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ABSTRACT

Uncertainty has a tremendous impact on decision making. The more con-

nected we get, it seems, the more sources of uncertainty we unfold. For

example, uncertainty in the parameters of price and cost functions in power,

transportation, communication and financial systems have stemmed from the

way these networked systems operate and also how they interact with one

another. Uncertainty influences the design, regulation and decisions of par-

ticipants in several engineered systems like the financial markets, electricity

markets, commodity markets, wired and wireless networks, all of which are

ubiquitous. This poses many interesting questions in areas of understand-

ing uncertainty (modeling) and dealing with uncertainty (decision making).

This dissertation focuses on answering a set of fundamental questions that

pertain to dealing with uncertainty arising in three major problem classes:

(1) Convex Nash games;

(2) Variational inequality problems and complementarity problems;

(3) Hierarchical risk management problems in financial networks.

Accordingly, this dissertation considers the analysis of a broad class of stochas-

tic optimization and variational inequality problems complicated by uncer-

tainty and nonsmoothness of objective functions.

Nash games and variational inequalities have assumed practical relevance

in industry and business settings because they are natural models for many

real-world applications. Nash games arise naturally in modeling a range of

equilibrium problems in power markets, communication networks, market-

based allocation of resources etc where as variational inequality problems

allow for modeling frictional contact problems, traffic equilibrium problems

etc. Incorporating uncertainty into convex Nash games leads us to stochas-

tic Nash games. Despite the relevance of stochastic generalizations of Nash
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games and variational inequalities, answering fundamental questions regard-

ing existence of equilibria in stochastic regimes has proved to be a challenge.

Amongst other reasons, the main challenge arises from the nonlinearity aris-

ing from the presence of the expectation operator. Despite the rich litera-

ture in deterministic settings, direct application of deterministic results to

stochastic regimes is not straightforward.

The first part of this dissertation explores such fundamental questions in

stochastic Nash games and variational inequality problems. Instead of di-

rectly using the deterministic results, by leveraging Lebesgue convergence

theorems we are able to develop a tractable framework for analyzing prob-

lems in stochastic regimes over a continuous probability space. The benefit of

this approach is that the framework does not rely on evaluation of the expec-

tation operator to provide existence guarantees, thus making it amenable to

tractable use. We extend the above framework to incorporate nonsmoothness

of payoff functions as well as allow for stochastic constraints in models, all

of which are important in practical settings.

The second part of this dissertation extends the above framework to gen-

eralizations of variational inequality problems and complementarity prob-

lems. In particular, we develop a set of almost-sure sufficiency conditions

for stochastic variational inequality problems with single-valued and multi-

valued mappings. We extend these statements to quasi-variational regimes

as well as to stochastic complementarity problems. The applicability of these

results is demonstrated in analysis of risk-averse stochastic Nash games used

in Nash-Cournot production distribution models in power markets by recast-

ing the problem as a stochastic quasi-variational inequality problem and in

Nash-Cournot games with piecewise smooth price functions by modeling this

problem as a stochastic complementarity problem.

The third part of this dissertation pertains to hierarchical problems in

financial risk management. In the financial industry, risk has been tradi-

tionally managed by the imposition of value-at-risk or VaR constraints on

portfolio risk exposure. Motivated by recent events in the financial industry,

we examine the role that risk-seeking traders play in the accumulation of

large and possibly infinite risk. We proceed to show that when traders em-

ploy a conditional value-at-risk (CVaR) metric, much can be said by studying

the interaction between value at risk (VaR) (a non-coherent risk measure)

and conditional value at risk CVaR (a coherent risk measure based on VaR).
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Resolving this question requires characterizing the optimal value of the as-

sociated stochastic, and possibly nonconvex, optimization problem, often a

challenging problem. Our study makes two sets of contributions. First, under

general asset distributions on a compact support, traders accumulate finite

risk with magnitude of the order of the upper bound of this support. Second,

when the supports are unbounded, under relatively mild assumptions, such

traders can take on an unbounded amount of risk despite abiding by this VaR

threshold. In short, VaR thresholds may be inadequate in guarding against

financial ruin.
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CHAPTER 1

AN OVERVIEW

1.1 Background

The concept of an equilibrium is central to the study of a range of economic

and engineered systems like financial markets, electricity markets, commodity

markets, internet commerce, wired and wireless networks etc, all of which are

ubiquitous in today’s world. An equilibrium refers to a state of the system

in which competing influences are balanced. An equilibrium can be loosely

viewed as a ‘steady state’ or an ‘ideal state’ of the system. The articulation

of such systems might be complicated by a variety of factors. These include

competition, nonlinearity and nonsmoothness of objective or utility functions

and finally uncertainty in the specification of these functions. Designers,

regulators and participants of such systems are interested in knowing the

following:

• Characterization: Does an equilibrium exist and what can be said

about the set of equilibria;

• Computation: What actions (strategies for participants) result in an

equilibrium;

• Design: What incentives (taxation, subsidization by designers) will

make the system function better?

The equilibria in such systems may be formulated (modeling), qualita-

tively analyzed (existence, uniqueness), and computed by representing the

equilibria as one of the following: (i) system of equations; (ii) optimization

problems; (iii) complementarity problems; or (iv) fixed point problems.1

1Readers not familiar with these terms may refer to Section 1.2.1 for an explanation of
these techniques in the context of economic equilibrium problems.
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The variational inequality problem (VIP) is a problem formulation that

encompasses several classical mathematical problems, including (i)-(iv) above

and is thus a tool to study several equilibrium problems. Thus, the VIP

provides a unifying methodology to study several equilibrium problems in

engineering and economics. The theory of VIPs can thus be looked upon as

a tool/methodology that enables the modeling, analysis and computation of

equilibria for a wide range of practical applications.

Variational inequalities were first introduced by Hartman and Stampac-

chia in 1966 [1] as a tool to study partial differential equations, with applica-

tions principally drawn from mechanics and defined on infinite-dimensional

spaces. On the other hand, the finite-dimensional variational inequality prob-

lem (VIP), developed as a generalization of the finite-dimensional nonlinear

complementarity problem (NCP) which was first identified in 1964 in the

Ph.D thesis of Cottle [2]. Since then the field has developed into a fruitful

subfield of mathematical programming with rich theory, solution algorithms,

a multitude of connections to numerous disciplines and a wide range of im-

portant applications in engineering and economics. Practical application

problems that can be formulated as finite-dimensional variational inequal-

ity problems include Nash equilibrium problems used to derive insights into

strategic behavior in power markets [3, 4], resource sharing in wireless and

wireline communication networks [5, 6], competitive interactions in cogni-

tive radio networks [7], contact problems in structural engineering, traffic

equilibrium problems [8], amongst others.2

Many of these applications often have an element of uncertainty, arising

possibly from imperfect information or underlying variability in the problem

data. For example, in the design of power markets, neither the parameters

of the price function nor the cost of generation are known with complete

certainty. In some problems, we may view the decision makers as solving

an expected value problem and consequentially the resulting variational con-

ditions contain expectations. A possible approach to incorporating uncer-

tainty in classical models is to replace the deterministic map in the VIP

by its expectation. This is often a natural consequence of modeling agents

that are risk-neutral in nature. This approach is obviously more challenging

to address due to the presence of the possibly highly nonlinear expectation

2Please see Section 1.2.2 for explanation of these and other equilibrium problems that
have been modeled as variational inequalities.
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operation. On the other hand, the avenue has the advantage of having uncer-

tainty built into the model which leads to applications that are much more

realistic than its deterministic counterpart. Thus, the study of stochastic

generalizations of the deterministic VIP, known as the stochastic variational

inequality problem (SVIP), assumes relevance and has been an area of inter-

est in recent years to researchers in the field of mathematical and stochastic

programming and more generally to the operations research community. The

efforts in this area of research have largely been addressed from a computa-

tional standpoint. (cf [9], a recent survey paper for developments in SVIPs).

