
c© 2014 by Jiashun Shen. All rights reserved.

MULTIPLICATIVE CODES OF REED-MULLER TYPE

BY

JIASHUN SHEN

DISSERTATION

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Bruce Hajek, Chair

Professor Bruce Reznick,Co-Chair

Professor Iwan Duursma, Director of Research

Professor Henry Schenck

Abstract

This is a comprehensive study of multiplicative codes of Reed-Muller type and their applications.

Our codes apply to the �elds of cryptography and coding theory, especially to multiparty computa-

tion and secret sharing schemes. We also study the AB method to analyze the minimum distance

of linear codes. The multiplicative codes of Reed-Muller type and the AB method are connected

when we study the distance and dual distance of a code and its square. Generator matrices for our

codes use a combination of blocks, where a block consists of all columns of a given weight. Several

interesting linear codes, which are best known linear codes for a given length and dimension, can

be constructed in this way.

ii

To my beloved daughter Chenyu and wife Chen Chen.

iii

Acknowledgments

Many people gave me support to complete this thesis. Many thanks to my thesis adviser, Iwan

Duursma, who gave me much useful advice for my Ph.D life and research. Also thanks to my com-

mittee members, Bruce Hajek, Bruce Reznick, and Henry Schenck, who gave me useful guidance

and comments. Thanks to the department of mathematics of University of Illinois, Urbana Cham-

paign, which gave me �nancial support and position as a teaching assistant. Thanks to my parents,

who give me support for completing the degree. And �nally, thanks to my wife and daughter, who

brought me a lot of happiness for the later years of my time as a Ph.D candidate.

iv

Table of Contents

List of Abbreviations . vii

List of Symbols . viii

Chapter 1 Introduction and Background of Multiparty Computation and Linear

Secret Sharing Schemes . 1

1.1 Multiparty Computation . 1
1.1.1 Protocol Secure Addition . 2
1.1.2 Protocol Secure Multiplication . 2

1.2 Secret Sharing and Shamir Schemes . 4
1.3 Linear Secret Sharing Schemes . 5
1.4 Multiplicative Linear Secret-Sharing Scheme and Strongly Multiplicative Linear Secret-

Sharing Scheme . 6
1.5 Summary of the results . 7

Chapter 2 Multiplicative codes of Reed-Muller type 9

2.1 Introduction of Reed-Muller codes . 9
2.2 Our basic construction . 11
2.3 The Combination when all the codes in Ĉ(t) and C(t)are of even weight 13

2.3.1 When Ĉ(t) are of even weights . 13
2.3.2 The combination when all the codes in C(t) are of even weight 19

2.4 Characterization of linear codes with multiplicity t 20
2.5 Dimension of C(t) . 24

2.5.1 Dimension of C(t)when the blocks are consecutive starting from 1 27
2.5.2 Dimension of C(t) when there are two blocks 29
2.5.3 Dimension of C(t) when blocks are congruent to some number modulo 4 . . . 30
2.5.4 An Algebraic Geometry approach to the dimension problem 31
2.5.5 Symmetric dimensions . 33

2.6 Minimum distance of C
(t)
i and Dual(C

(t)
i) . 35

2.6.1 Backgrounds from association schemes . 35
2.6.2 The minimum distance for one single block 35
2.6.3 Minimum Distance for multiple blocks . 37
2.6.4 Regular partitions . 40

2.7 Good linear codes . 44

v

Chapter 3 AB methods and applications . 46

3.1 Dimension-length pro�les . 46
3.2 The Roos bound . 48
3.3 Higher weights . 49
3.4 Generalized Roos bounds . 51

Appendix . 54

References . 60

vi

List of Abbreviations

BKLC Best Known Linear Codes.

LSSS Linear Secret Sharing Schemes

MPC Multiparty Computation.

vii

List of Symbols

1 Vector where every entry is 1

0 The zero vector

Ai Matrix where each column is of weight i

C Linear code C

C(t) The t-th order of linear code C

Ĉ
(t)
i The t-th order of linear code with blocks of weight i without 1

D
(t)
i The t-th order of linear code which is generated by the multiplication of t di�erent rows

in Ai

n, k, d Length, dimension and minimum distance of linear code

RM(r,m) The rth order of Reed-Muller code

RMI(r,m) The linear code which is generated on blocks I.

RM∗I (r,m) The linear code which is generated on blocks I without 1.

viii

Chapter 1

Introduction and Background of

Multiparty Computation and Linear

Secret Sharing Schemes

1.1 Multiparty Computation

In real life, people may often come together to use their own data or results to calculate some other

results. The �nal results calculated by people are announced to every one of them, while each input

should be kept secret. For example, someone wants to be voted as a president of some committee.

If she receives more than half of the votes, then she will be elected as the president. However,

people should not know each person's vote and only the �nal result is announced. Hence, it will be

very important that we can invent a way of computing a �nal result from di�erent parties but keep

each party's input secret.

Of course, we can invite another trusted party to receive the information from everyone and

then compute the result. However, in our real life, if the bene�t of cheating or selling each party's

information is high enough, the third party may not be so reliable. Hence, paying the trusted party

a lot of money in order to keep the secret may be necessary.

Indeed, some methods are used to solve these problems. We need to introduce some protocols

in order to �nd the correct computation result and keep each person's input secret. The basic

multiparty computation consists of two calculations, one is addition, the other one is multiplication.

In the following, we will introduce these two basic multiparty computations. In the book draft [2],

multiparty computation and secret sharing schemes are discussed in detail. From Section 1.1 to

Section 1.4, some introduction is given based on the material from the book draft [2].

1

1.1.1 Protocol Secure Addition

Assume three people have their own input and they want to �nd the sum of the inputs but keep

their own input secret. Let us use P1, P2, P3 for the three parties and their corresponding inputs

are a, b, c mod p, where p is a prime number known to everybody. They want to �nd the sum

s = a+ b+ c mod p without knowing other people's input. The protocol is the following:

1. P1 chooses two random numbers a1, a2 from {0, 1, 2, ...p−1}, and a3 = a−a1−a2 mod p. P2

chooses two random numbers b1, b2 from {0, 1, 2, ...p− 1}, and b3 = b− b1 − b2 mod p. P3 chooses

two random numbers c1, c2 from {0, 1, 2, ...p− 1}, and c3 = c− c1 − c2 mod p.

2. P1 distributes a2, a3 to P1, a1, a3 to P2 and a1, a2 to P3. (Of course, P1 tells a2, a3 to himself

seems a little bit redundant). P2 does the same thing and distributes b2, b3 to P1, b1, b3 to P2 and

b1, b2 to P3. P3 distributes c2, c3 to P1, c1, c3 to P2 and c1, c2 to P3.

3. P1 computes s2 = a2 + b2 + c2 and s3 = a3 + b3 + c3. P2 computes s1 = a1 + b1 + c1 and

s3 = a3 + b3 + c3. P3 computes s1 = a1 + b1 + c1 and s2 = a2 + b2 + c2. P1, P2, P3 announce their

results in this step to all parties.

4. The result s = s1 + s2 + s3 (mod p).

Let us see that each person's input is still kept secret. In Step 2, each person only receives two

random numbers from other two people and no further information can be found. In Step 3, P1

gets additional information s1 and �nds the �nal answer s. Assume P1 knows s1 and knows other

information m which can not be derived from s. Notice that knowing s is equivalent to knowing

s1 to P1 because s1 = s − s2 − s3. If s1 can imply other information m, then s can also imply m,

which is a contradiction. Hence, in Step 3, P1 knows s1 only helps him to know the �nal result s

and nothing more than that. The secret inputs b and c from P2 and P3 are not discovered by P1.

1.1.2 Protocol Secure Multiplication

Let p be a prime number, assume P1 has input a ∈ {0, 1, ..., p−1} and P2 has input b ∈ {0, 1, ..., p−1}.

They want to compute ab (mod p) securely. A third party with no input P3 is invited. The following

are the steps for Protocol Secure Multiplication

2

1. P1 makes shares a1, a2, a3 such that a1 + a2 + a3 = a, where a1, a2 are random and a3 =

a − a1 − a2. P2 makes shares b1, b2, b3 such that b1 + b2 + b3 = b, where b1, b2 are random and

b3 = b− b1 − b2.

2. P1 distributes a2, a3 to P1, a1, a3to P2 and a1, a2 to P3. P2 does the same thing and distributes

b2, b3 to P1, b1, b3 to P2 and b1, b2 to P3.

3. P1 computes u1 = a2b2 + a2b3 + a3b2 mod p , P2 computes u2 = a3b3 + a1b3 + a3b1 mod p,

P3 computes u3 = a1b1 + a1b2 + a2b1 mod p.

4. P1, P2, P3 use Protocol Secure Addition to compute the sum s = u1 + u2 + u3.

The argument why the multiplication is secure is similar to the argument for addition. A good

example for secure multiplication may happen in the real life. Assume A is a female and B is a

male and they may be interested in each other. If A is interested in B, then her input a = 1, and

if B is interested in A, then his input b = 1. They want to know whether they are both interested

in each other and the value s = ab should be computed securely. If the value s = 1, then it means

that they are both interested in each other. If B is interested in A but A does not like B, without

secure multiplication, A and B may feel embarrassed later on. Hence, keeping each other's input

secret may avoid embarrassment later on. If A is not interested in B, then she would de�nitely

know that the value of computation is 0 and she does not know whether B likes her or not. In this

case, B knows that A is not interested in him but he should not be worried too much because A

does not know his choice.

Here is another example for multiparty: Assume there are two secrets a0 and b0 and people

want to compute a0b0 without disclosing a0 and b0. Let f(x) = a1x+ a0, g(x) = b1x+ b0. a1 and

b1 are random numbers. The way to do this is the following:

Three parties P1, P2 and P3 are invited, and each party Pi holds input xi, which is known to

everyone. Assume party Pi knows f(xi), g(xi). If they announce their results to other people, any

two of them can discover the secrets. To avoid this, parties compute f(xi)g(xi) and announce it to

other people. Notice that f(x)g(x) = a1b1x
2 + (a0b1 + b0a1)x+ a0b0. Three points can determine a

quadratic function's coe�cients, which gives us the result a0b0. Since a1 and b1 are random numbers,

we can not recover secrets a0 and b0.

3

1.2 Secret Sharing and Shamir Schemes

Assume we have n parties and some secret s is shared among them. Unfortunately, not all parties

are honest. To protect the secret, we need several requirements. We may require that any t or fewer

parties can not recover the secret and any l or more parties can recover the secret. A well-known

method for secret sharing is the Shamir Scheme.

In Shamir Schemes, a secret s is involved with a polynomial f(x) = s+s1x+s2x
2+...+sn−1x

n−1.

Notice that there are n coe�cients in this polynomial. Each party Pi has their own xi and receives

their own share f(xi) privately. Hence, any set of parties of size n or more would be able to

recover the secret and parties of size less than n can not recover any information about s. When

the n parties share their own outputs in order to recover the secret, they mainly use the method of

Lagrange Interpolation:

The Langrange Interpolation Method is this. Let f(x) be a polynomial of degree n − 1 and S

is a set of size |S| = n. Then

f(x) =
∑
i∈S

f(xi)fi(x)

where xi is the input for some individual party and f(xi) is the corresponding share. fi(x) should

have the property that fi(xi) = 1 and fi(xj) = 0 when j 6= i. A good approach for fi(x) is that

fi(x) =
∏

j∈C,j 6=i

x− xj
xi − xj

.

Then the coe�cients of f(x) can be derived from the expression
∑
i∈S f(xi)fi(x). This method

saves time for solving the system of linear equations when people put their own xi and f(xi) to the

original polynomial. A quick example will be the following:

Let the prime number p = 13 and the secret s = 3. Assume there are �ve parties P1, P2, P3, P4, P5

and their inputs are 1, 2, 3, 4, 5.We need that three parties can recover the secret, so the degree of the

polynomial is two. We randomly choose s1 = 2 and s2 = 7 so the polynomial is f(x) = 3+2x+7x2.

Hence, we send (1, 12) to P1, (2, 9) to P2 and (3, 7) to P3. Hence

f1(x) = x−2
1−2 ·

x−3
1−3 = 7(x− 2)(x− 3) = 7x2 + 4x+ 3

4

f2(x) = x−1
2−1

x−3
2−3 = 12x2 + 4x+ 10

f3(x) = x−1
3−1

x−2
3−2 = 7x2 + 5x+ 1

Then P1, P2, P3 announce their own shares to each other and �nd out f(x) = f(1)f1(x) +

f(2)f2(x) + f(3)f3(x) = 12(7x2 + 4x + 3) + 9(12x2 + 4x + 10) + 7(7x2 + 5x + 1) = 7x2 + 2x + 3.

Hence, the secret 3 is recovered by parties P1, P2, P3.

Assuming any two parties in this group are corrupted, they can not use their shares to recover

the secret. Moreover, no information about the secret is obtained by these two parties.

1.3 Linear Secret Sharing Schemes

According to [2], an adversary structure A is a family of subsets of P = {P1, P2, ..., Pn} in which

every set in A can be corrupted by an adversary. A simplicial adversary structure A requires

B ⊆ A,A ∈ A implies B ∈ A. This means that if some set A of parties are corrupted, then any

subset of A can also be corrupted.

An adversary structure A is called Q2 if for any A1, A2 ∈ A, A1 ∪ A2 6= P. An adversary

structure A is called Q3 if for any A1, A2, A3 ∈ A, A1 ∪A2 ∪A3 6= P .

