelState [ctor] .

rl [snd]: {N ; L, M | C | P, K} => {N ; L, M | [N,M] C | P, K} .
rl [rec]: {L, M | [N,J] C | P, J}

=> {L, M | ack(J) C | P @ (N ; nil), s(J)} .
rl [ack]: {N ; L, J | ack(J) C | P, M} => {L, s(J) | C | P, M} .

endm

Since the system is infinite-state, we define an equational abstraction [139]
(see Section 5.3) by adding an extra equation, and by adding an extra rule
to keep the system coherent [75], where an unbounded number of duplicate
messages are abstracted into a single message:

mod UNORDERED-CHANNEL-ABS is
including UNORDERED-CHANNEL .
vars N M J K : Nat . vars L P : List . var C : Conf .

eq {L, M | [N,J] [N,J] C | P, K} = {L, M | [N,J] C | P, K} .
rl [rec]: {L, M | [N,J] C | P, J}

=> {L, M | [N,J] ack(J) C | P @ (N ; nil), s(J)} .
endm

We are interested in the liveness property 3recQ(L), meaning that the
receiver eventually gets the entire sequence L from the sender, where the
state proposition recQ(L) is equationally defined in the following module:

mod UNORDERED-CHANNEL-ABS-CHECK is
protecting UNORDERED-CHANNEL-ABS . including LTLR-MODEL-CHECKER .
including SPATIAL-ACTION-PATTERN . subsort ChannelState < State .
vars L L1 L2 : List . vars N K : Nat . var C : Conf .
op recQ : List -> Prop . op init : -> State .
eq {L1, N | C | L2, K} |= recQ(L) = (L == L2) .
eq init = {0 ; 1 ; 2 ; nil , 0 | null | nil , 0} .

endm

However, the property3recQ(L) is not satisfied without appropriate fairness
assumptions, since the snd rule can keep resending a given element forever.

259

Maude> red modelCheck(init, <> recQ(0 ; 1 ; 2 ; nil)) .
result ModelCheckResult :

counterexample({{0 ; 1 ; 2 ; nil,0 | null | nil,0},{’snd}}
{{0 ; 1 ; 2 ; nil,0 |[0,0]| nil,0},{’rec}}
{{0 ; 1 ; 2 ; nil,0 | ack(0)| 0 ; nil,1},{’ack}}
{{1 ; 2 ; nil,1 | null | 0 ; nil,1},{’snd}}
{{1 ; 2 ; nil,1 |[1,1]| 0 ; nil,1},{’rec}}
{{1 ; 2 ; nil,1 | ack(1)| 0 ; 1 ; nil,2},{’ack}}
{{2 ; nil,2 | null | 0 ; 1 ; nil,2},{’snd}}
,
{{2 ; nil,2 |[2,2]| 0 ; 1 ; nil,2},{’snd}})

By simply assuming that such a situation cannot take place, we can verify
the property 3recQ(L) under the fairness assumption �3¬{′snd}:

Maude> red modelCheck(init, []<> ~ {’snd} -> <> recQ(0 ; 1 ; 2 ; nil)) .
result Bool: true

This command can be equivalently expressed as the following Full Maude
command with an explicit fairness assumption:

Maude> (mc init |= <> recQ(0 ; 1 ; 2 ; nil)
under (just : {’snd} => False) .)

ltlr model check in UNORDERED-CHANNEL-ABS-CHECK :
init |= <> recQ(0 ; 1 ; s 1 ; nil)

under fairness :
just : {’snd} => False

result Bool :
true

Note that the spatial action pattern {’snd} cannot be directly expressed in
LTL without modifying the given protocol specification.

A.1.3 Dekker’s Algorithm

This section illustrates Dekker’s algorithm, one of the earliest solutions to
the mutual exclusion problem. Dekker’s algorithm has two processes with
entirely symmetric code. Process 1 sets variable c1 to 1 to indicate that it
wishes to enter its critical section. Process 2 does the same with variable
c2. If one process, after setting its variable to 1, finds that the variable of
its competitor is 0, then it enters its critical section. In case of a tie, the tie
is broken using variable turn that takes values in {1, 2}.

260

Using a simple parallel language presented in [61, 81], the state of the
system is modeled as a pair {S, M} with S a multiset of processes and M

a shared memory. Each process is represented as a pair [I,R] with I its
process id and R its program code to be executed next by process. The
following system module PARALLEL, adapted from [61, 81], defines a simple
parallel language, where the language’s operational semantics is defined by
rewrite rules for each language feature.

mod PARALLEL is
protecting SEQUENTIAL .
sorts Pid Process Soup MachineState . subsort Process < Soup .
op [_,_] : Pid Program -> Process [ctor] .
op empty : -> Soup [ctor] .
op _|_ : Soup Soup -> Soup [ctor comm assoc id: empty] .
op {_,_} : Soup Memory -> MachineState [ctor] .

var S : Soup . var Q : Qid . vars N X : Int .
vars I J : Pid . vars P R : Program .
var T : Test . var M : Memory .
var U : UserStatement . var L : LoopingUserStatement .

rl [user]: {[I, U ; R] | S, M} => {[I, R] | S, M} .
rl [loop]: {[I, L ; R] | S, M} => {[I, L ; R] | S, M} .
rl [asgn]: {[I, Q := N ; R] | S, [Q,X] M}

=> {[I, R] | S, [Q,N] M} .
crl [conT]: {[I, if T then P fi ; R] | S, M}

=> {[I, P ; R] | S, M}
if eval(T,M) .

crl [conF]: {[I, if T then P fi ; R] | S, M}
=> {[I, skip ; R] | S, M}

if not eval(T,M) .
crl [whiT]: {[I, while T do P od ; R] | S, M}

=> {[I, P ; while T do P od ; R] | S, M}
if eval(T,M) .

crl [whiF]: {[I, while T do P od ; R] | S, M}
=> {[I, R] | S, M}

if not eval(T,M) .
rl [rept]: {[I, repeat P forever ; R] | S, M}

=> {[I, P ; repeat P forever ; R] | S, M} .
endm

We refer to [61, 81] for the details about the module SEQUENTIAL, which
defines the syntax of the language and some auxiliary functions such as
eval : Test Memory -> Bool.

261

The initial state with two processes p1 and p2 for Dekker’s algorithm is
represented by the term {[1,p1] | [2,p2], [’c1,0] [’c2,0] [’turn,1]},
where p1 and p2 are defined in the following module:

mod DEKKER is
including PARALLEL .
subsort Int < Pid . ops p1 p2 : -> Program .
op crit : -> UserStatement .
op rem : -> LoopingUserStatement .

eq p1 = repeat
’c1 := 1 ;
while ’c2 = 1 do

if ’turn = 2 then
’c1 := 0 ;
while ’turn = 2 do skip od ;
’c1 := 1

fi
od ;
crit ;
’turn := 2 ; ’c1 := 0 ; rem

forever .

eq p2 = repeat
’c2 := 1 ;
while ’c1 = 1 do

if ’turn = 1 then
’c2 := 0 ;
while ’turn = 1 do skip od ;
’c2 := 1

fi
od ;
crit ;
’turn := 1 ; ’c2 := 0 ; rem

forever .
endm

The code fragment of the critical section is abstracted as the constant crit,
and the code fragment of the remaining part is abstracted as rem. We
assume that crit is terminating, but rem may not be. This is achieved
by declaring crit as a constant of sort UserStatement, and rem as one
of sort LoopingUserStatement, where LoopingUserStatement is a subsort of
UserStatement. Notice that both rules user and loop can be applied to the
constant rem of sort LoopingUserStatement.

262

There are two requirements for Dekker’s algorithm in LTL as follows,
where the state proposition in-rem(i) holds iff Process i is in the rem section,
the state proposition in-crit(i) holds iff Process i is in the crit section:

• �¬(in-crit(1)∧ in-crit(2)): two processes should not be in the critical
section at the same time; and

•
∧
i=1,2(¬3�in-rem(i)) → �3in-crit(i): each process should enter its

crit section infinitely often if it does not loop forever in its rem section.

The following functional module also declares the spatial action pattern
exec(i), meaning that Process i has just been executed:

mod DEKKER-CHECK is
protecting DEKKER . including LTLR-MODEL-CHECKER .
subsort MachineState < State .
var I : Pid . var P : Program .
var S : Soup . var M : Memory .
var CXT : StateContext . var R : RuleName .
var SUB : StateSubstitution .

ops in-crit in-rem : Pid -> Prop [ctor] .
eq {[I, crit ; P] | S, M} |= in-crit(I) = true .
eq {[I, rem ; P] | S, M} |= in-rem(I) = true .

op exec : Pid -> Action [ctor] .
eq {CXT | R : ’I \ I ; SUB} |= exec(I)
= (R == ’user) or (R == ’loop) or (R == ’asgn) or (R == ’conT) or
(R == ’conF) or (R == ’whiT) or (R == ’whiF) or (R == ’rept) .

op init : -> State .
eq init = {[1, p1] | [2, p2], [’c1,0] [’c2,0] [’turn,1]} .

endm

The following command shows the model checking result of the mutual
exclusion �¬(in-crit(1) ∧ in-crit(2)), a state-based property that can also
be verified using the existing Maude LTL model checker:

Maude> red modelCheck(init, [] ~ (in-crit(1) /\ in-crit(2))) .
result Bool: true

However, the property
∧
i=1,2(¬3�in-rem(i)) → �3in-crit(i) cannot be

verified without suitable fairness assumptions, as shown by the following
counterexample in which Process 2 is busy-waiting for Process 1 to change
the value of turn but Process 1 is continuously idle:

263

Maude> red modelCheck(init,
((~ <>[] in-rem(1)) -> []<> in-crit(1)) /\
((~ <>[] in-rem(2)) -> []<> in-crit(2))) .

result ModelCheckResult :
counterexample(
{{[1,repeat ... forever]|[2,repeat ... forever],
[’c1,0][’c2,0][’turn,1]}, {’repeat}}

{{[1,’c1 := 1 ; ...]|[2,repeat ... forever],
[’c1,0][’c2,0][’turn,1]}, {’assign}}

{{[1,while ’c2 = 1 ...]|[2,repeat ... forever],
[’c1,1][’c2,0][’turn,1]}, {’repeat}}

{{[1,while ’c2 = 1 ...]|[2,’c2 := 1 ; ...],
[’c1,1][’c2,0][’turn,1]}, {’assign}}

{{[1,while ’c2 = 1 ...]|[2,while ’c1 = 1 ...],
[’c1,1][’c2,1][’turn,1]}, {’while}}

{{[1,while ’c2 = 1 ...]|[2,if ’turn = 1 then ...],
[’c1,1][’c2,1][’turn,1]}, {’if}}

{{[1,while ’c2 = 1 ...]|[2,’c2 := 0 ; ...],
[’c1,1][’c2,1][’turn,1]}, {’assign}}

,
{{[1,while ...]|[2,while ’turn = 1 do skip od ...],
[’c1,1][’c2,0][’turn,1]}, {’while} })

To avoid such a “infinite busy-waiting” scenario, for each process i, we need
to assume the weak fairness condition

3�enabled(exec(i))→ �3exec(i).

The desired property can then be verified by the following command:1

Maude> red modelCheck(init,
((<>[] enabled(exec(1)) -> []<> exec(1)) /\
(<>[] enabled(exec(2)) -> []<> exec(2)))

->
((~ <>[] in-rem(1)) -> []<> in-crit(1)) /\
((~ <>[] in-rem(2)) -> []<> in-crit(2))) .

result Bool: true

Since the spatial action pattern exec(i) cannot be directly expressed in LTL,
the original specification in [61, 81] had to be “cooked” by injecting event
information into states to express exec(i) in LTL, which leads to a less
natural and more complex specification.

1Recall that for each spatial action pattern δ, the enabled state proposition enabled(δ)
is automatically declared in our tool (see Section 4.2).

264

In our tool, a renamed basic action pattern {′ l̂ : ′x1\x1; . . . ; ′xn\xn} can
be defined by a fairness item of one of the forms:

just[l̂(x1, . . . , xn)] fair [l̂(x1, . . . , xn)]

where x1, . . . , xn ∈ vars(q). and l̂ is any name for a basic action pattern.
For such a renamed pattern, the correspondence relation with a one-step
proof term γ is automatically declared by our tool as follows:

γ |= {′ l̂ : ′x1\x1; . . . ; ′xn\xn} ⇐⇒ γ |= {′l : ′x1\x1; . . . ; ′xn\xn}.

A fairness item of the form just[′ l̂(x1, . . . , xn)] declares the renamed pattern
{′ l̂ : ′x1\x1; . . . ; ′xn\xn} in J , and fair [′ l̂(x1, . . . , xn)] declares the same
pattern in F . These renamed fairness items are useful to specify fairness
conditions for a group of rules with different labels.

The localized fairness conditions for Dekker’s algorithm can be succinctly
specified using renamed fairness items. In the following redeclared rules,
the metadata attribute just[exec(I)] in each rule declares the localized
fairness specification J = {{′exec : ′I\I}}, where {′exec : ′I\I} corresponds
to every rule l by renaming its rule label to exec such that for any one-step
proof term γ, γ |= {′exec : ′I\I} ⇐⇒ γ |= {′l : ′I\I}:

rl [user]: {[I, U ; R] | S, M}
=> {[I, R] | S, M} [metadata "just[exec(I)]"] .

rl [loop]: {[I, L ; R] | S, M}
=> {[I, L ; R] | S, M} [metadata "just[exec(I)]"] .

rl [asgn]: {[I, Q := N ; R] | S, [Q,X] M}
=> {[I, R] | S, [Q,N] M} [metadata "just[exec(I)]"] .

crl [conT]: {[I, if T then P fi ; R] | S, M}
=> {[I, P ; R] | S, M}

if eval(T,M) [metadata "just[exec(I)]"] .
crl [conF]: {[I, if T then P fi ; R] | S, M}

=> {[I, skip ; R] | S, M}
if not eval(T,M) [metadata "just[exec(I)]"] .

crl [whiT]: {[I, while T do P od ; R] | S, M}
=> {[I, P ; while T do P od ; R] | S, M}

if eval(T,M) [metadata "just[exec(I)]"] .
crl [whiF]: {[I, while T do P od ; R] | S, M}

=> {[I, R] | S, M}
if not eval(T,M) [metadata "just[exec(I)]"] .

rl [rept]: {[I, repeat P forever ; R] | S, M}
=> {[I, P ; repeat P forever ; R] | S, M}

[metadata "just[exec(I)]"] .

265

Under the given localized fairness specification J = {{′exec : ′I\I}}, the
liveness property

∧
I=1,2(¬3�in-rem(I)) → �3in-crit(I) can be simply

verified by using the parameterized-fair model checking command:

Maude> (pfmc init |= ((~ <>[] in-rem(1)) -> []<> in-crit(1)) /\
((~ <>[] in-rem(2)) -> []<> in-crit(2)) .)

ltlr model check under localized fairness in DEKKER-CHECK :
init |= ((~ <>[] in-rem(1)) -> []<> in-crit(1)) /\

((~ <>[] in-rem(2)) -> []<> in-crit(2))
result Bool :
true

A.1.4 Position Fairness

Position weak fairness means that if a position in a term t is eventually
always enabled,2 then that position of t is rewritten infinitely many times.
Likewise, position strong fairness means that if a position in a term t is
enabled infinitely often, then that position of t is rewritten infinitely often.
Such position fairness can be expressed by using spatial action patterns
parameterized by context terms, e.g., {CXT | ′l}. If a one-step proof term
u[l(θ)]p corresponds to the ground spatial action pattern θ{CXT | ′l}, then
by definition θCXT =E u[2]p, which represents the position p of the term
u. In this case, a fairness condition for {CXT | ′l} localized to a context
variable CXT is parameterized to such positions. For example, consider the
following simple model with two rewrite rules.

mod POSITION-MODEL is
including SATISFACTION .
sort Conf . subsort Conf < State .
ops a b : -> Conf [ctor] . op reach : Conf -> Prop [ctor] .
op f : Conf Conf -> Conf . eq f(b,b) = b .
eq C:Conf |= reach(D:Conf) = (C:Conf == D:Conf) .

rl [toB]: a => b . rl [toA]: b => a .
endm

Even under the strong rule fairness specification F = {{′toA}, {′toB}}, the
LTL formula 3reach(b) does not hold from the initial state f(a, a), since
there exists the counterexample that never visits the state b:

f(a, a) −→ f(a, b) −→ f(a, a) −→ f(b, a) −→ f(a, a) −→ · · ·
2A term position p in a term t is enabled iff some rewrite rule can be applied at the

position p of the term t.

266

However, 3reach(b) holds under the strong position fairness specification
F = {{CXT | ′toB}}. Given the initial state f(a, a), there are five reachable
states: f(a, a), f(a, b), f(b, a), a, and f(b, b) = b. If the state f(a, b) is
visited infinitely often, then the spatial action pattern {f(2, b) | ′toB} is
enabled infinitely often. By the strong position fairness assumption, the
rule toB must be infinitely often applied where the resulting term f(b, b) is
immediately reduced to b by the equation. Similarly, if the state f(b, a) is
visited infinitely often, then the state b will also be visited infinitely often.
Therefore, any infinite path from the state f(a, a) will visit the state b

infinitely often, and thus satisfies the formula 3reach(b).
In our tool, the context terms for this model can be declared automatically

by the module expression CONTEXT[POSITION-MODEL] as follows:

(mod POSITION-MODEL-CONTEXT is
including LTLR-MODEL-CHECKER .
including SPATIAL-ACTION-PATTERN .
protecting CONTEXT[POSITION-MODEL] .
subsort Context$Conf < StateContext .

endm)

The following model checking command shows that without fairness, the
formula 3reach(b) does not hold from the initial state f(f(a, a), f(a, a)):

Maude> (mc f(f(a,a),f(a,a)) |= <> reach(b) .)
ltlr model check in POSITION-MODEL-CONTEXT :
f(f(a,a),f(a,a)) |= <> reach(b)

result ModelCheckResult :
counterexample(
{f(f(a,a),f(a,a)),{’toB}} {f(f(b,a),f(a,a)),{’toB}}
{f(b,f(a,a)),{’toA}} {f(a,f(a,a)),{’toB}}
,
{f(a,f(b,a)),{’toB}} {f(b,f(b,a)),{’toA}})

Under the localized fairness specification F = {{CXT | ′toB}}, the formula
3reach(b) can be verified by our model checker as follows:

Maude> (mc f(f(a,a),f(a,a)) |= <> reach(b)
under fair({CXT:StateContext | ’toB}) .)

ltlr model check in POSITION-MODEL-CONTEXT :
f(f(a,a),f(a,a)) |= <> reach(b)

under fairness :
fair({CXT:StateContext | ’toB})

result Bool :
true

267

A.1.5 Sliding Window Protocol

The balanced sliding window protocol is a symmetric protocol to ensure
reliable communication in both directions of a communication channel [162].
The verification task for this protocol is not simple, since the specification
involves unbounded queue data structures and dynamic fairness conditions.
The model checking of a liveness property requires a fairness assumption for
each message in transit as well as for each process.

In the balanced sliding window protocol, there are two entirely symmetric
processes P and Q connected to each other through a lossy channel. Packets
exchanged by the processes are pairs [j, w], with j an index number and w
a data word. Process P contains an array IP of packets to be sent, another
array OP of received packets, and a FIFO queue FP of packets in transit
to be received. Process P also has three variables to describe a state of
the process as follows: sP is the lowest index of a packet not yet received
from the other process, aP is the lowest index of a packet sent but not yet
acknowledged (sP and aP are initially 0), and lP is a fixed “window” bound
allowing sending packets before being acknowledged. The acknowledgement
is implicitly provided by sending and receiving messages. That is:

1. P has received all the packets of process Q indexed from 0 to sp − 1
and stored them in OP ;

2. P has sent all the packets in IP from 0 to ap − 1, and received their
acknowledgement from Q; and

3. P can send a packet [j, w] to acknowledge the receipt of all the packets
of Q indexed from 0 to j − lP , so that process Q need not send those
packets 0, . . . , j − lP again.

A state of process P is expressed as a term [P : sP , aP , lP , lQ, IP , OP , FP],
where lQ is a fixed bound of the other process. The signature is defined in the
following functional module in Maude, where the necessary data structures
are defined in the module QID-ARRAY&LIST:

fmod SLIDING-WINDOW-SYNTAX is
protecting INT . protecting QID-ARRAY&LIST .
sorts Pid NodeQState GlobalState .
op _&_ : NodeQState NodeQState -> GlobalState [ctor comm] .
op [_:_,_,_,_,_,_,_] :

Pid Nat Nat NzNat NzNat QidArray QidArray MsgList
-> NodeQState [ctor] .

endfm

268

sendP : { aP ≤ j < sP + lP }
begin enqueue IP [j] to FQ end

lossP : { [j, w] ∈ FP }
begin remove [j, w] from FP end

recvP : { [j, w] := dequeue(FP) }
begin
if OP [j]=⊥ then OP [j] :=w;
sP :=min{k | OP [k] = ⊥};
aP :=max(aP , j−lQ+1) fi end

Figure A.1: The balanced sliding window protocol (for process P) [162].

The behavior of this protocol can be summarized by the pseudo code
in Figure A.1. Process P can send any packet [j, w] in its array IP if no
acknowledgement for the packet has yet been received (j ≥ aP) but all the
packets of the other process indexed from 0 to j − lP have already been
received (j − lP < sP), that is, aP ≤ j < sP + lP . When receiving a
packet [j, w], an already received packet in OP is ignored; otherwise, the
packet is added to OP , sP is set to the smallest index that has not yet been
received, and aP is set to max(aP , j − lQ + 1) to stop retransmission of an
acknowledged packet whose index is less than or equal to j − lQ. Finally,
the loss of a packet can happen at any time.
The behavior is specified in the following system module, where an array is

a semicolon-separated set of [J,W] with index J , the term Ip < j : k > denotes
a sliced array that returns all entities between j and k, and noValue(OP,J)

returns true if the array OP has no value at index J :

mod SLIDING-WINDOW is
including SLIDING-WINDOW-SYNTAX .
vars P Q : Pid . var W : Qid .
vars J SP SQ AP AQ : Nat . vars LP LQ : NzNat .
vars FP FQ L G : MsgList . vars IP OP IQ OQ ARRAY : QidArray .

crl [send]: [P : SP, AP, LP, LQ, IP, OP, FP]
& [Q : SQ, AQ, LQ, LP, IQ, OQ, FQ]

=> [P : SP, AP, LP, LQ, IP, OP, FP]
& [Q : SQ, AQ, LQ, LP, IQ, OQ, FQ [J,W]]

if SP + LP > AP /\ [J,W] ; ARRAY := IP < AP : SP + LP - 1 >
[metadata "just(P,J,W)"] .

rl [recv]: [P : SP, AP, LP, LQ, IP, OP, [J,W] FP]
=> if noValue(OP,J)

then [P : 1st-undef(OP ; [J,W]), max(AP, J - LQ + 1),
LP, LQ, IP, OP ; [J,W], FP]

else [P : SP, AP, LP, LQ, IP, OP, FP] fi
[metadata "fair(P,J,W)"] .

rl [loss]: [P : SP, AP, LP, LQ, IP, OP, L [J,W] G]
=> [P : SP, AP, LP, LQ, IP, OP, L G] .

endm

269

Notice that when executing the send rule with a substitution θ, by the
matching equation [J,W] ; ARRAY := IP < AP : SP + LP - 1 >, the variables
J, W, and ARRAY are instantiated by matching [J,W] ; ARRAY with the term
θ(IP < AP : SP + LP - 1 >) modulo E ∪B.
This system module also declares the localized fairness specification using

the rule attributes in which each fairness condition is parameterized over
each process P and packet [J,W]:

J = {{′send : ′P\P ; ′J\J ; ′W\W}}, F = {{′recv : ′P\P ; ′J\J ; ′W\W}},

meaning that:

1. if a process P is continuously able to send a packet [J,W], then the
process must send the packet [J,W] infinitely many times, and

2. if a process P can receive a packet [J,W] infinitely often, then the
process must receive the packet [J,W] infinitely many times.

Because the number of states is infinite due to the unbounded queue, we
define an equational abstraction to obtain a finite state space as follows:

1. the FIFO queues are abstracted into bags by adding a commutativity
equation, and

2. duplicate messages in transit are collapsed into a single message by
identifying repeated packets.

Although a commutativity equation is not terminating, we can gain the
same effect using commutativity axioms. The following functional module
adds the commutativity axioms, where the fifo queue in the last component
is abstracted into a set of packets, i.e., QidArray:

fmod SLIDING-WINDOW-ABSTRACTION-SYNTAX is
protecting INT .
protecting QID-ARRAY&LIST .
sorts Pid NodeQState GlobalState .
op _&_ : NodeQState NodeQState -> GlobalState [comm ctor] .
op [_:_,_,_,_,_,_,_] :

Pid Nat Nat NzNat NzNat QidArray QidArray QidArray
-> NodeQState [ctor] .

endfm

The following system module then adds the abstraction equation, where all
the rewrite rules are redeclared since the signature has been changed:

270

fmod SLIDING-WINDOW-ABSTRACTION is
including SLIDING-WINDOW-ABSTRACTION-SYNTAX .
vars P Q : Pid . var W : Qid .
vars J SP SQ AP AQ : Nat . vars LP LQ : NzNat .
vars FP FQ L G : QidArray . vars IP OP IQ OQ ARRAY : QidArray .

crl [send]: [P : SP, AP, LP, LQ, IP, OP, FP]
& [Q : SQ, AQ, LQ, LP, IQ, OQ, FQ]

=> [P : SP, AP, LP, LQ, IP, OP, FP]
& [Q : SQ, AQ, LQ, LP, IQ, OQ, FQ ; [J,W]]

if SP + LP > AP /\ [J,W] ; ARRAY := IP < AP : SP + LP - 1 >
[metadata "just(P,J,W)"] .

rl [recv]: [P : SP, AP, LP, LQ, IP, OP, [J,W] ; FP]
=> if noValue(OP,J)

then [P : 1st-undef(OP ; [J,W]), max(AP, J - LQ + 1),
LP, LQ, IP, OP ; [J,W], FP]

else [P : SP, AP, LP, LQ, IP, OP, FP] fi
[metadata "fair(P,J,W)"] .

rl [loss]: [P : SP, AP, LP, LQ, IP, OP, L ; [J,W]]
=> [P : SP, AP, LP, LQ, IP, OP, L] .