There are two basic formulations for the SVIP found in literature; the EV

(expected value) formulation and the ERM (expected residual minimization)

formulation. Sample-average approximation schemes [10] solve determinis-

tic approximations of the EV problem where the expectation is replaced by

the sample mean (cf. [11, 12, 13, 14, 15]). An alternate approach for solv-

ing the EV problem relies on using stochastic approximation schemes where

past research has investigated almost-sure convergence of estimators and rate

analysis [16, 17, 18, 19].When faced with the ERM formulation, much of the

techniques have focused on minimizing the expected value of a residual given

by a gap function [20, 21, 22, 23]. Despite these recent developments, the

problem of existence and uniqueness of solutions to EV formulations when

uncertainty is defined by a continuous distribution, though a fundamental

and important question, has been left unanswered. This doctoral thesis be-

gan with a hope to fill in the void created by this unanswered question.

1.2 VIPs, SVIPs and their generalizations

Given a set K in Rn and a mapping F : Rn → Rn, the deterministic vari-

ational inequality problem, denoted by VI(K,F ), requires an x ∈ K such

that

(y − x)T F (x) ≥ 0, ∀y ∈ K.

Throughout the thesis, unless otherwise mentioned, we assume the set K

is closed and convex and the map F is continuous. The quasi-variational

generalization of VI(K,F ), referred to as a quasi-variational inequality and

denoted by QVI(K,F ), emerges when K is generalized from a constant map
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to a set-valued map K : Rn → Rn with closed and convex images. More

formally, QVI(K,F ) requires an x ∈ K(x) such that

(y − x)T F (x) ≥ 0, ∀y ∈ K(x).

If K is a cone, then the variational inequality problem reduces to a comple-

mentarity problem, denoted by CP(K,F ), a problem that requires an x ∈ K
such that

K 3 x ⊥ F (x) ∈ K∗,

where K∗ , {y : yTd ≥ 0, ∀d ∈ K} and y ⊥ w implies yiwi = 0 for

i = 1, . . . , n.

Thus, a VIP and its generalizations has as its inputs a single-valued map

that can be generalized as a multi-valued map and a set that can be gener-

alized to a set-valued map. Stochastic generalizations of the above problems

may be formulated by simply replacing the mapping by the expected-value

of the map. Thus, a SVIP has as its input a set and the expectation of

a continuous map, referred to as the integrand. The SVIP can be general-

ized by either replacing the set by a set-valued map (leading to a stochastic

quasi-variational inequality abbreviated as SQVI) or a generalization of the

integrand to a multi-valued map, leading to a multi-valued SVIP or a gen-

eralization of both, leading to a multi-valued SQVI. If the underlying set of

the SVIP is specialized to a cone, the SVIP reduces to a stochastic comple-

mentarity problem (SCP). Needless to say, these generalizations of SVIPs are

also widely applicable to important problems in economics and engineered

systems. These stochastic extensions are defined formally in chapters 2 and

3.

1.2.1 Source problems

(i) Systems of equations: Many classical economic equilibrium prob-

lems have been formulated as a system of equations, since market

clearing conditions necessarily equate the total supply with the total

demand. Observe that the problem of solving a system of nonlinear

equations F (x) = 0 can be viewed as a VI(Rn, F ) . Clearly the zeros

of F correspond precisely with solutions to VI(Rn, F ) .
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(ii) Optimization problems: An optimization problem is characterized

by its objective function that is to be maximized (profit) or minimized

(loss) depending upon the problem and a set of constraints. Objec-

tive functions include expressions representing profits, costs, market

share, risk etc. The constraint set include constraints that represent

limited budgets or resources, non negativity constraints on the vari-

ables, conservation equations etc. A constrained optimization problem

with objective function f and constraint set K can be represented as

minimize f(x)

subject to x ∈ K.

When the objective function f is continuously differentiable on an open

subset of the closed, convex set K, by the minimum principle, the sta-

tionary points of the above optimization problem can be written as

VI(K, ∇f). Further, when f is a convex function, then every station-

ary point of the optimization problem is a global minimum and the

optimization problem and VI(K, ∇f) are equivalent.

(iii) Complementarity problems: A complementarity condition x.y = 0

for x, y ≥ 0 expresses the fact that if x is positive then y must be

0 and vice-versa. Often in economic systems, the balance of supply

and demand is described by a complementary relation between the two

sets of decision variables. As an example, price of a commodity and

excess demand of a commodity will always obey a complementarity

condition - if one is positive, the other must necessarily be zero and

vice-versa. Complementarity problems (CP) attempt to ascertain if

and when a complementarity condition is satisfied, whether multiple

or unique x and y satisfy the condition etc. A simple example of a

complementarity problem is the complementarity slackness condition of

the Karush-Kuhn-Tucker (KKT) system for an optimization problem

with inequality constraints. The VIP also contains the CP as a special

case; when the underlying set K of the VIP is a cone, then VIP can

equivalently formulated as a CP.

(iv) Fixed point problems: A fixed point of a function is a point that is

mapped to itself by the function. There is a close connection between
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the solutions of a VIP and an associated fixed point problem based

on a projection mapping. In particular, all solutions to a VIP can be

captured as fixed points of suitably defined projection map [24]. A

Nash equilibrium of a game can also be formulated as a fixed point

of the game’s best response map and thus existence of an equilibrium

reduces to determining fixed points of the best response map.

1.2.2 Application areas for stochastic equilibrium problems

(i) In Nash games [25, 26], the players compete in a noncooperative fash-

ion and a stable point referred to as Nash equilibrium refers to a set

of strategies from which unilateral deviation is unprofitable. An exam-

ple is the Nash-Cournot production-distribution problem [27] in which

several firms produce a homogeneous commodity (tablet pcs:- ipads,

android tablets etc or cereal: Kashi, Kellogg’s etc). The price of this

commodity is given by a function of the aggregate quantity sold. Con-

sequently, each agents’ profit function is contingent on the decisions of

his competitors. Thus each firm is interested in determining the quan-

tity to be produced that will maximize their profits, given that profits

are a function of aggregate quantity produced by all competing firms.

(ii) Spatial price equilibrium problems involve the computation of com-

modity prices, supplies and demand in a network of spatially separated

markets. Such models have been used to study problems in agricul-

ture, energy markets, mineral economics and finance [28] as well as the

effects of taxation/subsidization in such markets.

(iii) Traffic equilibrium problems [29] seek a prediction of steady-state traf-

fic flows in a congested network and are also used in traffic planning

or to determine toll collection policy to alleviate traffic congestion.

Wardrop equilibria have been used as a solution concept for network

games when modeling transportation and telecommunication networks

with congestion. The Wardrop user equilibrium principle [29] states

that in equilibrium state, the total travel time (or cost) on all the

routes actually used are equal, and routes with higher total travel time

(or cost) will not be used (have no flow).
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(iv) Oligopolistic market equilibrium problems capture market structures

with a small number of firms and allow for strategic interactions amongst

the firms. Examples include financial markets, electricity power mar-

kets, department stores, computer firms, automobile, chemical or min-

eral extraction industries. Such models are also used to study environ-

mental networks for example the problem of environmental pollution

and an economic-incentive (pollution permits) [30] based approach to

pollution reduction.