A linear secret sharing scheme S over a �eld F for n players consists of a matrix M . M is

the matrix for the scheme S. Player Pφ(i) owns the i th row of M . The players that know row

i in M are given by the subset φ(i) ⊆ 1, 2, . . . , n, where φ is a function from {1, 2, . . . ,m} to

{1, 2, . . . , n}. Let MA be the matrix consisting of the rows from M owned by the set of parties A.

Subset A ⊆ 1, 2, . . . , n knows row i if φ(i) ∩A 6= ∅, i.e. if some party in A knows row i.

If s ∈ F is the secret, let s be the �rst coordinate of some column vector rs. We multiply M

with rs to distribute the shares to other people. Parties in φ(i) receive the shares (Mrs)i. Similarly,

MArs will be the shares of the set of parties A.

The adversary structure S consists of some family of subsets of P. If the distribution of MArs is

independent of s, then the set A is called adversary structure. If the secret s is uniquely determined

by MArs, then the set A is called quali�ed.

5

1.4 Multiplicative Linear Secret-Sharing Scheme and

Strongly Multiplicative Linear Secret-Sharing Scheme

A Linear Secret Sharing Scheme is multiplicative if each party i ∈ P can compute a value ci from

his shares ai for a and bi for b. The product ab is a linear combination of all the ci, i ∈ P . Notice

that the Shamir Linear Secret Sharing Scheme is multiplicative when the number of parties n > 2t.

If ai = f(xi), bi = f(yi), and ci = aibi, if we want to have f(0)g(0) based on the values c1, c2, ..., cn,

we need n is greater than the degree of the polynomial f(x)g(x), which means n > 2t.

Assume that the adversary can control at most t parties from {P1, P2, ..., Pn}.

De�nition 1.4.1. A multiplicative Linear Secret Sharing Scheme is strongly multiplicative if the

output ab can be computed as a linear combination of n− t values of ci.

For the Shamir Linear Secret Sharing Scheme, in order to be strongly multiplicative, we need

n− t > 2t, which means n > 3t.

Our work is to construct multiplicative LSSS and strongly multiplicative LSSS from linear codes.

A linear code C is self-orthogonal if for any a · b = (a1, a2, ..., an) ∈ C and b = (b1, b2, ..., bn) ∈ C,

we have a = a1b1 + a2b2 + ... + anbn = 0. A linear code C is strongly self-orthogonal if for any

a = (a1, a2, ..., an) ∈ C, b = (b1, b2, ..., bn) ∈ C and c = (c1, c2, ..., cn) ∈ C, we have (a ∗ b) · c =

a1b1c1 + a2b2c2 + ...+ anbncn = 0.

In [6], the connection between multiplicative LSSS and strongly multiplicative LSSS with linear

codes is the following:

Proposition 1.4.1. (a) If a linear code is self-orthogonal then the corresponding LSSS is multi-

plicative.

(b) If a linear code is strongly self-orthogonal then the corresponding LSSS is strongly multiplicative.

Hence, in order to achieve multiplicative LSSS and strongly multiplicative LSSS, we focus on

self-orthogonal linear codes and strongly self-orthogonal linear codes. Some methods, such as Reed-

Solomon codes, Algebraic Geometry codes, BCH codes and some cyclic codes have already been

used to construct self-orthogonal codes and strongly self-orthogonal codes. However, we develop a

6

di�erent linear code which is the so called "spherically punctured Reed-Muller codes� to achieve the

goal. Moreover, since the spherically punctured Reed-Muller codes have a very good combinatorial

structure, many interesting properties have also been found. Another good advantage is that our

codes are more �exible compared with standard Reed-Muller codes. We can construct codes with

good multiplicity with di�erent lengths, dimensions and minimum distances.

1.5 Summary of the results

In the next chapter, we will show our results. First, we prove the condition for a linear code to

have multiplicity t when we choose blocks of certain weights and the results are Lemma 2.3.1,

Theorem 2.3.1 (page 12), Theorem 2.3.2 (page 14) , Theorem 2.3.3 (page 18), and some results are

shown in [5]. In Theorem 2.4.1 (page 19), we also show a general condition when a linear code

has multiplicity t. A probability argument is given in Theorem 2.4.3 (page 22). Next, we prove

Theorem 2.5.1 (page 22) about the dimension of linear code C for any t-th power when there is only

one single block. In Theorem 2.5.2 (page 25), we prove the dimension formula when the blocks are

consecutive starting from 1. We also have some conjectures for the dimension in two other cases.

The results are shown in Conjecture 1 (page 27) and Conjecture 2 (page 28). Condition one is

that there are two blocks. Condition two is that the blocks are congruent to some number modulo

4. Later on, we do some analysis on the dimension when the dimension pro�le is symmetric. The

reason why symmetric dimension is important is because it relates to dual codes which are similar

to the condition of Reed-Muller codes. The next section is about the minimum distance. Before we

start, we use some background from association schemes [15]. The result when t = 1 for a single

block is proven in [4]. In Conjecture 3 (page 34), we claim a more general result for general t and

how the minimum distance occurs. For multiple blocks, in Theorem 2.6.2 (page 36), we use linear

forms to get upper bounds for the minimum distances. In Theorem2.6.3 (page 37), we give results

for the minimum distance in some special cases. Next, regular partitions are discussed and partition

graphs are created based on partitions and dual partitions. Next, we construct some good linear

codes which have good parameters. In the section on Generalized Roos bounds of Chapter 3, we

7

introduce generalized Roos bounds in Theorem 3.4.1 (page 49) and Theorem 3.4.2 (page 50).

8

Chapter 2

Multiplicative codes of Reed-Muller

type

2.1 Introduction of Reed-Muller codes

We begin this chapter by introducing Reed-Muller codes. According to the references [11][12][15],

the Reed-Muller codes can be constructed recursively in the following way.

De�nition 2.1.1. For integer m > 1, the �rst order Reed-Muller codes RM(1,m) are binary codes

de�ned recursively as follows:

(i) RM(1, 1) = F2
2 = {00, 01, 10, 11}

(ii) For m > 1, RM(1,m+ 1) = {(u,u) : u ∈ RM(1,m)} ∪ {(u,u + 1) : u ∈ RM(1,m)}

For r > 0, the r-th order of Reed-Muller code RM(r,m) is de�ned as follows:

De�nition 2.1.2. (i) The Reed-Muller codes RM(0,m), for m > 1, are de�ned to be the all zero

vector and 1 of length 2m.

(ii) The �rst order Reed-Muller codes RM(1,m) for m > 1 are in De�nition 2.1.1.

(iii) For any r > 2, the r-th order Reed-Muller codes RM(r,m) is de�ned for m > r − 1,

recursively by

RM(r,m+ 1) =


F2r

2 m = r − 1

{(u,u + v) : u ∈ RM(r,m),v ∈ RM(r − 1,m)} m > r − 1

An alternative way to view Reed-Muller code is the following:

Let G be a matrix of length 2m de�ned as follows:

9

(i) The �rst row of G is 1.

(ii) By taking o� the �rst row of G, the remaining part is an m by 2m matrix where the columns

of this matrix are all the possible di�erent columns of length m with entries 0, 1.

De�nition 2.1.3. Assume matrix G is de�ned as above, the r-th order binary Reed-Muller code

RM(r,m) is the set of vectors which are the evaluation of polynomials of degree at most r in the

variables x1, x2, . . . , xm evaluated in the 2m 0, 1-columns of length m.

For example, the �rst order Reed-Muller code RM(1, 3) has generating matrix



1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


and the second order Reed-Muller code RM(2, 3) has generating matrix



1 1 1 1 1 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1


The main parameters of a linear code are its length n, dimension k, and minimum distance d.

The parameters of a Reed-Muller code are as follows: The following is the property is of Reed-Muller

code.

Theorem 2.1.1. If the r-th Reed Muller code RM(r,m) has parameters [n, k, d], then

[n, k, d] = [2m,

r∑
i=0

(
m

i

)
, 2m−r].

10

The dual code of the Reed-Muller code is the code RM(m− r − 1,m).

Every codeword except 0 and 1 in the �rst order Reed-Muller code has weight 2m−1. This

property makes the minimum distance of the �rst order Reed-Muller code relatively high. Since

the Reed-Muller code has a very strong combinatorial structure, several algorithms are known to

decode Reed-Muller codes e�ciently.

2.2 Our basic construction

In [5], we introduced the following construction, and some of the results of section 2.2 and 2.3

are from [5]. In addition to the usual vector addition on Fn2 , we de�ne another operation called

"coordinatewise multiplication� (Hadamard product). It is de�ned as follows:

For (a1, a2, ..., an), (b1, b2, ..., bn) ∈ Fn2 ,(a1, a2, ..., an) ∗ (b1, b2, ..., bn) = (a1b1, a2b2, ..., anbn). Based

on this de�nition, we will construct codes that can be used for secure computation. The code

construction is similar to that of Reed-Muller codes. In [4], they are called spherically punctured

Reed-Muller codes. First of all, we de�ne a code Ĉ generated by a matrix G. The codes were

introduced independently in [5][3].

G = [Ai1Ai2 ...Aim] , i1 6 i2 6 i3 6 ... 6 im

where Ai is a k by
(
k
i

)
matrix such that the columns of Ai consist of all di�erent binary vectors of

length k and weight i.

Also, we de�ne the linear code C = Ĉ + 1, where 1 is the all-one vector. In other words, C is

generated by the above G and the all-one vector 1.

For given m, and for I ⊂ {0, 1, . . . ,m}, we de�ne the Reed-Muller codes RMI(r,m) inductively

via

(1) RMI(1,m) is generated by the 1 and the rowspan of the matrix (· · · |Ai| · · ·)i∈I . The latter is

the matrix of all m-vectors with weight i ∈ I.

(2) RMI(r,m) = 〈a ∗ b|a ∈ RMI(r − 1,m),b ∈ RMI(1,m) 〉

11

Let RM∗I (r,m) be the linear code generated similar as RMI(r,m) but without 1.

In fact, RMI(r,m) is the linear code C when the blocks form the set I. RM∗I (r,m) is the linear

code Ĉ when the blocks form the set I.

Notice that the weight of each row of Ai is i ·
(
k
i

)
· 1k =

(
k−1
i−1
)
. Under the above construction, we

have the following result:

Lemma 2.2.1. For a single matrix Ai, for t > 1, if we take t di�erent rows from Ai and multiply

them together, we will always get a vector of weight
(
k−t
i−t
)
.

Proof. For the weight of the row, if the row is the product of rows r1, r2, ..., rt, to count the weight,

for a certain column j, we have to make sure that all r1, r2, ...rt have 1 in column j and since we

have put all weight i columns in the matrix, we know that the total choice for such kind of columns

is
(
k−t
i−t
)
(this is because for the remaining k − t positions, we can freely chose i− t 1s.)

Example 2.2.1. If k = 5, i = 3, then

A3 =



1 1 1 1 1 1 0 0 0 0

1 1 1 0 0 0 1 1 1 0

1 0 0 1 1 0 1 1 0 1

0 1 0 1 0 1 1 0 1 1

0 0 1 0 1 1 0 1 1 1


.

If we multiply any 2 di�erent rows in A3, we will always get a vector of weight
(
5−2
3−2
)

= 3.

Next, we de�ne the t-th generation of C or Ĉ denoted by C(t) or Ĉ(t), to be as follows: Ĉ(t) =

{c1 ∗c2 · · · ct| c1, c2, . . . , ct are rows in G}. C(t) ={c1 ·c2 · · · ct| c1, c2, . . . , ct are either 1 or rows in

G}. Thus, it is quite easy to see that for vj ∈ C(j), if j1+j2+...+jm 6 t, then vj1∗vj2 ...∗vjm ∈ C(t).

For example, if t = 6, then for v1,v2,v3 ∈ C(2), we have that v1 ∗ v2 ∗ v3 ∈ C(6).

Remark 2.2.1. If Ci is generated by block Ai and Ck−i is generated by block Ak−i, then the two

12

linear codes Ci and Ck−i are equal. This is because a row in Ci can be found by adding 1 to a row

in Ck−i and vice versa.

Our motivation is to choose k, i1, i2, ..., im such that every vector in C(t)or Ĉ(t) has even weight

for some t.

2.3 The Combination when all the codes in Ĉ(t) and C(t)are

of even weight

2.3.1 When Ĉ(t) are of even weights

Next, we take any di�erent t (t 6 i) rows c1, c2 · · · · ct from Ai, and we get the following vector

c1 · c2 . . . · ct. There are
(
k
t

)
such vectors. Then we de�ne A

(t)
i to be the matrix consisting of all

these vectors. So A
(t)
i is a

(
k
t

)
by
(
k
i

)
matrix. We have the following lemma:

Lemma 2.3.1. For 1 6 t 6 i, A
(t)
i is a

(
k
t

)
×
(
k
i

)
matrix, the weight of each column is

(
i
t

)
and the

weight of each row is
(
k−t
i−t
)
.

Proof. First, we need to show that each row is di�erent. To show this, consider two di�erent

sets of rows {r1, r2, ..., rt} 6= {r′1, r′2, ..., r′t}. If r1r2...rt = r′1r
′
2...r

′
t, then after multiplication by

i− t rows s1, s2, ..., si−t, we will get the same answer, say r1r2...rts1s2...si−t = r′1r
′
2...r

′
ts1s2...si−t.