*** abstraction equations and rules
eq [P : SP, AP, LP, LQ, IP, OP, FP ; [J,W] ; [J,W]]
= [P : SP, AP, LP, LQ, IP, OP, FP ; [J,W]] .

rl [recv]: [P : SP, AP, LP, LQ, IP, OP, [J,W] ; FP]
=> if noValue(OP,J)

then [P : 1st-undef(OP ; [J,W]), max(AP, J - LQ + 1),
LP, LQ, IP, OP ; [J,W], [J,W] ; FP]

else [P : SP, AP, LP, LQ, IP, OP, [J,W] ; FP] fi
[metadata "fair(P,J,W)"] .

rl [loss]: [P : SP, AP, LP, LQ, IP, OP, L ; [J,W]]
=> [P : SP, AP, LP, LQ, IP, OP, L ; [J,W]] .

endfm

Notice that two new rules are added at the end to ensure coherence of the
rules with respect to the abstraction equations and thus the executability of
the abstract model (see Section 5.3).

The liveness property we are interested in is that all messages should be
eventually delivered, which is specified by the formula 3success. The state
proposition success holds iff Process P receives all the messages in IQ from
Process Q and Process Q receives all the messages in IP from Process P :

271

(mod SLIDING-WINDOW-CHECK is
including SATISFACTION .
protecting SLIDING-WINDOW-ABSTRACTION .
subsort GlobalState < State .
ops p q : -> Pid .

vars P Q : Pid . vars I SP SQ AP AQ : Nat .
vars LP LQ : NzNat . vars FP FQ : MsgList .
vars IP OP : QidArray .

op success : -> Prop .
eq [P : SP,AP,LP,LQ,IP,IQ,FP] & [Q : SQ,AQ,LQ,LP,IQ,IP,FQ] |=

success = true .

ops initP initQ : -> NodeQState .
eq initP = [p : 0,0,2,2,[0,’C];[1,’B];[2,’A],empty,empty] .
eq initQ = [q : 0,0,2,2,[0,’X];[1,’Y];[2,’Z],empty,empty] .

endm)

However, 3success is not satisfied without the fairness assumptions; the
rule loss can preclude all communications without fairness. But if we assume
the localized fairness specification declared in the rule attributes, we can
verify the formula 3success by the following model checking command:

Maude> (pfmc initP & initQ |= <> success .)
ltlr model check under localized fairness in SLIDING-WINDOW-CHECK :
initP & initQ |= <> success

result Bool :
true

Table A.1 presents the model checking results from the initial states with
different input array sizes and window bounds, conducted on an Intel Core
2 Duo 2.66 GhZ running Mac OS X 10.6, where “#Fairness” denotes the
total number of fairness instances generated during model checking.

Size Bound States Time #Fairness
3 1 420 0.2

123 2 1596 1.7
3 3 4095 5.7
5 1 6900 5.5

205 2 32256 42.6
5 3 123888 223.8

Table A.1: Results for models with bounded sliding window protocol

272

A.2 The Model Checker Implementation

The Maude Fair LTLR model checker (introduced in Chapters 3 and 4)
has been implemented at the C++ level within the Maude system [61], by
extending the existing LTL model checker [81]. Our tool generally consists
of the following four components:

1. the module to construct a Büchi automaton B¬ϕ that recognizes the
negation of a given LTLR formula ϕ;

2. the graph traversal engine that constructs the corresponding LKS from
a computable rewrite theory;

3. the model checking algorithms (under parameterized fairness); and

4. the user interface of the model checker in Full Maude.

For efficiency reasons, the first three components are implemented at the
C++ level. But the user interface of the model checker, particularly for
metadata rule annotations, has been implemented by extending Full Maude
[73] using Maude’s reflective capabilities [61], since it involves several theory
transformations to automate such an interface.
For generating a Büchi automaton B¬ϕ from the negated LTLR formula

ϕ, the Maude LTLR model checker reuses the existing LTL model checker
implementation (see [81, 80] for details). For automata-based verification
of LTLR formulas, as discussed in Section 3.3.2, spatial action patterns
do not need to be distinguished from state propositions. Therefore, the
LTLR formula ¬ϕ is first transformed into the syntactically equivalent LTL
formula by regarding spatial action patterns as state propositions, and the
same algorithm as in the LTL case is then used to generate B¬ϕ.

Given a Maude specification of a rewrite theory R, the associated LKS
K̄(R, k)Π is generated on-the-fly from an initial state [t]E , and therefore
only requested states and transitions are created during model checking.
Each state (resp., transition) generated in the LKS keeps two bit vectors
to record: (i) which state propositions (resp., spatial action patterns) have
been tested, and (ii) which state propositions (resp., spatial action patterns)
were satisfied in the state (resp., transition). The state/event synchronous
product K̄(R, k)Π⊗B¬ϕ is also constructed on-the-fly whenever a new state
or transition is explored, while the nested depth-first search algorithm [109]
is applied to the product automaton to find a counterexample, in the same
way as the existing Maude LTL model checker [81].

273

For space optimization purposes, whenever a one-step proof term λ is
generated for each one-step rewrite, all spatial action patterns in the input
formula ϕ are tested at once and the full term representation of λ is then
discarded from memory (when a counterexample is found, such one-step
proof terms can be re-computed to display them). On the other hand, a full
term representation of each state is preserved during model checking, as is
the existing LTL model checker [81], to check whether a newly generated
state has already been included in the currently generated LKS.
Different model checking algorithms are applied by the tool for handling

different kinds of fairness conditions, because the general algorithms are
more computationally expensive. All model checking algorithms are based
on the on-the-fly emptiness checking algorithms, where fairness assumptions
are incorporated into their acceptance conditions:

• For an LTLR formula with no fairness requirements, we use the nested
depth first search algorithm [109] for Büchi automata.

• If only weak fairness conditions are provided, we use the SCC-based
algorithm [66] for generalized Büchi automata, where weak fairness
conditions are directly incorporated as acceptance conditions.

• For strong fairness conditions, we use the SCC-based algorithm for
Streett automata, described in Section 4.3.3, where strong fairness
conditions are directly incorporated as acceptance conditions.

If some of the strong/weak fairness conditions are parameterized, then those
model checking algorithms are combined with the parameter abstraction
algorithm that computes realized substitutions in SCCs.

Our Fair model checker assumes that the system specification satisfies
the sufficient conditions for FIP in Theorem 4.1, and computes the realized
substitutions according to the matching processes described in the proof of
Theorem 4.1. Besides dealing with fairness, the Maude Fair LTLR model
checker also generates shorter counterexamples than the previous model
checkers in Maude. When a counterexample is found, we perform a backward
breadth-first search from loop states to the initial states, using only already
visited states to find the shortest prefix in the explored state space.

274

APPENDIX B

MORE DETAILS ON MULTIRATE PALS

B.1 Formalizing Specification of Asynchronous Models

This section presents the formal specification of the asynchronous real-time
systemMA(E, T,Γ) as a rewrite theory in Real-Time Maude. For simplicity
reasons we assume that all components in the entire system have different
identifiers. We assume that the local clock of a component j inMA(E, T,Γ)
is given by a continuous and monotonic (with respect to the relation ≤)
function cj : R≥0 → R≥0 satisfying |cj(x)− x| < ε for all x ∈ R≥0.

B.1.1 Generic Machines and Wrappers

All typed machines and wrappers have an input buffer of incoming messages
of sort MsgConfiguration denoting multisets of messages, so we declare a
generic class Machine:

class Machine | inBuffer : MsgConfiguration .

A wrapper is a machine with an inner configuration consisting of the inner
machine/wrapper object and the messages sent by that object, where sort
NEConfiguration denotes non-empty multisets of objects and messages:

class Wrapper | innerConf : NEConfiguration,
ignoreNbs : OidSet .

subclass Wrapper < Machine .

The attribute ignoreNbs is used for the wrapper structure (in Figure 6.9)
of slow components in a fast subensemble. When a wrapper receives a set of
messages, it immediately relays those messages whose senders or receivers
are in the ignoreNbs, a semicolon-separated set of object identifiers.

275

The following rewrite rules move the messages that should be taken care
of by other wrappers up and down the wrapper hierarchy. The point is of
course that the wrappers dealing with the communication with the faster
subcomponents (i.e., the two innermost wrappers in Figure 6.9) should not
“restrict” the movement of messages to/from the environment, which should
be taken care of by the other wrappers, and vice versa:

var P : Nat . var D : Data . vars O O’ : Oid . var OS : OidSet .
var CONF : Configuration . vars MSGS MSGS’ : MsgConfiguration .

rl [forward-in-ignored-messages]:
< O : Wrapper |

inBuffer : (to O from O’ (P,D)) MSGS,
innerConf : (< O : Machine | inBuffer : MSGS’ > CONF),
ignoreNbs : O’ ; OS >

=>
< O : Wrapper |

inBuffer : MSGS,
innerConf : (< O : Machine | inBuffer : (to O from O’ (P,D))

MSGS’ > CONF) > .

rl [forward-out-ignored-messages]:
< O : Wrapper | innerConf : (to O’ from O (P,D)) CONF,

ignoreNbs : O’ ; OS >
=>
< O : Wrapper | innerConf : CONF >
(to O’ from O (P,D)) .

All actions in the wrappers moving messages back and forth should now
only deal with messages that should not be ignored. Since each message will
“sift up/down” to its appropriate wrapper in zero time, we can wait to apply
a rewrite rule (other than the two above) until the message set to be treated
contains only “relevant” messages. That is, each rule moving a set MSGS of
messages into the input buffer of an inner object or moving them out from
the inner configuration has a condition onlyRelevantMsgs(MSGS, OS) that
returns true if the message set MSGS does not contain any message whose
sender/receiver belongs to the ignore set OS:

op onlyRelevantMsgs : MsgConfiguration OidSet -> Bool .
eq onlyRelevantMsgs((to O from O’ (P,D)) MSGS, O ; OS) = false .
eq onlyRelevantMsgs((to O from O’ (P,D)) MSGS, O’ ; OS) = false .
eq onlyRelevantMsgs(MSGS, OS) = true [owise] .

276

B.1.2 Typed Machines

A typed machine in an asynchronous distributed real-time system goes in
rounds according to its local clock and its given period, and has an input
buffer in which it collects messages. When it executes a new round, it
reads these messages, performs a transition, and sends out the generated
output messages (to be picked up by the surrounding wrapper) whenever its
execution finishes. Each machine Mj is modeled by an object instance of a
subclass C[j] of the following class Machine:
class TypedMachine | period : Time,

clock : Time,
roundTimer : Time,
state : DlyState,
outBuffer : DlyConfiguration,
localWiring : LocalWiring .

class C1 .
...
class Ck .
subclass C1 ... Ck < TypedMachine .
subclass TypedMachine < Machine .

Several typed machines, say, Mj1 , . . . ,Mjr , can all be of the same type, and
can therefore all belong to the same subclass, i.e.,

C[j1] = · · · = C[jr].

The attribute period denotes the period of the typed machine, the clock

attribute shows the value of the local clock of the component, and the
roundTimer is the timer that expires at the start of each new round.
The state attribute denotes the local state of the machine. The state

component of machine j has sort Sj . For convenience, we add a supersort
State of all such states. It may take some time to compute the next local
state of a machine. During this computation time, the local state has the
value [s, t], where s is the next state, and t is the time remaining until the
execution of the transition is finished. Such a term [s, t] is called a delayed
state, where the sort DlyState is defined as follows:
sorts State DlyState .
subsort S1 ... S|Js∪JF | < State < DlyState .
op [_,_] : State Time -> DlyState [ctor right id: 0] .

Notice that 0 has been defined as a right identity of the operator [_,_],
meaning that [s, 0] = s.

277

The messages produced by performing a transition can only be propagated
to the surrounding wrapper after the execution of the transition has finished.
Meanwhile, they are stored in the outBuffer. The messages have the form

to o from o′ (p,d),

where o and o′ are the identifiers of the receiver and sender components,
respectively, p is the number of the receiving “port,” d is the data element
sent, and Data is a supersort of the sorts D1 . . .Dn of the data in the wires:

sort Data .
subsorts D1 ... Dn < Data .
msg to_from_(_,_) : Oid Oid NzNat Data -> Msg .

Likewise, during the execution of a transition, the messages msgs being
generated by the transition are not yet ready, and have the form [msgs, t]:

sort DlyConfiguration .
subsort Configuration < DlyConfiguration .
op [_,_] : Configuration Time -> DlyConfiguration [ctor right id: 0] .

When roundTimer expires, the messages NEMSGS in the inBuffer are
read,1 and a transition is taken. Since different classes will have different
transitions, executing transitions is modeled by a family of rewrite rules, one
for each class C[j]. Notice that the resulting state and messages are delayed
by a value αmin ≤ X-DLY ≤ αmax. In addition, the roundTimer must be
reset to expire at the same time in the next round (i.e., to the PERIOD):

var X-DLY : Time . vars S NEXT-STATE : State .
var W : LocalWiring . var NEMSGS : NEMsgConfiguration .
var PERIOD : NzTime . var dj1 : Dj

o1
. ... var djmj : Dj

omj
.

crl [applyTrans]:
< j : C[j] | inBuffer : NEMSGS, state : S, period : PERIOD,

roundTimer : 0, localWiring : W >
=>
< j : C[j] | inBuffer : none,

state : [NEXT-STATE, X-DLY],
roundTimer : PERIOD,
outBuffer : [makeMsg(j, W, (dj1 , . . . , djmj)), X-DLY] >

if inputInAllPorts(NEMSGS, j)
/\ X-DLY >= αmin and X-DLY <= αmax

/\ ((vect[j](NEMSGS), S), (NEXT-STATE, (dj1 , . . . , djmj))) ∈ δMj
.

1By Definition 6.1, each typed machine has non-empty inputs and non-empty outputs.
The sort NEMsgConfiguration of NEMSGS denotes non-empty multisets of messages.

278

The condition inputInAllPorts(NEMSGS,j), meaning that the machine
has received inputs in all its input “ports,” is needed for the hierarchical case
in which there are two PALS wrappers surrounding the machine.2 Given a
complete set NEMSGS of messages of the form

(to j from j′1 (1, d1)) . . . (to j from j′nj (nj , dnj)),

the function vect[j](NEMSGS) returns the vector of inputs (d1, . . . , dnj). The
function makeMsg looks at the local wiring diagram W, takes the vector of
output data from j, and produces the set of messages for the machines and
environment getting inputs from that wire.
When the output messages are “ready” (i.e., the execution time of the

transition producing the messages is over), those messages are sent out of
the machine object, and should be picked up by the surrounding wrapper:

rl [sendMsgs]:
< O : TypedMachine | outBuffer : NEMSGS >
=>
< O : TypedMachine | outBuffer : none > NEMSGS .

B.1.3 Local Wiring Diagrams

Each component is also assumed to know its local wiring diagram in the
localWiring attribute; that is, which components and ports are connected
to its output ports in the synchronous system. This knowledge is stored in
a data structure called a local wiring, defined as follows:

sort LocalWiring .
op _-->_._ : Nat Oid Nat -> LocalWiring [ctor] .
op noWiring : -> LocalWiring [ctor] .
op _;_ : LocalWiring LocalWiring

-> LocalWiring [ctor assoc comm id: noWiring] .

A connection p --> j.p′ says that the output port p of the current component
is connected to the input port p′ of component j. A local wiring is then a set
of such single connections formed with the associative-commutative union
operator _;_ with identity the empty set constant noWiring. However, a
connection is here only a reference for asynchronous message passing, and
not a real “wired” connection as in the synchronous model.

2Since the PALS wrappers expires at the same time as the typed machine’s timer,
the machine must “wait” for zero time for the messages to trickle down from the PALS
wrappers before executing a transition.

279

For a slow component in a fast subensemble, the “short-circuiting” of
messages across hierarchical boundaries is formalized by modifying the local
wiring diagrams in the localWiring attribute. For example, consider a
hierarchical ensemble E with a subensemble Ese, where the environment
index and source function of Ese are, respectively, envse and srcse. Output
from a component in E to the “port” (se, p) (i.e., the pth input port of Ese)
is considered by components inside Ese to be input from the environment
output port (envse, p). That is, on the subdomain of input ports of Ese, the
source function of the whole system is:

(j, p) 7→ (src[se/envse])(srcse(j, p)) if (∃p′) srcse(j, p) = (envse, p
′)

(j, p) 7→ srcse(j, p) otherwise.

Likewise, we must also “short-circuit” links from the inner subsystem to an
outer component. That is, for any (k, p), with k a concrete machine index
in E, the real source in the composed system is:

(k, p) 7→ (srcse[se/envse])(src(k, p)) if (∃p′) src(k, p) = (se, p′)

(k, p) 7→ src(k, p) otherwise.

B.1.4 The k-Machine Wrapper

The k-machine is the distributed version of the more abstract k-step de-
celeration pattern of Definition 6.5. This wrapper should get a k-tuple of
inputs for each input port of the underlying machine at the start of each
slow period. The first data item of each message should immediately be sent
to the layer below. When the next fast period starts, the second data item
in each incoming messages is sent to the object that it wraps around, and
so on. Output handling is equally simple:

1. get output from the fast machine inside;

2. store it in an output buffer; and

3. whenever it has received the kth such chunk of messages, it composes
them into k-tuples and sends them upstream immediately.

Since the k-machine wrapper may not be able to wait for the latest outputs,
due to communication delays, its timer provides a cutoff time when the
wrapper sends out whatever outputs it has by this cutoff time, padded with
⊥ values to form k-tuples. The class K-machine is declared as follows:

280

class K-machine |
fastPeriod : NzTime, rate : NzNat,
slowPeriodTimer : Time, fastPeriodTimer : Time,
outBuffer : MsgConfiguration, outputDeadline : TimeInf,
clock : Time, currentFastRound : Nat .
prevInput : MsgConfiguration .

subclass K-machine < Wrapper .

The fastPeriod attribute denotes the period of the fast (inner) machine;
rate is the rate of the fast machine; slowPeriodTimer denotes the time
until a new “slow” period begins; fastPeriodTimer does the same for the
fast period; outBuffer is the wrapper’s output buffer; the outputDeadline
timer expires at the cutoff time when messages from the output buffer must
be sent; clock is the local clock, which should be the same as that of its
inner typed machine; currentFastRound denotes which fast period within
a slow period the machine is in; and prevInput stores the input received at
the beginning of the current slow round.
We define a data type for message tuples. First we define lists of data:

sorts DataList NeDataList .
subsort Data < NeDataList < DataList .
op nil : -> DataList
op _::_ : DataList DataList -> DataList [ctor assoc id: nil] .
op _::_ : NeDataList DataList -> NeDataList [ctor ditto] .
op _::_ : DataList NeDataList -> NeDataList [ctor ditto] .

Messages can now also take tuples as data:

msg to_from_(_,_) : Oid Oid PortId DataList -> Msg .

We assume some functions on such messages:

• selectData(msgs, i) takes a set of messages msgs, where the content
of each message m in msgs is a list of data (dm1 , . . . , dmk), and returns
the same set of msgs but the where the content in each message m is
only the ith element dmi .

• append(msgs1,msgs2) appends the data list (the “content”) in each
message in msgs2 to the data list content in the corresponding message
in the set msgs1 (by “corresponding” we mean the message with the
same receiver and receiver port id).

• addBottom(msgs, n) appends n − i copies of the specific “bottom”
element ⊥ to the content of each message in msgs, where i is the
length of the data list in the message.

281

When a new slow period begins (slowPeriodTimer is 0), the wrapper
reads its non-empty input buffer, stores these messages in its prevInput

buffer and puts the received messages—but only with the first data item for
each message—into the input buffer of the internal machine:

var NEMSGS : NEMsgConfiguration . var MSGS : MsgConfiguration .
vars FASTPERIOD SLOWPERIOD : NzTime . vars RATE CFR : Nat .

crl [start-slow-period]:
< O : K-machine |

fastPeriod : FASTPERIOD, rate : RATE,
inputBuffer : NEMSGS,
slowPeriodTimer : 0,
innerConf : < O : Machine | inputBuffer : MSGS > CONF,
ignoreNbs : OS >

=>
< O : K-machine |

inputBuffer : none, outBuffer : none,
slowPeriodTimer : SLOWPERIOD, fastPeriodTimer : FASTPERIOD,
innerConf : < O : Machine |

inputBuffer : MSGS selectData(NEMSGS,1) >
CONF,

prevInput : NEMSGS, currentFastRound : 1,
outputDeadline : SLOWPERIOD− 2 · ε− µmax >

if onlyRelevantMsgs(NEMSGS, OS)
/\ SLOWPERIOD := FASTPERIOD * RATE .

The following rule models the beginning of the next fast period that does
not coincide with the beginning of a slow period; i.e., the currentFastRound
is less than the rate factor:

crl [start-fast-period]:
< O : K-machine |

fastPeriod : FASTPERIOD, rate : RATE,
innerConf : < O : Machine | > CONF,
fastPeriodTimer : 0, currentFastRound : CFR,
prevInput : NEMSGS >

=>
< O : K-machine |

innerConf : < O : Machine |
inputBuffer : selectData(NEMSGS, CFR + 1) >

CONF,
fastPeriodTimer : FASTPERIOD,
currentFastRound : CFR + 1 >

if CFR < RATE .

282

We next model receiving messages (NEMSGS) from the inner object. If the
wrapper has received all expected tuples from below, it should immediately
send them out to its outer wrapper. The term allDataRcvd(msgs,n, OS)
becomes true if the content of each message in msgs is a list of length n,
except for irrelevant messages denoted by the set OS. To forward received
messages immediately, the wrapper must be in the last fast round within the
slow period and allDataRcvd must be true.3 An additional consequence is
that the output deadline timer is turned off (set to the infinity value INF):

vars NEMSGS OUTPUT-MSGS : NEMsgConfiguration . var T : Time .

crl [rcv-and-send]:
< O : K-machine | ignoreNbs : OS,

rate : RATE,
innerConf : < O : Machine | > NEMSGS,
outBuffer : MSGS,
currentFastRound : RATE >

=>
< O : K-machine | innerConf : < O : Machine | >,

outBuffer : none,
outputDeadline : INF > OUTPUT-MSGS

if onlyRelevantMsgs(NEMSGS, OS)
/\ OUTPUT-MSGS := append(MSGS, NEMSGS)
/\ allDataRcvd(OUTPUT-MSGS, RATE, OS) .

If the system is not in the last fast round, then the received messages
cannot be all the messages that must be sent out:4

crl [rcv-and-store]:
< O : K-machine | ignoreNbs : OS,

rate : RATE,
outputDeadline : T,
currentFastRound : CFR,
innerConf : < O : Machine | > NEMSGS,
outBuffer : MSGS >

=>
< O : K-machine | innerConf : < O : Machine | >,

outBuffer : OUTPUT-MSGS >
if onlyRelevantMsgs(NEMSGS, OS)
/\ OUTPUT-MSGS := append(MSGS, NEMSGS)
/\ not allDataRcvd(OUTPUT-MSGS, RATE, OS) or CFR < RATE .

3If the output deadline timer of the K-machine expires before the K-machine gets the
last messages, then the rule send-msgs is applied, and since it empties the output buffer,
allDataRcvd will be false when the last messages are received.

4Since T has sort Time, the timer cannot have INF, and is hence not turned off.

283

When the output deadline timer expires, the messages must be sent out,
even though all of them may not have been received yet. We make sure that
there are no messages waiting to be received by the wrapper in zero time:

rl [send-msgs]:
< O : K-machine |

rate : RATE,
innerConf : < O : TypedMachine | outBuffer : none >,
outputDeadline : 0,
outBuffer : MSGS >

=>
< O : K-machine |

outputDeadline : INF,
outBuffer : none >

addBottom(MSGS, RATE) .

The final action we need to consider is what to do when the wrapper
receives messages after it has sent out the messages because its deadline
timer expired. Our deadline timer takes a worst case scenario into account:
the network delay on the messages will be the maximal, the clocks of the
sender and receiver will have the worst relationship, etc. Therefore, it could
happen that the additional messages sent after the deadline could reach the
receiver in time. However, since we assume that the adaptors ensure that
these message will not matter, the wrapper will not forward them:

crl [rcv-and-ignore]:
< O : K-machine | ignoreNbs : OS,

outputDeadline : INF,
innerConf : < O : Machine | > NEMSGS >

=>
< O : K-machine | innerConf : < O : Machine | > >

if onlyRelevantMsgs(NEMSGS, OS) .

B.1.5 The Input Adaptor Wrapper

The input adaptor for a machine is the distributed version of the input
adaptor pattern in Definition 6.7; it propagates input, without any further
delay, to its inner machine or wrapper after applying the input adaptor
function. Output from the inner object is just propagated outwards. The
InputAdaptor class adds no new attributes to Wrapper it inherits:

class InputAdaptor .
subclass InputAdaptor < Wrapper .

284

The rewrite rules are also straight-forward, but the input adaptor for
the hierarchical case must be defined carefully: let adap(se) = (α1, . . . , αn)
(in E), and let o be a (relatively) slow component in a subensemble Ese.
Then the input adaptor that should be applied to the input in the outer
InputAdaptor wrapper should be given by β = (β1, . . . , βk), where βi = αj

if srcse(o, i) = (ese, j), for ese the environment index in Ese.

rl [forward]: < O : InputAdaptor | innerConf : OBJECT NEMSGS >
=> < O : InputAdaptor | innerConf : OBJECT > NEMSGS .

crl [apply-adaptor] :
< O : InputAdaptor |

inBuffer : NEMSGS, ignoreNbs : OS,
innerConf : < O : Machine | inBuffer : MSGS > >

=>
< O : InputAdaptor |

inBuffer : none,
innerConf : < O : Machine | inBuffer : MSGS

applyAdaptor(O, NEMSGS) > >
if onlyRelevantMsgs(NEMSGS, OS) .

op applyAdaptor : Oid MsgConfiguration -> MsgConfiguration .
eq applyAdaptor(O, (to O from O’ (P,D)) MSGS)
= (to O from O’ (P, adap(O)P(D))) applyAdaptor(O, MSGS) .

eq applyAdaptor(O, none) = none .

B.1.6 The PALS Wrapper

The PALS wrapper receives messages from the other components and stores
them in its input buffer. When a new period begins, the PALS wrapper
propagates the received messages to the inner machine/wrapper. The PALS
wrapper also needs to avoid sending out messages from its inner layer into
the network too early. It therefore has a backoff timer for the output: if
the output from the inner layer arrives before the backoff timer expires, this
output is sent into the network (with appropriate delay) when the backoff
timer expires; otherwise, this output is immediately sent into the network.
This PALS wrapper is defined as an object of the following class:

class PALS-wrapper | period : Time,
roundTimer : Time,
clock : Time,
outputBuffer : MsgConfiguration,
outputBackoffTimer : TimeInf .

subclass PALS-wrapper < Wrapper .