1.3 Challenges

The presence of the highly nonlinear expectation operation in the SVIP is one

of the main reasons that makes the problem difficult to tackle. A standard ap-

proach would focus on obtaining an analytical form of the expectation. Then

by using existing theory available for deterministic VIPs, the analytical form

of the expectation would be further examined to derive conclusions about the

structural properties (existence, uniqueness) of the underlying SVIP. How-

ever, a direct application of deterministic results to stochastic regimes is

challenging for several reasons:

(1) Applying existing deterministic characterization statements to the ex-

pected - value function, relies on having access to a tractable form of

the integral (and its derivatives) for the nonlinear mapping. This is of-

ten unavailable when employing distributions over general probability

spaces.

(2) If one does indeed obtain a characterization statement, such a notion

is tied to the chosen distribution and has limited generalizability.

(3) If the integrands are multi-valued, then such an analysis is even harder

to carry out.

1.4 Framework

To contend with these challenges, a different approach is needed. Consider

the scenario-based VIP which refers to the deterministic VIP that results if a
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particular scenario from the uncertainty set were to occur. From existing the-

ory of deterministic VIPs [24], we know that under convexity assumptions for

the underlying set, if the mapping in the scenario-based VIP is single-valued

and coercive then the scenario-based VIP admits a solution. Further, if the

coercivity property of the scenario-based mapping holds in an almost-sure

sense, by applying Fatou’s lemma to this almost-sure coercivity property, we

obtain a coercivity property for the expected-value map. Once the expected-

value map satisfies the coercivity property, deterministic results imply that a

solution to the SVIP is guaranteed to exist. For generalizations of the SVIP,

a similar analysis is complicated by the nonsmoothness or set-valuedness of

the mapping or the set in the VIP. However, by using tools from set-valued

integration and nonsmooth analysis, we are able to develop a similar line of

reasoning to guarantee the existence of solutions to SVIPs and their gener-

alizations. The crucial fact that makes this novel approach succeed is that it

obviates the need for integration, which was the precise obstacle in the direct

application of deterministic results to stochastic regimes. Often the challenge

lies in showing the boundedness of sets whose specification requires evaluat-

ing the integral. Again we consider the use of the scenario-based problems

as a vehicle for showing that the required set is bounded. To summarize,

by using Lebesgue convergence theorems, set-valued integration and nons-

mooth analysis the framework developed is capable of accomplishing the task

of providing existence guarantees to SVIPs without requiring the evaluation

of the expectation operation. As a result, the question of existence of solution

to the SVIP reduces to developing sufficiency conditions for the solvability of

the scenario-based problem in an almost-sure sense. Yet, a direct application

of this approach has to be established in a broad range of settings where it

remains unclear that such an avenue indeed has merit.

1.5 Methods for generalizations

Once the framework described above for SVIPs was developed, a natural

next attempt was to extend the framework to generalizations of SVIPs. The

goal was to have results of the same flavor - guarantee existence of solution

to the generalized stochastic problem without requiring the evaluation of the

expectation operator. This would essentially be achieved by first developing
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almost-sure sufficient conditions for the scenario-based problem. Applica-

tion of Lebesgue convergence theorems to these almost-sure scenario-based

conditions would result in a sufficient condition for the stochastic problem

and thereby guarantee existence of solution to the stochastic problem. To

make all this work for the above generalizations of SVIPs, we used tools from

variational analysis, nonsmooth analysis and set-valued analysis analysis [31].

1.6 Summary and key results

The chapter specific summary and contributions are described below:

• In Chapter 2, we model both smooth and nonsmooth stochastic Nash

games as SVIs and provide almost-sure sufficient conditions for the

scenario-based Nash game that guarantee existence of an equilibrium

to the original stochastic Nash game.

(i) Smooth stochastic Nash games: Our first set of results are

obtained in Section 2.3 for smooth stochatic Nash games where the

random player objectives are differentiable. Specifically, by leveraging

Lebesgue convergence theorems, we develop conditions under which

the satisfaction of a coercivity condition associated with a scenario-

based Nash game in an almost-sure sense allows us to claim that the

stochastic Nash game admits an equilibrium. The associated coercivity

requirements can be further weakened when the mappings are mono-

tone or the strategy sets are uncoupled. In a similar vein, we show

that if the gradient maps associated with a scenario-based Nash game

is strongly monotone over a set of positive measure, then the stochastic

Nash game admits a unique equilibrium.

(ii) Nonsmooth stochastic Nash games: When player payoffs are

merely continuous, the variational conditions of scenario-based Nash

games are given by multivalued variational inequalities. However, by

utilizing a set-valued analog of Fatou’s Lemma, in Section 2.4, we show

that the existence relationship above for smooth stochastic Nash games

may be recovered for general and monotone gradient maps.
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(iii) Stochastic Nash games with coupled stochastic constraints

Often a stochastic Nash game may be characterized by coupled stochas-

tic constraints. We examine whether the equilibrium in primal variables

and Lagrange multipliers (referred to as an equilibrium in the primal-

dual space) may be characterized using the techniques from (i) above.

Interestingly, we develop conditions in Section 2.5 for claiming the ex-

istence and uniqueness of the stochastic Nash game in the primal-dual

space. Note that, in general, even when a mapping is strongly monotone

in the primal space, the mapping in the full space is at best monotone;

consequently uniqueness in the whole space is by no means immediate.

(iv) Examples In Section 2.2, we motivate the questions of interest

by using a class of stochastic Nash-Cournot games where both nons-

moothness (a consequence of employing nonsmooth risk metrics) and

shared stochastic constraints are introduced. We return to these ex-

amples in Section 2.6 where existence statements are provided.

• In Chapter 3, we examine and characterize solutions for the class

of stochastic variational inequality problems and their generalizations

when uncertainty is defined by a continuous distribution. We develop

sufficient conditions for the solvability of stochastic variational inequal-

ities and their generalizations that do not necessitate evaluating expec-

tations. By leveraging Lebesgue convergence theorems and variational

analysis, we provide a far more tractable and verifiable set of suffi-

ciency conditions that guarantee the existence of solution. Our results

can briefly be summarized as follows:

(i) Stochastic quasi-variational inequality problems (SQVIs):

In Section 3.3, we begin by recapping our past integration-free state-

ments for stochastic VIs that required the use of Lebesgue convergence

theorems and variational analysis. Additionally, we provide extensions

to regimes with multi-valued maps and specialize the conditions for set-

tings with monotone maps and Cartesian sets. We then extend these

conditions to stochastic quasi-variational inequality problems where in

addition to a coercivity-like property, the set-valued mapping needs

to satisfy continuity, apart from other “well-behavedness” properties
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to allow for concluding solvability. Finally, we extend the sufficiency

conditions to accommodate multi-valued maps.

(ii) Stochastic complementarity problems (SCPs): Solvability

of complementarity problems over cones requires a significantly differ-

ent tack. In Section 3.4, we show that analogous verifiable integration-

free statements can be provided for stochastic complementarity prob-

lems. Refinements of such statements are also provided in the context

of co-coercive maps.

(iii) Applications: Naturally, the utility of any sufficiency condi-

tions is based on its level of applicability. In Section 3.5, we describe

two application problems. Of these, the first is a nonsmooth stochas-

tic Nash-Cournot game which leads to an SQVI while the second is a

stochastic equilibrium problem in power markets which can be recast as

a stochastic complementarity problem. Importantly, both application

settings are modeled with a relatively high level of fidelity.

• In Chapter 4, we consider a risk management problem involving CVaR

and VaR risk measure and their nonlinear interactions.