But {r1, r2, ...rt, s1, s2, ..., si−t} 6= {r′1, r′2, ..., r′t, s1, s2, ..., si−t}. However, any product of i rows is

a weight 1 vector of length
(
k
i

)
. For any set of i rows, there is a unique column such that all the

rows contain 1 at that column. So di�erent sets of i rows will give di�erent products. This gives a

contradiction. And we see that for di�erent sets of rows {r1, r2, ..., rt} 6= {r′1, r′2, ..., r′t}, the product

r1r2...rt 6= r′1r
′
2...r

′
t(1 6 t 6 i). So the matrix A

(t)
i is a

(
k
t

)
×
(
k
i

)
matrix with di�erent rows.

Next, we need to show the weight of the column is
(
i
t

)
. This is obvious, because we take all

the possible products of t rows of the original matrix and so the weight of each column is
(
i
t

)
. If

two columns in A
(t)
i are the same, then we would see that the corresponding two columns in Ai

are the same, contradiction. So the columns of the matrix A
(t)
i are di�erent. According to Lemma

13

2.3.1, we have the desired result. We can check that the total number of 1s in the matrix Ai is(
k
t

)(
k−t
i−t
)

=
(
k
i

)(
i
t

)
, and this equation is indeed the subcommittee identity.

De�nition 2.3.1. Let D
(t)
i be the linear code generated by the rows in A

(t)
i . Let Ĉ

(t)
i be the linear

code de�ned as Ĉ
(t)
i =< S1, S2, .., St >, where

Sj = {c1 · c2 · · · cj |c1, c2..., cj are di�erent rows inAi}

Let C
(t)
i = 1+Ĉ

(t)
i . It is easy to see that Ĉ

(t)
i = D

(1)
i +D

(2)
i + ...+D

(t)
i . Also, Ĉ

(t)
i =< c1 ·c2 · · · ct|ci

is a row in Ai. >

Let us consider the linear code generated by the matrix G = [Ai1Ai2 ...Aim] .

Let G(t) =
[
A

(t)
i1
A

(t)
i2
...A

(t)
im

]
, and let D(t) be the linear code generated by the rows of G(t). We

consider a vector v = (v1, v2, ..., vk) ∈ Fk2 , and let As be in G if and only if vs = 0. Vector

v gives us information whether some block Ai is chosen or not. For example, if k = 10 and

v = (1, 0, 1, 0, 0, 1, 1, 0, 1, 1), then G = [A1A3A6A7A9A10] . For �xed k and t, we want to �nd all

the possible vectors v ∈ Fk
2 such that the weight of each row of G(t) is even.

Proposition 2.3.1. The set of v ∈ Fk2 such that each row of G(t) has even weight is a subspace of

Fk2 with dimension k − 1.

Proof. First of all, we want to prove that it forms a vector space. Assume G1 corresponds to

v1 with weight w1 + w and G2 corresponds to v2 with weight w2 + w, where w is the weight of

the common part of G1 and G2. If G3 corresponds to v1 + v2, then each row of G3 has weight

w1 + w2 − 2w. Since w1 + w2 are even, w3 is also even. Since v = 0 also gives us even weight,

we see that the set of vectors which make the weight of each row of G(t) even is a vector space.

We know from Lemma 2.3.1 that the weight of each row of A
(t)
i is

(
k−t
i−t
)
. Consider the binomial

coe�cients
(
k−t
0

)
,
(
k−t
1

)
, ...,

(
k−t
k−t
)
. If
(
k−t
s1

)
,
(
k−t
s2

)
, ...,

(
k−t
sj

)
are even, then we de�ne the set of vectors

E = {eki+t−1 = (0, 0, ..0, 1, 0..0) ∈ Fk2 |t ∈ {s1, s2, ..., sj}, and 1 occurs at position i+ t−1 in eki+t−1}.

So E has cardinality j. Suppose
(
k−t
t1

)
,
(
k−t
t2

)
, ...,

(
k−t
tl

)
are odd, then we de�ne the following set of

vectors F = {fku+t−1,v+t−1 = (0, 0, .., 1, 0..0, 1, 0..0) ∈ Fk2 |u < v are pairs of consecutive numbers in

14

{t1, t2, ..., tl}, the two 1s occur at position u+ t−1, v+ t−1} , and this set has cardinality l−1. It is

also obvious that j + l = k− t+ 1. We also de�ne a set of vectors G = {ekr ∈ Fk2 |1 6 r 6 t− 1}. So

it is obvious that E ∪F ∪G gives us a basis for our desired vector space. Since |E| = j, |F | = l− 1,

|G| = t− 1 and E,F,G are mutually disjoint, we have that |E ∪ F ∪G| = j + l− 1 + t− 1 = k− 1.

So our theorem holds.

Remark 2.3.1. The above theorem not only tells us that half of the vectors in Fk2 give even weight

vectors, but also tells us how to �nd a basis of such vector space. Thus, we have characterized all

the possible cases of vectors in Fk2 such that for �xed k, t, any row in G(t) has even weight.

Next, for a �xed value k, we wish to �nd those vectors in Fk2 which make the rows of G(t) even

for several choices of t at the same time. For example, if k = 10, we may consider this problem:

for what vectors in F10
2 , are the rows of G(t) even for t = 1, 2, 3, 4? Furthermore, we see that the

cardinality of S, which is a subset of {1, 2, 3, ..., k}, can determine the number of choices of v ∈ Fk2 .

In the following, we prove a relation between the set S and the number of choices for v.

Theorem 2.3.1. If |T |=m, the vectors which make any matrix G(t), for t ∈ T , have all even weight

rows form a vector space of dimension k −m, and so the number of choices for v ∈ Fk2 is 2k−m.

Proof. The fact that vectors which make GS is a vector space is proved similarly as above. Consider

a set S = {a1, a2, ..., am} ⊆ {1, 2, 3, ..., k}, with a1 > a2 > a3 > ... > am. From what we did above,

for G(a1) to have all even weight rows, we know that for the last k − a1 + 1 positions, we have

that the dimension is k − a1. So the dimension of vector space which make G(a1) to have all even

weight rows is a1 + k − a1 + 1 = k − 1. Now consider the a2, a2 + 1, ..., a1 − 1 positions, if a vector

makes G(a1), G(a2) to have all even weight rows, when the last k − a1 + 1 positions are �xed, the

positions a2, a3, ..., a1 − 1 should rise to dimension a1 − a2 − 1 (because half of the vectors with

length a1 − a2 − 1 give even weight and half odd weight). So for G(a1), G(a2) to all have even

weight rows, the dimension is k− a1 + (a1 − a2 − 1) + a2 − 1 = k− 2. Similarly, we can repeat this

argument, for �xed a2, a2 + 1, ..., a1, a1 + 1..., k positions, consider the positions a3, a3 + 1, ..., a2−1,

half of them will make that G(a1), G(a2), G(a3) all have even weight rows. So the dimension is

k−a1+(a1−a2−1)+(a2−a3−1)−(a3−1) = k−3. Therefore, we can repeat this argument to see that

15

the dimension of the vector space is k−a1+(a1−a2−1)+(a2−a3−1)−...−(am−1−am−1)+(am−1) =

k −m. So the number of choices for v ∈ Fk2 is 2k−m.

Example 2.3.1. For k = 10, S = {1, 3, 5, 8}, we can �rst choose the last 10− 8 + 1 = 3 positions,

for example, we can let the last three positions to be (1, 0, 1) in order to make any matrix in G(8)

to have all even rows. In this case, A8 and A10 are chosen and the rows of G(8) have weight(
10−8
8−8

)
+
(
10−8
10−8

)
= 2, which is even. For t = 5, k − t = 5, so (1, 0, 1) in the last three positions will

give rise to weight
(
10−5
8−5

)
+
(
10−5
10−5

)
= 11, which is odd, so we can pick positions 5,6,7 to be (1,0,1).

Next, t = 3, 10 − t = 7, so for the last six positions (1, 0, 1, 1, 0, 1), it results in a total weight of(
10−3
5−3

)
+
(
10−3
7−3

)
+
(
10−3
8−3

)
+
(
10−3
8−3

)
= even. So we can pick positions 3,4 to be (1, 1). For t = 1,

since the last 8 positions are (1, 1, 1, 0, 1, 1, 0, 1), it gives a total weight of
(
10−1
3−1

)
+
(
10−1
4−1

)
+
(
10−1
5−1

)
+(

10−1
7−1

)
+
(
10−1
8−1

)
+
(
10−1
10−1

)
=odd, so we can pick the �rst 2 positions to be (1, 0), therefore, the vector

(1, 0, 1, 1, 1, 0, 1, 1, 0, 1) makes any matrix in GS have all even weight rows.

Next, in our construction, we are more interested in T = [t] = {1, 2..., t} for t 6 k. If each row

in G(t) has even weight for every t 6 n, then for every t 6 n, every vector in D(t) has even weight

and thus every vector in Ĉ(n) has even weight. As is shown in the above results, for �xed n 6 k,

since [n] has cardinality n, the vector space U which makes Ĉ(n) to have all even weight vectors

has dimension k − n. Let us give a way to �nd a basis for the vector space U.

First, we need to construct a matrix Mk, where the s− t entry of Mk is mst =
(
s−1
t−1
)
for s > t,

for s < t, mst = 0. Here, we denote
(
0
0

)
= 1. We want to have a matrix Nk such that MkNk = Tk,

where Tk is a k by k matrix with tuv = 1 for u 6 v and tuv = 0 for u > v. The �rst column in

matrix Nk denotes the choice for which Ĉ(1) ⊆ Ĉ(2) ⊆ ... ⊆ Ĉ(k−1) are all even weight codes but

Ĉ(k) has some odd weight vector. Similarly, the j-th column in matrix Nk denotes the choice for

which Ĉ(1) ⊆ Ĉ(2) ⊆ ... ⊆ Ĉ(k−j) have all even weight codes but Ĉ(k−j+1) ⊆ Ĉ(k−j+2) ⊆ ... ⊆ Ĉ(k)

have some odd weight vectors. We have the results below:

Lemma 2.3.2. If Mk is de�ned as above, then M−1k = Mk.

Proof. We just considerM2
k , when u < v, the uv entry forM2

k is 0 becauseMk is a lower triangular

16

matrix. When u > v, the u− v entry for M2
k is

m(2)
uv =

u∑
i=v

(
u− 1

i− 1

)(
i− 1

v − 1

)
=

u∑
i=v

(u− 1)!

(u− i)!(i− v)!(v − 1)!
.

Hence, m
(2)
uv =

∑u
i=v

(
u−v
i−v
)(
u−1
v−1
)

=
(
u−1
v−1
)
2u−v. When u > v, we see that muv is even, which is 0

modulo 2. When u = v, we see that muv = 1. So M2
k = Ikk.

Proposition 2.3.2. If Mk, Nk, Tk are de�ned as above, then

Nk =



1 1 . . . 1

0

0

Mk−1 .

.

0


.

Proof. By Lemma 2.3.2, we see that Nk = MkTk. The uv entry for Nk is

nuv =

v∑
i=1

(
u− 1

i− 1

)
.

For u > 1, we show that nuv −m(u−1)v is a even number. Indeed,

nuv −m(u−1)v =

v∑
i=1

(
u− 1

i− 1

)
−
(
u− 1− 1

v − 1

)
= 2

v−1∑
i=0

(
u− 2

i

)
,

which is even. So nuv is congruent to m(u−1)v modulo 2. This shows why Mk−1 is a submatrix in

Nk.

17

Example 2.3.2. For example, if k = 6, then

Mk =



1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 0 0 1 0

1 1 0 0 1 1


and

Tk =



1 1 1 1 1 1

0 1 1 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1


By what we proved above,

Nk =



1 1 1 1 1 1

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 0 0 1 0


.

From what we did above, we have the following theorem:

Theorem 2.3.2. If (a1, a2, . . . , ak)T is the vector generated by the �rst m columns in matrix Mk,

then the corresponding linear code has characteristic vector is (ak, ak−1, . . . , a1) for blocks 1, 2, ..., k.

And it has multiplicity k −m.

18

2.3.2 The combination when all the codes in C(t) are of even weight

The above shows the combination of blocks Ai such that the codewords in Ĉ(t) all have even weight.

Since C(t) =Ĉ(t) + 1, we just need to make sure that the length of the codes are even. There are

two ways to make it happen. One way is easy, if the length is already even, we can just add 1. If

the length is odd, we can add 1 and an additional column with 1 at the top and zeros below.

De�nition 2.3.2. A linear code C has multiplicity t if C(t) has all even weight codewords but

C(t+1) does not.

Example 2.3.3. Consider k = 6, we take the sum of the second and the third column in M6

as the vector, which corresponds to block 1,4,5. This linear code C has multiplicity 3 and length(
6
1

)
+
(
6
4

)
+
(
6
5

)
= 27. To make C(3) even, we add 1 on top and add an additional column:

The original code has generator matrix

1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0

0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1

0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1

0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1


After adjustment, it becomes:

1 1

0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0

0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1

0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1

0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1


In terms of [n, k, d], a [27, 6, 12] code becomes [28, 7, 12] code. Both codes have the biggest minimum

distance for given length and dimension.

There is another way to make C(t) even without adding an additional column.