285

Messages received by the PALS wrapper from the other components in
the network are stored in its input buffer:

rl [receiveMsg] :
(to O from O’ (P, D))
< O : PALS-wrapper | inBuffer : MSGS >
=>
< O : PALS-wrapper | inBuffer : MSGS (to O from O’ (P, D)) > .

When the roundTimer expires, a new PALS period begins: the messages
in the input buffer are propagated to the inner object, the output backoff
timer is set, and the roundTimer is reset to its period PERIOD:

crl [startRound] :
< O : PALS-wrapper |

period : PERIOD, ignoreNbs : OS,
roundTimer : 0,
inBuffer : NEMSGS,
innerConf : < O : Machine | inBuffer : MSGS > >

=>
< O : PALS-wrapper |

roundTimer : PERIOD,
inBuffer : none,
outputBackoffTimer : 2 · ε monus µmin,
innerConf : < O : Machine | inBuffer : MSGS NEMSGS > >

if onlyRelevantMessages(NEMSGS, OS) .

When the output backoff timer expires, if there are messages in the output
buffer, they are sent into the network, with a network delay in the interval
[µmin, µmax], and the backoff timer is turned off (set to INF):

rl [backoffTimerExpires] :
< O : PALS-wrapper | outputBackoffTimer : 0,

outputBuffer : MSGS >
=>
< O : PALS-wrapper | outputBackoffTimer : INF,

outputBuffer : none >
multiMsg(MSGS, µmin, µmax) .

The multiMsg operator takes a set of messages, with lower/upper network
delay bounds, and creates messages with the delay interval, where the term
dly(msg, t1, t2) denotes a “delayed” message that can become the (“ripe”)
message msg at any time in the time interval [t1, t2]:

op multiMsg : MsgConfiguration Time TimeInf -> DlyMsgConfiguration .
eq multiMsg(MSG MSGS, T, TI) = dly(MSG, T, TI) multiMsg(MSGS,T,TI) .
eq multiMsg(none, T, TI) = none .

286

When the PALS wrapper gets messages from its inner object, two things
can happen: if the output backoff timer has not expired (i.e., not INF), then
the messages are put into the output buffer; otherwise, they are immediately
sent into the network, with appropriate network delay:

crl [getMessagesAndStore] :
< O : PALS-wrapper | ignoreNbs : OS, outputBackoffTimer : T,

innerConf : (< O : Machine | > NEMSGS) >
=>
< O : PALS-wrapper | innerConf : < O : Machine | >,

outputBuffer : NEMSGS > .
if onlyRelevantMessages(NEMSGS, OS) .

crl [getMessagesFromInnerAndSendIntoNetwork] :
< O : PALS-wrapper | ignoreNbs : OS, outputBackoffTimer : INF,

innerConf : (< O : Machine | > NEMSGS) >
=>
< O : PALS-wrapper | innerConf : < O : Machine | > >
multiMsg(NEMSGS, µmin, µmax) .

if onlyRelevantMessages(NEMSGS, OS) .

B.1.7 The Environment

We assume that the environment can generate any output and satisfies the
same timing requirements as all other (slow) objects. Therefore, we can
formalize the environment as a typed machine surrounded only by a PALS
wrapper. Since we do not explicitly represent the state of the environment,
we assume that its state attribute has the value *. The environment typed
machine can therefore be defined as follows:

class Env .
subclass Env < TypedMachine .
var D1 : De

o1
. ... var Dme : De

ome
.

crl [envApplyTrans] :
< e : Env | inBuffer : NEMSGS, roundTimer : 0,

period : PERIOD, localWiring : W >
=>
< e : Env | inBuffer : none, roundTimer : PERIOD,

outBuffer : [makeMsg(e, W, (D1, . . . , Dme)), X-DLY] >
if X-DLY >= αmin and X-DLY <= αmax .

287

B.1.8 Time Behavior

In a similar way to single-rate PALS, the global state of the distributed
real-time system MA(E, T,Γ) has the form {conf ; t}, where conf is the
configuration consisting of the hierarchical objects and messages traveling
between the different distributed components, and t is the global time. The
reason for carrying around the global time in the state is that the values of
the local clocks depend on the global time.
The tick rule, advancing the global time in the system, is the following

modification of the “usual” tick rule for object-oriented systems [149]:

crl [tick] : {CONF ; T}
=> {timeEffect(CONF, T, T’) ; T + T’} in time T’

if T’ <= mte(CONF, T) .

where timeEffect is the function that defines how the passage of time affects
the state, and mte is the function that defines the maximum amount of time
that can elapse before an instantaneous action must be performed:

op timeEffect : Configuration Time Time -> Configuration [frozen(1)] .
op mte : Configuration Time -> TimeInf [frozen(1)] .

These functions distribute over the objects and messages in the state in the
expected way and must be defined for individual objects and messages.

We first define timeEffect: how does time elapse affect the timers? We
assume that the timers associated to a machine or its wrappers operate
according to the rate of the machine’s local clock, and not according “real”
time. Therefore, if from time t, time advances by ∆, then the local clock of
machine j has advanced from cj(t) to cj(t+ ∆), that is, by cj(t+ ∆)− cj(t),
where cj(t) is the value of the clock attribute for machine j at time t.
Likewise, an object’s local timer values decrease according its local clock
(using the function monus, defined by x monus y = max(x − y, 0); since
INF monus x = INF, a timer that is turned off is unaffected by time elapse):

vars t ∆ T1 T2 T3 TD : Time . var TI : TimeInf .
ceq timeEffect(

< O : PALS-wrapper | roundTimer : T1, clock : T2,
innerConf : CONF,
outputBackoffTimer : TI >, t, ∆)

=
< O : PALS-wrapper | roundTimer : T1 monus TD,

clock : cO(t + ∆),
innerConf : timeEffect(CONF, t, ∆),
outputBackoffTimer : TI monus TD >

if TD := (cO(t + ∆) - T2) .

288

eq timeEffect(< O : InputAdaptor | innerConf : CONF >, t, ∆)
= < O : InputAdaptor | innerConf : timeEffect(CONF, t, ∆) > .

eq timeEffect(
< O : K-machine | clock : T3,

slowPeriodTimer : T1,
fastPeriodTimer : T2,
outputDeadline : TI,
innerConf : CONF >, t, ∆)

=
< O : K-machine | clock : cO(t + ∆),

slowPeriodTimer : T1 monus (cO(t + ∆) - T3),
fastPeriodTimer : T2 monus (cO(t + ∆) - T3),
outputDeadline : TI monus (cO(t + ∆) - T3),
innerConf : timeEffect(CONF, t, ∆) > .

The remaining execution time of a typed machine does not depend on the
object’s local clock:

eq timeEffect(
< O : TypedMachine | clock : T3,

roundTimer : T1,
state : [S, T2],
outBuffer : [MSGS, T2] >, t, ∆)

=
< O : TypedMachine | clock : cO(t + ∆),

roundTimer : T1 monus (cO(t + ∆) - T3),
state : [S, T2 monus ∆],
outBuffer : [MSGS, T2 monus ∆] > .

Time elapse decreases the remaining delay interval of messages traveling
in the network; other messages are not affected by time elapse:

eq timeEffect(dly(MSG, T1, T2), t, ∆)
= dly(MSG, T1 monus ∆, T2 monus ∆) .

eq timeEffect(MSGS, t, ∆) = MSGS .

Regarding met, denoting how much time can advance in the system before
some action must be taken, it equals 0 if some message must be treated
or moved up or down the wrapper hierarchy. Otherwise, met will be the
smallest of the met’s of the objects and messages in the configuration, where
the met of an object is just defined as the smallest time until one of the
timers become zero, or until the delay on the outgoing messages in the
output buffer reaches 0. The assumption of monotonicity of the local clock
functions is crucial to make our definition of met well-defined.

289

First, the operator met distributes over the elements in a configuration in
the expected way, where an “undelayed” message in the network should be
picked up by a rewrite rule immediately:

eq mte(OBJECT CONF, t) = min(mte(OBJECT, t), min(CONF, t)) .
eq mte(none, t) = INF .

eq mte(dly(MSG, T1, T2) CONF, t) = min(T2, mte(CONF, t)) .
eq mte(MSG CONF, t) = 0 .

In a typed machine, time cannot advance if it has a message in its input
buffer or “ready” messages in its output buffer. The first case forces a
machine transition to be performed when a machine has inputs:

eq mte(< O : TypedMachine | inBuffer : NEMSGS >, t) = 0 .

The other case, a special case of the equation below when T2 is 0, forces
the wrapper enclosing the typed machine to read the messages from the
machine’s output buffer before time can advance:

eq mte(< O : TypedMachine | inBuffer : none,
clock : T1,
state : [S,T2],
roundTimer : T3,
outBuffer : [NEMSGS,T2] >, t)

=
min(T2, localClockElapsecO(t, T1, T3)) .

where localClockElapsecO(t1, t2, t3) denotes the amount of time needed
for the local clock cO to advance by t3 time units, when the current time
according to cO is t2 and the current time according to a perfect clock is t1.
This function is defined as follows:

localClockElapsecO(t1, t2, t3) = min{t′ : Time | cO(t1 + t′)− t2 = t3}.

Otherwise, time can advance to whichever comes first of the expiration of
the roundTimer and the end of the execution of an internal “transition”:

eq mte(< O : TypedMachine | inBuffer : none,
clock : T1,
state : S,
roundTimer : T2,
outBuffer : none >, t)

=
localClockElapsecO(t, T1, T2) .

290

Time cannot advance if a k-machine wrapper has messages in its input
buffer (these must be taken care of immediately) or if its inner configuration
has any messages, which must be read by the wrapper without any delay:

eq mte(< O : K-machine | inBuffer : NEMSGS >, t) = 0 .
eq mte(< O : K-machine | innerConf : < O : Machine | > NEMSGS >, t)
= 0 .

Otherwise, time can advance until the next timer expires, or until its inner
object must perform an action:

eq mte(< O : K-machine | clock : T1,
inBuffer : none,
innerConf : OBJECT,
slowPeriodTimer : T2,
fastPeriodTimer : T3,
outputDeadline : TI >, t)

= min(mte(OBJECT, t), localClockElapsecO(t, T1, min(T2, T3, TI))) .

The input adaptor wrapper should immediately forward (or propagate)
incoming messages or messages from its inner object:

eq mte(< O : InputAdaptor | inBuffer : NEMSGS >, t) = 0 .
eq mte(< O : InputAdaptor | innerConf : CONF NEMSGS >, t) = 0 .
eq mte(< O : InputAdaptor | inBuffer : none,

innerConf : OBJECT >, t)
= mte(OBJECT, t) .

The PALS wrapper must perform an action when one of its timers expire,
and it must also immediately read output from its inner object:

eq mte(< O : PALS-wrapper | innerConf : MSG CONF >, t) = 0 .

eq mte(< O : PALS-wrapper | inBuffer : MSGS,
ignoreNbs : OS
clock : T1,
roundTimer : T2,
innerConf : OBJECT,
outputBackoffTimer : TI >, t)

= if onlyRelevantMessages(MSGS, OS)
then min(mte(OBJECT, t), localClockElapsecO(t, T1, min(T2, TI)))
else 0 fi .

Finally, a message in the network may be ready for consumption whenever
its smallest remaining network delay is zero:

rl [messageRipe] : dly(MSG, 0, T) => MSG .

291

B.1.9 Initial States

As explained in [138] for single-rate PALS, it is convenient to define the
initial states to be those at time T −ε, just before the start of a new “round”
of the entire system, when all the PALS wrapper input buffers are full:

Definition B.1. Admissible initial states of distributed real-time system
MA(E, T,Γ) are states {state ; T − ε} as described above, where:

1. the value of the clock attribute of each object in state with object
identifier j is cj(T − ε);

2. each PALS-wrapper object contains a complete set of messages in its
inBuffer;

3. there are no other messages in the system, neither in the network, nor
in other buffers or in the inner configurations of wrappers;

4. the roundTimer, fastPeriodTimer, and slowPeriodTimer attributes
are initialized to T−cj(T−ε) (for the appropriate local clock cj), which
is always greater 0; and

5. all other timers are turned off (i.e., equal INF).

B.1.10 Example

We give an example showing how states inMA(E, T,Γ) can be represented.
Let Γ define the following performance parameters: the maximum network
delay µmax = 2, the maximal clock drift ε = 0.5, and the maximum transition
execution times αmax = αmaxe = αmaxg = 2. Let the period T of the whole
system be 12 time units. These parameter values satisfy the PALS constraint
T ≥ µmax + 2ε + max(2ε monus µmin, αmax), since 12 ≥ 5. Consider the
multirate ensemble E1 in Figure B.1, i.e.:

E1 = ({c, d}, {e, g}, env1, {Mj}j∈{c,d,e,g},
(Denv1

i1
×Denv1

i2
×Denv1

i3
, Denv1

o1 ×Denv1
o2), src, {e 7→ 2, g 7→ 3}, adap)

where:

• src, assigning to each input port the source output port, is the function

{(c, 1) 7→ (env1, 1), (c, 2) 7→ (d, 3), (c, 3) 7→ (g, 1), (c, 4) 7→ (e, 1),
(d, 1) 7→ (env1, 2), (d, 2) 7→ (e, 2), (d, 3) 7→ (c, 3),
(e, 1) 7→ (c, 4), (g, 1) 7→ (d, 2),
(env1, 1) 7→ (c, 1), (env1, 2) 7→ (c, 2), (env1, 3) 7→ (d, 1)}.

292

c d

e
rate=2

g
rate=3

Figure B.1: A multirate ensemble E1, when ports are counted clockwise
from the upper left corner.

• adap is a function that maps each machine (index) j to the input
adaptor adapj . Here, (adapc)1 and (adapc)2 are functions that take
a single data element (of the appropriate type) and return a single
data element (input from env1 and d, respectively), whereas (adapc)3

maps a three-tuple of data elements (input from g) to a single element,
(adapc)4 maps a pair (input from e) to a single element, and so on.
Likewise, (adapg)1 maps a single data value (from d) to a triple of
values (inputs for the fast machine g).

Since the period of e is 6 and that the period of g is 4, the parameter
values Γ and T satisfy the condition that each fast component can finish a
fast transition before, n the worst case, having to perform another transition,
T/k ≥ 2ε+ αmax, since 4 ≥ 3. However, when we consider the formula

k′f = 1 + b
(T monus (2ε+ µmax + αmaxf)) · rate(f)

T
c,

stating how many outputs a fast machine f is guaranteed to be able to send,
we get that for the fastest component g,

k′g = 1 + b(12− 5) · 3
12 c = 2.

That is, it cannot be guaranteed that the component g can finish all 3
transitions in a (slow) round before having to transmit its messages into the
network (by way of its outer wrappers).5

5The third fast period of g begins at local time 8, and if its local clock is slow, and it
takes two time units to execute the transition and two time units to transmit the messages
in the network, the messages will not arrive by time 12, i.e., the start of the next global
round, at the nodes with faster clocks.

293

< c : PALS-wrapper |
inBuffer : possibly input msgs from other components ,
period : 12, ignoreNbs : emptySet,
clock : cc(t), roundTimer : ...,
outputBuffer : ..., outputBackoffTimer : ...,
innerConf :

< c : InputAdaptor |
inBuffer : possibly input msgs from PALS wrapper ,
ignoreNbs : emptySet,
innerConf :

< c : C[c] |
inBuffer : possibly input msgs from adaptor ,
period : 12,
clock : cc(t), roundTimer : ...,
state : s, outBuffer : ...,
localWiring : (1 --> env1.1 ; 2 --> env1.2 ;

3 --> d.3 ; 4 --> e.1)
>
--- possible output msgs from machine to adaptor

>
--- possible output msgs from adaptor to PALS wrapper

>

Figure B.2: The slow component c inMA(E1, 12,Γ).

Therefore, to ensure predictable behavior, the input adaptor(s) handling
inputs from g must be (k′+ 1)-oblivious; that is, they must ignore the third
element from g. In our case, this means that for all values d1, d2, d3, d4 of the
appropriate data type, the input adaptor (adapc)3 must satisfy the condition
(adapc)3(d1, d2, d3) = (adapc)3(d1, d2, d4). For the other fast component, e,
its rate 2 equals its k′e value 1+b (12−5)·2

12 c, and hence it can always finish both
of its transitions in a fast round before having to send the generated messages
into the network. The (k′ + 1)-obliviousness condition therefore does not
impose any further restrictions on the adaptors (adapc)4 and (adapd)2.

Since we assume that all objects defining/wrapping a machine j have the
object identifier j and have the same local clock cj , the slow component c
in E1 is modeled by a term of the form in Figure B.2, where there are input
in at most one of the input buffers. Likewise, the fast component g in E1

can be represented by a term of the form in Figure B.3.
We now consider a hierarchical multirate ensemble E that has E1 as a

subcomponent (with index f in E), where rate(α) = 5 and the top-level
machines in E have indices a and b, as shown in Figure B.4; i.e.:

E = ({a, b}, ∅, {f}, env, {Ma,Mb}, {Ef}, ({∗}, {∗}), src, {f 7→ 5}, adap)

src = {(a, 1) 7→ (f, 1), (b, 1) 7→ (f, 3), (b, 2) 7→ (f, 2), (b, 3) 7→ (f, 1),
(f, 1) 7→ (a, 1), (f, 2) 7→ (b, 1)}.

294

< g : PALS-wrapper |
inBuffer : possibly input messages from other components ,
period : 12, ignoreNbs : emptySet,
clock : cg(t), roundTimer : ...,
outputBuffer : ..., outputBackoffTimer : ...,
innerConf :

< g : InputAdaptor |
inBuffer : possibly input msgs from PALS wrapper ,
ignoreNbs : emptySet,
innerConf :

< g : K-machine |
inBuffer : input msgs from input adaptor ,
fastPeriod : 4, ignoreNbs : emptySet,
clock : cg(t), fastPeriodTimer : ...,
slowPeriodTimer : ..., rate : 3,
outBuffer : ..., outputDeadline : ...,
prevInput : ..., currentFastRound : ...,
innerConf:

< g : C[g] |
inBuffer : possibly input msgs from K-machine ,
period : 4,
clock : cg(t), roundTimer : ...,
state : s, outBuffer : ...,
localWiring : (1 --> c.3)

>
--- possible output msgs from machine to K-machine

>
--- possible output msgs from K-machine to adaptor

>
--- possible output msgs from adaptor to PALS wrapper

>

Figure B.3: The fast component g inMA(E1, 12,Γ).

rate=5

c d

e
rate=2

g
rate=3

a b

Figure B.4: A hierarchical multirate ensemble E, with some connections
to/from the nodes a and b omitted.

295

We define the states ofMA(E, 60,Γ). The representation of the local fast
components e and g of E1 in the flat case is completely unchanged (since they
do not communicate with the environment, we do not even need to change
the local wiring for these objects), except for adding the attribute/value pair
ignoreNbs : emptySet to the wrappers. But the slow components c and d
in the fast subcomponent E1 must be updated by adding new wrappers for
the communication with the outside. That is, we add a new PALS wrapper,
a new InputAdaptor wrapper (for the input adaptor around MSC(E1) in the
definition of E), and a new K-machine wrapper for the communication with
the “environment”. Note that these new wrappers ignore communication
with the other components in E1 (i.e., c or d, and e and g), whereas the
“old” wrappers should ignore communication with the external components
a and b. For example, if src(a, 1) = src(b, 3) = (f, 1), src(b, 1) = (f, 3), and
src(b, 2) = (f, 2), then the component c has the form in Figure B.5.
Finally, the last components we have to consider are the top-level machine

components, a and b in our case. They are modeled exactly as the slow
components in the flat case, with the exceptions of “short-circuiting” the
connections that go via the environment and adding ignoreNbs : emptySet

to the wrappers. For example, if src1(c, 1) = (env1, 1) and src(1, 1) = (a, 1),
then the node a in our system is modeled by the object in Figure B.6.
To summarize, given a hierarchical multirate ensemble E with period T

and performance parameters Γ, we have provided the following procedure for
constructing the corresponding (flat) model of its asynchronous distributed
real-time realizationMA(E, T,Γ):

1. Recursively construct the asynchronous modelMA(Ese, T/rate(se),Γ)
for each subensemble Ese of E.

2. For each slow machine in E, construct the corresponding node, like we
did for a above.

3. For each fast machine in E, construct the corresponding node in the
same way as in the flat setting.

4. For each slow component in each subsystem MA(Ese, T/rate(se),Γ),
add the new wrappers for communicating with the global top-level
machines, and modify its existing wrappers to ignore messages to/from
these outermost slowest node (like we did for node c above).

5. “Short-circuit” the connections between the top-level components in
MA(E, T,Γ) and the top-level nodes in each subensemble Ese.

296

< c : PALS-wrapper | --- NEW! Communication with outer components
inBuffer : ...,
period : 60, ignoreNbs : d ; e ; g,
clock : cc(t), roundTimer : ...,
outputBuffer : ..., outputBackoffTimer : ...,
innerConf :

< c : InputAdaptor | --- NEW! transforms single inputs to 5-tuples ,
inBuffer : ...,
ignoreNbs : d ; e ; g,
innerConf :

< c : K-machine | --- NEW! Slows down by factor 5
inBuffer : ...,
fastPeriod : 12, ignoreNbs : d ; e ; g,
clock : cc(t), fastPeriodTimer : ...,
slowPeriodTimer : ..., rate : 5,
outBuffer, outputDeadline : ...,
prevInput : ..., currentFastRound : ...,
innerConf: --- "old wrappers slightly modified"

< c : PALS-wrapper |
inBuffer : ...,
period : 12, ignoreNbs : a ; b,
clock : cc(t), roundTimer : ...,
outputBuffer : ..., outputBackoffTimer : ...,
innerConf :

< c : InputAdaptor |
inBuffer : ...,
ignoreNbs : a ; b,
innerConf :

< c : C[c] |
inBuffer : possibly input from all nodes ,
period : 12,
clock : cc(t), roundTimer : ...,
state : s, outBuffer : ...,
localWiring : (1 --> a.1 ; 1 --> b.3 ; 2 --> b.2 ;

3 --> d.3 ; 4 --> e.1)
>
--- possible output messages from machine

>
--- possible output messages from adaptor

>
--- possible output messages from fast PALS-wrapper

>
--- possible output messages from K-machine wrapper

>
--- possible output messages from outer input adaptor

>
--- possible output messages from outer PALS wrapper

Figure B.5: The relatively slow component c inMA(E, 60,Γ).

297

< a : PALS-wrapper |
inBuffer : ...,
period : 60, ignoreNbs : emptySet ,
clock : c_a(t), roundTimer : ...,
outputBuffer : ..., outputBackoffTimer : ...,
innerConf :

< a : InputAdaptor |
inBuffer : ...,
ignoreNbs : emptySet ,
innerConf :

< a : C_[a] |
inBuffer : ...,
period : 60,
clock : c_a(t), roundTimer : ...,
state : s, outBuffer : ...,
localWiring : (1 --> c.1 ; ...)

>
--- possible output messages from machine to adaptor

>
--- possible output messages from adaptor to PALS wrapper

>

Figure B.6: The slow component a inMA(E, 60,Γ).

B.2 More Details on the Proof

This section provides the proofs of two lemmas in Section 6.3.3 for the
correctness of Multirate PALS, the proof sketch for the hierarchical case of
Theorem 6.1. We recall some of the assumptions that enable us to establish
the relationship between the synchronous composition MRSC(E) and the
asynchronous systemMA(E, T,Γ) for a multirate ensemble E, global period
T , and performance parameters Γ = (αmin, αmax, µmin, µmax, ε,~c, αF), where
αF = {αmaxf }f∈JF denotes the maximal execution time of a transition of
all the fast machines in the ensemble E:

1. The PALS condition: T ≥ µmax + 2ε+ max(2ε monus µmin, αmax);

2. Each fast component f can always finish executing a transition before
having to start executing the next one: T/rate(f) ≥ αmaxf + 2ε;

3. For each input “port” (j, p) of a slow component j ∈ JS connected to an
output port (f, p′) of a fast component f ∈ JF (i.e., src(j, p) = (f, p′)),
its input adaptor adap(j)p is (k′f + 1)-oblivious for

k′f = 1 + b
T monus (2ε+ µmax + αmaxf) · rate(f)

T
c,

the maximal number of elements in each rate(f)-tuple of outputs that
f can be guaranteed to be transmitted in each slow round.

298

For a flat multirate ensemble E, in the single-rate systemA(SR(E), T,Γ), a
slow component j ∈ JS is represented by a TypedMachine object modeling
(Mj)adap(j) enclosed by a PALS wrapper: i.e., PALST,Γ((Mj)adap(j)). In
the multirate systemMA(E, T,Γ), it is modeled by a TypedMachine object
modeling Mj , enclosed by an InputAdaptor wrapper for adap(j), which in
itself is enclosed by a PALS wrapper: i.e., PALST,Γ(adap(j)(Mj)).

Lemma 6.3. For a slow machine Mj in a flat multirate machine ensemble
E, j ∈ JS, the correlated local asynchronous systemsMA(adap(j)(Mj), T,Γ)
and A((Mj)adap(j), T,Γ) are behaviorally ∼obl-equivalent.

Proof. Consider stable states sma and sa in Stable(MA(adap(j)(Mj), T,Γ))
and Stable(A((Mj)adap(j), T,Γ)), respectively, such that

sma ∼obl sa.

Then, the state attribute of the typed machine is the same in both cases,
but their inputs are only ≡obl-equivalent. Suppose that there is a transition
sa −→st s

′
a for some s′a ∈ Stable(A((Mj)adap(j), T,Γ)). Then, there is a

corresponding transition sma −→st s
′
ma, because:

1. both immediately apply the input adaptor adap(j) to the received
input without any delay, and then immediately apply the transition of
Mj to the resulting input; and

2. we assume (k′ + 1)-obliviousness of our input adaptors, so it follows
from Lemma 6.1 that the input values seen by the innermost “machine”
will be the same.