In the financial industry, risk has been traditionally managed by the

imposition of value-at-risk or VaR constraints on portfolio risk expo-

sure. Motivated by recent events in the financial industry, we examine

the role that risk-seeking traders play in the accumulation of large

and possibly infinite risk. In Chapter 4, we proceed to show that when

traders employ a conditional value-at-risk (CVaR) metric, much can be

said by studying the interaction between value at risk (VaR) (a non-

coherent risk measure) and conditional value at risk CVaR (a coherent

risk measure based on VaR). Resolving this question requires charac-

terizing the optimal value of the associated stochastic, and possibly

nonconvex, optimization problem, often a challenging problem. Our

study makes two sets of contributions. First, in Section 4.3, we show

that for general asset distributions on a compact support, traders ac-

cumulate finite risk with magnitude of the order of the upper bound of

this support. Second, in Section 4.4, we show that when the supports

are unbounded (such as Gaussian, exponential or fat-tailed distribu-

tions), under relatively mild assumptions, such traders can take on an
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unbounded amount of risk despite abiding by this VaR threshold. In

short, VaR thresholds may be inadequate in guarding against financial

ruin. Apart from contributions to mathematical research, this work

also has practical applications to risk management as practiced today

in the financial industry.

1.7 Organization

This remainder of this thesis is organized as follows. In Chapter 2, we exam-

ine the question regarding existence and uniqueness of equilibria for contin-

uous strategy stochastic Nash games. Such games may be analyzed by ex-

amining the variational conditions, specified compactly as finite-dimensional

variational inequalities. We consider both smooth and nonsmooth payoffs

and provide sufficiency conditions for existence and uniqueness of equilib-

ria. The utility of this approach is demonstrated by using this framework to

analyze Nash-Cournot games in risk-averse and coupled constraint settings.

In Chapter 3, we build on results developed in Chapter 2 in the context of

stochastic Nash games and focus on the more general stochastic variational

inequality problems and their generalizations. We provide sufficiency condi-

tions for existence of solutions to a range of stochastic variational inequality

problems and generalizations when the maps are complicated by the presence

of expectations, multi-valuedness and the presence of stochastic constraints

in the underlying sets. In Chapter 4, we examine the role of VaR(Value-

at-risk) constraints in managing financial risk accumulated by risk-seeking

traders. Resolving this question requires characterizing the optimal value

of the associated stochastic, and possibly nonconvex, optimization problem,

often a challenging problem. This risk can be either finite or unbounded

depending on the asset distributions. In either instance, VaR thresholds are

shown to be inadequate in guarding against financial ruin. In Chapter 5, we

provide a summary this dissertation and provide directions for future work.

Please note that material from Chapters 2 and 4 have been published as

journal articles [32] and [33] while material from Chapter 3 is currently under

review [34].

12



CHAPTER 2

ON THE CHARACTERIZATION OF
SOLUTION SETS OF SMOOTH AND

NONSMOOTH CONVEX STOCHASTIC
NASH GAMES

2.1 Introduction

The theory of games has its origin in the work by Von Neumann and Mor-

genstern [25] while the notion of the Nash equilibrium was introduced by

Nash in 1950 [26]. While finite-strategy games form an important class of

game-theoretic problems in their own right, in this chapter, we concentrate

primarily on continuous strategy noncooperative Nash games where the prob-

lem data is uncertain and agents solve expected-value problems. Accord-

ingly, the resulting class of games of interest are termed as stochastic Nash

games. These games emerge in a host of applications ranging from electricity

markets [3, 4, 35], traffic equilibrium problems [36] and telecommunication

networks [5] where designers are interested in the equilibrium properties of

imperfectly competitive systems.

Continuous-strategy Nash games may be analyzed through an examination

of the variational conditions, specified compactly as finite-dimensional varia-

tional inequalities (cf. [37]). Through such an avenue, a wealth of knowledge

may be gained regarding the structural properties of solution sets of games,

allowing for proving whether the set of equilibria is nonempty, a singleton or

even whether equilibria are locally unique. Most noncooperative systems aris-

ing in practice are characterized by uncertainty regarding problem data. For

instance, in the design of power markets, both availability of power as well as

the cost of generation is not known with complete certainty. A possible model

for capturing strategic behavior is one where players solve stochastic opti-

mization problems, differentiated from their deterministic counterparts by

an expected-value objective. In many settings, the differentiability assump-

tions on the objectives cannot be expected to hold. For instance, standard

Cournot models may require differentiability of price functions, a property
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that is clearly violated when price caps are imposed [35]. Other instances

where such a loss of differentiability may arise is when players are risk-averse

with nonsmooth risk measures [38, 39] or when they face congestion costs that

are piecewise smooth [40]. In such regimes, the resulting variational inequal-

ities have multivalued mappings and their stochastic generalizations are far

more difficult to analyze. Finally, many application settings dictate a need to

impose constraints that require satisfaction in an average or expected-value

sense. An instance arises when firms compete in networked power markets

where their bidding decisions may be constrained by a joint set of transmis-

sion constraints [4, 41]. Accordingly, this chapter is motivated by the need

to characterize the solution sets of stochastic Nash games particularly when

such games are characterized by expected-value objectives, nonsmoothness

and stochastic constraints.

Before proceeding, we discuss where this work resides in the larger con-

text of noncooperative games. The Nash solution concept in the context of

noncooperative games was introduced in the 50s [26, 42] and presented the

notion of one-shot games where all the players make decisions simultaneously,

without the knowledge of the strategies of their competitors. A key assump-

tion of the model proposed by Nash was that of complete information: the

parameters of the noncooperative game are known to all the players. How-

ever, in practice, players may be unclear about their payoffs, leading to the

notion of imperfect information. Harsanyi’s seminal work [43] introduced

the notion of a Bayesian Nash game and proved the existence of a Bayesian

equilibrium. Importantly, the framework provided by Harsanyi requires the

availability of a prior distribution on the parameters, not unlike the need

for distributions when employing a stochastic programming framework for

modeling optimization problems under uncertainty. An alternative approach

lies in using a distribution-free framework that precludes the need for such

a distribution; of note, is the seminal work by Aghassi and Bertsimas [44]

in which a distribution-free robust optimization framework is developed for

examining incomplete information games.

We consider a direction, inspired by stochastic programming models, that

is more aligned with Harsanyi’s framework in which a prior distribution

on uncertain parameters is assumed to be available. Consequently, un-

der suitability convexity assumptions, equilibrium conditions of games with

expected-value payoffs are given by variational inequalities. Recall that when
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strategy sets of the agents are merely closed and convex (and not bounded),

characterizing the solution set of a continuous strategy Nash game requires

appropriate properties on the mapping constructed from the gradients of the

player-specific payoff functions. A standard approach would focus on ob-

taining an analytical form of the expectation which would then be examined

further to obtain properties of the underlying variational problem. How-

ever, this may not prove sensible for several reasons: First, when the payoffs

contain expectations, characterization statements rely on having access to a

tractable integral of a nonlinear function, which is often unavailable. Sec-

ond, if indeed one does obtain a characterization statement, such a notion is

restricted to the chosen distribution and has limited generalizability. Third,

if the player objectives are nonsmooth, then such an analysis is even harder

to carry out.

2.1.1 Review of literature

Before proceeding, we briefly review preceding work in the area of stochas-

tic programming and games. The origins of stochastic programming can be

traced to the work of Dantzig [45] and Beale [46]. This subfield of mathemat-

ical programming has now grown to include linear, nonlinear and integer pro-

gramming models (cf. [47, 48]). Yet, our interest lies in game-theoretic gener-

alizations of stochastic programs, a less studied class of problems. Stochastic

equilibrium problems appear to have been first investigated by Haurie, Za-

ccour and Smeers [49, 50] where a two-period adapted open-loop model is

presented.