19

Theorem 2.3.3. Let V be the vector space corresponding to the characteristic vector which make

C(t) even. For �xed k, in the matrix Mk, if
(
k
r

)
is even, then the r+ 1 th column in Mk is a vector

in the basis of the space V . If
(
k
r

)
is odd, then the sum of the �rst column and the r th column in

Mk is a vector in the basis of the space V . The dimension is equal to k − t− 1.

Proof. First, we would like to see that

k∑
j=0

(
k − j
r

)(
k

k − j

)
=


0 r 6= k

1 r = k

,

where the answer is taken modulo 2. This is an easy result from the fact that M2
k = Ik. For r 6= k,

0 =
∑k
j=0

(
k−j
r

)(
k
k−j
)

=
(
k
r

)
+
∑k
j=1

(
k−j
r

)(
k
k−j
)
, notice that

∑k
j=1

(
k−j
r

)(
k
k−j
)
has the same parity

as the length of the code when we choose the r th column as the characteristic vector for blocks.

Hence, for a �xed t, if C(t) has all even weight codes, among the �rst t columns inMk, for r 6 k− t,

if the value
(
k
r

)
is even, then the r-th column in Mk is a vector in the basis. Since the �rst column

has r = 0,
(
k
0

)
= 1, the �rst column will always give us an odd weight. Therefore, for some r th

column in Mk, if
(
r
k

)
is odd, then the sum of this column with the �rst column is a vector in the

basis. The dimension is therefore equal to k − t− 1.

The above result gives us a chance to pick up even length codes in Ĉ(t) so that C(t) will be even

after adding the all one vector.

2.4 Characterization of linear codes with multiplicity t

Let us consider linear codes C which contain 1 and are of dimension k + 1 such that C(t) is an

even weight code. Assume that the generator matrix of C is a k+ 1 by n matrix with 1 in the �rst

row and no repeated columns, so that C is a punctured code of the Reed-Muller code RM(1, k). If

some position of RM(1, k) is chosen, then we denote 1 at that position, if else, we denote 0. Hence,

we have a characteristic vector of length 2k. Let ct be the product of t vectors in C. The weight of

20

ct is just the weight of the unpunctured code in RM(1, k) multiplied with the characteristic vector

v. In other words,

wt(ct) = wt(v ∗w).

where w is a codeword in RM(t, k)

For ct to have even weight, we need v·w to have even weight, hence, vmust be in RM(k−t−1, k).

And indeed the reverse also holds.

Theorem 2.4.1. For linear codes C with 1 (also called self complimentary) and dimension k + 1

and no repeated columns in the generating matrix, C(t) is even if and only if the characteristic

vector v is in RM(k − t− 1, k).

Hence, we can characterize all the possible linear codes with no repeated columns and have 1.

Theorem 2.4.2. If v is in RM(k− t− 1, k), which is a [2k, s, 2t+1] code, then v can be written as

a sum of N vectors in RM(k − t− 1, k) of the minimum weight 2t+1.

Proof. Since any codeword in RM(r, k) is an evaluation of polynomial of degree less than or equal

to r. As x1x2 = x1x2(1 + x3) + x1x2x3, we can rewrite any codeword in RM(r, k) into a sum of

some vectors where each vector is a multiplication of r components. Since any multiplication of

r components in RM(r, k) has weight 2k−r, so the characteristic vector is a sum of weight 2t+1

codes.

According to this observation, we can add some repeated blocks to the original generating matrix

such that the extended generating matrix divides into N blocks where each block is RM(1, t+ 1).

21

For example, a (6,3) code has generating matrix



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1



After adding 4 columns 

1 1 1 1

0 0 1 1

1 1 0 0

0 0 1 1

0 0 1 1

0 0 1 1



we can make the generating matrix of C as



1 1

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1

1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0

0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1

0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1

0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1



After some permutation, we can arrange the generating matrix of C as

22



1 1 1 1 1 1 1 1

0 1 1 0 1 0 0 1

1 1 0 0 1 1 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1





1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1





1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 1 1 0 1 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


Each block is a RM(1, 3) code.

Moreover, we write the RM(1, 5) in the following way:

1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1





1 1 1 1 1 1

1 1 1 1 0 1

1 1 1 0 1 1

1 1 0 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1


The characteristic vector is

00000011111111111111111111000000

and it is a sum of the following 3 vectors:

00100000100001011010000100000100

00100000011100000000111000000100

00000011000010100101000011000000

Applying the same idea, for a (10,5) code, which has t = 2, we can view this code as a punctured

linear code of RM(1, 9). The length of this code is 252 and we can add 28 repeated columns so that

it becomes a length 280 code and this code can be divided into 35 RM(1, 3) codes.

23

Also, for a (14,7) code, which has t = 6, this linear code can be added 1048 columns to make it

a length 4480 code. This code can be divided into 35 RM(1, 7) codes.

Let us consider a probability problem:

Theorem 2.4.3. Given a linear code C of dimension k+ 1 with even length and 1, the probability

of this linear code to have multiplicity t is

P (b) =
2kt − 1

22k−1 − 1

where kt is the dimension of RM(k − t− 1), which is

k−t−1∑
i=0

(
k

i

)
.

Proof. The proof is obvious, the answer is the number of characteristic vectors which has multiplicity

t over the total number of choices. The characteristic vector is not 0, so we minus 1 on both sides.

2.5 Dimension of C(t)

The dimension of C(t) when there is only one block is shown in the following result:

Theorem 2.5.1. For t 6 i, if C(t) has only one block Ai, then we have that Dimension(C(t)) =
(
k
t

)
.

Proof. In order to prove the dimension, we need to choose a basis and show that the number of

vectors in the basis is
(
k
t

)
. Here is how we choose the basis:

When t = 0, we choose the all-one vector.

When t = 1, we delete the �rst row x1 from the matrix Ai.

When t = 2, in addition to the above deletion, from A
(2)
i , we delete 2-tuples which contain x1

or x2x3.

When t = 3, in addition to the above deletion, from A
(3)
i , we delete 3-tuples which contain

x1, x2x3, x2x4x5 or x3x4x5.

When t = 4, in addition to the above deletion, from A
(4)
i , we delete 4-tuples which contain

x1, x2x3, x2x4x5,x3x4x5, x2x3x6x7, x2x4x6x7, x2x5x6x7, x3x4x6x7, x3x5x6x7.

24

For general t, in addition to the deletion in the previous generation, from t tuples, we apply the

deletion to the previous codes that contain x1, x2x3 etc.). Next, we delete xb1xb2 ...xbt−2
x2t−2x2t−1

where b1 < b2 < ... < bt−2 ∈ {2, 3, ..., 2t − 3} and xb1xb2 ...xbt−2
is not in the previous delete

combination. Let at be the number of "extra� deletions from t tuples in the t generation. So

a1 = a2 = 1, a3 = 2, a4 = 5, a5 = 14... Hence, we have a recurrence for at :

at =

(
2t− 4

t− 2

)
−

t−2∑
i=2

ai

(
2t− 2i− 2

t− i− 2

)
. (2.1)

It turns out that at+1 = 1
n+1

(
2n
n

)
, so at is a Catalan number. In the following we will prove this

result. The reference for Catalan number is in [9]. First, we show that

Ct =

(
2t− 2

t− 1

)
−

t−1∑
i=2

Ci−1

(
2t− 2i

t− i− 1

)
.

To prove this, we consider an integer grid of size t− 1 by t− 1. We count the paths from (0, 0) to

(t, t) which start with a horizontal move to (1, 0) and end with a vertical move from (t, t− 1). The

number of possible movements is
(
2t−2
t−1
)
.

On the other hand, let the very �rst point on the path that is above the line y = x be (i− 1, i),

(2 6 i 6 t− 1). From (0, 0) to (i− 1, i), we have Ci−1 ways and from then on, there are
(
2t−1−2i+1
t−1−i

)
ways. So the total number is

∑t−1
i=2 Ci−1

(
2t−2i
t−i−1

)
. If no such situation occurs, there are Ct ways.

Hence Ct +
∑t−1
i=2 Ci−1

(
2t−2i
t−i−1

)
=
(
2t−2
t−1
)
.

Then we will use induction to prove that

ai = Ci−1 =
1

i

(
2i− 2

i− 1

)
. (2.2)

For the �rst three cases, the result holds. If for i 6 t − 1, ai = Ci−1, then for t, at =
(
2t−4
t−2
)
−∑t−2

i=2 ai
(
2t−2i−2
t−i−2

)
=
(
2t−4
t−2
)
−
∑t−2
i=2 Ci−1

(
2t−2i−2
t−i−2

)
. Hence, from the above result, we know that

at = Ct−1.

With the thing we have proved, we will show that the following recurrence holds:

25

For t 6 i and t 6 k − i, we have

at =

(
k

t− 1

)
−

t−1∑
j=1

aj

(
k − 2j + 1

t− j

)
. (2.3)

To prove this, we also use a combinatorial argument. Consider a path from (0, 0) to (t −

1, k − t + 1). The total number of choices is
(
k−t+1+t−1

t−1
)

=
(
k
t−1
)
. On the other hand, let j

be the �rst number where the path is from (j − 1, j − 1) to (j − 1, j). The range of j is 1 6

j 6 t. The number of paths from (j − 1, j) to (t − 1, k − t + 1) is
(
k−2j−1
t−j

)
. Hence, we have

the result that
(
k
t−1
)

=
∑t−1
j=1 Cj−1

(
k−2j−1
t−j

)
+ Ct−1. Therefore, by the above result, we have that

at =
(
k
t−1
)
−
∑t−1
j=1 aj

(
k−2j+1
t−j

)
.

Now, we will show that the vectors we delete are redundant. In general, we claim the following

statement:

Lemma 2.5.1.
∑
xa1xa2 , . . . , xaj ∈< 1,

∑
xu1

, . . . ,
∑
xv1xv2 , . . . ,

∑
xw1

xw2
...xwj−1

> where the

summation of a1, a2, ..., aj are all positive integers in {1, 2, ...k}\{i1, i2, ...is} and

u1, v1, v2, ...w1, ...wj−1 are all positive integers in {i1, i2, ...is} Before we prove the lemma, we have an

example: if k = 6 and i = 3; we have that x1x3x5 +x1x3x6 +x1x5x6 +x3x5x6 ∈< 1, x2 +x4, x2x4 >

+I, and I is some ideal.

Proof. To prove this lemma, consider the vector space < 1,
∑
xu1 ,

∑
xv1xv2 , . . . ,

∑
xw1

xw2wj−1
>.

We just need to consider the weight of the vector (xi1 , xi2 , ..., xik−j
). Indeed, the vector space is

spanned by the following generating matrix: let s = k − j



(
s
0

) (
s−1
0

)
. .

(
0
0

)
(
s
1

) (
s−1
1

)
..
(
1
1

)
0

. 0

. 0(
s
s

)
0 0 0 0


We know that the rank of this matrix is s + 1. Indeed, at certain positions, the summation

26

∑
xa1xa2 ...xaj is determined by how many 1's in (xi1 , xi2 , ..., xis), which is exactly the weight of

that vector. Hence, there are only 2s+1 possible answers for
∑
xa1xa2 ...xaj . As the rank of the

above matrix is s+ 1, we can see that

∑
xa1xa2 ...xaj ∈< 1,

∑
xu1 ,

∑
xv1xv2 , ...

∑
xw1xw2 ...xwj−1 >

Therefore, by this result, we see that the extra vectors we take out are indeed redundant.

The �nal task is to show that the remaining vectors are linearly independent. To prove this, we

may just consider the special case when t = i. In this special case, the number of redundant vectors

in t tuples is at +
∑t−1
j=1 aj

(
k−2j+1
t−j

)
, which is equal to

(
k
t−1
)
by (3). Hence, the total number of

redundant vectors in step t is
(
k
t−1
)
and if we sum them, we will have to delete

∑t−1
j=1

(
k
j−1
)
vectors.

Since the number of rows is
∑t
j=0

(
k
j

)
, we see that the dimension at level t is at most

(
k
t

)
. On

the other hand, since at level t, we have an identity matrix I(k
i)
, the dimension has to be

(
k
i

)
. This

shows that the rest of the rows are linearly independent after our deletion and this completes the

proof.

2.5.1 Dimension of C(t)when the blocks are consecutive starting from 1

We �nd a pattern as follows:

Theorem 2.5.2. Assume the blocks for C are {Ai|1 6 i 6 n}, which means consecutive i's starting

from 1. If the dimension of C(t) is dim(C(t)), then

dim(C(t)) =


∑t
i=0

(
k
i

)
t < n∑n

i=0

(
k
i

)
− 1 t > n

Proof. For a �xed k, we start with block A1. It is obvious that when t > 1, the dimension is k.

Next, we consider blocks A1 and A2. When t = 1, since 1 can be put into the basis due to the

existence of A2, the dimension is k + 1 =
∑1
i=0

(
k
i

)
. When t = 2, A1 produces a zero matrix of

size
(
k
2

)
× k below the matrix A1. There will be an identity matrix of size

(
k
2

)
×
(
k
2

)
next to the

27

zero matrix produced by A1. However, if we add all the rows up, we can get 0, because the weight

in the A1 part will be 1 + 1 = 2 and the weight in the A2 part is equal to
(
2
0

)
+
(
2
1

)
+
(
2
2

)
= 22,

which is even. This shows that 1 should be taken out from the basis. Hence, the dimension is(
k
1

)
+
(
k
2

)
=
∑2
i=0

(
k
i

)
− 1. For t > 3, it will be the same as the situation with t = 2.