Clearly, forMj , the TypedMachine object in s′ma has the same state with
one in s′a, and the input buffers of the PALS wrappers can also be the same,
since the local environments can give the same output. Once the output
is ready, in the single-rate case, the output is grabbed immediately by the
PALS wrapper, and in the multirate case, it is grabbed immediately by
the InputAdaptor wrapper. However, in the latter case, the InputAdaptor
wrapper immediately outputs it for the PALS wrapper to pick it up. The
timing is the same in both cases, since the input adaptor wrapper reads
messages, propagate messages up and down, and applies adaptors eagerly
(i.e., without any wait) and in zero time. Therefore, the outputs will be
the same in both cases. That is, the input buffer of the PALS wrapper for
the local environment in s′ma has received the same output as one in s′a.
Consequently, s′ma ∼obl s′a. The other direction is similar.

299

On the other hand, a fast component j ∈ JF of a flat multirate ensemble
E is represented by PALST,Γ((M×rate(j)

j)adap(j)) in the single-rate system,
i.e., a TypedMachine object corresponding to the machine (M×rate(j)

j)adap(j)

enclosed by a PALS wrapper, and in the multirate system, represented
by PALST,Γ(adap(j)(rate(j)(Mj))), i.e., a TypedMachine object modeling
Mj , enclosed by a K-machine wrapper with rate rate(j), enclosed by an
InputAdaptor wrapper for adap(j), again enclosed by a PALS wrapper.

Lemma 6.4. For a fast machine Mf in a flat multirate machine ensemble
E, f ∈ JF , the local asynchronous systemsMA(adap(f)(rate(f)(Mf)), T,Γ)
and A((M×rate(f)

f)adap(f), T,Γ) are behaviorally ∼obl-equivalent.

Proof. Consider states sma ∈ Stable(MA(adap(f)(rate(f)(Mf)), T,Γ)) and
sa ∈ Stable(A((M×rate(f)

f)adap(f), T,Γ)) with sma ∼obl sa, and suppose that
sa −→st s

′
a for some s′a ∈ Stable(A((M×rate(f)

f)adap(f), T,Γ)). In sma and
sa, the typed machine objects for Mf have the same state and the PALS
objects have ≡obl-equivalent inputs in their input buffers. However, since a
fast component only gets inputs from slow components, there is no “cutoff”
in these received messages; that is, the PALS wrappers for Mf in sma and
sa actually have the same inputs in their input buffers.
The single-rate component forMf in sa performs all rate(f) transitions in

one step,6 according to Definition 6.5, and the multirate component for Mf

in sma executes them one by one,7 using the K-machine wrapper. As stated
in the proof of Lemma 6.3, the input adaptors (either as machine closures,
in the single-rate case, or as explicit wrappers, in the multirate case) achieve
the same thing in the same amount of time. Therefore, for the K-machine

wrapper in sma, we can choose to apply the same transitions in both cases,
so that the resulting state of the machine will be the same, provided that:
(i) the multirate machine will have time to execute all rate(f) transitions
before reaching the time when it needs to become a stable state, and (ii) it
can finish one local transition before the next fast input arrives.

6PALST,Γ((M×rate(f)
f)adap(f)) first applies adap(f) to the inputs, and starts from its

state and performs a single transition, which “simulates” rate(f) steps of Mf as described
in Definition 6.5. This takes time less than αmax (maximum time to perform a single
transition). The resulting outputs, which are rate(f)-tuples of outputs for every output
port of Mf are sent out of the machine once they are ready, and are picked up by the
PALS wrapper, and are sent out into the configuration in time.

7For PALST,Γ(adap(f)(rate(f)(Mf))), the input adaptor wrapper transforms the input
and immediately sends it to the K-machine layer below. The K-machine wrapper feeds
the rate(f)-tuples of inputs, one element from each rate(f)-tuple at a time, at each “fast
period”. When the innermost machine gets an input, it performs one transition from Mf ,
and when the output is ready, it is thrown out by the typed machine and collected by the
K-machine object. When the K-machine object has received all rate(f) sets of outputs, or
when its deadline timer expires, it sends out the messages.

300

Following the results of the single-rate PALS timing properties in [138],
the period will expire some time in the time interval (i · T − ε, i · T + ε),
and the following fast transition will occur some time in the time interval
(i · T − ε + T/rate(f), i · T + ε + T/rate(f)). Therefore, to make sure that
the fast machine can indeed perform transitions when the previous state has
already finished, we must have

i · T + ε+ αmaxf ≤ i · T − ε+ T/rate(f),

that is, αmaxf ≤ T/rate(f) − 2ε, which was an assumption made at the
beginning of this section. Therefore, the fast machine will have time to
perform a transition, and hence perform the following transition with the
updated new internal state. Furthermore, this also directly implies that the
fast machine can finish all of its rate(f) executions before entering the start
of the next round, i.e., the next stable state. Consequently, there exists a
corresponding transition sma −→st s

′
ma, where the TypedMachine object in

s′ma has the same state attribute as one in s′a, and has generated the same
output. The input buffers of the PALS wrappers for Mj in s′a and s′ma can
also be the same, since their local environments can give the same output.
Now let us consider the outputs, which determine the input buffers of the

PALS wrappers for the local environments in s′a and s′ma. The single-rate
machine will output the rate(f)-tuple of outputs resulting from executing
a single transition of M×rate(f)

f , which simulates k transitions of Mf . The
multirate component will send either all of these (since as we saw above,
the exact same transitions can be performed in the multirate case), or must
send away its messages before it has gotten all k sets of outputs, when its
deadline timer expires. If so, it “pads” the outgoing message tuples with
the selected bottom values until it it has sent k-tuples of outputs. That
is, the resulting outputs only differ in (k′ + 1)-oblivious data, and hence
the outputs will be ≡obl-equivalent. Finally, we need to show that these
messages indeed will be arrive at the PALS wrapper in time to reach all
recipients before the next round. At the beginning of a slow round, this
outputDeadline timer is set to T − 2 · ε − µmax, which means that it will
expire before time (i + 1) · T − ε − µmax, which means that the messages
will reach their recipients before “real” time (i+ 1) · T − ε, which is exactly
what we want [138]. Therefore, the input buffer of the PALS wrapper for
the local environment in s′ma has received the same output as one in s′a.
Consequently, s′ma ∼obl s′a. The other direction is entirely similar.

301

As explained in Section 6.3.3, the above two lemmas and Lemma 6.2 imply
the following theorem for a flat multirate ensemble E, and therefore also
imply that ∼obl ; sync is a bisimulation between two asynchronous systems
ts(Stable(MA(E, T,Γ))) and ts(Stable(A(MSR(E), T,Γ))):

Theorem 6.1. For a flat multirate ensemble E, the relation ∼obl ; sync is
a bisimulation between ts(Stable(MA(E, T,Γ))) and ts(SR(E)).

Consider an immediate (fast) subensemble Ese of a hierarchical multirate
ensemble E = (JS , JF ,K, e, {Mj}j∈JS∪(JF−K), {Ese}se∈K , E, src, rate, adap).
Let MA((E×rate(se)

se)adap(se), T,Γ) be the distributed asynchronous model in
which each relatively slow component in Ese is enclosed by outer wrappers
as illustrated in Figure 6.9. That is, if PALST,Γ(αs(k(PALST/k,Γ(αf (M)))))
denotes a layered object8 for a slow component in Ese, then:

MA((E×rate(se)
se)adap(se), T,Γ) =
{PALST,Γ(αs(k(PALST/k,Γ(adapse(j)(Mj))))) | j ∈ JS} ∪

{PALST/k,Γ(adapse(j)(ratese(j)(Mj))) | j ∈ JF } ∪

{PALST,Γ(E)},

where αs = adap(se), k = rate(se), adapse(j) is the input adaptor function
for a machine j in Ese, and ratese is the rate of a machine j in Ese. By the
above theorem, ts(Stable(MA(Ese, T,Γ))) and ts(Stable(A(MSR(Ese), T,Γ)))
are bisimilar, provided that Ese is flat (i.e., E has depth 2). Therefore, by a
similar argument used in the proof of Lemma 6.4, we have:

Lemma B.1. Consider an immediate fast subensemble Ese in a hierarchical
multirate ensemble E of depth 2. Then, the following local asynchronous
distributed systems are also behaviorally (∼obl ; sync)-equivalent:

MA((E×rate(se)
se)adap(se), T,Γ) and A((M×rate(se)

SR(Ese))adap(se), T,Γ).

As a consequence, by using a slightly extended version of Lemma 6.2 to
(∼obl ; sync)-equivalent components, and by using induction on depth d of
E, we can obtain the following main result:

Theorem B.1. For a hierarchical multirate ensemble E, (∼obl ; sync) is a
bisimulation between ts(Stable(MA(E, T,Γ))) and ts(SR(E)).

8The slow PALS-wrapper object with period T encloses an outer InputAdaptor object
for input adaptor αs, which encloses a K-machine object with rate k, which encloses the
fast PALS-wrapper object with period T/k, which encloses an inner InputAdaptor object
for adaptor αf , which finally encloses a TypedMachine object for M .

302

B.3 More Details on the Real-Time Maude Framework

This section provides the definitions of the three functions clearOutputs,
transferInputs, and transferResults, used in Section 6.4.2. Note that
more “optimized” versions of the transferInputs and transferResults

functions are provided in the paper [16].

Definition of the clearOutputs Function. The clearOutputs function
that clears every output port in the configuration is declared as follows:

var C : ComponentId . var P : PortId .
vars PORTS COMPS : Configuration . var DL : List{Data} .

op clearOutput : Configuration -> Configuration .

eq clearOutput(< C : Component | ports : PORTS > COMPS)
= < C : Component | ports : clearOutput(PORTS) >
clearOutput(COMPS) .

eq clearOutput(< P : OutPort | content : DL > PORTS)
= < P : OutPort | content : nil > clearOutput(PORTS) .

eq clearOutput(PORTS) = PORTS [owise] .

Definition of the transferInputs Function. For a multirate ensemble
component, the transferInputs function transfers data in the input ports
of the ensemble or the feedback output ports of the subcomponents into their
connected input ports at the beginning of each step. We model transferring
data by a message passing mechanism. A message has a list of data to be
delivered and a comma-separated set of its target port names.

op transIn : NeList{Data} PortName ~> Msg .

Notice that messages are declared to only have a kind [Msg], and thus no
other operation can be applied until every message is delivered.
The following equations formalize that transIn messages are delivered to

the input ports of the subcomponents, where KPS and KCS are variables at
the kind level to capture traveling messages as well as objects:

vars PN PN’ : PortName . vars KPS KCS : [Configuration] .
vars PORTS COMPS : Configuration . var CONXS : Set{Connection} .

eq < C : Ensemble | ports : KPS transIn(NDL,PN), machines : KCS >
= < C : Ensemble | ports : KPS, machines : KCS transIn(NDL,PN) > .

303

eq transIn(NDL, C . P)
< C : Component | ports : < P : InPort | content : nil > PORTS >

= < C : Component | ports : < P : InPort | content : NDL > PORTS > .

The transferInputs function just generates those transIn messages
from each ensemble input port and feedback output port:

eq transferInputs(
< C : Ensemble | ports : PORTS,

machines : COMPS,
connections : CONXS >)

=
< C : Ensemble | ports : transEnvIn(CONXS, PORTS),

machines : transFBOut(CONXS, COMPS) > .

The transEnvIn function produces the message transIn(D, C’ . P’) from
the first item D in each ensemble input port P, and the transFBOut function
produces the message transIn(NDL, C . P) from data NDL in each feedback
output port P of subcomponent C. Since one source port may correspond
to many destination ports, we also define two auxiliary functions: given a
source port name PN, data NDL, and a connection set CONXS, the function
genIn returns the set of all resulting transIn messages, and the function
remove returns the connection set obtained from CONXS by removing each
connection PN --> PN’ with source port PN:

op transEnvIn : Set{Connection} Configuration ~> Configuration .
eq transEnvIn((P --> C’ . P’) ; CONXS,

< P : InPort | content : D DL > KPS)
=
transEnvIn(remove(P, CONXS),
< P : InPort | content : DL > KPS
genIn(P, D, (P --> C’ . P’) ; CONXS)) .

eq transEnvIn(CONXS, KPS) = KPS [owise] .

op transFBOut : Set{Connection} Configuration ~> Configuration .
eq transFBOut((C . P --> C’ . P’) ; CONXS,

< C : Component |
ports : < P : OutPort | content : NDL > PORTS > KCS)

=
transFBOut(remove(C . P, CONXS),
< C : Component |

ports : < P : OutPort | content : nil > PORTS > KCS
genIn(C . P, NDL, (C . P --> C’ . P’) ; CONXS)) .

eq transFBOut(CONXS, KCS) = KCS [owise] .

304

op genIn : PortName NeList{Data} Set{Connection} ~> Configuration .
eq genIn(PN, NDL, (PN --> PN’) ; CONXS)
= genIn(PN, NDL, CONXS) transIn(NDL, PN’) .

eq genIn(PN, NDL, CONXS) = none [owise] .

op remove : PortName Set{Connection} -> Set{Connection} .
eq remove(PN, (PN --> PN’) ; CONXS) = remove(PN, CONXS) .
eq remove(PN, CONXS) = CONXS [owise] .

Definition of the transferResults Function. The transferResults

function transfers data in the output ports of the subcomponents to their
connected output ports in an ensemble component. Similarly, we model
transferring data by means of a message passing mechanism using transOut

messages, which are delivered to the output ports of the ensemble:

op transOut : NeList{Data} PortName ~> Msg .

eq < C : Ensemble | ports : KPS, machines : transOut(NDL,PN) KCS >
= < C : Ensemble | ports : KPS transOut(NDL,PN), machines : KCS > .

eq transOut(NDL, P) < P : OutPort | content : DL >
= < P : OutPort | content : DL NDL > .

The transferResults function generates such transOut messages from
the output ports of the subcomponents, where the function transEnvOut

produces the message transOut(NDL, P’) from data NDL in each output
port P of subcomponent C: if the port C . P is also involved in feedback
output connections (by using the hadFeedback function), then the data NDL

remains for the next step, and otherwise removed:

eq transferResults(< C : Ensemble | machines : COMPS,
connections : CONXS >)

= < C : Ensemble | machines : transEnvOut(CONXS, COMPS) > .

op transEnvOut : Set{Connection} Configuration ~> Configuration .
ceq transEnvOut((C . P --> P’) ; CONXS

< C : Component |
ports : < P : OutPort | content : NDL > PORTS > KCS)

= transEnvOut(remove(C . P, CONXS),
< C : Component |

ports : < P : OutPort | content : DL > PORTS > KCS
genOut(C . P, NDL, (C . P --> P’) ; CONXS))

if DL := if hasFeedback(C . P, CONXS) then NDL else nil fi .
eq transEnvOut(CONX, KCS) = KCS [owise] .

305

The auxiliary functions hasFeedback—that checks if the given port is a
feedback output port—and genOut—that returns the set of all resulting
transOut messages—are defined as follows:

op hasFeedback : PortName Set{Connection} -> Bool .
eq hasFeedback(PN, (PN --> C . P) ; CONXS) = true .
eq hasFeedback(PN, CONXS) = false [owise] .

op genOut : PortName NeList{Data} Set{Connection} ~> Configuration .
eq genOut(PN, NDL, (PN --> P) ; CONXS)
= genOut(PN, NDL, CONXS) transOut(NDL, P) .

eq genOut(PN, NDL, CONXS) = none [owise] .

B.4 The Simplified Asynchronous Model

This section presents the formal specification of highly simplified Multirate
PALS asynchronous model used in Section 6.5.5. This specification supports
a hierarchical system design in which a component may communicate with
both faster and slower components. For example, the main controller (period
60 ms) in the airplane turning control system is connected to both the pilot
console (period 600 ms) and the left wing subcontroller (period 15 ms).
In the asynchronous real-time model, each component runs according to

its own period, and communicates with other components by sending and
receiving messages asynchronously. When a component begins its new local
period, it reads the incoming messages from its input ports, performs its
local transition, and places the generated outputs in its output ports. The
input adaptor functions are applied to deal with inputs from components
with different periods. To ensure that those output messages are used in
the next round of the recipient, they are sent into the network as follows:

• A component with period k · T sends a k-tuple of data at the same
time to the slower component with period T , one time unit after all
its k local transitions are performed.

• A component sends an output message to a faster (or equally fast)
component one time unit after each local transition is performed.

An output message generated in one round can therefore not be used in the
same round, since it is sent one time unit after the beginning of the round.
An asynchronous component is an object instance of (a subclass of) the

class AsyncComponent, which also integrates all its wrappers and the inner
component specified by an object instance of Component:

306

class AsyncComponent | rate : NzNat,
counter : Nat,
timer : Time,
fastInputs : Set{PortName},
slowInputs : Set{PortName},
fastOutputs : Set{Connection},
slowOutputs : Set{Connection},
fastOutputTimer : TimeInf,
slowOutputTimer : TimeInf,
fastBuffer : Configuration,
slowBuffer : Configuration .

subclass AsyncComponent < Component .

The rate attribute denotes the rate of the component compared to the
slower components. The counter denotes the number of fast transitions
that have been taken in the current slow period, and the timer denotes
the time until a new fast period begins (that is, a new slow round of the
asynchronous component begins when both timer and counter attributes
are 0). The other attributes of AsyncComponent are used to control the
input and output of the component: the fast attributes are related to
faster (or equal) components, and the slow attributes are related to slower
components. For example, fastInputs denotes a set of input ports that are
connected to faster (or equal) components, and fastOutputs denotes a set
of connections from the component’s output ports to input ports of faster
components. The output message to a faster component generated during
its round is stored in fastBuffer, until it is sent into the network when the
fastOutputTimer expires. The slow attributes are similar, but are used for
communication with slower components.
In the aircraft turning control system, each controller component is an

instance of both its corresponding controller class and AsyncComponent.
Therefore, we define the common “asynchronous” controller classes:

class AsyncSubController .
class AsyncMainController .
class AsyncPilotConsole .
subclass AsyncSubController < AsyncComponent SubController .
subclass AsyncMainController < AsyncComponent MainController .
subclass AsyncPilotConsole < AsyncComponent PilotConsole .

The state of the asynchronous model is then represented as a configuration of
AsyncComponent objects. For example, a state of the aircraft turning control
system in the asynchronous model is represented in Figure B.7. Notice that
the structure is flattened, unlike the synchronous model.

307

< pilot : AsyncPilotConsole |
period : 600, rate : 1, counter : 0, timer : 0,
ports : < input : InPort | content : bot >

< output : OutPort | content : nil >,
scenario : nil,
fastOutputTimer : INF, slowOutputTimer : INF,
fastBuffer : none, slowBuffer : none,
fastInputs : input, slowInputs : empty,
fastOutputs : output --> main . input, slowOutputs : empty >

< left-wing : AsyncSubController |
period : 15, rate : 4, counter : 0, timer : 0,
ports : < input : InPort | content : bot >

< output : OutPort | content : nil >,
curr-angle : 0.0, goal-angle : 0.0 , diff-angle : 1.0,
fastOutputTimer : INF, slowOutputTimer : INF,
fastBuffer : none, slowBuffer : none,
fastInputs : empty, slowInputs : input,
fastOutputs : empty, slowOutputs : output --> main . inLW >

< right-wing : AsyncSubController |
period : 15, rate : 4, counter : 0, timer : 0,
ports : < input : InPort | content : bot >

< output : OutPort | content : nil >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 1.0,
fastOutputTimer : INF, slowOutputTimer : INF,
fastBuffer : none, slowBuffer : none,
fastInputs : empty, slowInputs : input,
fastOutputs : empty, slowOutputs : output --> main . inRW >

< virt-wing : AsyncSubController |
period : 20, rate : 3, counter : 0, timer : 0,
ports : < input : InPort | content : bot >

< output : OutPort | content : nil >,
curr-angle : 0.0, goal-angle : 0.0, diff-angle : 0.5,
fastOutputTimer : INF, slowOutputTimer : INF,
fastBuffer : none, slowBuffer : none,
fastInputs : empty, slowInputs : input,
fastOutputs : empty, slowOutputs : output --> main . inTW >

< main : AsyncMainController |
period : 60, rate : 10, counter : 0, timer : 0,
ports :

< input : InPort | content : bot > < output : OutPort | content : nil >
< inLW : InPort | content : 0.0 > < outLW : OutPort | content : nil >
< inRW : InPort | content : 0.0 > < outRW : OutPort | content : nil >
< inTW : InPort | content : 0.0 > < outTW : OutPort | content : nil >,

velocity : 50.0, goal-dir : 0.0,
curr-yaw : 0.0, curr-rol : 0.0, curr-dir : 0.0,
fastOutputTimer : INF, slowOutputTimer : INF,
fastBuffer : none, slowBuffer : none,
fastInputs : (inLW, inRW, inTW), slowInputs : input,
fastOutputs : outLW --> left-wing . input ; outRW --> right-wing . input ;

outTW --> virt-wing . input,
slowOutputs : output --> pilot . input >

Figure B.7: An initial state of the asynchronous model.

308

Communication between different components is formalized by explicit
message passing, using messages of the form (msg Data to Target):

op msg_to_ : NeList{Data} PortName -> Msg [ctor] .

The rewrite rules for asynchronous communications are straightforward. In
the recv rule, the component C receives the message (msg NDL to C . P)

and puts it in the corresponding input port P:

rl [recv]:
(msg NDL to C . P)
< C : AsyncComponent |

ports : < P : InPort | content : DL > PORTS >
=>

< C : AsyncComponent |
ports : < P : InPort | content : DL NDL > PORTS > .

There are two rules for sending messages. The rule sendFast sends the
messages MSGS in fastBuffer for faster components into the network when
fastOutputTimer expires, and turns fastOutputTimer off. The sendSlow

rule is similar but uses slowBuffer and slowOutputTimer to send messages
generated for slower components into the network:

rl [sendFast]:
< C : AsyncComponent | fastOutputTimer : 0,

fastBuffer : MSGS >
=>

< C : AsyncComponent | fastOutputTimer : INF,
fastBuffer : none > MSGS .

rl [sendSlow]:
< C : AsyncComponent | slowOutputTimer : 0,

slowBuffer : MSGS >
=>

< C : AsyncComponent | slowOutputTimer : INF,
slowBuffer : none > MSGS .

When a component begins a new round (timer = 0), the appropriate
input adaptors are applied to its input ports, the transition is performed
by using the delta operator after setting timer to its period, and output
is put into the relevant output buffers. Since we assume in our simplified
asynchronous model that the execution time is zero, the operator delta

is defined by rewrite rules in the same way as the synchronous semantics.
The asynchronous transition of each component is specified by the following
rewrite rule, where rem is the reminder function:

309

vars PNS FNS SNS : Set{PortName} . var NZ : NzNat . var N : Nat .
vars FCXS SCXS : Set{Connection} . vars FMGS SMGS : Configuration .
vars NCF NCF’ : NEConfiguration . vars T T’ TI TI’ : Time .

crl [step]:
< C : AsyncComponent | timer : 0, period : T, rate : NZ,

counter : N, ports : PORTS,
fastInputs : FNS, slowInputs : SNS >

=> procBufferOut(OBJ)
if PNS := if N == 0 then (FNS, SNS) else FNS fi
/\ TI := if NZ == s(N) then 1 else INF fi
/\ delta(< C : AsyncComponent |

ports : applyAdaptors(C, PORTS, NS),
timer : T, counter : s(N) rem NZ,
fastOutputTimer : 1, slowOutputTimer : TI >) => OBJ .

In the condition of the rule, fastOutputTimer is set to 1 so that the messages
in fastBuffer are sent one time unit later; but slowOutputTimer is set
to 1 only if all its fast transitions are performed in the slow round (i.e.,
rate = counter + 1). If an input port is connected to a slower component,
the adaptor for the input port is applied only if the current round is a slow
round (counter = 0), where the applyAdaptors function now takes an
extra argument to denote a set of chosen input port names.

op applyAdaptors : ComponentId Configuration Set{PortName}
-> Configuration .

eq applyAdaptors(C, < P : InPort | content : NDL > PORTS, (P, PNS))
= applyAdaptors(C, PORTS, PNS)
< P : InPort | content : adaptor(C,P,NDL) > .

eq applyAdaptors(C, PORTS, empty) = PORTS .

After performing the delta operator, all the data in the output ports are
transferred to the corresponding output buffers according to the connection
information in fastOutputs and slowOutputs:

op procBufferOut : Object -> Object .
eq procBufferOut(< C : AsyncComponent |

ports : < P : OutPort | content : NDL > PORTS,
fastOutputs : FCXS, fastBuffer : FMGS,
slowOutputs : SCXS, slowBuffer : SMGS >)

= procBufferOut(< C : AsyncComponent |
ports : < P : OutPort | content : nil > PORTS,
fastBuffer : merge(FMGS, genMsgs(P,NDL,FCXS)),
slowBuffer : merge(SMGS, genMsgs(P,NDL,SCXS)) >) .

eq procBufferOut(OBJECT) = OBJECT [owise] .

310

The genMsgs function generates messages from output ports based on
connections, and the merge function combines two multisets of messages so
as to generate messages with k-tuples of data for slow components:

op genMsgs : PortId NeList{Data} Set{Connection} -> Configuration .
eq genMsgs(P, NDL, (P --> PN) ; CONXS)
= genMsgs(P, NDL, CONXS) (msg NDL to PN) .

eq genMsgs(P, NDL, CONXS) = none [owise] .

op merge : Configuration Configuration -> Configuration .
eq merge(MSGS (msg NDL to PN), MSGS’ (msg NDL’ to PN))
= mergeMsgs(MSGS (msg NDL NDL’ to PN), MSGS’) .

eq merge(MSGS, MSGS’) = MSGS MSGS’ [owise] .

Finally, the following tick rule advances time until some asynchronous
event must happen, where the function timeEffect defines how the system
state changes according to the time elapsed, and mte defines the maximum
amount of time that may elapse in the system until some timer expires:

crl [tick] : {< C : AsyncComponent | >}
=> {timeEffect(< C : AsyncComponent | >, T)} in time T

if T := mte(< C : AsyncComponent | >) .

The function timeEffect is distributed over the objects and messages in
the state, and decreases the timers of each component in the system by the
amount of time elapsed (given by the variable TE):

op timeEffect : Configuration Time -> Configuration [frozen] .
eq timeEffect(NCF NCF’, T) = timeEffect(NCF,T) timeEffect(NCF’,T) .
eq timeEffect(none, T) = none . eq timeEffect(M, T) = M .
eq timeEffect(< C : AsyncComponent | timer : T’,

fastOutputTimer : TI,
slowOutputTimer : TI’ >, T)

= < C : AsyncComponent | timer : T’ monus T,
fastOutputTimer : TI monus T,
slowOutputTimer : TI’ monus T > .