The use of variational inequalities for capturing the Nash equilibrium has

relevance when considering Nash games in which players are faced by con-

tinuous convex optimization problems (cf. [37, 51, 52] for an excellent survey

of variational inequalities). Such approaches have allowed for deriving in-

sights into strategic behavior in power markets [3, 4], wireless and wireline

communication networks [5, 6], cognitive radio networks [7], amongst oth-

ers. These efforts have ranged from developing precise statements of exis-

tence/uniqueness for particular models to developing distributed algorithms

(see [37, 52, 53, 17]). In many settings, nonsmooth player objectives are

an essential specification, arising from certain problem-specific intricacies,
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such as nonsmooth price functions [35] (such as through the imposition of

price-caps) or through the use of nonsmooth risk measures [38, 39]. In this

setting, Facchinei and Pang [53] provide a detailed discussion of how equilib-

ria may be characterized. Multi-stage generalizations have been less used in

the past with some exceptions; in particular, Shanbhag et al. [4] use a two-

stage model to capture strategic behavior in two-settlement power markets

while Mookherjee et al. [54] consider dynamic oligopolistic competition using

differential variational inequalities [55].

In stochastic regimes however, the efforts have been largely restricted to

algorithmic schemes, a subset of these being matrix-splitting schemes [4] and

approximation techniques [56]. Monte-Carlo sampling approaches, often re-

ferred to as sample-average approximation (SAA) methods [10], have proved

useful in the solution of stochastic optimization problems [57, 58, 59, 60]. Of

note is the recent work by Xu and his coauthors on the solution of stochastic

Nash games. More specifically, Xu and Zhang [61], in what appears to be

amongst the first papers to examine smooth and nonsmooth stochastic Nash

games, demonstrate the convergence properties of SAA estimators to their

true counterparts. A broader overview of such techniques in the context of

stochastic generalized equations is provided by Xu [62]. More recently, Zhang

et al. have examined related problems in the context of power markets [63].

However, variational approaches have been less useful in finite-strategy games

where simulation-based schemes have assumed relevance (cf [64, 65]).

Yet, far less is known about characterization of solutions when the un-

certainty is defined by a continuous distribution. In particular, when play-

ers solve expected-value problems with general probability measures, little

is known about whether equilibria exist and are unique, particularly when

strategy sets are unbounded. On the basis of precisely such a shortcoming,

we develop a framework for claiming existence of equilibria in both smooth

and nonsmooth regimes.

2.1.2 Contributions

(1) Smooth stochastic Nash games Our first set of results, provided

in Section 2.3, is associated with stochastic Nash games where the random

player objectives are differentiable. Specifically, by leveraging Lebesgue con-
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vergence theorems, we develop conditions under which the satisfaction of

a coercivity condition associated with a scenario-based Nash game in an

almost-sure sense allows us to claim that the stochastic Nash game admits

an equilibrium. The associated coercivity requirements can be further weak-

ened when the mappings are monotone or the strategy sets are uncoupled. In

a similar vein, we show that if the gradient maps associated with a scenario-

based Nash game is strongly monotone over a set of positive measure, then

the stochastic Nash game admits a unique equilibrium.

(2) Nonsmooth stochastic Nash games When player payoffs are merely

continuous, the variational conditions of scenario-based Nash games are

given by multivalued variational inequalities. However, by utilizing a set-

valued analog of Fatou’s Lemma, in Section 2.4, we show that the existence

relationship of (1.) may be recovered for general and monotone gradient

maps.

(3) Stochastic Nash games with coupled stochastic constraints Of-

ten a stochastic Nash game may be characterized by coupled stochastic con-

straints. We examine whether the equilibrium in primal variables and La-

grange multipliers (referred to as an equilibrium in the primal-dual space)

may be characterized using the techniques from (1). Interestingly, we de-

velop conditions in Section 2.5 for claiming the existence and uniqueness of

the stochastic Nash game in the primal-dual space. Note that, in general,

even when a mapping is strongly monotone in the primal space, the mapping

in the full space is at best monotone; consequently uniqueness in the whole

space is by no means immediate.

(4) Examples In Section 2.2, we motivate the questions of interest by

using a class of stochastic Nash-Cournot games where both nonsmoothness

(a consequence of employing nonsmooth risk metrics) and shared stochastic

constraints are introduced. We return to these examples in Section 2.6 where

existence statements are provided.

We end the introduction with a roadmap to the rest of the chapter. Mo-

tivating examples and some background to variational inequalities and non-

smooth analysis are provided in Section 2.2. Smooth stochastic Nash games

are considered in Section 2.3 while nonsmooth generalizations are examined
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in Section 2.4. Extensions to the regime with stochastic constraints are dis-

cussed in Section 2.5. Our framework is applied to a class of risk-neutral and

risk-averse stochastic Nash-Cournot games in Section 2.6.

2.2 Motivating examples and background

2.2.1 Motivating examples

A motivating problem for pursuing our research agenda is the stochastic

Nash-Cournot game. In a Cournot model, profit-maximizing agents compete

in quantity levels while faced with a price function associated with aggregate

output. Deterministic Nash-Cournot games have been studied extensively [3,

35, 66, 67] and have found applications in electricity markets [3, 35]. However,

stochastic generalizations of such games have not been as well studied.

We motivate our line of questioning from three examples each of which

introduces a complexity that is subsequently addressed. In section 2.6, we

return to these examples with the intent of characterizing the solutions sets

of equilibria arising in such settings. We begin with a stochastic generaliza-

tion of a Nash-Cournot game. In such games, if at least one of the agents’

production is uncapacitated then existence is not immediately available from

standard fixed-point arguments. Furthermore, the firms may be risk-neutral,

risk-averse or may have to contend with expected-value constraints. This

leads to three classes of stochastic Nash-Cournot games that our research

addresses.

Consider N producers involved in production of a commodity. The quan-

tity produced by firm i is denoted by xi, with the column vector x = (xi)
N
i=1.

Let ci(xi;ω) denote the random cost incurred by firm i in production of the

commodity. Let p = p(x;ω) denote the random price function associated

with the good. In a stochastic Nash-Cournot game, the players are profit-

maximizing and the expected loss for firm i can be written as E[fi(x;ω)]

where fi(x;ω) , (ci(xi;ω) − p(x;ω)xi). An expectation-based framework is

inherently risk-neutral in that it does not impose higher cost on shortfall.

This is the basis of the risk-neutral game which we define next. Through

this chapter, we consider a probability space P , (Ω,F , IP) and ξ : Ω→ Rd

a random vector. With a slight abuse of notation, we will use ω to denote
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ξ(ω).

Example : (Risk-neutral stochastic Nash-Cournot game) Consider an

N -player stochastic Nash-Cournot game, in which the ith player decision

variable xi is constrained to lie in a closed convex set Ki ⊆ R+ that speci-

fies production constraints and the ith player objective function is given by

E[fi(xi;x−i, ω)]. Therefore, for i = 1, . . . , N , the ith agent solves the convex

optimization problem

minimize
xi∈Ki

E [fi(x;ω)] ,

where fi(x;ω) = ci(xi;ω)− p(x;ω)xi. �

The risk-neutrality assumption can be relaxed to allow for risk-averse firms.

While a utility-based approach can be used for capturing risk-preferences, we

extend the risk-neutral stochastic Nash-Cournot framework to accommodate

a conditional value-at-risk measure that captures the risk of lower profits.

Example : (Risk-averse stochastic Nash-Cournot game) Consider an

N−player stochastic Nash-Cournot game, akin to that described in Example

1, except that

fi(z;ω) , ri(x;ω) + κiρi(x,mi;ω),

where κi ∈ [0, 1] is the player-specific risk-aversion parameter, zi = (xi,mi)

and

ρi(z;ω) , min
mi∈R

(
mi +

1

1− τi
(ci(xi)− p(x;ω)xi −mi)

+

)
.