Now, we use the same idea in the above argument, for a general A1, A2, ...An, when t < n. We

see that the generating matrix G looks like:



1 1 1 . . 1 1

Ik

I(k2)

I(k3)

.

.

.

.

I(kt)



where Im is a m by m identity matrix.

Since n > t, if we add all the rows up to t th order, then the weight for the At+1 part will be∑t
i=0

(
t+1
i

)
= 2t+1 − 1, which is odd. So 1 is not redundant and the dimension will be equal to∑t

i=0

(
k
i

)
.

For t > n, we can stop when t hits n. Since when we add all rows up for the t th order, we would

get the weight for block Ai is
∑i
j=0

(
i
j

)
= 2i, which is even. Hence, 1 is redundant. By the above

28

matrix, we can see that the remaining rows are linearly independent. The dimension is therefore

equal to
∑n
i=0

(
k
i

)
− 1.

We can add a matrix A0 which is a k × 1 matrix with all entries equal to 0. If 1 is added on

the top, because of A0, 1 is always not redundant. Hence, for t > n, the dimension formula can be

changed to
∑n
i=0

(
k
i

)
for consecutive i starting from 0.

Remark 2.5.1. For the dimension part, we know that a single block gives us dimension equal to
(
k
t

)
.

For a Reed-Muller code RM(t, k), the dimension is equal to
∑t
i=0

(
k
t

)
, which is greater than the

dimension for any single block. Indeed, if we want to have this dimension
∑t
i=0

(
k
i

)
, we can just

use A0, A1, A2, ...At instead of the whole RM(t, k).

2.5.2 Dimension of C(t) when there are two blocks

Now we only consider the case in which there are two blocks in the generating matrix. Let us denote

i1 and i2 for the two di�erent i's. From the program we ran, it appears that the longer block is

dominating the dimension. Indeed, the dimension of the combination minus the dimension of the

longer block is a shift of the dimension of the short block except for some cases.

Let us assume
(
k
i1

)
>
(
k
i2

)
. Hence, i1 is the longer block. Let k12 be the dimension of the

combination, k1 be the dimension of block i1, and k2 be the dimension of block i2. Assume 2m

divides i1 − i2 but 2m+1 does not. There are several cases below.

Conjecture 1. i) m = 0, which means that one of i1, i2 is even and the other is odd. In this case,

k
(t)
12 − k

(t)
1 = k

(t−1)
2 , for t > 1. We denote k

(0)
2 = 1.

ii) m = 1, in this case 2 divides i1 − i2 and 4 does not, The dimension k
(t)
12 − k

(t)
1 = k

(t−2)
2 , for

t > 1.We denote k
(0)
2 = 1 and k

(−1)
2 = 0.

When m > 2, the behavior of k12 is irregular. One of the cases is that k = 11 and i1 = 4, i2 = 8.

It is a [495, 10, 240] code. The dimensions of C(t) for t = 1, 2, 3..., 11 are

[11, 55, 165, 331, 441, 485, 495, 495, 495, 495, 495].

29

The di�erence k12 − k1 is [0, 0, 0, 1, 111, 155, 165, 165, 165, 165, 165], while the dimensions of block

i2 = 8 are [11, 55, 165, 165, 165, 165, 165, 165, 165, 165, 165].

2.5.3 Dimension of C(t) when blocks are congruent to some number

modulo 4

Conjecture 2. Let k(t) be the dimension of the linear code C(t) which has blocks i, i + 4, i + 8, ...

for some i = 0, 1, 2, 3. Let S be the set of indices of the above block numbers. Let l′ be the

number in S such that
(
k
l

)
is the largest. Let l = min{l′, k − l′}. Then k(t) =

∑
n>0

(
k

t−4n
)
for

t 6 l. For l < t 6 l + m + 1, k(t) = k(t−1) + k(t), where k(t) = k(m−(t−l−1)) − k(m−(t−l−1)−1).

m = min{m′, k −m′} and m′ is de�ned as the number in S such that
(
k
m′

)
is the second largest.

For l + m + 1 < t 6 k, k(t) is equal to the length of the code. Here, we denote k(0) = 1, k(−1) = 0

when i ≡ 1, 2, 3 (mod 4),k(0) = k(−1) = 0 when i ≡ 0 (mod 4).

Remark 2.5.2. Finally, when t is large enough, the dimension will be the full rank, which is the

length of the code, and we can predict the smallest t which gives us the full rank. Indeed, it is equal

to l +m+ 1 = k − 3.

The data for k = 11, 12, 13, 14 are listed in the following tables, the j th position in the vector

is the dimension when t = j.

k = 11 Dimension of the linear codes C(t)

i = 1, 5, 9 [11, 55, 165, 331, 473, 517, 527, 528, 528, 528, 528]

i = 2, 6, 10 [11, 55, 165, 331, 473, 517, 527, 528, 528, 528, 528]

i = 3, 7, 11 [11, 55, 165, 331, 441, 485, 495, 496, 496, 496, 496]

i = 4, 8 [11, 55, 165, 331, 441, 485, 495, 495, 495, 495, 495]

30

k = 12 Dimension of the linear codes C(t)

i = 1, 5, 9 [12, 66, 220, 496, 804, 958, 1012, 1023, 1024, 1024, 1024, 1024]

i = 2, 6, 10 [12, 66, 220, 496, 804, 990, 1044, 1055, 1056, 1056, 1056, 1056]

i = 3, 7, 11 [12, 66, 220, 496, 804, 958, 1012, 1023, 1024, 1024, 1024, 1024]

i = 4, 8, 12 [12, 66, 220, 496, 772, 926, 980, 991, 991, 991, 991, 991]

k = 13 Dimension of the linear codes C(t)

i = 1, 5, 9, 13 [13, 78, 286, 716, 1300, 1730, 1938, 2003, 2015, 2016, 2016, 2016, 2016]

i = 2, 6, 10 [13, 78, 286, 716, 1300, 1794, 2002, 2067, 2079, 2080, 2080, 2080, 2080]

i = 3, 7, 11 [13, 78, 286, 716, 1300, 1794, 2002, 2067, 2079, 2080, 2080, 2080, 2080]

i = 4, 8,12 [13, 78, 286, 716, 1300, 1730, 1938, 2003, 2015, 2015, 2015, 2015, 2015]

k = 14 Dimension of the linear codes C(t)

i = 1, 5, 9, 13 [14, 91, 364, 1002, 2016, 3030, 3668, 3941, 4018, 4031, 4032, 4032, 4032, 4032]

i = 2, 6, 10, 14 [14, 91, 364, 1002, 2016, 3094, 3732, 4005, 4082, 4095, 4096, 4096, 4096, 4096]

i = 3, 7, 11 [14, 91, 364, 1002, 2016, 3094, 3796, 4069, 4146, 4159, 4160, 4160, 4160, 4160]

i = 4, 8,12 [14, 91, 364, 1002, 2016, 3094, 3732, 4005, 4082, 4095, 4095, 4095, 4095, 4095]

2.5.4 An Algebraic Geometry approach to the dimension problem

Let k be the integer mentioned above. For general combinations I = {i1, i2, ...im}, up to the level

t, what is the dimension of C(t)? We may think of using an algebraic geometry approach to work

it out. Let R = F2[x1, x2, ..., xk], let I be the ideal vanishing on every column of the generating

matrix, then I is of the form J =< x21 − x1, x22 − x2, . . . , x2k − xk, f(x1, x2, ..., xk) > . Since we work

over F2, we see that x
2
i−xi = 0 always. Now the problem is to decide what f(x1, x2, ..., xk) is. First,

we see that if there is no f(x1, x2, ..., xk), then the linear code becomes a Reed-Muller code, which

means we choose all the blocks. In another way, the choice of f(x1, x2, ..., xk) is somehow to re�ect

the choice of I = {i1, i2, ..., im}. The usage of this ideal J is the following. We take the Hilbert

series of it, the coe�cient of each term is just the increase of the dimension when t is increased. For

31

example, when k = 7 and i = 1, 2, 5, 6, the ideal is J =< x21−x1, x22−x2, . . . , x27−x7, 1 + s1 + s2 >,

where s1 is the �rst order symmetric function, s1 = x1 + x2 + ... + x7 and s2 is the second order

symmetric function, s2 = x1x2 +x1x3 + ...+x6x7. After running the program in Macaulay2, we �nd

that the Hilbert Series is 1 + 7T 2 + 20T 2 + 20T 3 + 7T 4 + 1, which means that C(0) has dimension

1, C has dimension 1 + 7 = 8, C(2) has dimension 28, C(3) has dimension 48, C(4) has dimension

55, C(5) has dimension 56, which is the full rank. The way to choose the function f(x1, x2, ..., xk)

is the following, f(x1, x2, ..., xk) must vanish on the chosen blocks and not on other blocks. In the

above example,

i 1 2 5 6

s1
(
1
1

)
= 0

(
2
1

)
= 0

(
5
1

)
= 1

(
6
1

)
= 0

s2
(
1
2

)
= 0

(
2
2

)
= 1

(
5
2

)
= 0

(
6
2

)
= 1

i 3 4 7

s1
(
3
1

)
= 1

(
4
1

)
= 0

(
7
1

)
= 1

s2
(
3
2

)
= 1

(
4
2

)
= 0

(
7
2

)
= 1

From the table, we see that 1+s1+s2 vanishes on 1, 2, 5, 6 and not on 3, 4, 7.Hence, f(x1, x2, ..., xk) =

1 + s1 + s2 is the polynomial we want.

Assume we have blocks i1, i2, ..., im. Let v be the characteristic function for those blocks, which

means that the output of v is 1 on those blocks and 0 on the other blocks.

We can �rst �nd out the polynomials for which only one block i is 1 and the rest blocks are 0.

Let vi be the corresponding polynomial, we have the following:

Lemma 2.5.2. For 0 6 i 6 k, vi =
∑k
j=1

(
j
i

)
sj

Proof. This is true because of the fact we mentioned above, M2
k = Ik. Let cj be the j+1 th column

in Mk, so Mkcj is almost a zero vector except at the j th position, which exactly means that block

j is 1 and the rest blocks are 0.

From the above lemma, we know that for I = {i1, i2, ..., im}, if we want the elements in I to

have 1 and the rest have 0, we just choose the characteristic vector to be vi1 + vi2 + ...+ vim . Then

the polynomial we need is f(x1, x2, ..., xk) = 1 + vi1 + vi2 + ...+ vim .

The characteristic vector v is written in terms of symmetric polynomials s1, s2, ...sk and 1. In

the Reed-Muller code RM(1, k), if v is computed, then vn = 1 if and only if the position n is in

32

the blocks i1, i2, ..., im. Hence, v is the characteristic vector for blocks i1, i2, ...im punctured from

Reed-Muller code RM(1, k). The biggest r appeared as sr in the expression of v will decide that v

is in RM(r, k). Hence, the corresponding linear codes formed by blocks i1, i2, ...im has multiplicity

k − r − 1.

Example 2.5.1. For k = 7 and i = 1, 2, 5, 6, the characteristic function v = v1+v2+v5+v6 = s1+s2.

As 2 is the largest number appearing in v, we conclude that the linear code formed by blocks 1, 2, 5, 6

has multiplicity 7− 2− 1 = 4.

2.5.5 Symmetric dimensions

The motivation of symmetric dimensions is due to the understanding that the dimension of Reed-

Muller codes are symmetric.

For example, when k = 7, RM(r, 7) has dimension 1,8,29,64,99,120,127,128, the increase of dimen-

sions are 1, 7, 21, 35, 35, 21, 7, 1, which are symmetric. The symmetric properties are corresponding

to the properties such that RM(r,m) is dual to RM(m− r− 1,m). If the dimension is symmetric,

then the summation of the dimension of the r th order linear code C(r) with the dimension of the

l th order linear code C(l)is equal to the total length. This is a necessary condition for which C(r)

is dual to C(l). Furthermore, if the multiplicity t > l + r, then C(r) is dual of C(l). For certain

blocks combinations, the dimension of the linear code C(t) will increase in a symmetric way. For

example, when k = 7 and i = 1, 2, 5, 6, the dimension for C(0), C(1), ..., C(5) are 1, 8, 28, 48, 55, 56,

the increasement is symmetric, which is 1, 7, 20, 20, 7, 1.

In the following, we used the Macaulay2 program to test those combinations of linear codes such

that the increase of dimension is symmetric as t is increasing. If the largest number in the second

bracket is m, then the characteristic vector is in RM(m, k), so the linear code has multiplicity

k −m − 1. For example, the Reed-Muller code has m = 0, so it has multiplicity k − 1. If we take

only the odd blocks, then we would see that m = 1, so the linear code has multiplicity k − 2.

33

Blocks Multiplicity Dimension Length

0246 5 1,6,15,20,15,6,1 64

1357 5 1,6,15,20,15,6,1 64

1256 4 1,7,20,20,7,1 56

012456 4 1,7,21,34,21,7,1 92

15 3 1,6,14,6,1 28

26 3 1,6,14,6,1 28

123567 3 1,7,21,34,21,7,1 92

0167 2 1,7,7,1 16

17 1 1,6,1 8

06 1 1,6,1 8

012567 0 1,7,21,21,7,1 58

07 0 1,1 2

7 0 1 1

0124567 0 1,7,21,35,21,7,1 93

0157 0 1,6,15,6,1 30

01567 0 1,7,21,7,1 37

067 0 1,7,1 9

017 0 1,7,1 9

01267 0 1,7,21,7,1 37

0123567 0 1,7,21,35,21,7,1 93

026 0 1,6,15,6,1 29

0 0 1 1

34

2.6 Minimum distance of C
(t)
i and Dual(C

(t)
i)

2.6.1 Backgrounds from association schemes

The theory of association schemes are useful to describe the weight of the code. The main reference

for the association schemes are from the book [1], and the de�nition based on the book is the

following:

De�nition 2.6.1. An association scheme consists of a set X with a partition of the set of 2 element

subsets of X into d non-empty classes Γ1,Γ2, ...,Γd which satisfy

(a) Given x ∈ X, the number ni(x) of points y ∈ X with {x, y} ∈ Γi depends only on i, not on

x.