Similarly, mte of a configuration is the smallest mte value of an object or
a message in the configuration, where mte of a component is the smallest
value in its timers, and mte of a message is 0:

op mte : Configuration -> TimeInf [frozen] . eq mte(M) = 0 .
eq mte(NCF NCF’) = min(mte(NCF), mte(NCF’)) . eq mte(none) = INF .
eq mte(< C : AsyncComponent |

timer : T,
fastOutputTimer : TI,
slowOutputTimer : TI’ >) = min(T, TI, TI’) .

311

APPENDIX C

MORE DETAILS ON
MULTIRATE SYNCHRONOUS AADL

C.1 More Details on the Real-Time Maude Semantics

This section shows the definitions of some semantic functions for Multirate
Synchronous AADL, summarized in Chapter 7. The entire semantics is
available at in http://maude.cs.illinois.edu/tools/synchaadl.

Reading Features. The function readFeature returns a map from each
input port to its current value for the execute rule. Given a set of port
objects, the readFeature function “consumes” the current value of each
input port, and constructs a map from port identifiers to their current values.
First, if an input port P has value V, then the port P is related to the pair

‘V : true’ in the resulting map FMAP (indicating that P’fresh is true) and
the cache attribute of the input port P is also updated to the value V:

var P : FeatureId . var DCL : List{DataContent} . var V : Value .
eq readFeature(< P : InPort | content : V DCL > PORTS, PORTS’, FMAP)
= readFeature(PORTS,

< P : InPort | content : DCL, cache : V > PORTS’,
insert(P, V : true, FMAP)) .

Second, if an input port P has the value bot (i.e., no “actual” value has
been received in the latest dispatch), then the port P is related to the pair
‘V : false’ (indicating that P’fresh is false) with V the cache-ed value:

eq readFeature(< P : InPort | content : bot DCL, cache : V > PORTS,
PORTS’, FMAP)

= readFeature(PORTS, < P : InPort | content : DCL > PORTS’,
insert(P, V : false, FMAP)) .

312

http://maude.cs.illinois.edu/tools/synchaadl

Finally, each output port P is related to the “don’t care” value bot, since
transitions cannot read a value from such an output port P:

eq readFeature(< P : OutPort | > PORTS, PORTS’, FMAP)
= readFeature(PORTS, < P : OutPort | > PORTS’, insert(P, bot, FMAP)) .

eq readFeature(none, PORTS’, FMAP) = PORTS’ | FMAP .

Writing Features. The function writeFeature updates the content of
each output port from the result for the execute rule. The definition of
writeFeature is straightforward; for each output port P, if some value V

(other than bot) is written for P in the map FMAP, then V is added to the
end of the data content of the output port P, and otherwise, bot is added:

eq writeFeature(FMAP, < P : OutPort | content : DCL > PORTS, PORTS’)
= if $hasMapping(FMAP, P) and FMAP[P] :: Value then

writeFeature(FMAP, PORTS,
< P : OutPort | content : DCL FMAP[P] > PORTS’)

else
writeFeature(FMAP, PORTS,

< P : OutPort | content : DCL bot > PORTS’) fi .

eq writeFeature(FMAP, PORTS, PORTS’) = PORTS PORTS’ [owise] .

Enabled Transitions. The function enabledTrans is defined as follows.
Any transition guarded by on dispatch is enabled. A transition guarded
by a Boolean expression E is enabled only if E is evaluated to true. If there
are no enabled transitions from the current state L by the above cases, then
all transitions from L guarded by otherwise are enabled:

eq enabledTrans(L, (L -[on dispatch]-> L’ ACTION) ; TRS,
FMAP | DATA | PROPS, TRS’)

= enabledTrans(L, TRS, FMAP | DATA | PROPS,
TRS’ ; (L -[on dispatch]-> L’ ACTION)) .

eq enabledTrans(L, (L -[E]-> L’ ACTION) ; TRS,
FMAP | DATA | PROPS, TRS’)

= if eval(E, empty | FMAP | DATA | PROPS) == [true]
then enabledTrans(L, TRS, FMAP | DATA | PROPS,

TRS’ ; (L -[E]-> L’ ACTION))
else enabledTrans(L, TRS, FMAP | DATA | PROPS, TRS’) fi .

eq enabledTrans(L, TRS, FMAP | DATA | PROPS, TRS’)
= if TRS’ == empty then owiseTrs(L, TRS, empty) else TRS’ fi [owise] .

313

eq owiseTrs(L, (L -[otherwise]-> L’ ACTION) ; TRS, ETRS)
= owiseTrs(L, TRS, ETRS ; (L -[otherwise]-> L’ ACTION)) .

eq owiseTrs(L, TRS, ETRS) = ETRS [owise] .

Evaluating Behavior Expressions. An expression E is evaluated to a
“value” by the function eval, based on the configuration of the temporary
variable values VAL, the input port values FMAP, the state variables DATA,
and the property values PROPS. For example, the following equations defines
the basic cases: a value V, a temporary variable VI, a state variable C, a port
identifier P, a property name PR, and a fresh expression:

var VI : VarId . var VAL : VarValuation . var B : Bool .

eq eval(V, VAL | FMAP | DATA | PROPS) = V .
eq eval([VI], (VI |-> V) ; VAL | FMAP | DATA | PROPS) = V .
eq eval([C], VAL | FMAP | < C : Data | value : V > DATA | PROPS) = V .
eq eval([P], VAL | (P |-> (V : B), FMAP) | DATA | PROPS) = V .
eq eval([PR], VAL | FMAP | DATA | (PR => PV) ; PROPS) = value(PV) .
eq eval(fresh(P), VAL | (P |-> (V : B), FMAP) | DATA | PROPS) = [B] .

The cases for the other expressions are defined by propagating eval to
their subexpressions; for example, the semantics of negation expressions,
conjunction expressions, and addition expressions is defined by:

eq eval(not(E), VAL | FMAP | DATA | PROPS)
= not(eval(E, VAL | FMAP | DATA | PROPS)) .

eq eval(E and E’, VAL | FMAP | DATA | PROPS)
= eval(E, VAL | FMAP | DATA | PROPS) and
eval(E’, VAL | FMAP | DATA | PROPS) .

eq eval(E + E’, VAL | FMAP | DATA | PROPS)
= eval(E, VAL | FMAP | DATA | PROPS) +
eval(E’, VAL | FMAP | DATA | PROPS) .

Executing Behavior Actions. Whenever a behavior transition executes
its action block ACTION, it uses the default valuation for local temporary
variables in which each variable VI is mapped to bot as follows:

eq execAction(ACTION, VARS, FMAP | DATA | PROPS)
= execAction(ACTION, defaultValuation(VARS) | FMAP | DATA | PROPS)

eq defaultValuation(VI ; VARS)
= (VI |-> bot) ; defaultValuation(VARS) .

eq defaultValuation(empty) = empty .

314

The function execAction then executes an action block using the current
configuration VAL | FMAP | DATA | PROPS, and returns a new configuration.
For example, an assignment action id := exp assigns the evaluated value of
exp to the identifier id as follows:

var DC : DataContent . var A : Action . var SEQ : ActionSequence .

ceq execAction({VI} := E, (VI |-> DC) ; VAL | FMAP | DATA | PROPS)
= (VI |-> V) ; VAL | FMAP | DATA | PROPS .

if V := eval(E, (VI |-> DC) ; VAL | FMAP | DATA | PROPS) .

ceq execAction({P} := E, VAL | (P |-> DC, FMAP) | DATA | PROPS)
= VAL | (P |-> V, FMAP) | DATA | PROPS .
if V := eval(E, VAL | (P |-> DC, FMAP) | DATA | PROPS) .

ceq execAction({C} := E,
VAL | FMAP | < C : Data | value : DC > DATA | PROPS)

= VAL | FMAP | < C : Data | value : V > DATA | PROPS .
if V := eval(E, VAL | FMAP | < C : Data | value : DC > DATA | PROPS)

For a sequence of actions {Action1 ; · · · ; Actionn}, an action Actionk
in the sequence is executed based on the result of the previous actions:

eq execAction({A ; SEQ}, VAL | FMAP | DATA | PROPS)
= execAction({SEQ}, execAction(A, VAL | FMAP | DATA | PROPS)) .

eq execAction({A}, VAL | FMAP | DATA | PROPS)
= execAction(A, VAL | FMAP | DATA | PROPS) .

A conditional action can also be straightforwardly specified as follows:

eq execAction(if (E) SEQ else SEQ’ end if, VAL | FMAP | DATA | PROPS)
= if eval(E, VAL | FMAP | DATA | PROPS) == [true]

then execAction({SEQ}, VAL | FMAP | DATA | PROPS)
else execAction({SEQ’}, VAL | FMAP | DATA | PROPS) fi .

eq execAction(if (E) SEQ (elsif (E’) SEQ’ ELSIFS) else SEQ’’ end if,
VAL | FMAP | DATA | PROPS)

= if eval(E, VAL | FMAP | DATA | PROPS) == [true]
then execAction({SEQ}, VAL | FMAP | DATA | PROPS)
else execAction(if (E’) SEQ’ ELSIFS else SEQ’’ end if,

VAL | FMAP | DATA | PROPS) fi .

Finally, math library functions are separately defined in Maude; e.g.:

ceq execAction(MathLib::sqrt ! (E, E’), VAL | FMAP | DATA | PROPS)
= execAction(target(E’) := [sqrt(F)], VAL | FMAP | DATA | PROPS) .
if F := float(eval(E,VAL | FMAP | DATA | PROPS)) .

315

Applying Input Adaptors. For each input port P of the subcomponents
of an ensemble C, the function applyAdaptors applies a (predefined) input
adaptor to the input port P if it is declared. First, applyAdaptors calls the
auxiliary function applyAdaptors(GT, COMPS) with GT the period of the
ensemble C and COMPS the subcomponents of C:

eq applyAdaptors(< C : Ensemble |
subcomponents : COMPS,
properties : (Period => GT) ; PROPS >)

= < C : Ensemble | subcomponents : applyAdaptors(GT, COMPS) > .

Next, for each subcomponent C’ with period T, it calls another auxiliary
function applyAdaptors(GT quo T, PORTS, none), where quo is the integer
quotient function (i.e., GT quo T is the “rate” of the component C’):

eq applyAdaptors(GT,
< C’ : Component | features : PORTS,

properties : (Period => T) ; PROPS > REST)
= applyAdaptors(GT, REST)
< C’ : Component |

features : applyAdaptors(GT quo T, PORTS, none) > .

eq applyAdaptors(GT, none) = none .

If an input adaptor IA is defined for an input port P as its property, then
the input adaptor IA is applied to the data content list DL of the port P:

eq applyAdaptors(N,
< P : InPort |

content : DL,
properties : (MRSynchAADL::InputAdaptor => {IA}); PROPS >

PORTS, PORTS’)
= applyAdaptors(N,

PORTS, PORTS’ < P : InPort | content : adaptor(IA, DL, N) >) .

eq applyAdaptors(N, PORTS, PORTS’) = PORTS PORTS’ [owise] .

The semantics of predefined input adaptors is defined by the function
adaptor(id,data,rate), where data is a data content list in the input port
and rate is the rate of the component. For example, the 1-to-k input adaptor
repeat input can be defined by the following equations:

eq adaptor(repeat input, D, N) = adaptor(repeat input, D, N, nil) .
eq adaptor(repeat input, D, s(N), DL)
= adaptor(repeat input, D, N, DL D) .

eq adaptor(repeat input, D, 0, DL) = DL .

316

Semantics of Requirements Specification Language. The semantics
of the requirements specification language is defined by using equations. For
example, the meaning of state-lockup propositions are defined as follows
using the auxiliary function lookupState:

eq {< C : Ensemble | subcomponents : COMPS >} |= PATH @ L
= lookupState(COMPS, PATH, L) .

eq lookupState(< C : Ensemble | subcomponents : COMPS > REST,
C . PATH, L)

= lookupState(COMPS, PATH, L) .
eq lookupState(< C : Thread | currState : L > REST, C, L) = true .
eq lookupState(REST, PATH, L) = false [owise] .

Likewise, the meaning of expression propositions are defined as follows,
where the function feedbackOutputs returns a map from each feedback
output port to its current value:

eq {< C : Ensemble | subcomponents : COMPS >} |= PATH | E
= lookupExp(COMPS, PATH, E) .

eq lookupExp(< C : Ensemble | subcomponents : COMPS > REST,
C . PATH, E)

= lookupExp(COMPS, PATH, E) .
eq lookupExp(< C : Component | features : PORTS, properties : PROPS,

subcomponents : DATA, > REST, C, E)
= eval(E, empty | feedbackOutputs(PORTS) | DATA | PROPS) == [true] .

eq lookupExp(REST, PATH, E) = false [owise] .

eq feedbackOutputs(< P : OutPort | content : DCL V > PORTS, FMAP)
= feedbackOutputs(PORTS, insert(P, V, FMAP)) .

eq feedbackOutputs(PORTS, FMAP) = FMAP [owise] .

Each formula declaration in the MR-SynchAADL tool automatically adds
the corresponding equations. For example, the safeYaw formula for the
airplane controller example generates the following Maude declarations:

op safeYaw : -> Formula .
eq safeYaw = turningCtrl . mainController . ctrlProc . ctrlThread |

abs([currYaw]) < [1.0] .

Finally, each requirement declaration gives the corresponding Real-Time
Maude verification command. For example, the safety requirement gives
the following command where initial will be reduced to the term repre-
sentation of the initial state of the entire model.

(mc {initial} |=u [] safeYaw .)

317

C.2 The Active Standby System Requirements

For the active standby system explained in Section 7.5.2, the paper [143]
lists the following requirements that the active standby system must satisfy:

R1: Both sides should agree on which side is active (provided that neither
side has failed, the availability of a side has not changed, and the pilot
has not made a manual selection).

R2: A side that is not fully available should not be the active side if the
other is fully available (when neither side has failed, the availability of
a side has not changed, and the pilot has not made a manual selection).

R3: The pilot can always change the active side (unless a side is failed or
the availability of a side has changed).

R4: If a side is failed, then the other side should become active.

R5: The active side should not change unless the availability of a side
changes, the failed status of a side changes, or manual selection is
selected by the pilot.

A more detailed discussion of the LTL representation of the above properties
can be found in [138]. The requirement R1 is explained in Section 7.5.2, and
this section explains the other requirements R1–R4.

Requirement R2. A side that is not fully available should not be the
active side if the other side is fully available (provided that neither side has
failed, the availability of a side has not changed, and the pilot has not made
a manual selection). This property does not hold as stated, since a standby
side monitors full availability and therefore the change of active side can be
delayed by one round [138]. Instead, we have verified the following property:
requirement R2a:

O ([] ((noChangeAssumptionNextState /\
O (side1FullyAvailable /\ ~ side2FullyAvailable)) ->

O (~ side2Active \/
(noChangeAssumptionNextState -> O (~ side2Active)))));

where the proposition sideiActive holds if side i has received the value i
in its sideiActiveSide port:
formula side1Active:

sideOne.sideProcess.sideThread | side1ActiveSide = 1;
formula side2Active:

sideTwo.sideProcess.sideThread | side2ActiveSide = 2;

318

Requirement R3. The pilot can always change the active side (unless a
side is failed or the availability of a side has changed). Since R3 does not
satisfied again as explained in [138], we have verified the following variant
of R3: if the two sides are fully available and do not receive a manual switch
request for two consecutive rounds, and stay faultless and receive a manual
switch request in the third round, then the active side will switch:

requirement R3g:
[] ((~ manSelectPressed /\ agreeOnActiveSide /\

bothFullyAvailable /\ noChangeAssumptionNextState)
->
((side1Active ->

O (O ((manSelectPressed /\ bothFullyAvailable)
-> side2Active))) /\

(side2Active ->
O (O ((manSelectPressed /\ bothFullyAvailable)

-> side1Active)))));

formula bothFullyAvailable:
side1FullyAvailable /\ side2FullyAvailable;

Requirement R4. If a side is failed, then the other side should become
active. We have verified this requirement R4, represented as the following
LTL formula considering the one-step communication delay:

requirement R4: [] (
((side1Failed /\ ~ side2Failed) -> O (~ side2Failed -> side2Active))
/\
((side2Failed /\ ~ side1Failed) -> O (~ side1Failed -> side1Active)));

Requirement R5. The active side should not change, unless the failed
status or the availability of a side changes or manual selection is selected by
the pilot. We have verified the requirement R5 for active side 1, represented
in the requirement specification language as follows (i.e., if side 1 is active,
then it stays active forever, or until something changes [138]):

requirement R5side1: [] (
((side1Active /\ side1FullyAvailable /\ ~ manSelectPressed)
-> (side1Active W (~ side1FullyAvailable \/ manSelectPressed)))

/\ ((side1Active /\ ~ side1FullyAvailable /\ side1Stable)
-> (side1Active W (~ side1Stable))));

formula side1Stable:
~ side2FullyAvailable /\ ~ manSelectPressed /\ ~ side1Failed;

319

Environment

Actuator

Side1 Side2 Side3

side1Failed side2Failed side3Failed

side1ActiveSide

side2ActiveSide

side3ActiveSide

Figure C.1: The architecture of the 3-node active standby system.

We have verified every requirement of the Multirate Synchronous AADL
model that has 203 reachable states. Each model checking analysis took
0.6 seconds on an Intel Xeon 2.93 GHz with 24GB RAM. Note that it is
unfeasible to model check the corresponding asynchronous design: as shown
in [138], the simplest possible asynchronous model (no message delays, no
execution times, etc.) has 3,047,832 reachable states. If the message delay
can be 1 then no model checking terminates in reasonable time.

C.3 The Three–Node Active Standby System

This section shows another version of the active standby system with three
nodes in Multirate Synchronous AADL. In this version, there exists three
side components, instead of two. Each side can fail, but the active side
should always be one of non-failed sides. The architecture of this model is
shown in Figure C.1. The entire Multirate Synchronous AADL specification
is available at http://maude.cs.illinois.edu/tools/synchaadl.

Top-level Component. The top-level AADL system component contains
the five subcomponents. The three sides and forward their output to the
actuator component. The env component injects failure into the three side
components by sending 3 Boolean data nondeterministically, with the input
constraint that all sides cannot fail at the same time.

320

http://maude.cs.illinois.edu/tools/synchaadl

system implementation MainSystem.impl
subcomponents
sideOne: system Side1.impl; sideTwo: system Side2.impl;
sideThree: system Side3.impl; env: system Environment.impl;
actuator: system Actuator.impl;

connections
C1: data port sideOne.side1Active -> sideTwo.side1Active;
C2: data port sideOne.side1Active -> sideThree.side1Active;
C3: data port sideTwo.side2Active -> sideOne.side2Active;
C4: data port sideTwo.side2Active -> sideThree.side2Active;
C5: data port sideThree.side3Active -> sideOne.side3Active;
C6: data port sideThree.side3Active -> sideTwo.side3Active;
C7: data port env.side1Failed -> sideOne.side1Failed;
C8: data port env.side2Failed -> sideTwo.side2Failed;
C9: data port env.side3Failed -> sideThree.side3Failed;
C10: data port sideOne.side1Active -> aileron.side1Active;
C11: data port sideTwo.side2Active -> aileron.side2Active;
C12: data port sideThree.side3Active -> aileron.side3Active;

properties
MR_SynchAADL::Synchronous => true; Period => 2 Ms;
Timing => Delayed applies to
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12;

Data_Model::Initial_Value => ("false") applies to
env.side1Failed, env.side2Failed, env.side3Failed;

end MainSystem.impl;

Environment. The environment component is declared as an instance of
the following system component:

system Environment
features
side1Failed: out data port Base_Types::Boolean;
side2Failed: out data port Base_Types::Boolean;
side3Failed: out data port Base_Types::Boolean;

end Environment;

system implementation Environment.impl
subcomponents
envProcess: process EnvironmentProcess.impl;

connections
data port envProcess.side1Failed -> side1Failed;
data port envProcess.side2Failed -> side2Failed;
data port envProcess.side3Failed -> side3Failed;

end Console.impl;

321

This component contains an instance of the following thread component
defining the environment behavior, which sends any values satisfying the
input constraint ‘not s1F or not s2F or not s3F’ to the corresponding
output ports, stating that all sides cannot fail at the same time:

thread implementation EnvironmentThread.impl
properties
MR_SynchAADL::InputConstraints =>

("not s1F or not s2F or not s3F");
MR_SynchAADL::Nondeterministic => true;
Dispatch_Protocol => Periodic;

annex behavior_specification {**
states
s0 : initial complete state;

variables
s1F, s2F, s3F: Base_Types::Boolean;

transitions
s0 -[on dispatch]-> s0 {
side1Failed := s1F;
side2Failed := s2F; side3Failed := s3F;};

**};
end EnvironmentThread.impl;

Sides. We only show the specification of the sideTwo component. The
sideTwo is declared as an instance of the following system component with
three input ports and one output port:

system Side2
features
side3Active: in data port Base_Types::Integer;
side1Active: in data port Base_Types::Integer;
side2Failed: in data port Base_Types::Boolean;
side2Active: out data port Base_Types::Integer;

end Side2;

system implementation Side2.impl
subcomponents
sideProcess: process Side2Process.impl;

connections
data port side3Active -> sideProcess.side3Active;
data port side1Active -> sideProcess.side1Active;
data port side2Failed -> sideProcess.side2Failed;
data port sideProcess.side2Active -> side2Active;

end Side2.impl;

322

The system Side2 contains an instance of the thread component defining
the behavior of the side below. The output of Side2 is determined by the
“local view” of the three sides’ statuses perceived by Side2, represented
by three state variables g_side1, g_side2, and g_side3. The synchronous
behavior of the entire system guarantees that these local views of all the
three sides are identical, so that all sides are consistent:

thread implementation Side2Thread.impl
subcomponents
g_side1: Base_Types::Integer; g_side2: Base_Types::Integer;
g_side3: Base_Types::Integer; prev: Base_Types::Integer;

properties
Dispatch_Protocol => Periodic;
Data_Model::Initial_Value => ("-1") applies to
g_side1, g_side2, g_side3, prev;

annex behavior_specification {**
states
s0: initial complete state; s1: state;

transitions
s0 -[on dispatch]-> s1 {
g_side2 := prev;
if (side1Active’fresh) g_side1 := side2Active;
else g_side1 := -1; end if;
if (side3Active’fresh) g_side3 := side3Active;
else g_side3 := -1; end if; };

s1 -[side2Failed = true]-> s0 {prev := -1; side2Active := -1;};

s1 -[side2Failed = false]-> s0 {
if (g_side2 = -1)
prev := 0; side2ActiveSide := 0;

elsif (g_side2 = 0 and g_side1 = -1 and g_side3 != 1)
prev := 1; side2ActiveSide := 1;

else
side2ActiveSide := prev;

end if; };
**};

end Side2Thread.impl;

By the dispatch transition, the value of g_side2 becomes the value of prev
computed at the previous step, and the ‘fresh’ values of side1Active and
side3Active are assigned to g_side1 and g_side3, respectively. Then,
Side2 becomes active (prev = 1) if the others are not active.

323

C.3.1 System Requirements

The requirements of the active standby system with three nodes can be
summarized as follows, in a similar way to the case of two nodes:

R1: At most one side is the active side, to simplify the logic of the actuator.

R2: A new active side should be chosen after the failure of an active side.

R3 Every side should agree on which side is the active side.

We have also verified these requirements for the Multirate Synchronous
AADL model of the three–node active standby system within OSATE.

Requirement R1. At most one side is the active side. Side i is active if
the side system component produces the value 1 in its sideiActive port.
Therefore, this property R1 can be simply represented as follows:

requirement R1:
[] ((~ side1Active \/ ~ side2Active) /\

(~ side1Active \/ ~ side3Active) /\
(~ side2Active \/ ~ side3Active));

formula side1Active: sideOne | side1Active = true;
formula side2Active: sideTwo | side2Active = true;
formula side3Active: sideThree | side3Active = true;

Requirement R2. A new active side should be chosen after the failure of
an active side. This property requires that the failure status of a side is
not “flipping.” Side i is flipping iff the side does not fail in the next step
whenever it fails in one step, and vice versa. Then, the property R2 can be
written in MR-SynchAADL as follows:

requirement R2:
[]<> (~ flipOne /\ ~ flipTwo /\ ~ flipThree)

-> []((~ side1Active /\ ~ side2Active /\ ~ side3Active) ->
<> (side1Active \/ side2Active \/ side3Active));

formula flipOne:
(env | side1Failed = true <-> O env | side1Failed = false)

\/ (env | side1Failed = false <-> O env | side1Failed = true);
formula flipTwo:

(env | side2Failed = true <-> O env | side2Failed = false)
\/ (env | side2Failed = false <-> O env | side2Failed = true);

formula flipThree:
(env | side3Failed = true <-> O env | side3Failed = false)

\/ (env | side3Failed = false <-> O env | side3Failed = true);

324

Requirement R3. Every side should agree on which side is the active
side. In the three–node active standby system, each side thinks that side i
is active if the state variable g_sidei has the value 1. Such “local views”
for side i are identical when the variables g_sidei have the same value in
all the sides. Therefore, the property R3 can be defined as follows:

requirement R3: [] (sameOne /\ sameTwo /\ sameThree);

formula sameOne:
(sideOne.sideProcess.sideThread | g_side1 = 0 <->
sideThree.sideProcess.sideThread | g_side1 = 0)

/\ (sideOne.sideProcess.sideThread | g_side1 = 0 <->
sideTwo.sideProcess.sideThread | g_side1 = 0)

/\ (sideOne.sideProcess.sideThread | g_side1 = 1 <->
sideThree.sideProcess.sideThread | g_side1 = 1)

/\ (sideOne.sideProcess.sideThread | g_side1 = 1 <->
sideTwo.sideProcess.sideThread | g_side1 = 1);

formula sameTwo:
(sideOne.sideProcess.sideThread | g_side2 = 0 <->
sideThree.sideProcess.sideThread | g_side2 = 0)

/\ (sideOne.sideProcess.sideThread | g_side2 = 0 <->
sideTwo.sideProcess.sideThread | g_side2 = 0)

/\ (sideOne.sideProcess.sideThread | g_side2 = 1 <->
sideThree.sideProcess.sideThread | g_side2 = 1)

/\ (sideOne.sideProcess.sideThread | g_side2 = 1 <->
sideTwo.sideProcess.sideThread | g_side2 = 1);

formula sameThree:
(sideOne.sideProcess.sideThread | g_side3 = 0 <->
sideThree.sideProcess.sideThread | g_side3 = 0)

/\ (sideOne.sideProcess.sideThread | g_side3 = 0 <->
sideTwo.sideProcess.sideThread | g_side3 = 0)

/\ (sideOne.sideProcess.sideThread | g_side3 = 1 <->
sideThree.sideProcess.sideThread | g_side3 = 1)

/\ (sideOne.sideProcess.sideThread | g_side3 = 1 <->
sideTwo.sideProcess.sideThread | g_side3 = 1);

We have verified the requirements R1–R3 for the Multirate Synchronous
AADL model. Each model checking analysis took less than 1 seconds on
the same machine, and the number of reachable states was 134.