Therefore, for i = 1, . . . , N , the ith agent solves the convex optimization

problem

minimize
xi∈Ki,mi∈R

E [fi(z;ω)] .

Note that E[ρi(zi; z−i, ω)] is the conditional value at risk (CVaR) measure at

level τi ∈ [0, 1) associated with player’s expected loss and fi(z;ω) is a sum

of the expected loss of the firm i and its risk exposure. �

In many regimes, a firm may be faced by stochastic constraints. Accord-

ingly, we allow for expected-value constraints.

Example : (Stochastic Nash-Cournot game with expected value con-

straints) Consider an N -player stochastic Nash-Cournot game in which the
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i-th agent solves the convex optimization problem

minimize E [fi(x;ω)]

subject to
E [di(x;ω)] ≤ 0,

xi ≥ 0.

where E[fi(x;ω)] may be based on either a risk-neutral or a risk-averse model

and E[di(x;ω)] ≤ 0 represents a set of constraints that need to be satisfied

in an expected-value sense. �

In all of the above examples, if the probability space P is discrete, one can

establish existence and uniqueness of the stochastic games by using stan-

dard results from the analysis of variational inequalities (cf. [53]). However,

when the probability space P is continuous, such an extension is difficult

to employ since an analytic form is generally unavailable for the expecta-

tion. In such situations, we examine whether we can develop an avenue for

claiming existence/uniqueness of the stochastic Nash equilibrium that relies

on the satisfaction of a suitable requirement in an almost-sure sense. As

a consequence, the need to integrate the expectation is obviated. Further-

more, we investigate whether these conditions may be extended to allow for

nonsmoothness in the integrands of the expectations.

2.2.2 Background

In this section we provide a quick recap of several assumptions and concepts

used throughout the chapter.

Nash games and variational inequalities

Consider a game in which the ith player’s decisions, denoted by xi, are no

longer constrained to be in a fixed set Ki but are allowed to depend on the

strategies of the other players, namely x−i, as well. The resulting game is a

generalization of the classical Nash game in that in addition to the interaction

of players through their objective functions, it allows for interaction through

coupled strategy sets. The resulting game, referred to as a generalized Nash

game, has received significant recent interest [53, 68]. In this chapter, we
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restrict our research to a particular class of generalized Nash games known

as generalized Nash game with shared constraints and employ assumption

(A1) throughout this chapter, unless mentioned otherwise.

Assumption 2.1 (A1) (a) P , (Ω,F , IP) denotes a non-atomic proba-

bility space and ξ : Ω→ Rd is a random vector.

(b) N = {1, 2, . . . , N} denotes a set of players, n1, . . . , nN are positive

integers and n :=
∑N

i=1 ni. For each i ∈ N , the player-specific strategy

set is denoted by Ki ⊆ Rni and the strategy tuple (xi)
N
i=1 is required to be

feasible with respect to a constraint that couples strategy sets, denoted

by C ⊆ Rn . Unless otherwise specified, these sets are closed,convex

and have a nonempty interior.

(c) In a Nash game with shared strategy sets, given x−i, the feasibility set

of the ith player is denoted by the continuous convex-valued set-valued

map Ki(x−i), defined as

Ki(x−i) , Ki ∩ Ci(x−i) where Ci(x−i) , {xi ∈ Rni(xi, x−i) ∈ C}.
(2.1)

(d) For each ω ∈ Ω, the function fi(x;ω) : Rn × Rd → R (denotes the

objective function of player i) and is convex, Lipschitz continuous and

continuously differentiable in xi for each x−i ∈
∏

j 6=iKj(x−j).

(e) The map ω → fi(x;ω) is measurable.

(f) For each x−i ∈
∏

j 6=iKj(x−j), the Lipschitz constant α(ω, x−i) is inte-

grable in ω.

These games require a set-valued map K(x) and a set K defined as

K(x) ,
N∏
i=1

Ki(x−i); K ,

(
N∏
i=1

Ki

)
∩ C. (2.2)

Definition 2.1 (Generalized Nash game with shared constraints)

Let (A1) hold and let the ith player decisions xi be constrained to lie in

Ki(x−i) and the ith player objectives be fi : Rn → R. Then the resulting

game is a generalized Nash game with shared constraints and is denoted by
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G(K, f) where K is given by (2.2) and f = (fi)
N
i=1. A tuple x∗ ∈ K(x∗) is a

Nash equilibrium (NE) of the game G(K, f) if for every i = 1, . . . , N,

fi(x
∗) ≤ fi(xi, x

∗
−i), ∀xi ∈ Ki(x

∗
−i).

In other words, given x∗−i, x
∗
i is the global optimizer of player i’s optimization

problem

min
xi∈Ki(x∗−i)

fi(xi;x
∗
−i).

Note that if C = Rn, then the resulting game is just the classical Nash game.

The game G(K, f) is said to be a smooth game if each player objective fi

is continuously differentiable in xi and the game is said to be a nonsmooth

game if at least one player’s objective is nonsmooth. In this chapter, we are

concerned with characterizing solution sets of the stochastic extension of the

generalized Nash game with shared constraints G(K, f). A singular exception

to this arises when we consider general coupled constraints in Section 2.5.

Given a pair of set-valued maps K and F, the generalized quasi-variational

inequality, (GQVI) [53] denoted by GQVI(K,F), is the problem of finding

an x ∈ K(x) and u ∈ F(x) such that

(y − x)Tu ≥ 0, ∀y ∈ K(x).

If K is set-valued and F is a single or point-valued mapping F , then the

GQVI(K,F) reduces to the quasi-variational inequality QVI(K, F ). Finally,

when K is a constant map and F is single-valued, then GQVI(K,F) reduces

to the variational inequality VI(K,F ).

GQVI(K,F) represents the most general type of variational inequalities.

The major area of applications of GQVI are mathematical and equilibrium

programming. In [69], a number of the applications of GQVIs are discussed,

including minimization problems involving invex functions, generalized dual

problems and saddle point problems, and equilibrium problems involving ab-

stract economies. Next, we relate Nash games to variational inequalities [53].

Smooth Nash games and quasi-variational inequalities A standard

approach for the analysis of Nash games in which agents have smooth objec-

tives and continuous strategy sets is through variational analysis. Under a

smoothness assumption on f , x∗ , (x∗i )
N
i=1 is a Nash equilibrium of the game
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G(K, f) if and only if x∗ is a solution of QVI(K, F ) where K is the set-valued

mapping given by (2.2) and F =
(
∇x1f

T
1 , . . . ,∇xNf

T
N

)
.

Also, from Proposition 12.4 [53], every solution of VI(K,F ) with K given

by (2.2) and F =
(
∇x1f

T
1 , . . . ,∇xNf

T
N

)
is a termed as a variational equi-

librium or a VE, a terminology that finds its origin in [68]. In other words,

solutions of VI(K,F ) capture a subset of Nash equilibria of the smooth game

G(K, f). The game may have other equilibria that are not captured by this

variational inequality. The stochastic extension of smooth Nash games is

explored in Section 2.3. Throughout this chapter, when the game has shared

constraints, we focus primarily on VEs to avoid the challenge of contending

with quasi-variational inequalities.

Nonsmooth Nash games and generalized QVIs For a nonsmooth

Nash game G(K, f), x∗ , (x∗i )
N
i=1 is a Nash equilibrium if and only if x∗

is a solution to the generalized quasi-variational inequality GQVI(K, ∂F )

where the multifunction K(x) is given by (2.2) and the set valued mapping

∂F (x) =
∏N

i=1 ∂xifi(x). Recall ∂F (x) =
∏N

i=1 ∂xifi(x) where ∂xifi(x) is the

set of vectors wi ∈ Rni such that

fi(x̂i;x−i)− fi(xi;x−i) ≥ (x̂i − xi)Twi, ∀x̂i ∈ Ki(x−i).