(b) Given x, y ∈ X with {x, y} ∈ Γk, the number pkij(x, y) of points z ∈ X with {x, z} ∈ Γi

and {z, y} ∈ Γj depends only on i, j, k, not on x and y. Points x and y are called ith associates if

{x, y} ∈ Γi.

Example 2.6.1. LetH(n, q) be the set of all ordered n tuples of elements from a set A of q elements.

Two n tuples are i associates if they di�er in i coordinates. Indeed, H(n, q) is an association scheme,

which is called a Hamming scheme.

In our case, q = 2, so H(n, 2) is a binary Hamming scheme. Given length n and an n tuple x,

the number of y ∈ Fn2 which gives x, y are ith associates is ni(x) =
(
n
i

)
. Given x, y ∈ Fn2 and x, y

are k associates, the number of z ∈ Fn2 which gives x, z are i associates and y, z are j associates is

pkij =
(n−k

i+j−k
2

)(
k

i−j+k
2

)
when i+ j − k is divisible by 2. If i+ j − k is odd, then pkij = 0.

2.6.2 The minimum distance for one single block

In some cases it was not possible to describe the parameters for the general case. But we have

observations that are true for all cases that we considered. With further e�ort, we believe those

patterns can be proved. We treat those cases as conjectures rather than as theorems.

Here are the results of the minimum distance for one single block Ai:

Conjecture 3. Let x1, x2, ..., xk be the rows in the matrix Ai. Assume t 6 i and i 6 k − t.

35

(a) For k > 2i, the distance of C(t) is
(
k−t
i−t
)
, and the minimum weight is achieved by w =

x1x2...xt.

(b) For k = 2i, the distance of C(t) is 2
(
k−t−1
i

)
, and the minimum weight is achieved by

w = (1 + x1 + x2)(1 + x1 + x3)...(1 + x1 + xt+1)

(c) For k < 2i, the distance of C(t) is
(
k−t
i

)
, and the code w which has the minimum weight is

achieved by w = (1 + x1)(1 + x2)...(1 + xt)

For t > i or i > k − t, D(C(t)) = 1 because C(t) = F
(k
i)

2 .

When t = 1, the minimum distance is proved in [4].

Conjecture 4. The dual code Dual(C(t)) has minimum distance D(Dual(C(t))) = 2t+1

When t = 1, D(Dual(C)) = 4 because in the generating matrix of C, any 3 columns are linearly

independent and there are 4 columns which are dependent. Hence, the dual distance is equal to 4.

We introduce the following lemma �rst:

Lemma 2.6.1. Let wu be de�ned as the weight of a codeword obtained by adding u rows from Ai.

Then wu is a �xed number if u is �xed (i.e any sum of u rows will give us the same weight) and

wu =
∑
j

(
u

2j − 1

)(
k − u

i− 2j + 1

)

We have that
(
a
b

)
= 0 if b < 0 or b > a.

Proof. Let us add u rows of A
(1)
i and get a vector, say v = r1 + r2 + ... + ru = (v1, v2, ..., v(k

i)
). If

vm = 1, then {r1m, r2m, ..., rum} has odd number of 1s.

Let {r1m, r2m, ..., rum} contains only one 1 and the rest are 0. There are
(
u
1

)(
k−1
i−1
)
possible

choices. So by this combination,
(
u
1

)(
k−1
i−1
)
1s will appear in the vector v.

Similarly, if {r1m, r2m, ..., rum} contains three 1s and the rest are 0. There are
(
u
3

)(
k−1
i−3
)
such choices.

Therefore, we can follow this argument so that the weight of any sum of u rows of A
(1)
i is

wu =
∑
j

(
u

2j − 1

)(
k − u

i− 2j + 1

)

.

36

However, there are 4 boundary conditions: 2j − 1 > 0, i − 2j + 1 > 0, i − 2j + 1 6 k − u and

2j − 1 6 u. So the range of j is max(1, u+1+i−k
2) 6 j 6 min(i+1

2 , u+1
2).

Since adding all rows in A
(1)
i will give 0 or 1, thus, we have the following result:

Theorem 2.6.1. The minimum distance of C1 is min {wu|1 6 u 6 k − 1}, where wu is the weight

of the codeword obtained by adding u rows.

De�nition 2.6.2. The Krawtchouk polynomial is de�ned as Ki(x) =

i∑
j=0

(−1)j(q − 1)i−j
(
x
j

)(
n−x
i−j
)
,

where q is a prime power and n is some positive integer.

Remark 2.6.1. The formula can also be written using Krawtchouk polynomial. For the binary �elds,

since wu is taken over the odd binomial entries and the Krawtchouk polynomial is alternating, we

can write

wu =
1

2

 i∑
j=0

(
u

j

)(
k − u
i− j

)
−

i∑
j=1

(−1)j
(
u

j

)(
k − u
i− j

)

where

i∑
j=0

(
u
j

)(
k−u
i−j
)

=
(
k
i

)
is an easy combinatorial argument: If among k people, there are u males

and k − u females. To select i people, we select j males and i− j females for j = 0, 1, . . . , i.

From above, we see that

wu =
1

2

(k
i

)
−

i∑
j=1

(−1)j
(
u

j

)(
k − u
i− j

) =
1

2

[(
k

i

)
−Ki(u)

]

2.6.3 Minimum Distance for multiple blocks

For general combinations of blocks, instead of predicting a precise result, we may only approximate

the minimum distance. The way to do this is the following. For a certain t, we take the multiplication

of t vectors where each vector is a sum of u rows and the rows are all distinct. Hence, we require

that ut 6 k. Assuming the blocks are i1, i2, ...im, the total weight of the vector after multiplying t

37

vectors is equal to

∑
16j6m

∑
p1,...,pt

(
u

p1

)(
u

p2

)
...

(
u

pt

)(
k − tu

ij − p1 − p2 − ...− pt

)
,

where p1, p2, ..., pt are taken over all odd numbers. The above sum is determined by u only. Hence

we can possibly get an upper bound for the minimum distance for multiple blocks for general t.

d 6 min
16u6 k

t

{
∑

16j6m

∑
p1,...,pt

(
u

p1

)(
u

p2

)
...

(
u

pt

)(
k − tu

ij − p1 − p2 − ...− pt

)
}.

For example, k = 10, i = 3, 6. When t = 2, we have the weight in the following:

u = 1, w1 =
(
1
1

)(
1
1

)(
8
1

)
+
(
1
1

)(
1
1

)(
8
4

)
= 78

u = 2, w2 =
(
2
1

)(
2
1

)(
6
1

)
+
(
2
1

)(
2
1

)(
6
4

)
= 84

u = 3, w3 =
(
3
1

)(
3
1

)(
4
1

)
+
(
3
3

)(
3
1

)(
4
2

)
+
(
3
1

)(
3
3

)(
4
2

)
+
(
3
3

)(
3
3

)(
4
0

)
= 82

u = 4, w4 =
(
4
1

)(
4
1

)(
2
1

)
+
(
4
3

)(
4
1

)(
2
2

)
+
(
4
1

)(
4
3

)(
2
2

)
+
(
4
3

)(
4
3

)(
2
0

)
= 80

u = 5, w5 =
(
5
5

)(
5
1

)(
0
0

)
+
(
5
1

)(
5
5

)(
0
0

)
+
(
5
3

)(
5
3

)(
0
0

)
= 110

A more general formula is the following.

Theorem 2.6.2. Assume we take the multiplication of t vectors where each vector is a sum of rows

and the rows are all di�erent, say c = v1 ·v2...vt, where vj is a sum of rj di�erent rows. The weight

of c is wt(c) =
∑

16j6m

∑
p1,...,pt

(
v1
p1

)(
v2
p2

)
. . .
(
vt
pt

)(
k−v1−v2−...vt
i−p1−p2−...−pt

)
,where p1, p2, . . . , pt are taken all

over odd numbers.

So an upper bound for the minimum distance can be determined by taking the minimum value

of wt(c), with the minimum taken over all v1 + v2 + ...+ vt 6 k.

For the same example, k = 10, t = 2, i = 3, 6. If we take linear forms v1 and v2 with di�erent

38

parameters r1 and r2. The restriction is r1 + r2 6 10.

v1 1 2 3 4 5 6 7 8 9

v2

1 78 84 78 80 85 84 70 64 126

2 84 84 80 88 92 76 56 112

3 78 80 82 88 78 56 98

4 80 88 88 80 64 104

5 85 92 78 64 110

6 84 76 56 104

7 70 56 98

8 64 112

9 126

As shown above, an upper bound for the minimum distance d for C(2) where k = 10, i = 3, 6 is

that d 6 56.

For multiple blocks, we have two results:

Theorem 2.6.3. Let k be a positive integer.

(a) If the blocks i1, i2, ..., im chosen are all less than k
2 , then the minimum distance of C(t) is equal

to ∑
16j6m

(
k − t
ij − t

)
,

and the codeword which has the minimum nonzero weight is achieved by multiplying t di�erent

rows.

(b) Assume there are only two blocks i1 and i2, one of them is even and the other is odd. For

simplicity, let
(
k
i1

)
>
(
k
i2

)
. Then the minimum distance of C(t) is equal to

(
k−t+1
i2−t+1

)
for i2 <

k
2 and

equal to
(
k−t+1
i2

)
for i2 >

k
2 . In other words, the minimum distance for i1, i2 under multiplicity t is

equal to the minimum distance for the shorter block under multiplicity t− 1.

39

Proof. (a) We assume the previous Conjecture 3. Since for one block, the minimum distance is

achieved by x1x2...xt or (1 + x1)(1 + x2)...(1 + xt) , we can therefore conclude that if we combine

them together, by using the same method, the minimum distance is achieved.

(b) Since i1 and i2 have di�erent parities, we can construct a vector which has 0 on the support

of i2 and 1 on the support of i1. Let C
(t)
2 be the linear code corresponding to block i2. Then we

just need to multiply this vector with the vector which has the minimum nonzero weight in C
(t−1)
2

and the minimum distance for blocks i1 and i2 is achieved.

Remark 2.6.2. Using the above method, we can always conclude that the minimum distance of C(t)

can never exceed n
2t . This is because we can always split the blocks into odd blocks and even blocks,

the minimum distance is therefore bounded by the t−1 distance of the short sides. When t = 1, the

distance is bounded by n
2 . Then, by applying the iteration, we conclude that the minimum distance

of C(t) is always less than or equal to n
2t .

2.6.4 Regular partitions

The background for such interesting partitions is based on commutative algebra and Hilbert func-

tions. The book [14] contains many useful illustrations about background materials.

Given a certain k, we can make some partition P of set {1, 2, ..., k} to the blocks i. For simplicity,

we do not include 1 here. Let P = {C1, C2, ...Cm}, let wui be the weight of summing u distinct

vectors for blocks Ci 1 6 i 6 m. If for some u, all the wui are the same, then we put those

u's together to a set, by applying this procedure, we can get another partition P ′, which may be

di�erent from the original partition P. We have the following:

|P| 6 |P ′|. If the equality holds, then if we start with P ′, we would get the corresponding

partition be P, which means that P ′′ = P. Of course, if we have bad P such that P ′ is of size

k, then this case is trivial and not interesting at all. For a non-trivial example, if k = 7, let

40

P = {{1, 2, 5, 6}, {3, 4}, {7}}. We have the following table:

1,2,5,6 3,4 7

w1 28 35 1

w2 24 40 0

w3 28 35 1

w4 32 32 0

w5 28 35 1

w6 24 40 0

w7 28 35 1

According to this table, the partition P ′ should be {{1, 3, 5, 7}, {2, 6}, {4}}.

Now, if we do the same procedure with respect to P ′, we would get

1, 3, 5, 7 2, 6 4

w1 32 12 20

w2 32 12 20

w3 32 16 16

w4 32 16 16

w5 32 12 20

w6 32 12 20

w7 64 0 0

we can see that P ′′ is again P. The two partitions are in duality.

In the following, we introduce some of the conjugate partitions for k. We list those partitions

in the graph, if B is a subpartition of A, which means that B is gotten from A by breaking some

41

partitions of A, then we connect A to B and B is sitting below A. The following are the partition

graphs for 5 6 k 6 12. There are four patterns for the graphs, according to the remainder of k

divided by 4. The graphs for 13 6 k 6 16 are not listed because the graph for k = m and k = m+ 4

are the same for m = 9, 10, 11, 12.

More examples are shown in the appendix. In the graphs which are shown in the appendix, in

each node, the above is the partition, and the number below the partition is the distribution of the

biggest degree of characteristic vectors.

Each graph is symmetric, in the way that symmetric points must be dual to each other.

Let us take k = 9, we want to �nd out the dual partitions from the graph. First of all, we list

a table of weights for k = 9. Let wui be the weight of the vector which is obtained by adding u

di�erent vectors in block i.