325

APPENDIX D

MORE DETAILS ON PTOLEMY II DE MODELS

D.1 More Ptolemy II Actors

In addition to the Ptolemy II actors explained in Section 8.2.2, we have also
defined the Real-Time Maude semantics for the following actors.

• Pulse. When an input is received, a pulse actor outputs pulses with
values given by the values parameter; the parameter indexes specifies
when those values should be produced.1 A zero is produced when the
iteration count does not match an index. After that, the output is
always 0, unless yet another parameter, repeat, is set to true, in which
case the output is repeated. The init action does nothing, fire outputs
a value, and postfire updates the number of times fire has been invoked.

• Ramp. A ramp actor simulates the behavior of a “for loop” in a con-
ventional programming language. Each time a ramp actor fires, it
generates an event with a value that is incremented by the specified
step each iteration. The first output is given by the init parameter.

• Variable Delay. A variable delay actor works in a similar way as a
timed delay actor, except that the amount of time delay is specified
by an incoming token through the delay port.

• Timer. The difference between a timer actor and a delay actor is that
the value of the generated output of a timer is not the same as the
input, but is given by the output parameter of this actor. The length
of the delay is specified by the input received in the actor’s input port.

1For example, if the indexes parameter is “{1, 3, 0, 2, 4}”, and the values are stored in
array A, then the output in the first 5 invocation of fire is A[1], A[3], A[0], A[2], and A[4].

326

• Noninterruptible Timer. A noninterruptible timer is quite similar to
a normal timer, but with the difference that a noninterruptible timer
delays the processing of a new input if it has not finished processing a
previous input. That is, other input events are queued, while an input
event is being delayed and the corresponding output has not been sent.

• Timed Plotter. A timed plotter records its received events and the
times they were received (by the postfire).

• Single Event. A single event produces an event with the specified value
at the specified time (by the init).

• Expression. An expression actor contains an expression that specifies
the value of its output as a function of its inputs.

In sum, we support the following actors: timed delay, variable delay, clock,
current time, timer, noninterruptible timer, FSM, pulse, timed plotter,
set variable, expression, ramp, single event actors, composite actors, modal
models, and algebraic actors (e.g., add, subtract, const, and scale).

D.2 Real-Time Maude Code Generation

Ptolemy II provides an adapter infrastructure to support the generation of
code into any target language. In particular, Ptolemy II provides a Java
class CodeGeneratorHelper that contains several utility methods such as
getComponent(), which returns a (Java) object containing all information
about an actor, including its name, parameters, ports, inner actors, etc.
This class furthermore contains “skeleton” functions, including:

• String generateFireCode(), generating the code executed when the
actor is “fired,” and

• Set getSharedCode(), generating code shared by multiple instances
of the same actor class.

For each kind of actor, we must define a adapter class that extends
the class CodeGeneratorHelper. An adapter class consists of a Java class
file and a code template file—containing code blocks written in the target
language—that together specify the actor’s behavior. Such a template file
contains code blocks of the following form, where the code pattern is code
written in the target language (a code pattern can be parametrized with
variables, and also have macro functions):

327

/***header (parameters)***/
code_pattern

/**/

For the Real-Time Maude code generation, each adapter class A has its
template file that includes a code block with header semantics_A , which
is just the Real-Time Maude module defining the formal semantics of the
actor A. The template file also includes a code block with header attr_A

that defines the attributes of the actor and their initial values. Moreover,
if the actor A has its own atomic proposition pattern, then a code block
with header formal_A is included for the definition of such a proposition.
In Ptolemy II, each actor class is a subclass of the class Entity. Therefore,
we defined an adapter class for Entity that is a superclass of every actor
adapter class. The template file for Entity hence contains the following
code blocks, where macros are prefixed with ‘$’:

/***semantics_Entity***/
(tomod ACTOR is
...
class Actor | ports : ObjectConfiguration,

parameters : ObjectConfiguration,
status : ActorStatus,
computation : Computation .

...
endtom)
/**/

/***fireBlock($attr_terms)***/
< ’$info(name) : $info(class) | $attr_terms >
/**/

/***attr_Entity***/
computation : noComputation,
status : enabled,
ports : ($info(ports)),
parameters : ($info(parameters))
/**/

/***formal_Entity***/
(tomod CHECK-ACTOR is
...
endtom)
/**/

328

The parameter attr_terms of the code block fireBlock will be replaced
by set of attr_Actor code blocks for each Actor a super class of the given
actor. $info is a macro that uses Ptolemy’s getComponent() to extract
information, such as the name, the class, etc., about the actor instance.
Likewise, the template file for currentTime contains

/***semantics_CurrentTime***/
(tomod CURRENT-TIME is inc ACTOR .
...
class CurrentTime | current-time : Time .
subclass CurrentTime < AtomicActor TimeActor .
...
eq portFixPoints(...) =

endtom)
/**/

/***attr_CurrentTime***/
current-time : 0
/**/

The Real-Time Maude code generation is implemented by redefining the
functions getSharedCode() and generateFireCode() in the adapter class
for each type of actor. The function getSharedCode() is used to generate
the Real-Time Maude modules defining the semantics of those actors, and is
defined as the following Java function that returns the set of all code blocks
whose header starts with ‘semantics’ and ‘formal’:
public Set getSharedCode() throws IllegalActionException {

// Use LinkedHashSet to give order to the shared code.
Set sharedCode = new LinkedHashSet();
semanticsIncludes = getModuleCode("semantics");
formalIncludes = getModuleCode("formal");

for (String m : semanticsIncludes)
sharedCode.add(getRTMmodule().get(m));

for (String m : formalIncludes)
sharedCode.add(getRTMmodule().get(m));

return sharedCode;
}

The auxiliary function getModuleCode(header) reads the code blocks that
starts with header, from the templates of the adepter class including those
of its all super classes. Hence, for a currentTime actor, getSharedCode()
returns the above Real-Time Maude modules Actor and CURRENT-TIME (and
adds modules for LTL model checking in the same way).

329

******** include basic definitions ********
load ptolemy-base.maude

******** semantics modules ********
(tomod ACTOR is ... endtom)
(tomod COMPOSITE-ACTOR is ... endtom)
(tomod ATOMIC-ACTOR is ... endtom)
(tomod CLOCK is ... endtom)
(tomod FSM-ACTOR is ... endtom)
(tomod SET-VARIABLE is ... endtom)
(tomod DELAY-ACTOR is ... endtom)

******** formal analysis modules ********
(tomod CHECK-ACTOR is ... endtom)
(tomod CHECK-COMPOSITE-ACTOR is ... endtom)
(tomod CHECK-FSM-ACTOR is ... endtom)

******** Initial model modules ********
(tomod INIT is
...

op init : -> Configuration .
eq init
= < global EventQUEUE | queue : nil >

init(< ’DE_SimpleTrafficLight : ConpositeActor |
status : enabled,
ports : none,
innerActors : (

< ’Clock : Clock | ... >
< ’CarLightNormal : FSM-Actor | ... >
< ’PedestrianLightNormal : FSM-Actor | ... >
< ’TimedDelay : Delay | ... >
< ’TimedDelay2 : Delay | ... >
< ’SetVariable : SetVariable | ... >
(’Clock ! ’output) ==> (’PedestrianLightNormal ! ’Sec ;

’CarLightNormal ! ’Sec)
...),

parameters : < ’Pred : Parameter | exp : # 1, ... >
< ’Pgrn : Parameter | exp : # 0, ... >
< ’Cred : Parameter | exp : # 1, ... >
< ’Cyel : Parameter | exp : # 0, ... >
< ’Cgrn : Parameter | exp : # 0, ... >,

computation : noComputation >) .
endtom)
(tomod PTOLEMY-MODELCHECK is

including INIT + CHECK-ACTOR + CHECK-COMPOSITE-ACTOR + CHECK-FSM-ACTOR .
endtom)

******** verification commands ********
(mc {init} |=u [] ~ (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1)) .)
(mc {init} |=u ’DE_SimpleTrafficLight : (

[]<>(this | ’Pgrn = # 1, ’Cgrn = # 0) /\
[]<>(this | ’Pgrn = # 0, ’Cgrn = # 1)) .)

quit

Figure D.1: Dialog window for the Real Time Maude code generation

330

The function generateFireCode() is used to generate the Real-Time
Maude term representing the (initial state of the) given Ptolemy II model.
It generates the code from the code templates with header fireBlock()

and $attr in the appropriate adapter classes; that is, a Real-Time Maude
object corresponding to the initial state of the actor. For example, given a
Ptolemy II currentTime actor with the name CT, the generateFireCode()
function returns the term

< ’CT : CurrentTime |
current-time : 0,
computation : noComputation,
status : enabled,
ports : < ’output : OutPort | value : # 0, status : absent >

< ’trigger : InPort | value : # 0, status : absent >,
parameters : emptyMap >

The generated Real-Time Maude code consists of semantics modules, formal
analysis modules, the initial state module, and verification commends, as
illustrated in Figure D.1 for the simple traffic light system.

D.3 More Details on the Ptolemy II DE Semantics

D.3.1 Formal Definitions of Semantic functions

This section presents the formal definitions of several semantic functions for
the Real-Time Maude semantics of Ptolemy II DE models in Section 8.3.2,
including add (for event queues), makeEnv (for variable environments), and
clearPorts, update, and the “inactive” cases for portFixPoints.

Adding Events to the Queue. Recall that each event is ordered by its
tag (T,N) in the event queue, where (T,N) ≤ (T ′, N ′) iff T < T ′ or T = T ′

and N ≤ N ′. The function add inserts the new event in the correct place:

op add : Event Time Nat EventQueue ~> EventQueue .
eq add(EVENT, T, N, (EVTS ; T’ ; N’) :: QUEUE)
= if T < T’ or (T == T’ and N < N’) then --- strictly smaller

((EVENT ; T ; N) :: (EVTS ; T’ ; N’) :: QUEUE)
else (if T == T’ and N == N’ then --- simultaneous

(EVENT EVTS ; T ; N) :: QUEUE
else --- otherwise

((EVTS ; T’ ; N’) :: add(EVENT, T, N, QUEUE)) fi) fi
eq add(EVENT, T, nil) = (EVENT ; T ; 0) .

331

Creating Variable Environments. First of all, the syntax of variable
environments, x1 ←[v1; · · · ;xn ←[vn, is declared in Real-Time Maude:

sort EnvAssignment .
op _<-|_ : VarId Value -> EnvAssignment [ctor] .
op _<-? : VarId -> EnvAssignment [ctor] .

sort EnvMap .
subsort EnvAssignment < EnvMap .
op emptyEnv : -> EnvMap [ctor] .
op _;_ : EnvMap EnvMap

-> EnvMap [ctor assoc comm id: emptyEnv prec 90] .

Then, the function makeEnv constructs a variable environment from given
ports and parameters as follows:

op makeEnv : Configuration ~> ConfigItem .
op makeEnv : Configuration EnvMap ~> EnvMap .
eq makeEnv(REST) = env(makeEnv(REST, emptyEnv)) .
eq makeEnv(<R : Parameter | value : V > REST, ENV)
= makeEnv(REST, ENV[R <-| V]) .

eq makeEnv(< P : InPort | status : PS, value : V > REST, ENV)
= makeEnv(REST, ENV[if PS == present then P <-| V else P <-? fi]) .

eq makeEnv(REST, ENV) = ENV [owise] .

Initializing Ports. The clearPorts function clears all the ports of each
actor in the state (that is, sets the status to unknown). For composite
actors, it just propagates to the inner actors:

op clearPorts : Configuration ~> Configuration .
eq clearPorts(< O : AtomicActor | ports : PORTS > OBJS)
= < O : AtomicActor | ports : clearPorts(PORTS) > clearPorts(OBJS) .

eq clearPorts(< O : CompositeActor |
innerActors : OBJS, ports : PORTS > OBJS’)

= < O : CompositeActor |
innerActors : clearPorts(OBJS), ports : clearPorts(PORTS) >

clearPorts(OBJS’) .
eq clearPorts(< P : Port | > PORTS)
= < P : Port | status : unknown > clearPorts(PORTS) .

eq clearPorts(OBJS) = OBJS [owise] .

The releaseEvt function generates the active-evt message for each
event scheduled to fire.

op releaseEvt : Events ~> Configuration .
eq releaseEvt(EVENT EVTS) = active-evt(EVENT) releaseEvt(EVTS) .
eq releaseEvt(noEvent) = none .

332

Updating Parameters. The update function computes new parameter
values for the next iteration. This function first computes the (possibly
new) value of each parameter of an actor using its next-value attribute,
and then replaces the old value with the new value in the next-value.
Similarly, update distributes over the actor objects in the configuration:

eq update(NOBJS NOBJS’) = update(NOBJS) update(NOBJS’) .
eq update(OBJS) = OBJS [owise] .

For a composite actor, a variable in an expression of an inner actor may
refer to a parameter of the composite actor. Such a parameter should not be
updated until the parameters of every inner actor is updated. To ensure this,
we define the auxiliary function update(B, actor) with an extra Boolean
argument B. For an atomic actor, B is always set to true:

op update : Bool Configuration ~> Configuration .
eq update(< O : AtomicActor | status : enabled >)
= update(true, < O : AtomicActor | >) .

However, for a composite actor, B is initially set to false, and becomes
true after the update computation of every inner actor is completed:

eq update(< O : CompositeActor | status : enabled,
innerActors : OBJS >)

= update(false,
< O : CompositeActor | innerActors : update(OBJS) >) .

eq update(false, < O : CompositeActor | innerActors : OBJS >)
= update(true, < O : CompositeActor | >) .

Notice that these equations are applied for only enabled actors, since disabled
actors should not change their states, including the parameters.
When B is true, if the next-value attribute of any parameter of an

actor has not been computed yet (i.e., noValue), then the computation
configuration for the parameter is created in the corresponding actor:

var R : ParamId . var PARAMS : ObjectConfiguration . var E : Exp .
eq update(true,

< O : Actor |
computation : noComputation, ports : PORTS,
parameters : < R : Parameter | next-value : noValue,

exp : E > PARAMS >)
= update(true,

< O : Actor |
computation : #param(R) / k(E) makeEnv(PARAMS PORTS) >) .

333

The resulting value of the expression, given by the rewriting-based formal
semantics of the Ptolemy II expression language (in Section 8.3.4), is then
stored in the next-value attribute by the following equation:

eq update(true,
< O : Actor | parameters : < R : Parameter | > PARAMS,

computation : #param(R) / result(V) >)
=
update(true,

< O : Actor |
parameters : < R : Parameter | next-value : V > PARAMS,
computation : noComputation >) .

If every next-value attribute is computed and thus the above equations
cannot be applied any more, then the write function is applied for updating
the values and clearing the next-value attribute of the parameters:

ceq update(true, OBJS) = write(OBJS)
if noComputation(OBJS) [owise] .

op write : Configuration ~> Configuration .
eq write(< O : Actor | parameters : PARAMS > OBJS)
= < O : Actor | parameters : write(PARAMS) >
write(OBJS) .

eq write(< R : Parameter | value : V, next-value : V’ > PARAMS)
= < R : Parameter | value : V’, next-value : noValue >
write(PARAMS) .

eq write(none) = none .

More Details on portFixPoints. First of all, the function filterMsg,
separating the events toward inside from the others, is defined as follows,
where sort NEActorID denotes non-empty global actor identifiers:

var PORTS OBJS REST : ObjectConfiguration .
var CF : Configuration . var NAI : NEActorID .

op filterMsg : Oid Configuration MsgConfiguration ~> FilterResult .
eq filterMsg(O, active-evt(event((O . NAI) ! P, V)) CF, MSGS)
= filterMsg(O, CF, active-evt(event(NAI ! P, V)) MSGS) .

eq filterMsg(O, CF, MSGS) = fr(MSGS, CF) [owise] .

If all input ports of an actor are absent or the status of an actor is disabled,
then the actor should not generate any output, unless it has a scheduled
event from the global event queue. In these cases, the status of each output
port of the actor is set to absent:

334

ceq portFixPoints(
< O : Actor |

ports : < P : OutPort | status : unknown > PORTS > REST)
= portFixPoints(

< O : Actor | ports : < P : OutPort | status : absent >
unknownOutPortsAbsent(PORTS) > REST)

if allInputPortsAbsent(PORTS) .

eq portFixPoints(
< O : Actor |

status : disabled,
ports : < PI : OutPort | status : unknown > PORTS > REST)

= portFixPoints(
< O : Actor |

ports : < PI : OutPort | status : absent >
setUnknownOutPortsAbsent(PORTS) > REST) .

The function allInputPortsAbsent returns true iff every input port has
status absent, and the function unknownOutPortsAbsent returns a set of
ports obtained by setting the status of each output port to absent:

op allInputPortsAbsent : Configuration -> Bool .
eq allInputPortsAbsent(< P : InPort | status : PS > PORTS)
= (PS == absent) and allInputPortsAbsent(PORTS) .

eq allInputPortsAbsent(PORTS) = true [owise] .

op unknownOutPortsAbsent : Configuration ~> Configuration .
eq unknownOutPortsAbsent(< P : OutPort | status : unknown > PORTS)
= < P : OutPort | status : absent > unknownOutPortsAbsent(PORTS) .

eq unknownOutPortsAbsent(PORTS) = PORTS [owise] .

It is also possible that some actor has an isolated input port that has no
incoming connection. Obviously, the input port has no value, and therefore
its status should be absent:

ceq portFixPoints(
< O : Actor |

ports : < P : InPort | status : unknown > PORTS > REST)
=
portFixPoints(
< O : Actor |

ports : < P : InPort | status : absent > PORTS > REST)
if not connectedInPort(O ! P, REST) .

The function connectedInPort(O ! P, REST) returns true iff there is an
incoming connection O’ ! P’ ==> (O ! P) ; EPIS to the port O ! P:

335

op connectedInPort : EPortId Configuration -> Bool .
eq connectedInPort(O ! P, (O’ ! P’ ==> (O ! P) ; EPIS)

< O’ : Actor | status : enabled > REST) = true .
eq connectedInPort(O ! P, REST) = false [owise] .

If an output port of a composite actor has no incoming connections, it is
then isolated and should be absent.
ceq portFixPoints(

< O : CompositeActor | status : enabled,
innerActors : OBJS,
ports : < P : OutPort | status : unknown > PORTS > REST)

= portFixPoints(
< O : CompositeActor |

ports : < P : OutPort | status : absent > PORTS > REST)
if not connectedInPort(parent ! P, OBJS) .

If some output port of a composite actor is directly connected to its input
port, the status (and the value if the status is present) of the input port is
transferred to the output port after the inner fixed-point is finished:
ceq portFixPoints(

< O : CompositeActor | status : enabled,
innerActors : (parent ! P) ==> (parent ! P’ ; EPIS) OBJS
ports : < P : InPort | status : PS, value : V >

< P’ : OutPort | status : unknown > PORTS > REST)
= portFixPoints(

< O : CompositeActor |
ports : < P : InPort | >

< P’ : OutPort | status : PS, value : V > PORTS >
REST) if PS =/= unknown .

All input and output ports of inner actors in disabled composite actors
become absent, since there is no computation for disabled actors, where the
setAllPortsAbsent function makes the status of every port absent:
eq portFixPoints(

< O : CompositeActor | status : disabled,
innerActors :

< O’ : Actor |
ports : < P : Port | status : unknown > PORTS >

OBJS > REST)
=

portFixPoints(
< O : CompositeActor |

innerActors :
setAllPortsAbsent(< O’ : Actor | > OBJS) > REST) .

336

Property Specification Language Semantics. The semantics of the
predefined propositions is defined by equations in a usual way. In particular,
the proposition _@_ for locations is defined by:

eq {< O : FSM-Actor | currState : L > CF} |= O @ L = true .
eq {< O : ModalModel | controller : CO,

innerActors : OBJS > CF} |= O @ L
= {OBJS} |= CO @ L .

eq {< O : CompositeActor | innerActors : OBJS > CF} |= (O . AI) @ L
= {OBJS} |= AI @ L .

eq {< O : Actor | > CF} |= O @ L = false [owise] .

D.3.2 The Semantics of Actors in DE Models

This section presents the DE semantic of additional actors in Real-Time
Maude, not shown in Section 8.3.3. Recall that the syntax of each actor is
specified by declaring a subclass of the class Actor in Real-Time Maude, and
the semantics of the actor is specified by declaring three semantic functions
for the actor: init, portFixPoints, and postfire.

More Details on FSM Actors. Some constructs and functions for the
semantics of FSM actors in Section 8.3.3 are defined as follows. A location
is the sort of the local “states” of the transition system:

sort Location .
subsorts Qid < Location .

In Real-Time Maude, a set of transitions are declared as follows:

sorts Transition TransBody .
op _:_-->_‘{_‘} : TransId Location Location TransBody

-> Transition [ctor] .
op guard:_output:_set:_ : Exp ExpMap ExpMap -> TransBody [ctor] .

sort TransitionSet .
subsort Transition < TransitionSet .
op emptyTransitionSet : -> TransitionSet [ctor] .
op _;_ : TransitionSet TransitionSet

-> TransitionSet [ctor assoc comm id: emptyTransitionSet] .

The function noGuardTrue is defined as follows, which returns true if there
is no enabled transition:

eq noGuardExpTrue((TI <- # true, VREC)) = false .
eq noGuardExpTrue(VREC) = true [owise] .

337

The updateOutPorts function is defined as follows. Each output port is
assigned an expression of the corresponding output action, and all remaining
output ports are set to be absent in the end of the update process:

op updateOutPorts : ExpMap Configuration ~> Configuration .
eq updateOutPorts(VI |-> E ; OL,

< VI : OutPort | status : unknown > PORTS)
= updateOutPorts(OL,

< VI : OutPort | status : present, value : E > PORTS) .
eq updateOutPorts(OL, PORTS)
= setUnknownOutPortsAbsent(PORTS) [owise] .

The guard expressions of the transitions are computed again for the
postfire function as follows, provided there exists at least one input to
the actor (notice that the status of every output port is determined to be
either present or absent during portFixPoints):

ceq postfire(< O : FSM-Actor |
status : enabled, parameters : PARAMS,
currState : STATE, transitions : TRANSSET,
ports : < P : InPort | status : present > PORTS,
computation : noComputation >)

= postfire(< O : FSM-Actor | computation : #guards / k(E) EV >)
if E := makeGuardExp(STATE, TRANSSET)
/\ EV := makeEnv(PARAMS PORTS < P : InPort | status : present >) .

The updateParam function updates the exp attribute of each parameter.
At the end of the current iteration, the update function will change the
value according to the new exp:

op updateParam : ExpMap Configuration -> Configuration .
eq updateParam(VI |-> E ; AL, < VI : Parameter | > PARAMS)
= < VI : Parameter | exp : E > updateParam(AL, PARAMS) .

eq updateParam(AL, PARAMS) = PARAMS [owise] .

Single Event. A single event actor produces a single event once according
to its time and value parameters. Therefore, it only define the init action:

class SingleEvent .
subclass SingleEvent < AtomicActor .

eq init(< O : SingleEvent |
parameters : < ’time : Parameter | value : V1 >

< ’value : Parameter | value : V2 > PARAMS >)
= < O : SingleEvent | >
schedule-evt(event(O ! ’output, V2), toTime(V1), 0) .

338

Pulse. A pulse actor has an extra attribute index that keeps track of the
current iteration count of the actor, while the other parameters (values and
indexes) are represented in the parameters attribute:

class Pulse | index : Nat .
subclass Pulse < AtomicActor .

When a pulse actor gets input through its trigger port, it should generate
immediate output through its output port:

eq portFixPoints(
< O : Pulse |

parameters : < ’indexes : Parameter | value : V1 >
< ’values : Parameter | value : V2 > PARAMS,

ports : < ’output : OutPort | status : unknown >
< ’trigger : InPort | status : present > PORTS,

index : N, status : enabled > REST)
= portFixPoints(

< O : Pulse |
ports : < ’output : OutPort | status : present,

value : getValue(V1, V2, N) >
< ’trigger : InPort | > PORTS > REST) .

where the function getValue(V1, V2, N) gives an output value as described
in Section 8.2.2 (that is, if |V1| < N , then V2(V1(N)), and otherwise 0).
Whenever a pulse actor produces an output, then the postfire function

should increase the index attribute by 1:

eq postfire(< O : Pulse |
ports : < ’trigger : InPort | status : present > PORTS,
current-index : N, status : enabled >)

= < O : Pulse | current-index : s(N)> .

Timed Delay. A timed delay actor propagates an incoming event after a
delay specified by its parameter, and does not need any new attribute:

class Delay .
subclass Delay < AtomicActor .

Since a delay actor does not produce any output as a result of any input,
every unknown output port should be set to absent:

eq portFixPoints(
< O : Delay |

ports : < P : OutPort | status : unknown > PORTS > REST)
= portFixPoints(

< O : Delay |
ports : < P : OutPort | status : absent > PORTS > REST) .

339

If a timed delay actor has input in its ’input port, then it generates an
event with delay equal to the current value of the ’delay parameter. If this
delay is 0, then the microstep is 1, otherwise the microstep is 0:

eq postfire(
< O : Delay |

status : enabled,
parameters : < ’delay : Parameter | value : TV > PARAMS,
ports : < ’input : InPort | status : present, value : V >

< ’output : OutPort | > PORTS >)
=

< O : Delay | >
schedule-evt(event(O ! ’output, V),

toTime(TV),
if toTime(TV) == 0 then 1 else 0 fi) .

Variable Delay. A variable delay actor has a delay port to specify time
delay. If this port is absent, the behavior is the same as the delay actor.

class VariableDelay .
subclass VariableDelay < AtomicActor .

However, if the delay port receives some value, then the value of the port is
used instead of the ’delay parameter:

eq postfire(
< O : VariableDelay |

ports : < ’input : InPort | status : present, value : V >
< ’delay : InPort | status : present, value : TV >
< ’output : OutPort | > PORTS, status : enabled >)

=
< O : VariableDelay | >
schedule-evt(event(O ! ’output, V), toTime(TV),

if toTime(TV) == 0 then 1 else 0 fi) .