It should be emphasized that ∂F (x) is not the Clarke generalized gradient of a

function but is a set given by the Cartesian product of the Clarke generalized

gradients of the player payoffs. Again, from Proposition 12.4 [53], every

solution of GVI(K, ∂F ) with K given by (2.2) and ∂xF =
∏N

i=1 ∂xifi(xi;x−i)

is a Nash equilibrium. In other words, solutions of GVI(K, ∂F ) capture

Nash equilibria of the nonsmooth game G(K, f), the game may have other

equilibria that are not captured by this generalized variational inequality. A

stochastic extension of nonsmooth Nash games is explored in Section 2.4.

Nonsmooth analysis

For purposes of completeness, we recall definitions of several concepts used

in examining nonsmooth games. While a variety of avenues exist for defining

generalized gradients, we look to Rademacher’s theorem that asserts that a

locally Lipschitz function is differentiable almost everywhere in a Lebesgue
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sense. We use a form of the generalized gradient given in [70] as

Definition 2.2 (Clarke Generalized gradient)

∂f(x) = co
{

lim
k→∞
∇f(xk) : xk → x, xk 6∈ S, xk 6∈ Ωf

}
,

where co(.) denotes the convex hull, Ωf is a set of points in B(x, ε) (an open

ball of radius ε around x) at which f is not differentiable and S is any other

set of measure zero.

In this chapter, we restrict our interest to player objectives that are regu-

lar, in the sense of Clarke [70]. Note that ∂ijf(x) denotes the jth component

of the ∂xif(x). In defining a regular function, we define the generalized di-

rectional derivative of f when evaluated at x in a direction p as

f ◦(x; p) := lim sup
y→x,λ↓0

f(y + λp)− f(y)

λ
.

Definition 2.3 (Regular function) A function f is said to be regular at x

if for all v, the directional derivative f ′(x; v) exists and is given by f ′(x; v) =

f ◦(x; v).

In fact, if f is locally Lipschitz near x and convex, then f is regular at x (see

Prop 2.3.6 [70]).

Finally, we recall the notion of a monotone set valued mapping from [37].

Definition 2.4 (Monotone set valued map) A set-valued map φ : K →
Rn is said to be monotone on K if (x− y)T (u− v) ≥ 0 for all x and y in K,

and all u in φ(x) and v in φ(y).

Risk measures

Suppose Y denotes the random losses where IPY denotes its distribution

function, i.e. IPY (u) , IP{Y ≤ u}. Then the value at risk (VaR) at the α

level specifies the maximum loss with a confidence level α and is defined as

VaRα(Y ) , inf{u : IPY (u) ≥ α}.

Its conditional variant, referred to as the conditional value at risk (CVaR),

is the expected loss conditioned on the event that the loss exceeds the VaR
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level [71, Th. 10]:

CVARα(Y ) = inf
m∈IR

{
m+

1

1− αE
[
(Y −m)+

]}
, (2.3)

where (t)+ = max{t, 0}. Note that in (2.3), the least of the optimal m

represents the VaR at the α-confidence level.

2.3 Smooth stochastic Nash games

In this section, we analyze the stochastic extension of a smooth Nash game as

described in Section 2.2.2 and begin by defining a canonical smooth stochastic

Nash game corresponding to the probability space P .

Definition 2.5 (Stochastic Nash game) Let (A1) hold. A stochastic Nash

game, denoted by G(K, f ,P) is an N-player game in which the ith player is

faced with the stochastic optimization problem Si(x−i), defined as

Si(x−i) minimize E [fi(x;ω)]

subject to xi ∈ Ki(x−i),

where for i = 1, . . . , N , the strategy set Ki(x−i) ⊆ Rni is defined by (2.1) and

the random objective function fi (as in (A1)) is smooth. Then, (x∗i )
N
i=1 ∈

K(x∗) given by (2.2) is said to be a stochastic Nash equilibrium for G(K, f ,P)

if, for i = 1, . . . , N , x∗i solves the convex optimization problem Si(x
∗
−i), i.e.

given x∗−i,

E [fi(x
∗;ω)] ≤ E

[
fi(xi;x

∗
−i, ω)

]
, ∀xi ∈ Ki(x

∗
−i).

Note that in the notation G(K, f ,P), K is given by (2.2) and f , (E[fi])
N
i=1.

Also note that by (A1), for each x, K(x) is a closed convex set and for each

ω and x−i, the function fi is continuously differentiable and convex in xi.

Definition 2.6 (Scenario-based Nash game) Consider a stochastic Nash

game G(K, f ,P). For a fixed ω ∈ Ω, the related scenario-based Nash game,

denoted by G(K, f , ω), is the game where the ith agent solves the deterministic
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game Si(x−i;ω) given by

Si(x−i;ω) minimize fi(x;ω)

subject to xi ∈ Ki(x−i).

Then (x∗i )
N
i=1 ∈ K(x∗) is said to be a scenario-based Nash equilibrium for

G(K, f , ω) if, for i = 1, . . . , N , x∗i solves the convex optimization problem

Si(x
∗
−i;ω) or given x∗−i and ω,

fi(x
∗;ω) ≤ fi(xi;x

∗
−i, ω), ∀xi ∈ Ki(x

∗
−i).

Note that in the notation G(K, f , ω), K is given by (2.2) and f , (fi(.;ω))Ni=1.

Our goal in this chapter, is to articulate properties associated with the

scenario-based Nash games that allow us to claim existence of a stochas-

tic Nash equilibrium. We do this by relating the games to corresponding

variational inequalities and then using known results from the theory of vari-

ational inequalities to draw conclusions about the original stochastic Nash

game. Our next result extended from [68] relates the equilibria of a stochastic

Nash game and its scenario-based counterpart to the solutions of correspond-

ing variational inequalities. With respect to G(K, f ,P) and G(K, f , ω), we

define the functions F and F (.;ω) as

F (x) ,


∇x1E [f1(x;ω)]

...

∇xNE [fN(x;ω)]

 and F (x;ω) ,


∇x1f1(x;ω)

...

∇xNfN(x;ω)

 , respectively.

(2.4)

Lemma 2.1 (Variational equilibrium (VE)) Consider a stochastic Nash

game given by G(K, f ,P) and suppose (A1) holds. Then the following hold:

(a) If x∗ is a solution of VI(K,F ) where K and F are given by (2.2) and

(2.4) respectively then x∗ is an equilibrium of G(K, f ,P).

(b) Similarly if x∗ is a solution of VI(K,F (.;ω)) where K and F (.;ω) are

given by (2.2) and (2.4) respectively then x∗ is an equilibrium of the

scenario-based game G(K, f , ω).
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Proof : (a) Suppose x∗ ∈ K is a solution of VI(K,F ) where K and F are

defined by (2.2) and (2.4), respectively. Then, given x∗−i, it suffices to show

that x∗i is a minimizer of Si(x
∗
−i). Also, x∗ ∈ K gives that x∗ ∈ K(x∗), or

that x∗i ∈ Ki ∩ C(x∗−i). Consider a vector yi ∈ Ki ∩ Ci(x∗−i) and let y be

defined as (yj)
N
j=1 where yj = x∗j for all j 6= i. Therefore y ∈ K. It follows

from the fact that x∗ is a solution of VI(K,F ),

0 ≤ F (x∗)T (y − x∗) = ∇iE[fi(x
∗
i ;x
∗
−i, ω)]T (yi − x∗i ), ∀yi ∈ Ki ∩ Ci(x∗−i)

which allows us to claim that given x∗−i and the convexity of Ki and Ci(x∗−i)
for all i, the vector x∗i minimizes E[fi(xi;x

∗
−i, ω)] over Ki ∩ Ci(x∗−i).(b) This

follows through a similar proof using the definition of F (.;ω) from (2.4).