The weight of wu is given in this table:

i 1 2 3 4 5 6 7 8 9

u

1 1 8 28 56 70 56 28 8 1

2 2 14 42 70 70 42 14 2 0

3 3 18 46 66 60 38 18 6 1

4 4 20 44 60 60 44 20 4 0

5 5 20 40 60 66 44 16 4 1

6 6 18 38 66 66 38 18 6 0

7 7 14 42 70 56 42 22 2 1

8 8 8 56 56 56 56 8 8 0

9 9 0 84 0 126 0 36 0 1

From the above data, after evaluating the sum, we can conclude that the following partitions

are dual to each other:

(12345678)(9) and (13579)(2468)

42

(1256)(3478)(9) and (2468)(159)(37)

(1278)(3456)(9) and (13579)(46)(28)

(1458)(2367)(9) and (13589)(26)(48)

(1357)(2468)(9) and (1357)(2468)(9) (self dual)

(12)(34)(56)(78)(9) and (37)(46)(28)(19)(5)

(45)(36)(18)(27)(9) and (13579)(2)(4)(6)(8)

(35)(17)(28)(46)(9) and (35)(17)(28)(46)(9) (self dual)

(15)(26)(37)(48)(9) and (15)(26)(37)(48)(9) (self dual)

The dual partitions are symmetric in the graph. The remaining partitions are self-dual.

Moreover, in some level, �x a partition of k. Let the number of parts be l, so that we can

construct 2l − 1 di�erent linear codes by counting classes in the partition. We set up a program to

evaluate the multiplicity of these 2l − 1 linear codes. We use a vector vl of length l to represent

the information. In vl, the �rst coordinate is 0. If the n th position in vl is an, then there are

2n−1 codes which have characteristic vector with highest degree an, which means the multiplicity

is max(k − an − 1, 0). (Sometimes, when an = k, the multiplicity is also 0).

Example 2.6.2. For k = 9, in the graph, there is a partition (0)(45)(36)(18)(27)(9), and the vector

v6 is (0, 2, 4, 6, 8, 9). There are 63 possible linear codes formed by blocks 0, 45, 36, 18, 27, 9. Among

them, 32 have degree 9, which means multiplicity 0. 16 have degree 8, which also has multiplicity

0. 8 have multiplicity 2, 4 have multiplicity 4, 2 have multiplicity 6, 1 has multiplicity 8.

43

In detail,

n an multiplicity combinations

6 9 0 (0), (9), (459), (369), (189), (279), (34569), (14589), (24579)

(13689), (23679), (12789), (1345689), (2345679)

(1245789), (1236789), (123456789)

(045), (036), (018), (027), (03456), (01458), (02457)

(01368), (02367), (01278), (0134568), (0234567)

(0124578), (0123678), (012345678)

5 8 0 (18), (1458), (1368), (1278), (134568)

(124578), (123678), (12345678)

(09), (0459), (0369), (0279), (034569)

(024579), (023679), (02345679)

4 6 2 (0189), (27), (36), (01236789), (2457)

(3456), (01245789), (01345689)

3 4 4 (45), (234567), (012789), (013689)

2 2 6 (2367), (014589)

1 0 8 (0123456789)

2.7 Good linear codes

Good linear codes can be generated by combining suitable blocks Ai. For certain multiplicity t,

from what we did above, we know that in order to make Ĉ(t) even, we need to choose characteristic

vectors in the span of the �rst k − t columns in the matrix Mk. Hence, there are 2k−t linear codes

with this property. One approach is that for small k − t, we list all the possible choices. After

we have the [n, k, d], In some cases, to guarantee that C(t) has even length, we add a parity check

symbol. In those cases, we add all zero column of length k and then add 1 to the code.

Let k = 7, t = 4. We list all the possible combinations of blocks with multiplicity t > 4. In

M7, the blocks corresponding to the �rst columns are 1, 2, 3, 4, 5, 6, 7, 2, 4, 6 and 1, 4, 5. So the 8

44

combinations of blocks are listed below:

Combinations of blocks [n, k, d] Adjusted [n, k, d] BKLC with same n, k

1234567 [127, 7, 64] [128, 8, 64] [128, 8, 64]

246 [63, 6, 32] [64, 7, 32] [64, 7, 32]

1357 [64, 7, 32] [64, 7, 32] [64, 7, 32]

145 [63, 7, 28] [64, 8, 28] [64, 8, 29]

2367 [64, 7, 28] [64, 8, 28] [64, 8, 29]

1256 [56, 7, 24] [56, 8, 24] [56, 8, 24]

347 [71, 7, 32] [72, 8, 32] [72, 8, 32]

The table shows that a Reed-Muller Code RM(1, 7) can be decomposed in three di�erent ways:

2,4,6 and 1,3,5,7, 1,4,5 and 2,3,6,7, 1,2,5,6 and 3,4,7. The key is that we always put two congruent

classes together and then the other two together. This must be true because the �rst three columns

are periodic modulo 4 and any combinations of them is also periodic modulo 4.

Among all these linear codes, we pick up those which have shortest length. Indeed, many of

them are good linear codes. Here are some of the examples,

Linear codes with multiplicity t which are shortest among possible combinations of blocks

Columns Blocks [n, k, d] Adjusted [n, k, d] Best Known Linear codes with same n, k

t = 8 1 123456789 [511, 9, 256] [512, 10, 256] [512, 10, 256]

t = 7 2 2468 [255, 8, 128] [256, 9, 128] [256, 9, 128]

t = 6 3 2367 [240, 9, 112] [240, 10, 112] [240, 10, 114 6 d 6 116]

t = 5 34 37 [120, 9, 56] [120, 9, 56] [120, 9, 56]

t = 4 145 12789 [91, 9, 32] [92, 10, 32] [92, 10, 41 6 d 6 42]

t = 3 1256 79 [46, 9, 16] [46, 9, 16] [46, 9, 19 6 d 6 20]

t = 2 1357 189 [19, 9, 4] [20, 10, 4] [20, 10, 6]

t = 1 12345678 19 [10, 9, 2] [10, 9, 2] [10, 9, 2]

45

Chapter 3

AB methods and applications

3.1 Dimension-length pro�les

The dimension-length pro�le of a linear code was introduced by Forney [8]. It is an important tool

for describing the state trellis complexity of a linear code [16][10]. The dimension-length pro�le is

determined by the higher weights of a linear code. Partial information about the higher weights

gives bounds for the dimension-length pro�le. In the next section we will derive a lower bound for

the minimum distance of a code C from the dimension-length pro�les of codes A and B that satisfy

C ⊥ A ∗B. An example of a bound of this type is the classical Roos bound. That bound uses only

partial information about the higher weights of A and B (namely the minimum distance of A and

the dual minimum distance of B). By casting the Roos bound in the setting of dimension-length

pro�les we get both a much more general theorem and a shorter and more transparent proof.

Let G be a generator matrix for the linear code C of length n and dimension k. De�ne pi(C)

as the minimal rank of any i columns in the generator matrix of C. Thus 0 ≤ pi(C) ≤ i. For an

MDS code, any k columns are linearly independent and

(MDS) pi(C) = min{i, k}.

For an arbitrary code, the minimum distances of the code and its dual provide lower bounds for

pi(C). For a code with dual distance d(C⊥), any d(C⊥)− 1 columns are linearly independent and

pi(C) ≥ min{i, d(C⊥)− 1}, for all i. (3.1)

46

For a code with minimum distance d(C), any n− d(C) + 1 columns are of full rank k, and thus any

i = n− d(C) + 1− j columns of rank at least k − j.

pi(C) ≥ min{k, k − (n− d(C) + 1− i)}, for all i. (3.2)

Note that the lower bounds reduce to the same bounds pi(C) ≥ min{i, k} and pi(C) ≥ min{k, i}

for an MDS code. On the other hand, for a general code the lower bounds are independent. As an

example, for the �rst order Reed-Muller code n = 16, k = 5, d(C) = 8, and d⊥(C) = 4. The lower

bounds become

pi(C) ≥ min{i, 3} and pi(C) ≥ min{5, i− 4}.

For i = 0, 1, . . . , 16, pi(C) has lower bounds

(0, 1, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5).

The functions pi(C) and pi(C
⊥) satisfy

k − pi(C) + pn−i(C
⊥) = n− i. (3.3)

This follows by comparing the dimensions of two dual codes of length n− i. Shortening a code C in

i positions of minimal rank gives a code of length n− i and dimension k − pi(C). The dual of this

code is the punctured version of the dual code, which has dimension pn−i(C
⊥). Using the relation

(3.3), we recover (3.2) applied to C from (3.1) applied to C⊥.

pn−i(C
⊥) ≥ min{n− i, d(C)− 1}

⇔ pi(C) ≥ min{n− i, d(C)− 1} − (n− i)− k

⇔ pi(C) ≥ min{k, k − (n− d(C) + 1− i)}

47

Using the notation d⊥1 = d(C⊥) and g1 = n+ 1− k − d(C), the bounds (3.1) and (3.2) become

pi(C) ≥ min{i, d⊥1 − 1} and pi(C) ≥ min{k, i− g1}. (3.4)

3.2 The Roos bound

In [13], Roos derives the Roos bound for cyclic codes [id., Theorem 2] from a more general theorem

[id., Theorem 1].

A code is nondegenerate if its generator matrix has no zero columns. In that case, for any

position there exists a codeword that is nonzero in that position.

Theorem 3.2.1 (Roos bound for linear codes [13, Theorem 1]). Let A, B and C be nondegenerate

linear codes such that C ⊥ (A ∗ B). Let g(A) = n + 1 − k(A) − d(A). If g(A) < d(B⊥) − 1 then

d(C) ≥ d(B⊥) + k(A)− 1.

Proof. Let c ∈ C be a nonzero word of weight w. The restrictions of A and B to the w coordinates

of c are of total dimension k(c ∗A) + k(c ∗B) ≤ w. With (3.5),

k(c ∗A) ≥ min{k(A), w − g(A)}.

k(c ∗B) ≥ min{w, d(B⊥)− 1}.

We show that the minima are attained in d(B⊥) − 1 and in k(A). The minimum for k(c ∗ B) can

not be attained in w, for then k(c ∗ A) = 0 would violate that A is nondegenerate. Next, with

k(c ∗B) ≥ d(B⊥)− 1, k(c ∗A) ≥ w − g(A) would violate the assumption g(A) ≤ d(B⊥)− 1. Thus

k(c ∗A) ≥ k(A) and w ≥ k(A) + d(B⊥)− 1.

The following theorem uses a condition g(A) < k(B) that is weaker than the condition g(A) <

d(B⊥)−1 of the Roos bound but adds to that a condition g(B) < k(A). Thus the theorems apply in

general under di�erent conditions and supplement each other. While Theorem 3.2.1 gives a lower

bound for the minimum distance, the next theorem excludes certain weights. It can be used to

48

improve lower bounds obtained with other methods, or it can be used multiple times so that the

total set of excluded weights provides a lower bound for the minimum distance. For examples of

both situations we refer to [7].

Theorem 3.2.2 (Symmetric Roos bound [7]). Let A, B and C be nondegenerate linear codes such

that C ⊥ (A ∗ B). If g(A) < k(B) and g(B) < k(A) then, for a nonzero word c ∈ C of weight w,

either w ≤ g(A) + g(B) or w ≥ k(A) + k(B).

Proof. As in the previous proof we have that k(c ∗A) + k(c ∗B) ≤ w. With (3.5),

k(c ∗A) ≥ min{k(A), w − g(A)}.

k(c ∗B) ≥ min{k(B), w − g(B)}.

The minima are not attained in k(A) and w−g(B) for then k(A)+w−g(B) ≤ w would violate the

assumption g(B) < k(A). By symmetry the minima are attained either in k(A) and k(B), resulting

in w ≥ k(A) + k(B), or in w − g(A) and w − g(B), resulting in w ≤ g(A) + g(B).

3.3 Higher weights

We return to the �rst order Reed-Muller code of length n = 16. The actual values for pi(C) are

(0, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5).

The lower bounds obtained with d(C) = 8 and d(C⊥) = 4 only give that the values are at least

(0, 1, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5).

The actual values pi(C) = 4 at i = 5, 6, 7 are missed by the combined lower bounds

pi(C) ≥ min{i, 3} and pi(C) ≥ min{5, i− 4}.

49

To describe the actual values requires knowledge of the higher weights of the code. The higher weight

dr(C) is de�ned as the smallest number of coordinates that support r independent codewords. The

higher weights of the �rst order Reed-Muller code are d1 = 8, d2 = 12, d3,= 14, d4 = 15, d5 = 16.

The actual values show that the pro�le increases at i = 1, 2, 3, 5, 9. The increases correspond to

the higher weights via {n + 1 − dr : r = 1, 2, 3, 4, 5} = {1, 2, 3, 5, 9}. In this case, knowledge of

the second weight d2 = 12 su�ces to explain the increase of pi(C) at i = 5 and thus the values

pi(C) = 4 at i = 5, 6, 7 that were missed by the other lower bounds.