Timer. A timer actor is similar to a variable delay actor, but its output
value is determined by the output parameter, instead of an input port:

class Timer .
subclass Timer < AtomicActor .

If a timer actor received input at its input port, it generates an event with
value equal to the current value of the output parameter. The event is
scheduled to fire in the time given by the value of the input port:

340

eq postfire(
< O : Timer |

parameters : < ’output : Parameter | value : V > PARAMS,
ports : < ’input : InPort | status : present, value : TV >

PORTS, status : enabled >)
=
< O : Timer | >
schedule-evt(event(O ! ’output, V),

toTime(TV),
if toTime(TV) == 0 then 1 else 0 fi) .

Noninterruptible Timer. A noninterruptible timer actor is similar to a
timer, but needs some attributes to keep track of the state. The processing
attribute is true when the timer has not finished processing previous inputs.
The waitQueue attribute denotes a list that stores (the values of) the inputs
received while the timer is busy:

class NonInterruptibleTimer | processing : Bool,
waitQueue : TimeList .

subclass NonInterruptibleTimer < AtomicActor .

sort TimeList .
subsort Time < TimeList .
op emptyList : -> TimeList [ctor] .
op __ : TimeList TimeList -> TimeList [ctor assoc id: emptyList] .

The portFixPoints function just sets every unknown output port to
absent, and the postFire function generates actual events. If there is no
scheduled output (i.e., the output port is absent) and no processing input
(i.e., the processing attribute is false), then the behavior is the same as
a normal timer, except that the processing attribute is set to true:

eq postfire(
< O : NonInterruptibleTimer |

ports : < ’input : InPort | status : present, value : TV >
< ’output : OutPort | status : absent > PORTS,

parameters : < ’value : Parameter | value : V > PARAMS,
processing : false, status : enabled >)

=
< O : NonInterruptibleTimer | processing : true >
schedule-evt(event(O ! ’output, V),

toTime(TV),
if toTime(TV) == 0 then 1 else 0 fi) .

341

If there is no scheduled output but the actor is still processing previous
inputs (that is, the processing attribute is true), then a received input is
just added to the waitQueue:

eq postfire(
< O : NonInterruptibleTimer |

ports : < ’input : InPort | status : present, value : TV >
< ’output : OutPort | status : absent > PORTS,

parameters : < ’value : Parameter | value : V > PARAMS,
processing : true, waitQueue : TL, status : enabled >)

=
< O : NonInterruptibleTimer | waitQueue : (TL toTime(TV)) > .

If a scheduled event has been arrived (i.e., the output port is present,
and the processing attribute is true), the waitQueue is empty, and no new
input has been received, then there will be no processing input in the next
step; therefore, the processing attribute is set to false:

eq postfire(
< O : NonInterruptibleTimer |

ports : < ’input : InPort | status : absent, value : TV >
< ’output : OutPort | status : present > PORTS,

parameters : < ’value : Parameter | value : V > PARAMS,
waitQueue : emptyList, status : enabled >)

=
< O : NonInterruptibleTimer | processing : false > .

For the other cases when a scheduled event has been arrived, any received
input is added to the waitQueue, and the first event in the waitQueue is
scheduled to fire, where the function head returns the first item in the queue
and the function tail returns the rest of the queue except for the head:

ceq postfire(
< O : NonInterruptibleTimer |

ports : < ’input : InPort | status : PS, value : TV >
< ’output : OutPort | status : present > PORTS,

parameters : < ’value : Parameter | value : V > PARAMS,
waitQueue : TL, status : enabled >)

=
< O : NonInterruptibleTimer | waitQueue : tail(UQ) >
schedule-evt(event(O ! ’output, V),

head(UQ),
if head(UQ) == 0 then 1 else 0 fi)

if UQ := if PS == present then (TL toTime(TV)) else TL fi
/\ UQ =/= emptyList .

342

Expression. An expression actor has an output port output and may
have several input ports. It has also the additional attribute expression

for an expression that defines the value of the output as a function of the
values in the input ports of the actor:

class Expression | expression : Exp .
subclass Expression < AtomicActor .

The portFixPoints of expression actors are straightforward and very
similar to the case for ports and parameters. If the output port is unknown,
then the configuration for the expression is created, and the output port will
finally have the evaluated value of the expression:

eq portFixPoints(
< O : Expression |

status : enabled,
parameters : PARAMS,
expression : E,
ports : < ’output : OutPort | status : unknown > PORTS,
computation : noComputation > REST)

=
portFixPoints(
< O : Expression |

computation : #port(’output) / k(E) makeEnv(PORTS PARAMS) >
REST) .

eq portFixPoints(< O : Expression |
ports : < ’output : OutPort | > PORTS,
computation : #port(’output) / result(V) > REST)

=
portFixPoints(< O : Expression |

ports : < ’output : OutPort | status : present,
value : V > PORTS,

computation : noComputation > REST) .

Set Variable. A set variable actor contains a name of a parameter of the
composite actor that contains the actor:

class SetVariable | variableName : ParamId .
subclass SetVariable < AtomicActor .

The portFixPoints outputs the value of the corresponding parameter.
Since a variable name is a non-value expression, it just sets the value of the
output port to the variable name R, which will be automatically evaluated
to a value by another portFixPoints equation defined above:

343

eq portFixPoints(
< O : SetVariable |

ports : < ’input : InPort | status : present >
< ’output : OutPort | status : unknown > PORTS,

variableName : R, status : enabled > REST)
=
portFixPoints(

< O : SetVariable |
ports : < ’input : InPort | >

< ’output : OutPort |
status : present, value : R > PORTS > REST) .

The postfire function updates the value of the corresponding parameter
in the composite actor, if a new value has been received in its input port:

eq postfire(
< O : SetVariable |

ports : < P : InPort | status : present, value : V > PORTS,
variableName : R, status : enabled >)

= < O : SetVariable | > setv(R, V) .

It generates a setv message that is propagated towards its container actors
to change the exp attribute of the parameter in the composite actor:

msg setv : ParamId Value -> Msg .

eq < O : CompositeActor |
innerActors : CF setv(R, V),
parameters : < R : Parameter | exp : E > PARAMS >

= < O : CompositeActor |
innerActors : CF,
parameters : < R : Parameter | exp : V > PARAMS > .

ceq < O : CompositeActor | innerActors : CF setv(R,V),
parameters : PARAMS >

= < O : CompositeActor | innerActors : CF > setv(R,V)
if not R in PARAMS .

Timed Plotter. A timed plotter records its received data values and the
times they were received. These values are recorded as a ++-separated list

(source: s1 time: t1 value: v1) ++ ... ++ (source: sn time: tn value: vn)

of triples (source: s time: t value: v), denoting, respectively, the port
from which the data was received, the time it was received, and the received
data value. The TimedPlotter class is a subclass of TimeActor:

344

class TimedPlotter | eventHistory : EventHistory .
subclass TimedPlotter < AtomicActor TimeActor .

sort EventTriple EventHistory .
subsort EventTriple < EventHistory .
op source:_time:_value:_ : EPortId Time Value -> EventTriple [ctor] .
op emptyHistory : -> EventHistory [ctor] .
op _++_ : EventHistory EventHistory

-> EventHistory [ctor assoc id: emptyHistory] .

At the end of an iteration, the timed plotter records any input through
its input port by adding a triple source: channel time: current time

value: value of input for each input to its eventHistory attribute. This
job is done by the auxiliary function genHistory which traverses its input
ports and generates a “history triple” for those ports which had input:

eq postfire(< O : TimedPlotter | currentTime : T, status : enabled,
eventHistory : EH, ports : PORTS >)

= < O : TimedPlotter | eventHistory : EH ++ genHistory(T, PORTS) > .

op genHistory : Time Configuration ~> EventHistory .
eq genHistory(T, < ’input # (O ! P) : InPort | status : present,

value : V > PORTS)
= (source: O ! P time: T value: V) ++ genHistory(T, PORTS) .

eq genHistory(T, PORTS) = emptyHistory [owise] .

Modal Models. Modal models are represented as equivalent composite
actors according to the frozen-composite-actor semantics for modal models
described in Section 8.2. The class ModalModel has an additional attribute
controller pointing to the controller FSM actor in innerActors, and the
additional refinementSet attribute mapping each state in the modal model
to its refinement:

class ModalModel | controller : Oid,
refinement : RefinementSet .

subclass ModalModel < CompositeActor .

Most of the semantics for modal models is borrowed from the semantics of
composite actors, except for frozen actors, coupled ports, and the evaluation
order between the controller and refinements. For modal models, postfire
also sets the status attribute of the inner actors according to the current
state of the controller to freeze all refinement actors except the refinement
of the current state, where the function setStateRefinement disables all
refinement actors except the refinement of the current state:

345

ceq postfire(
< O : ModalModel | status : enabled, controller : CO,

refinement : REFS, innerActors : CF >)
= < O : ModalModel |

innerActors : < CO : FSM-Actor | >
setStateRefinement(STATE, REFS, OBJS) >

if < CO : FSM-Actor | currStatus : STATE > OBJS := postfire(CF) .

op setStateRefinement : Location RefinementSet Configuration
-> Configuration .

eq setStateRefinement(STATE, refine-state(STATE’, O) REFS,
< O : Actor | > REST)

= < O : Actor | status : if STATE == STATE’
then enabled else disabled fi >

setStateRefinement(STATE, REFS, REST) .
eq setStateRefinement(STATE, empty, REST) = REST .

If the controller actor depends on the result of portFixPoints of some
refinement actors, then the result must be transferred through some coupled
input port of the controller actor. Hence the evaluation order between the
controller and refinements is automatically treated in our representation.
The only part not yet covered is to handle coupled input/output ports in
the controller FSM actor of a modal model. In our representation, the
coupled input/output ports have the same name, and the value of the input
port will be copied only if the coupled output port is absent:

eq portFixPoints(
< O : ModalModel |

status : enabled, controller : CO,
innerActors :

< CO : FSM-Actor |
ports : < P : InPort | status : present, value : V >

< P : OutPort | status : absent > PORTS,
status : enabled > OBJS >

REST)
=
portFixPoints(

< O : ModalModel |
innerActors : portFixPoints(

< CO : FSM-Actor |
ports : < P : InPort | >

< P : OutPort | status : present,
value : V > PORTS > OBJS >)

REST) .

346

This equation can be only applied after the inner fixed-point computation
triggered by the controller FSM actor has been finished. Therefore, an
output port copies a value from its coupled input port only if no value is
generated at the output port when the controller is computed.

However, because of the above equation, the absent status of coupled
output ports should not be transferred to the parent until we can decide
whether the associated coupled input port is absent or not. For this reason
we do not explicitly represent the connections between coupled output ports
of the controller and the output ports of the parent modal model. Instead,
the following equations propagate the value of the coupled output ports:

eq portFixPoints(
< O : ModalModel |

status : enabled, controller : CO,
ports : < P : OutPort | status : unknown > PORTS,
innerActors :

< CO : FSM-Actor |
ports : < P : OutPort | status : present,

value : V > PORTS2 > OBJS >
REST)

=
portFixPoints(

< O : ModalModel |
ports : < P : OutPort | status : present,

value : V > PORTS > REST) .

Similarly, the absent status of a coupled output port is propagated only if
the associated input port is also absent:

eq portFixPoints(
< O : ModalModel |

status : enabled, controller : CO,
ports : < P : OutPort | status : unknown > PORTS,
innerActors :

< CO : FSM-Actor |
ports : < P : InPort | status : absent >

< P : OutPort | status : absent > PORTS2 >
OBJS >

REST)
=
portFixPoints(

< O : ModalModel |
ports : < P : OutPort | status : absent > PORTS > REST) .

347

D.3.3 More Details on the Expression Language Semantics

This section shows more details on the syntax and the semantics of the
Ptolemy II expression language in Section 8.3.4. Ptolemy II expressions
consist of constants, algebraic operators, and variables. A constant can be
a number, a Boolean value, or a string. Operators can be arithmetic (e.g.,
+, -, *, /, ˆ, %), bitwise (e.g., &, |, #, ~), logical (e.g., &&, ||, !, &, |),
shift (e.g., <<, >>, >>>), or conditional (condition ? exp1 : exp2). Variables
are references to parameters or ports of actors (and may refer to parameters
of composite actors that contain the actors).
The Ptolemy II expression language supports composite data types such

as arrays, records, and matrices. As explained in Section 8.3.4, arrays are
lists of expressions in curly brackets, and records are lists of fields in which
each field is a pair of a name and a value. A matrix data structure describes
a usual n × m matrix. Matrices are specified with square brackets, using
commas to separate row elements and semicolons to separate rows, e.g., the
expression [1, 2 ; 3, 4] represents the matrix (1 2

3 4).

Algebraic Semantics. Ptolemy II expressions are terms of sort Exp as
explained in Section 8.3.4. Values are expressions that cannot be further
evaluated, and are represented as terms of sort Value, a subsort of Exp.
Variables are terms of sort VarId in our semantics. Constants have sort
Value, and are represented by values in Real-Time Maude, prefixed with
the # symbol. Numerical constants are either rational numbers (including
the integers) or fixed-point constants. The constants Infinity and NaN are
special types of numbers to denote an infinite number and a numerical error
such as 1.0 / 0.0, respectively.

op #_ : Bool -> Value [ctor] .
op #_ : String -> Value [ctor] .
op #_ : Rat -> Value [ctor] .
op #_ : Float -> Value [ctor] .
ops NaN Infinity : -> Value [ctor] .

Besides algebraic operators shown in Section 8.3.4, array and method
call operators are defined as follows, where sort ExpList denotes a comma-
separated list of expressions (with the empty expression list ()):

op {_} : ExpList -> Exp . --- array
op _._(_) : Exp VarId ExpList -> Exp [prec 12] . --- method call

For the algebraic semantics of data structure, the semantics of array and
record expressions is defined as follows:

348

var N : Nat . vars E E’ : Exp .
var EL : ExpList . var ER : ExpRow

--- an array expression A(N) that returns the (N-1)-th element
eq {E, EL}(# 0) = E .
eq {E, EL}(# s(N)) = {EL}(# N) .

--- a method call A.length() that returns the length of an array A
eq {()} . ’length(()) = # 0 .
eq {E, EL} . ’length(()) = # 1 + ({EL} . ’length(())) .

--- a record expression R.I() that returns the value of the field I
eq {(I <- E), ER} . I(()) = E .

The algebraic semantics defines the meaning of expressions that contain no
variables and no user-defined functions.

Other Variable Expressions. When a variable in an expression refers to
a parameter higher in the actor hierarchy, this hierarchical scope is handled
using messages in a similar way to the event handling in composite actors. If
a variable is not available in the current variable environment, then a query
is sent to the parent actor by a message query-var:

ceq < O : Actor | computation : CI / k(I -> K) env(ENV) >
=

query-var(O, I)
< O : Actor | computation : CI / k(request(I) -> K) env(ENV) >

if not I in ENV .

If the variable is not available in the current composite actor, then the
message is passed to its parent:

ceq < O : CompositeActor | parameters : PARAMS,
innerActors : query-var(AI, I) KCF >

= query-var(O . AI, I)
< O : CompositeActor | innerActors : KCF >

if not I in PARAMS .

Otherwise, the corresponding value in a composite actor is returned by using
another message return-var as follows:

eq < O : CompositeActor |
parameters : < I : Parameter | value : V > PARAMS,
innerActors : query-var(AI, I) KCF >

=
< O : CompositeActor |

innerActors : return-var(AI, I, V) KCF > .

349

The returned value is delivered into the corresponding inner actor, and
plugged back into the computation configuration:
eq return-var(O . O’ . AI, I, V)

< O : CompositeActor | innerActors : KCF >
= < O : CompositeActor |

innerActors : return-var(O’ . AI, I, V) KCF > .

eq return-var(O, I, V)
< O : Actor | computation : CI / k(request(I) -> K) env(ENV) >

= < O : Actor | computation : CI / k(V -> K) env(ENV[I <-| V]) > .

During portFixPoints, postfire, and update, such messages can freely
move between different hierarchies:
eq portFixPoints(query-var(AI, I) KCF)
= query-var(AI, I) portFixPoints(KCF) .

eq return-var(AI, I, V) portFixPoints(KCF)
= portFixPoints(return-var(AI, I, V) KCF) .

eq postfire(query-var(AI, I) KCF)
= query-var(AI, I) postfire(KCF) .

eq return-var(AI, I, V) postfire(KCF)
= postfire(return-var(AI, I, V) KCF) .

eq update(B, query-var(AI, I) KCF)
= query-var(AI, I) update(B, KCF) .

eq return-var(AI, I, V) update(B, KCF)
= update(B, return-var(AI, I, V) KCF) .

Note that the variable KCF in the above equations is defined at the kind level
so that those equations can be applied when portFixPoints, postfire, and
update is executed further down in the hierarchy.

Actor-specific Expressions. There are also actor-specific expressions
that are only meaningful under a certain type of actors. For example, the
expression P_isPresent for a FSM actor, expressed as isPresent(P) in
our representation, returns true iff the status of an input port P of the
actor is determined to be present:
ceq < O : FSM-Actor |

ports : < P : Port | status : PS > PORTS,
computation : CI / k(isPresent(P) -> K) env(ENV) >

= < O : FSM-Actor |
computation : CI / k(#(PS == present) -> K) env(ENV) > .

if PS =/= unknown .

350

Functional Expressions. In Ptolemy II, a user-defined function is also
considered as a value, called a closure. The closure of a function definition
function(i1, . . . , in) E is the triple closure((i1, . . . , in), E, env) together
with the variable environment env. Whenever a function is invoked, its value
is computed using the closure environment env and argument values, and
the old environment is restored after the function computation is completed:

var IL : VarIdList . var VL : ValueList .

op closure : VarIdList Exp EnvMap -> Value [ctor] .

eq k(function(IL) E -> K) env(ENV)
= k(closure(IL,E,ENV) -> K) env(ENV) .

eq k(closure(IL,E,ENV)(VL) -> K) env(ENV’)
= k(E -> restore(ENV’) -> K) env(ENV[IL <-| VL]) .

eq k(V -> restore(ENV’) -> K) env(ENV) = k(V -> K) env(ENV’) .

Other Structural Equations. The heating and cooling equations for
data structures can be similarly defined by identifying an arbitrary non-
value item. For example, the heating equation for arrays picks a non-value
item PE from an array {E1, . . . , Em,PE , Em+2, . . . , En}, and constructs the
computation PE y {E1, . . . , Em � Em+2, . . . , En}, and the cooling equa-
tion reduces V y {E1, . . . , Em � Em+2, . . . , En} with a value V to the array
{E1, . . . , Em, V, Em+2, . . . , En}. The heating/cooling equations for records
and matrices are defined in a similar way:

vars EL EL’ : ExpList . var ER : ExpRow . vars EM EM’ : Matrix .

--- arrays
eq k({EL, PE, EL’} -> K) = k(PE -> {EL [] EL’} -> K) .
eq k(V -> {EL [] EL’} -> K) = k({EL, V, EL’} -> K) .

--- records
eq k({I <- PE, ER} -> K) = k(PE -> {I <-[] ER} -> K) .
eq k(V -> {I <-[] ER} -> K) = k({I <- V, ER} -> K) .

--- matrices
eq k([EM ; EL, P, EL’ ; EM’] -> K)
= k(P -> [EM ; EL [] EL’ ; EM’] -> K) .

eq k(V -> [EM ; EL [] EL’ ; EM’] -> K)
= k([EM ; EL, V, EL’ ; EM’] -> K) .

351

Operations for data structures have the form of either a function call or a
method call. For example, the function call A(n) returns the n-th element
of an array A, and the method call A.length() returns the length of A.
Similarly, for a record R, the method call R.a() returns the value of the field
a. Their heating/cooling equations are similarly defined in the obvious way:

--- function calls
eq k(PE(EL) -> K) = k(PE -> [](EL) -> K) .
eq k(V -> [](EL) -> K) = k(V(EL) -> K) .

eq k(E(EL, PE, EL’) -> K) = k(PE -> E(EL [] EL’) -> K) .
eq k(V -> E(EL [] EL’) -> K) = k(E(EL, V, EL’) -> K) .

--- method calls
eq k(PE . I(EL) -> K) = k(PE -> []. I(EL) -> K) .
eq k(V -> []. I(EL) -> K) = k(V . I(EL) -> K) .

eq k(E . I(EL, PE, EL’) -> K) = k(PE -> E . I(EL [] EL’) -> K) .
eq k(V -> E . I(EL [] EL’) -> K) = k(E . I(EL, V, EL’) -> K) .

Example D.1. The conditional expression x < A.length() ? A(x) : A(0)
with the environment x←[0 ;A←[{1} can generate the rewrite sequence:

k(x < A.length() ? A(x) : A(0)) env(x←[0 ;A← [{1})

−→∗ k(xy (� < A.length()) y � ? A(x) : A(0)) env(x←[0 ;A←[{1})

−→ k(0 y (� < A.length()) y � ? A(x) : A(0)) env(x←[0 ;A←[{1})

−→ k(0 < A.length() y � ? A(x) : A(0)) env(x←[0 ;A←[{1})

−→∗ k(Ay �.length() y (0 < �) y � ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k({1}y �.length() y (0 < �) y � ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k({1}.length() y (0 < �) y � ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k(1 y (0 < �) y � ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k(0 < 1 y � ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k(true y � ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k(true ? A(x) : A(0)) env(x← [0 ;A←[{1})

−→ k(A(x)) env(x← [0 ;A←[{1})

−→ k(Ay �(x)) env(x← [0 ;A←[{1})

−→ k({1}y �(x)) env(x← [0 ;A←[{1})

−→ k({1}(x)) env(x← [0 ;A←[{1})

−→ k(xy {1}(�)) env(x← [0 ;A←[{1})

−→ k(0 y {1}(�)) env(x← [0 ;A←[{1})

−→∗ k(1) env(x← [0 ;A←[{1})

−→ result(1)

352

REFERENCES

[1] P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification
of lossy channel systems: Application to the bounded retransmission
protocol. In TACAS, volume 1579 of LNCS, pages 208–222. Springer,
1999.

[2] P. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model
checking. In CAV, volume 2404 of LNCS, pages 555–568. Springer,
2002.

[3] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decid-
ability theorems for infinite-state systems. In LICS, pages 313–321.
IEEE, 1996.

[4] P. A. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza, C.-D. Hong, and
A. Rezine. Constrained monotonic abstraction: A CEGAR for pa-
rameterized verification. In CONCUR, volume 6269 of LNCS, pages
86–101. Springer, 2010.

[5] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[6] A. Al-Nayeem, L. Sha, D. D. Cofer, and S. M. Miller. Pattern-
based composition and analysis of virtually synchronized real-time
distributed systems. In ICCPS, pages 65–74. IEEE, 2012.

[7] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller, and D. D. Cofer.
A formal architecture pattern for real-time distributed systems. In
RTSS, pages 161–170. IEEE, 2009.

[8] J. Anderson. Introduction to flight. McGraw-Hill, 2005.

[9] J. Avenhaus and C. Loría-Sáenz. On conditional rewrite systems with
extra variables and deterministic logic programs. In LPAR, volume
822 of LNCS, pages 215–229. Springer, 1994.

[10] B. Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4), 1985.

[11] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

353

[12] F. Baader and W. Snyder. Unification theory. Handbook of automated
reasoning, 1:445–532, 2001.

[13] K. Bae. Source code for a Multirate PALS framework in Real-Time
Maude. http://hdl.handle.net/2142/49977, 2014.

[14] K. Bae, S. Escobar, and J. Meseguer. Abstract logical model checking
of infinite-state systems using narrowing. In RTA, volume 21 of LIPIcs,
pages 81–96. Schloss Dagstuhl, 2013.

[15] K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky. PALS-based
analysis of an airplane multirate control system in Real-Time Maude.
In FTSCS, pages 5–21, 2012.

[16] K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky. Designing and
verifying distributed cyber-physical systems using Multirate PALS:
An airplane turning control system case study. Science of Computer
Programming, 2014. To appear.

[17] K. Bae and J. Meseguer. The Linear Temporal Logic of Rewriting
Maude Model Checker. In WRLA, volume 6381 of LNCS, pages 208–
225. Springer, 2010.

[18] K. Bae and J. Meseguer. State/event-based LTL model checking under
parametric generalized fairness. In CAV, volume 6806 of LNCS, pages
132–148. Springer, 2011.

[19] K. Bae and J. Meseguer. Model checking LTLR formulas under local-
ized fairness. InWRLA, volume 7571 of LNCS, pages 99–117. Springer,
2012.

[20] K. Bae and J. Meseguer. A rewriting-based model checker for the
temporal logic of rewriting. Electronic Notes in Theoretical Computer
Science, 290:19–36, 2012. Proc. RULE’2008.

[21] K. Bae and J. Meseguer. Infinite-state model checking of LTLR for-
mulas using narrowing. In WRLA, LNCS. Springer, 2014. To Appear.

[22] K. Bae and J. Meseguer. Model checking linear temporal logic of
rewriting formulas under localized fairness. Science of Computer Pro-
gramming, 2014. To appear. http://dx.doi.org/10.1016/j.scico.
2014.02.006.

[23] K. Bae and J. Meseguer. Predicate abstraction of rewrite theories. In
RTA-TLCA, volume 8560 of LNCS, pages 61–76. Springer, 2014.

[24] K. Bae, J. Meseguer, and P. C. Ölveczky. Formal patterns for multi-
rate distributed real-time systems. In FACS, volume 7684 of LNCS,
pages 1–18. Springer, 2012.

[25] K. Bae, J. Meseguer, and P. C. Ölveczky. Formal patterns for multirate
distributed real-time systems. Science of Computer Programming, 91,
Part A:3 – 44, 2014.

354

http://hdl.handle.net/2142/49977
http://dx.doi.org/10.1016/j.scico.2014.02.006
http://dx.doi.org/10.1016/j.scico.2014.02.006

[26] K. Bae, P. Ölveczky, and J. Meseguer. Definition, semantics, and
analysis of multirate synchronous aadl. In FM, volume 8442 of LNCS,
pages 94–109. Springer, 2014.

[27] K. Bae and P. C. Ölveczky. Extending the Real-Time Maude seman-
tics of Ptolemy to hierarchical DE models. In RTRTS, volume 36 of
EPTCS, pages 46–66, 2010.