We used the minimum distance and dual distance to obtain the lower bounds

pi(C) ≥ min{i, d⊥1 − 1} and pi(C) ≥ min{k, i− g1}. (3.5)

Here g1(C) = n+ 1− k − d(C). We generalize these lower bounds, for r = 1, 2, . . . , k to

pi(C) ≥ min{i+ 1− r, d⊥r − r} and pi(C) ≥ min{k + 1− r, i− gr}. (3.6)

Together the lower bounds for r = 1, 2, . . . , k describe the actual pro�le pi(C). The lower bounds

implicitly de�ne the parameters d⊥r and gr. The higher dual distance is the largest integer d
⊥
r such

that

pi(C) ≥ min{i+ 1− r, d⊥r − r}, for all i.

The higher genus is the smallest integer gr such that

pi(C) ≥ min{k + 1− r, i− gr}, for all i.

The higher genus gr(C) relates to the higher weight dr(C) via n+ r = k + dr + gr.

For the Reed-Muller code d1(C⊥) = 4, d2(C⊥) = 6 and d1(C) = 8, d2(C) = 12, so that g1 =

50

4, g2 = 1. This yields the four lower bounds

(r = 1) pi(C) ≥ min{i, 3} and pi(C) ≥ min{5, i− 4},

(r = 2) pi(C) ≥ min{i− 1, 4} and pi(C) ≥ min{4, i− 1}.

In this case, the lower bounds under (r = 2) coincide because of duality.

min{i, 3} ≥ (0, 1, 2, 3, 3, 3, 3, 3, 3, 3, · · · 3).

min{5, i− 4} ≥ (−4, −3, −2, −1, 0, 1, 2, 3, 4, 5, · · · 5).

min{i− 1, 4} ≥ (−1, 0, 1, 2, 3, 4, 4, 4, 4, 4, · · · 4).

pi(C) = (0, 1, 2, 3, 3, 4, 4, 4, 4, 5, · · · 5).

3.4 Generalized Roos bounds

The known bounds in Theorem 3.2.1 and Theorem 3.2.2 apply to codes A,B,C with C ⊥ A ∗ B.

They use only the minimum distance and the dual minimum distance of the codes A and B. The

proof that we gave for both theorems is the same in each case and makes use of the pro�les pi(A)

and pi(B). Using the same proof but with more information about A and B, ideally knowledge of

the full pro�les pi(A) and pi(B), we improve the bounds of Theorem 3.2.1 and Theorem 3.2.2.

Theorem 3.4.1. Let A, B and C be nondegenerate linear codes such that C ⊥ (A ∗ B). Let

d(A⊥) > s and gr(A) < ds(B
⊥)− s. Then the weight w of a codeword c ∈ C satis�es w ≤ s− 1 or

w ≥ ds(B⊥) + k(A) + 1− r − s.

Proof. Let c ∈ C be a nonzero word of weight w. The restrictions of A and B to the w coordinates

of c are of total dimension k(c ∗A) + k(c ∗B) ≤ w. With (3.5),

k(c ∗A) ≥ min{k(A) + 1− r, w − gr(A)}.

k(c ∗B) ≥ min{w + 1− s, ds(B⊥)− s}.

51

We show that the minima are attained in ds(B
⊥)−s and in k(A)+1−r. The minimum for k(c∗B)

can not be attained in w+1−s, for then k(c∗A) ≤ s−1 would violate that d(A⊥) > s (i.e. that any s

positions in A are independent). Next, with k(c∗B) ≥ ds(B⊥)−s, k(c∗A) ≥ w−gr(A) would violate

the assumption gr(A) < ds(B
⊥)− s. Thus k(c ∗A) ≥ k(A) + 1− r and w ≥ k(A) + ds(B

⊥)− s.

For the �rst order Reed-Muller code, the conditions are met for (r, s) = (2, 1), (2, 2).

(r = 2, s = 1) w ≤ 0 or w ≥ 7.

(r = 2, s = 2) w ≤ 1 or w ≥ 8.

Thus the code has no words of weight w ∈ (0, 8). This is best possible, since the code has minimum

distance d(C) = 8. Since the conditions are not met for (r, s) = (1, 1) the original Roos bound

Theorem 3.2.1 does not apply in this case.

Theorem 3.4.2. Let A, B and C be nondegenerate linear codes such that C ⊥ (A ∗ B). If

gr(A) < k(B) + 1− s and gs(B) < k(A) + 1− r then, for a nonzero word c ∈ C of weight w, either

w ≤ gr(A) + gs(B) or w ≥ k(A) + k(B) + 2− r − s.

Proof. As in the previous proof we have that k(c ∗A) + k(c ∗B) ≤ w. With (3.5),

k(c ∗A) ≥ min{k(A) + 1− r, w − gr(A)}.

k(c ∗B) ≥ min{k(B) + 1− s, w − gs(B)}.

The minima are not attained in k(A) + 1− r and w− gs(B) for then k(A) + 1− r+w− gs(B) ≤ w

would violate the assumption gs(B) < k(A) + 1− r. By symmetry the minima are attained either

in k(A) + 1 − r and k(B) + 1 − s, resulting in w ≥ k(A) + k(B) + 2 − r − s, or in w − gr(A) and

w − gs(B), resulting in w ≤ gr(A) + gs(B).

52

For the �rst order Reed-Muller code, the conditions are met for (r, s) = (1, 1), (2,≤ 4), (≥ 3,≤ 5).

(r = 1, s = 1) w ≤ 8 or w ≥ 10.

(r = 2, s = 2) w ≤ 2 or w ≥ 8.

(r = 2, s = 3) w ≤ 1 or w ≥ 7.

(r = 3, s = 3) w ≤ 0 or w ≥ 6.

Thus all weights w ∈ (0, 10) are excluded except w = 8. In this case, the conditions are met for

(r, s) = (1, 1) and Theorem 3.2.2 applies. It excludes the weight w = 9 but does not give information

about weights w ≤ 8, and does not provide information about the minimum distance of the code.

53

Appendix

The partition graphs for k = 5, 6, 7, 8, 9 are shown below. For every node, the top is the partition,

the bottom is the distribution of the biggest degree of the characteristic vector corresponding to

the combinations of the blocks.

k = 5

(0)(1234)(5)

045

(0)(135)(24)

015

(0)(12)(34)(5)

0245

(0)(14)(23)(5)

0245

(0)(13)(24)(5)

145

(0)(15)(24)(3)

0135

(0)(135)(2)(4)

0135

54

k = 6

(0)(12345)(6)

056

(0)(135)(246)

016

(0)(135)(24)(6)

0156

(0)(135)(2)(4)(6)

01356

(0)(15)(24)(3)(6)

01356

(0)(15)(2)(3)(4)(6)

012356

(0)(1256)(34)

026

(0)(16)(25)(34)

0246

(0)(12)(34)(56)

0246

(0)(145)(236)

026

55

k = 7

(0)(123456)(7)

067

(0)(1357)(246)

017

(0)(1256)

(34)(7)

0267

(0)(145)

(236)(7)

0267

(0)(135)

(246)(7)

0167

(0)(15)(37)

(246)

0137

(0)(1357)

(26)(4)

0137

(0)(25)

(16)(34)(7)

02467

(0)(12)

(34)(56)(7)

02467

(0)(1357)

(2)(4)(6)

012367

(0)(35)(17)

(26)(4)

01357

(0)(15)

(26)(3)(4)(7)

01357

56

k = 8

(0)(1234567)(8)

018

(0)(1357)(2468)

078

(0)(1357)

(246)(8)

0178

(0)(2367)

(1458)

028

(0)(3456)

(1278)

048

(0)(3478)

(1256)

028

(0)(246)

(15)(37)(8)

1378

(0)(1357)

(26)(4)(8)

1378

(0)(45)(36)

(18)(27)

02468

(0)(12)(34)

(56)(78)

02468

(0)(15)(37)

(26)(4)(8)

012378

(0)(35)(17)

(26)(4)(8)

013578

(0)(1357)

(2)(4)(6)(8)

013578

(0)(17)(35)

(2)(4)(6)(8)

0134578

57

k = 9

(0)(12345678)(9)

089

(0)(13579)(2468)

019

(0)(1256)

(3478)(9)

0289

(0)(1278)

(3456)(9)

0489

(0)(1458)

(2367)(9)

0289

(0)(1357)

(2468)(9)

0189

(0)(13579)

(26)(48)

0139

(0)(13579)

(46)(28)

0159

(0)(2468)

(159)(37)

0139

(0)(12)(34)

(56)(78)(9)

024689

(0)(45)(36)

(18)(27)(9)

024689

(0)(35)(17)

(28)(46)(9)

014589

(0)(15)(26)

(37)(48)(9)

012389

(0)(13579)

(2)(4)(6)(8)

013579

(0)(37)(46)

(28)(19)(5)

013579

58

k = 7

The graph for characteristic vectors

sA sB

sC sD sE sF sG

sH sI sK sLsJ

sA = (s1 + s2 + s3 + s4 + s5 + s6, s7)

sB = (s1, s2 + s3 + s4 + s5 + s6 + s7)

sC = (s1 + s2, s3 + s4 + s5 + s6 + s7)

sD = (s1 + s3 + s4 + s5 + s6 + s7, s2 + s7, s7)

sE = (s1 + s7,+s2 + s3 + s4 + s5 + s6 + s7, s7)

sF = (s3, s2 + s3 + s4 + s5 + s6 + s7, s1 + s3)

sG = (s1, s2 + s3, s4 + s5 + s6, s7)

sH = (s2 + s3 + s5 + s6, s1 + s3 + s5 + s6, s3 + s4 + s5 + s6, s7)

sI = (s1 + s2 + s5 + s6, s3 + s4 + s5 + s6, s5 + s6, s7)

sJ = (s1 + s3, s2 + s3, s3 + s7, s4 + s5 + s6 + s7, s7)

sK = (s1, s2 + s3 + s6 + s7, s4 + s5 + s6 + s7, s6 + s7)

sL = (s3 + s5, s1 + s3 + s5, s2 + s3, s4 + s5 + s6 + s7)

59

References

[1] P. J. Cameron and J. H. van Lint. Designs, graphs, codes and their links, volume 22 of London
Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.

[2] R. Cramer, I. Damgard, and B. Nielsen, Jesper. Secure Multiparty Computation and Secret
Sharing An Information Theoretic Approach. Book Draft. 2013.

[3] I. Dumer and O. Kapralova. Spherically punctured biorthogonal codes. In Information Theory
Proceedings (ISIT), 2012 IEEE International Symposium on, pages 259�263, July 2012.

[4] I. Dumer and O. Kapralova. Spherically punctured biorthogonal codes. IEEE Trans. Inform.
Theory, 59(9):6010�6017, 2013.

[5] I. Duursma and J. Shen. Multiplicative secret sharing schemes from reed-muller type codes.
In Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on, pages
264�268, July 2012.

[6] I. M. Duursma. Algebraic geometry codes: general theory. In Advances in algebraic geometry
codes, volume 5 of Ser. Coding Theory Cryptol., pages 1�48. World Sci. Publ., Hackensack, NJ,
2008.

[7] I. M. Duursma and R. Pellikaan. A symmetric Roos bound for linear codes. J. Combin. Theory
Ser. A, 113(8):1677�1688, 2006.

[8] G. D. Forney, Jr. Dimension/length pro�les and trellis complexity of linear block codes. IEEE
Trans. Inform. Theory, 40(6):1741�1752, 1994.

[9] T. Koshy. Catalan numbers with applications. Oxford University Press, Oxford, 2009.

[10] A. Lafourcade and A. Vardy. Lower bounds on trellis complexity of block codes. IEEE Trans.
Inform. Theory, 41(6, part 2):1938�1954, 1995.

[11] S. Ling and C. Xing. Coding theory. Cambridge University Press, Cambridge, 2004. A �rst
course.

[12] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. I. North-Holland
Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Mathematical Library,
Vol. 16.

[13] C. Roos. A new lower bound for the minimum distance of a cyclic code. IEEE Trans. Inform.
Theory, 29(3):330�332, 1983.

60

[14] H. Schenck. Computational algebraic geometry, volume 58 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 2003.

[15] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, third edition, 1999.

[16] A. Vardy. Trellis structure of codes. In Handbook of coding theory, Vol. I, II, pages 1989�2117.
North-Holland, Amsterdam, 1998.

61

	List of Abbreviations
	List of Symbols
	Chapter 1 Introduction and Background of Multiparty Computation and Linear Secret Sharing Schemes
	Multiparty Computation
	Protocol Secure Addition
	Protocol Secure Multiplication

	Secret Sharing and Shamir Schemes
	Linear Secret Sharing Schemes
	Multiplicative Linear Secret-Sharing Scheme and Strongly Multiplicative Linear Secret-Sharing Scheme
	Summary of the results

	Chapter 2 Multiplicative codes of Reed-Muller type
	Introduction of Reed-Muller codes
	Our basic construction
	The Combination when all the codes in C"0362C(t) and C(t)are of even weight
	When C"0362C(t) are of even weights
	The combination when all the codes in C(t) are of even weight

	Characterization of linear codes with multiplicity t
	Dimension of C(t)
	Dimension of C(t)when the blocks are consecutive starting from 1
	Dimension of C(t) when there are two blocks
	Dimension of C(t) when blocks are congruent to some number modulo 4
	An Algebraic Geometry approach to the dimension problem
	Symmetric dimensions

	Minimum distance of Ci(t) and Dual(Ci(t))
	Backgrounds from association schemes
	The minimum distance for one single block
	Minimum Distance for multiple blocks
	Regular partitions

	Good linear codes

	Chapter 3 AB methods and applications
	Dimension-length profiles
	The Roos bound
	Higher weights
	Generalized Roos bounds

	Appendix
	References