[28] K. Bae, P. C. Ölveczky, A. Al-Nayeem, and J. Meseguer. Synchronous
AADL and its formal analysis in Real-Time Maude. In ICFEM, vol-
ume 6991 of LNCS. Springer, 2011.

[29] K. Bae, P. C. Ölveczky, T. H. Feng, E. A. Lee, and S. Tripakis. Ver-
ifying hierarchical Ptolemy II discrete-event models using Real-Time
Maude. Science of Computer Programming, 77(12):1235–1271, 2012.

[30] K. Bae, P. C. Ölveczky, T. H. Feng, and S. Tripakis. Verifying Ptolemy
II discrete-event models using Real-Time Maude. In ICFEM, volume
5885 of LNCS, pages 717–736. Springer, 2009.

[31] K. Bae, P. C. Ölveczky, J. Meseguer, and A. Al-Nayeem. The Syn-
chAADL2Maude tool. In FASE, volume 7212 of LNCS, pages 59–62.
Springer, 2012.

[32] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT
Press, 2007.

[33] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auto-
matic predicate abstraction of C programs. ACM SIGPLAN Notices,
36(5):203–213, 2001.

[34] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability
modulo theories. Handbook of satisfiability, 185:825–885, 2009.

[35] A. Benveniste, P. Caspi, R. Lublinerman, and S. Tripakis. Actors
without Directors: a Kahnian View of Heterogeneous Systems. In
HSCC, volume 5469 of LNCS, pages 46–60. Springer, 2009.

[36] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, and
F. Vernadat. Formal verification of AADL specifications in the Top-
cased environment. In Reliable Software Technologies, volume 5570 of
LNCS, pages 207–221. Springer, 2009.

[37] M. Bezem, J. W. Klop, and R. de Vrijer. Term rewriting systems.
Cambridge University Press, 2003.

[38] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in computers, 58:117–148, 2003.

[39] P. Borovanskỳ, C. Kirchner, H. Kirchner, and P. Moreau. ELAN
from a rewriting logic point of view. Theoretical Computer Science,
285(2):155–185, 2002.

355

[40] A. Bouajjani and J. Esparza. Rewriting models of boolean programs.
In RTA, volume 4098 of LNCS, pages 136–150. Springer, 2006.

[41] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In CAV, volume 1855 of LNCS, pages 403–418. Springer,
2000.

[42] A. Bouajjani and T. Touili. Widening techniques for regular tree
model checking. International Journal on Software Tools for Tech-
nology Transfer, 14(2):145–165, 2012.

[43] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, M. Roveri,
and R. Wimmer. A model checker for AADL. In CAV, volume 6174
of LNCS, pages 562–565. Springer, 2010.

[44] C. Brooks, C. Cheng, T. H. Feng, E. A. Lee, and R. v. Hanxleden.
Model engineering using multimodeling. In International Workshop
on Model Co-Evolution and Consistency Management, 2008.

[45] R. Bruni and J. Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science, 360(1-3):386–414,
2006.

[46] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of
infinite state systems using presburger arithmetic. In CAV, volume
1254 of LNCS, pages 400–411. Springer, 1997.

[47] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on
infinite structures. In Handbook of Process algebra, pages 545–623.
Elsevier, 2001.

[48] A. Cataldo, E. Lee, X. Liu, E. Matsikoudis, and H. Zheng. A construc-
tive fixed-point theorem and the feedback semantics of timed systems.
In International Workshop on Discrete-Event Systems, pages 27–32.
IEEE, 2006.

[49] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha.
State/event-based software model checking. In IFM, volume 2999 of
LNCS, pages 128–147. Springer, 2004.

[50] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concur-
rent software verification with states, events, and deadlocks. Formal
Aspects of Computing, 17:461–483, 2005.

[51] C. P. Cheng, T. Fristoe, and E. A. Lee. Applied verification: The
Ptolemy approach. Technical Report UCB/EECS-2008-41, EECS De-
partment, University of California, Berkeley, 2008.

[52] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating
AADL into BIP - application to the verification of real-time systems.
In MoDELS Workshops, volume 5421 of LNCS, pages 5–19. Springer,
2008.

356

[53] A. Cholewa, J. Meseguer, and S. Escobar. Variants of variants and
the finite variant property. Technical report, University of Illinois at
Urbana-Champaign, 2014. http://hdl.handle.net/2142/47117.

[54] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,
and M. Theobald. Abstraction and counterexample-guided refinement
in model checking of hybrid systems. International Journal of Foun-
dations of Computer Science, 14(04):583–604, 2003.

[55] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV, volume 1855 of LNCS, pages
154–169. Springer, 2000.

[56] E. Clarke, O. Grumberg, and D. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[57] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In TACAS, volume 3440 of
LNCS, pages 570–574. Springer, 2005.

[58] E. Clarke, M. Talupur, and H. Veith. Environment abstraction for
parameterized verification. In VMCAI, volume 3855 of LNCS, pages
126–141. Springer, 2006.

[59] E. M. Clarke. The birth of model checking. In 25 Years of Model
Checking, volume 5000 of LNCS, pages 1–26. Springer, 2008.

[60] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 2001.

[61] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-
Oliet, and C. Talcott. All About Maude – A High-Performance Logical
Framework, volume 4350 of LNCS. Springer, 2007.

[62] M. Clavel, F. Durán, J. Hendrix, S. Lucas, J. Meseguer, and
P. Ölveczky. The maude formal tool environment. In CALCO, volume
4624 of LNCS, pages 173–178. Springer, 2007.

[63] R. P. G. Collinson. Introduction to avionics. Chapman & Hall, 1996.

[64] H. Comon-Lundh and S. Delaune. The finite variant property: How
to get rid of some algebraic properties. In RTA, volume 3467 of LNCS,
pages 294–307. Springer, 2005.

[65] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of logic and computation, 2(4):511–547, 1992.

[66] J. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly empti-
ness checks for generalized Büchi automata. In SPIN, volume 3639 of
LNCS, pages 169–184. Springer, 2005.

357

http://hdl.handle.net/2142/47117

[67] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of
reactive systems. ACM Transactions on Programming Languages and
Systems, 19:253–291, 1997.

[68] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction.
In CAV, volume 1633 of LNCS, pages 160–171. Springer, 1999.

[69] G. Delzanno and A. Podelski. Constraint-based deductive model
checking. International Journal on Software Tools for Technology
Transfer, 3(3):250–270, 2001.

[70] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B,
pages 243–320. North-Holland, 1990.

[71] R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification. World Scientific Pub Co Inc, 1998.

[72] F. Durán, S. Eker, S. Escobar, J. Meseguer, and C. Talcott. Variants,
unification, narrowing, and symbolic reachability in Maude 2.6. In
RTA, volume 10 of LIPIcs, pages 31–40. Schloss Dagstuhl, 2011.

[73] F. Durán and J. Meseguer. Maude’s module algebra. Science of Com-
puter Programming, 66:125–153, 2007.

[74] F. Durán and J. Meseguer. A Church-Rosser checker tool for condi-
tional order-sorted equational Maude specifications. In WRLA, vol-
ume 6381 of LNCS, pages 69–85. Springer, 2010.

[75] F. Durán and J. Meseguer. A maude coherence checker tool for condi-
tional order-sorted rewrite theories. In WRLA, volume 6381 of LNCS,
pages 86–103. Springer, 2010.

[76] A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur. On-the-fly empti-
ness check of transition-based Streett automata. In ATVA, volume
5799 of LNCS. Springer, 2009.

[77] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu,
H. Zheng, and W. Visser. Tool-supported program abstraction for
finite-state verification. In ICSE, pages 177–187. IEEE, 2001.

[78] S. Edwards and E. A. Lee. The semantics and execution of a syn-
chronous block-diagram language. Science of Computer Programming,
48:21–42(22), July 2003.

[79] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy
approach. Proceedings of the IEEE, 91(2):127–144, 2003.

[80] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL
model checker and its implementation. In SPIN, volume 2648 of LNCS,
pages 230–234. Springer, 2003.

358

[81] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL
model checker. Electronic Notes in Theoretical Computer Science,
71:162–187, 2004.

[82] C. Ellison and G. Roşu. An executable formal semantics of C with
applications. In POPL, pages 533–544. ACM, 2012.

[83] E. A. Emerson and C. Lei. Modalities for model checking: Branching
time logic strikes back. Science of Computer Programming, 8(3):275–
306, 1987.

[84] E. A. Emerson and K. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In LICS, pages 70–80. IEEE, 1998.

[85] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: cryptographic
protocol analysis modulo equational properties. In Foundations of
Security Analysis and Design V, volume 5705 of LNCS, pages 1–50.
Springer, 2009.

[86] S. Escobar and J. Meseguer. Symbolic model checking of infinite-state
systems using narrowing. In RTA, volume 4533 of LNCS, pages 153–
168, 2007.

[87] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and
optimal variant termination. Journal of Logic and Algebraic Program-
ming, 81:898–928, 2012.

[88] A. Farzan, F. Chen, J. Meseguer, and G. Rosu. Formal analysis of
Java programs in JavaFAN. In CAV, volume 3114 of LNCS, pages
501–505. Springer, 2004.

[89] A. Farzan and J. Meseguer. State space reduction of rewrite theories
using invisible transitions. In AMAST, volume 4019 of LNCS, pages
142–157. Springer, 2006.

[90] A. Farzan and J. Meseguer. Partial order reduction for rewriting se-
mantics of programming languages. Electronic Notes in Theoretical
Computer Science, 176(4):61–78, 2007.

[91] P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL.
Addison-Wesley, 2012.

[92] M. Fernández. AC complement problems: Satisfiability and negation
elimination. Journal of Symbolic Computation, 22(1):49–82, 1996.

[93] M. Fernández. Negation elimination in empty or permutative theories.
Journal of Symbolic Computation, 26(1):97–133, 1998.

[94] M. Filali and J. Lawall. Development of a synchronous subset of
AADL. In Proc. ASM’10, volume 5977 of LNCS. Springer, 2010.

[95] A. Finkel and P. Schnoebelen. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

359

[96] G. S. Fishman. Discrete-Event Simulation: Modeling, Programming,
and Analysis. Springer, 2001.

[97] R. França, J.-P. Bodeveix, M. Filali, J.-F. Rolland, D. Chemouil, and
D. Thomas. The AADL behaviour annex - experiments and roadmap.
In ICECCS, pages 377–382. IEEE, 2007.

[98] N. Francez. Fairness. Springer, 1986.

[99] T. Genet and V. Rusu. Equational approximations for tree automata
completion. Journal of Symbolic Computation, 45(5):574–597, 2010.

[100] T. Genet and V. Tong. Reachability analysis of term rewriting sys-
tems with timbuk. In LPAR, volume 2250 of LNCS, pages 695–706.
Springer, 2001.

[101] A. Girault and C. Ménier. Automatic production of globally asyn-
chronous locally synchronous systems. In EMSOFT, volume 2491 of
LNCS, pages 266–281. Springer, 2002.

[102] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS.
In CAV, volume 1254 of LNCS, pages 72–83. Springer, 1997.

[103] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM, 32(1):137–172, 1985.

[104] M. R. Henzinger and J. A. Telle. Faster algorithms for the nonempti-
ness of Streett automata and for communication protocol pruning. In
SWAT, volume 1097 of LNCS, pages 16–27. Springer, 1996.

[105] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In ACM SIGPLAN Notices, volume 37, pages 58–70. ACM, 2002.

[106] T. Henzinger and J. Sifakis. The discipline of embedded systems de-
sign. IEEE, 40(10):32–40, 2007.

[107] T. A. Henzinger. Two challenges in embedded systems design: pre-
dictability and robustness. Philosophical Transactions of the Royal
Society A, 366(1881):3727–3736, 2008.

[108] G. Holzmann. The SPIN model checker: Primer and reference manual.
Addison Wesley Publishing Company, 2004.

[109] G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first
search. In SPIN, pages 23–32. American Mathematical Society, 1996.

[110] J. M. Hullot. Canonical forms and unification. In CADE, volume 87
of LNCS. Springer, 1980.

[111] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens.
Virtual execution of AADL models via a translation into synchronous
programs. In EMSOFT, pages 134–143. ACM, 2007.

360

[112] J. P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental con-
struction of unification algorithms in equational theories. In ICALP,
volume 154 of LNCS. Springer, 1983.

[113] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings of the
IEEE, 91(1):145–164, 2003.

[114] Y. Kesten and A. Pnueli. Control and data abstraction: The cor-
nerstones of practical formal verification. International Journal on
Software Tools for Technology Transfer, 2(4):328–342, 2000.

[115] Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model checking with
strong fairness. Formal Methods in System Design, 28(1):57–84, 2006.

[116] H. Kopetz and G. Grünsteidl. TTP - a protocol for fault-tolerant
real-time systems. Computer, 27(1):14–23, 1994.

[117] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic
change management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 2002.

[118] O. Kupferman and M. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[119] A. L. Lafuente, J. Meseguer, and A. Vandin. State space c-reductions
of concurrent systems in rewriting logic. In ICFEM, volume 7635 of
LNCS, pages 430–446. Springer, 2012.

[120] S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to
predicate abstraction. In CAV, volume 2725 of LNCS, pages 141–153.
Springer, 2003.

[121] J.-L. Lassez and K. Marriott. Explicit representation of terms defined
by counter examples. Journal of Automated Reasoning, 3(3):301–317,
1987.

[122] T. Latvala. Model checking LTL properties of high-level Petri nets
with fairness constraints. In ICATPN, volume 2075 of LNCS, pages
242–262. Springer, 2001.

[123] E. A. Lee. Modeling concurrent real-time processes using discrete
events. Annals of Software Engineering, 7(1-4):25–45, 1999.

[124] E. A. Lee and A. Sangiovanni-Vincentelli. A unified framework for
comparing models of computation. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, 17(12):1217–1229,
1998.

[125] E. A. Lee and H. Zheng. Leveraging synchronous language princi-
ples for heterogeneous modeling and design of embedded systems. In
EMSOFT, pages 114–123. ACM, 2007.

361

[126] X. Liu and E. A. Lee. Cpo semantics of timed interactive actor net-
works. Theoretical Computer Science, 409(1):110–125, 2008.

[127] X. Liu, E. Matsikoudis, and E. A. Lee. Modeling timed concurrent
systems. In C. Baier and H. Hermanns, editors, CONCUR, volume
4137 of LNCS, pages 1–15, August 2006.

[128] N. Lynch, R. Segala, and F. Vaandrager. Hybrid i/o automata. In-
formation and Computation, 185(1):105–157, 2003.

[129] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[130] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems – Specification. Springer, 1992.

[131] P. O. Meredith, M. Katelman, J. Meseguer, and G. Roşu. A formal ex-
ecutable semantics of verilog. In MEMOCODE, pages 179–188. IEEE,
2010.

[132] J. Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[133] J. Meseguer. Membership algebra as a logical framework for equational
specification. In WADT, volume 1376 of LNCS, pages 18–61. Springer,
1997.

[134] J. Meseguer. Localized fairness: A rewriting semantics. In RTA,
volume 3467 of LNCS, pages 250–263. Springer, 2005.

[135] J. Meseguer. The temporal logic of rewriting. Technical report, Uni-
versity of Illinois at Urbana-Champaign, 2007. http://hdl.handle.
net/2142/11293.

[136] J. Meseguer. The temporal logic of rewriting: A gentle introduction.
In Concurrency, Graphs and Models, volume 5065 of LNCS, pages
354–382. Springer, 2008.

[137] J. Meseguer. Twenty years of rewriting logic. Journal of Logic and
Algebraic Programming, 81:721–781, 2012.

[138] J. Meseguer and P. C. Ölveczky. Formalization and correctness of the
PALS architectural pattern for distributed real-time systems. Theo-
retical Computer Science, 451:1–37, 2012.

[139] J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational abstrac-
tions. Theoretical Computer Science, 403(2-3):239–264, 2008.

[140] J. Meseguer and G. Rosu. The rewriting logic semantics project. The-
oretical Computer Science, 373(3):213–237, 2007.

[141] J. Meseguer and G. Roşu. The rewriting logic semantics project: A
progress report. Information and Computation, 231:38–69, 2013.

362

http://hdl.handle.net/2142/11293
http://hdl.handle.net/2142/11293

[142] J. Meseguer and P. Thati. Symbolic reachability analysis using nar-
rowing and its application to verification of cryptographic protocols.
Higher-Order and Symbolic Computation, 20(1–2):123–160, 2007.

[143] S. P. Miller, D. D. Cofer, L. Sha, J. Meseguer, and A. Al-Nayeem.
Implementing logical synchrony in integrated modular avionics. In
Digital Avionics Systems Conference. IEEE, 2009.

[144] J. Misra. Distributed discrete-event simulation. ACM Computing Sur-
veys, 18(1):39–65, 1986.

[145] R. D. Nicola and F. W. Vaandrager. Action versus state based logics
for transition systems. In Semantics of Systems of Concurrent Pro-
cesses, volume 469 of LNCS, pages 407–419. Springer, 1990.

[146] H. Ohsaki, H. Seki, and T. Takai. Recognizing boolean closed A-tree
languages with membership conditional rewriting mechanism. In RTA,
volume 2706 of LNCS, pages 483–498. Springer, 2003.

[147] P. C. Ölveczky, A. Boronat, and J. Meseguer. Formal semantics
and analysis of behavioral AADL models in Real-Time Maude. In
FMOODS/FORTE, volume 6117 of LNCS, pages 47–62. Springer,
2010.

[148] P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid
systems in rewriting logic. Theoretical Computer Science, 285:359–405,
2002.

[149] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-
Time Maude. Higher-Order and Symbolic Computation, 20(1-2):161–
196, 2007.

[150] S. Owicki and L. Lamport. Proving liveness properties of concurrent
programs. ACM Transactions on Programming Languages and Sys-
tems, 4(3):455–495, 1982.

[151] M. Palomino. A predicate abstraction tool for maude. available at
http://maude.sip.ucm.es/~miguelpt/bibliography.html, 2005.

[152] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1,∞)-counter ab-
straction. In CAV, volume 2404 of LNCS, pages 93–111. Springer,
2002.

[153] D. Potop-Butucaru and B. Caillaud. Correct-by-construction asyn-
chronous implementation of modular synchronous specifications. Fun-
damenta Informaticae, 78(1):131–159, 2007.

[154] G. Roşu and T. F. Şerbănuţă. An overview of the k semantic frame-
work. The Journal of Logic and Algebraic Programming, 79(6):397–
434, 2010.

363

http://maude.sip.ucm.es/~miguelpt/bibliography.html

[155] J. Rushby. Systematic formal verification for fault-tolerant time-
triggered algorithms. IEEE Transactions on Software Engineering,
25(5):651–660, 1999.

[156] H. Saïdi and N. Shankar. Abstract and model check while you prove.
In CAV, volume 1633 of LNCS, pages 443–454. Springer, 1999.

[157] W. Steiner and J. Rushby. TTA and PALS: Formally verified design
patterns for distributed cyber-physical systems. In Digital Avionics
Systems Conference. IEEE, 2011.

[158] J. Sun, Y. Liu, J. Dong, and J. Pang. PAT: Towards flexible verifica-
tion under fairness. In CAV, volume 5643 of LNCS, pages 709–714.
Springer, 2009.

[159] J. Sztipanovits and G. Karsai. Model-integrated computing. Com-
puter, 30(4):110–111, 1997.

[160] J. Sztipanovits and G. Karsai. Embedded software: Challenges and
opportunities. In EMSOFT, volume 2211 of LNCS, pages 403–415.
Springer, 2001.

[161] R. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

[162] G. Tel. Introduction to distributed algorithms. Cambridge University
Press, 2000.

[163] G. Tel, E. Korach, and S. Zaks. Synchronizing ABD networks.
IEEE/ACM Transactions on Networking, 2(1):66–69, 1994.

[164] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using language
inference to verify omega-regular properties. In TACAS, volume 3440
of LNCS, pages 45–60. Springer, 2005.

[165] M. Vardi. Automata-theoretic model checking revisited. In VMCAI,
volume 4349 of LNCS, pages 137–150. Springer, 2007.

[166] P. Viry. Equational rules for rewriting logic. Theoretical Computer
Science, 285:487–517, 2002.

[167] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering, 10(2):203–232,
2003.

[168] H. Völzer, D. Varacca, and E. Kindler. Defining fairness. In CONCUR,
volume 3653 of LNCS, pages 458–472. Springer, 2005.

[169] Y. Zhao, E. A. Lee, and J. Liu. A programming model for time-
synchronized distributed real-time systems. In Real-Time and Embed-
ded Technology and Applications, pages 259–268. IEEE, 2007.

364

	Chapter 1 1emIntroduction
	Property Specification Logics
	Approximation Methods
	Applications to Modeling Languages
	Summary of Contributions

	Part I System and Property Specification Logics
	Chapter 2 1emPreliminaries: Rewriting-based System Specifications
	Membership Equational Logic
	Signatures and Terms
	Equational Theories and Algebras
	Initial and Free Algebras
	Order-Sorted Equational Logic

	Rewriting Logic
	Rewrite Relations and Proof Terms
	Concurrent and Interleaving Models
	Localized Fairness
	Executability Conditions

	Maude
	Functional Modules
	System Modules
	Object-Oriented Modules
	Real-Time Maude

	Chapter 3 1emLinear Temporal Logic of Rewriting
	Introduction
	Main Contributions
	Related Work
	Structure of the Chapter

	Syntax and Semantics
	Spatial Action Patterns
	Labeled Kripke Structures
	Relating LKSs and Rewrite Theories

	Automata Theoretic LTLR Model Checking
	Preliminaries on LTL Model Checking
	Automata-Based Verification of LTLR Formulas

	The Maude LTLR Model Checker
	Support Equational Theories
	The Model Checker Interface

	Case Study: the Bounded Retransmission Protocol
	Concluding Remarks

	Chapter 4 1emModel Checking Under Localized Fairness
	Introduction
	Main Contributions
	Related Work
	Structure of the Chapter

	Localized Fairness in Quantified LTLR
	Localized Fairness Specifications
	Parameterized Labeled Kripke Structures
	Sufficient Conditions for FIP

	Parameterized Fair Model Checking Algorithm
	Parameter Abstraction
	Automata-based Characterization
	On-The-Fly Model Checking Algorithm

	The Maude Fair LTLR Model Checker
	The Model Checker Interface
	Experimental Results

	Case Study: the Evolving Dining Philosophers
	Concluding Remarks

	Part II Approximation Methods
	Chapter 5 1emInfinite-State Model Checking
	Introduction
	Main Contributions
	Related Work
	Structure of this Chapter

	Infinite-State System Examples
	Lamport's Bakery Algorithm
	Dijkstra's Mutual Exclusion Algorithm
	Readers-Writers Problem

	Equational Abstraction
	Simulation Relations for LKSs
	Equational Abstractions for LTLR
	Bisimilar Equational Abstractions
	Executability Conditions

	Folding Abstraction
	Folded Transition Systems
	Faithfulness for Safety Properties
	Safety Model Checking Procedure

	Narrowing-based Logical Abstraction
	Spatial Action Patterns for Narrowing
	Narrowing-based Labeled Kripke Structures
	Abstract Narrowing-based Model Checking
	The Maude LTL Logical Model Checker

	Predicate Abstraction
	P-Abstractions of Rewrite Theories
	Effective Procedures for Equality Constraints
	Case Study

	Concluding Remarks

	Chapter 6 1emMultirate PALS
	Introduction
	Main Contributions
	Related Work
	Structure of the Chapter

	Multirate Synchronous Models
	Single-rate Ensembles
	Machine Transformations
	Multirate Ensembles

	Multirate PALS Transformation
	System Assumptions
	Multirate Asynchronous Models
	Correctness of the Multirate PALS Transformation

	Multirate PALS Methodology
	Physical Environments
	The Real-Time Maude Framework

	Case Study: an Airplane Turning Control System
	The Aerodynamics Model
	Architecture of the Distributed Controllers
	Modeling the Airplane Turning Control System
	Formal Analysis
	Model Checking the Asynchronous System

	Concluding Remarks

	Part III Applications to Modeling Languages
	Chapter 7 1emMultirate Synchronous AADL
	Introduction
	Main Contributions
	Related Work
	Structure of this Chapter

	Multirate Synchronous AADL
	Subset of AADL
	The MR_SynchAADL Property Set
	Case Study: Turning an Airplane

	Real-Time Maude Semantics
	Real-Time Maude Representation
	Thread Behavior
	Ensemble Behavior

	The MR-SynchAADL Tool
	Case Studies
	The Airplane Turing Controller Revisited
	The Active Standby System

	Concluding Remarks

	Chapter 8 1emPtolemy II Discrete-Event Models
	Introduction
	Main Contributions
	Related Work
	Structure of this Chapter

	Ptolemy II and its DE Model of Computation
	Discrete-Event Models
	Ptolemy II Actors

	The Semantics of Ptolemy II DE Models
	Representing Ptolemy II DE Models
	Specifying the Behavior of DE Models
	DE Semantics of Actors
	Expression Language Semantics

	Formal Verification in Ptolemy II
	Case Studies
	Railroad Crossing
	Hierarchical Traffic Light
	Assembly Line

	Concluding Remarks

	Chapter 9 1emConclusions and Future Work
	Summary
	Future Work

	Part IV Appendix
	Appendix A 1emMore LTLR Case Studies and Implementation
	More Case Studies
	Fault-Tolerant Client-Server Communication
	An Unordered Communication Channel
	Dekker's Algorithm
	Position Fairness
	Sliding Window Protocol

	The Model Checker Implementation

	Appendix B 1emMore Details on Multirate PALS
	Formalizing Specification of Asynchronous Models
	Generic Machines and Wrappers
	Typed Machines
	Local Wiring Diagrams
	The k-Machine Wrapper
	The Input Adaptor Wrapper
	The PALS Wrapper
	The Environment
	Time Behavior
	Initial States
	Example

	More Details on the Proof
	More Details on the Real-Time Maude Framework
	The Simplified Asynchronous Model

	Appendix C 1emMore Details on Multirate Synchronous AADL
	More Details on the Real-Time Maude Semantics
	The Active Standby System Requirements
	The Three–Node Active Standby System
	System Requirements

	Appendix D 1emMore Details on Ptolemy II DE Models
	More Ptolemy II Actors
	Real-Time Maude Code Generation
	More Details on the Ptolemy II DE Semantics
	Formal Definitions of Semantic functions
	The Semantics of Actors in DE Models
	More Details on the Expression Language Semantics

	References