Lemma 2.1 shows that a variational equilibrium provides an equilibrium to

the game G(K, f ,P). Notably, the associated variational inequality VI(K, F )

is a stochastic variational inequality (see [61, 62] for more details on stochas-

tic variational inequalities) in that the mapping F (x) has expectation-valued

components. However, characterizing solution sets would require deriving

properties of F (x), a task that is significantly complicated by the presence of

an expectation. Instead, our research is motivated by building an avenue for

characterizing solution sets through the analysis of the scenario-based Nash

game. As a consequence of Lemma 2.1, a solution of VI(K,F (.;ω)) provides

an equilibrium to the scenario-based game G(K, f , ω). Thus, characterizing

solution sets requires deriving properties of F (.;ω), a deterministic mapping.

In Section 2.3.1, we develop sufficient conditions for the existence of a

stochastic Nash equilibrium, in cases where K is a general (possibly un-

bounded) as well as when K can be represented as a Cartesian product of

(possibly unbounded) strategy sets. We examine similar questions in sec-

tion 2.3.2, when addressing the uniqueness questions. Note that throughout,

our analysis does not rely on the knowledge of the probability distribution

IP.

2.3.1 Existence of stochastic Nash equilibria

Our first set of results allows us to claim that under suitable conditions, the

satisfaction of a suitable growth condition in an almost-sure sense allows us
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to claim that the original stochastic Nash game admits an equilibrium. This

result relies on convergence theorems that allow for interchange of expecta-

tions and limits [72] and require the use of an additional assumption that is

necessary for the application of Fatou’s Lemma.

Assumption 2.2 (A2) There exists an xref ∈ K and for each i there exists

a nonnegative integrable function ui(x;xref, ω) such that ∇xifi(x;ω)T (xi −
xrefi ) ≥ −ui(x;xref, ω).

Before proving our main result, we provide a result necessary for carrying

out the interchange between integration and differentiation as well as for

allowing the use of Fatou’s Lemma.

Lemma 2.2 (Interchange of integration and differentiation)

(1) Under assumptions (A1(d,e,f)) and (A2), we have

∇xiE [fi(x;ω)] = E [∇xifi(x;ω)] ; (2.5)

(2) Given a sequence {xk} ∈ K, Fatou’s Lemma can be applied for the

sequence

Hk(xk;x
ref, ω) = ∇xifi(x

k
i ;x

k
−i, ω)T (xki − xrefi ),

leading to

E
(

lim inf
k→∞

Hk(x
k, xref, ω)

)
≤ lim inf

k→∞
E
(
Hk(x

k, xref, ω)
)
. (2.6)

Proof : From (A1(e,f)); the hypotheses 2.7.1 [70] are satisfied. Further

we have, Rn is separable. From (A1(d)), we also have for each ω, x−i, fi is

convex and Lipschitz and therefore regular. Thus, from Th. 2.7.2 [70] we get

that (1) holds.

We observe that (2) follows from (A2).

Proposition 2.3 (Existence of stochastic Nash equilibrium) Consider

a stochastic Nash game G(K, f ,P) and suppose (A1) and (A2) hold. If there

exists an xref ∈ K such that

lim inf
‖x‖→∞,x∈K

F (x;ω)T (x− xref) > 0 almost surely,
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then the stochastic Nash game G(K, f ,P) admits an equilibrium.

Proof : From Lemma 2.1, an equilibrium of VI(K,F ) with F given by (2.4)

is an equilibrium of G(K, f ,P). Recall from [37, Ch. 2] that the solvability

of VI(K,F ) requires showing that there exists an xref such that

lim inf
‖x‖→∞,x∈K

F (x)T (x− xref) > 0.

Through the form of F in (2.4) we get,

F (x)T (x− xref) =
∑
i∈N

(∇xiE [fi(x;ω)])T (xi − xref
i ).

By (A2) and from Lemma 2.2(1), we may interchange the order of integration

and differentiation, obtaining

F (x)T (x− xref) =
∑
i∈N

E [∇xifi(x;ω)]T (xi − xref
i ) = E

[∑
i∈N

∇xifi(x;ω)T (xi − xref
i )

]
= E[F (x;ω)T (x− xref)].

Thus, we have

lim inf
‖x‖→∞,x∈K

F (x)T (x− xref) = lim inf
‖x‖→∞,x∈K

E[F (x;ω)T (x− xref)].

Now, by (A2) and from Lemma 2.2, we may use Fatou’s lemma on the right-

hand side to get,

lim inf
‖x‖→∞,x∈K

F (x)T (x− xref) ≥ E
[

lim inf
‖x‖→∞,x∈K

[F (x;ω)T (x− xref)]

]
> 0,

where the last inequality follows from the given hypothesis.

In settings where K is a Cartesian product (for example when C = Rn),

VI(K,F ) is a partitioned VI as defined in [37, Ch. 3.5]). Accordingly,

Prop. 2.3 can be weakened so that even if the coercivity property holds for

just one index ν ∈ {1, . . . , N}, an equilibrium to G(K, f ,P) exists.

Proposition 2.4 (Existence over Cartesian strategy sets) Consider a

stochastic Nash game G(K, f ,P) and suppose (A1) and (A2) hold. Further-

more, C = Rn. If there exists an xref ∈ K such that for every x ∈ K, there
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exists a ν ∈ {1, . . . , N} such that if the coercivity property, given by

lim inf
‖xν‖→∞,xν∈Kν

Fν(x, ω)T (xν − xrefν ) > 0,

in an almost sure sense, then G(K, f ,P) admits an equilibrium.

Proof : For the given xref ∈ K and for any x ∈ K, there exists a ν ∈
{1, . . . , N}, such that

lim inf
‖xν‖→∞,xν∈Kν

Fν(x, ω)T (xν − xref
ν ) > 0

holds almost surely. Thus we obtain

E
(

lim inf
‖xν‖→∞,xν∈Kν

Fν(x, ω)T (xν − xref
ν )

)
> 0

Applying Fatou’s lemma we get

lim inf
‖xν‖→∞,xν∈Kν

E
[
Fν(x, ω)T (xν − xref

ν )
]
> 0.

This implies that C≤ is bounded where

C≤ :=

{
x ∈ K : max

1≤ν≤N
E
[
Fν(x, ω)T (xν − xref

ν )
]
≤ 0

}
.

From [37, Prop. 3.5.1], boundedness of C≤ allows us to conclude that VI(K,F )

is solvable. Thus, G(K, f ,P) admits an equilibrium.

We now present a weaker set of sufficient conditions for existence under

the assumption that the mapping F (x;ω) is a monotone mapping over K for

almost every ω ∈ Ω.

Corollary 2.5 (Existence of an SNE under monotonicity) Consider a

stochastic Nash game G(K, f ,P) and suppose (A1) and (A2) hold. Suppose

F (x, ω) is a continuous monotone mapping on K for almost every ω ∈ Ω.

Then G(K, f ,P) admits an equilibrium if there exists an xref such that

lim inf
‖x‖→∞,x∈K

F (xref;ω)T (x− xref) > 0

holds in almost sure sense.
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Proof : We begin with the observation that the monotonicity of F (x;ω)

allows us to bound F (x;ω)T (x− xref) from below as follows:

F (x;ω)T (x− xref) = (F (x;ω)− F (xref;ω))T (x− xref) + F (xref;ω)T (x− xref)

≥ F (xref;ω)T (x− xref).

Taking expectations on both sides gives us

E
[
F (x;ω)T (x− xref)

]
≥ E

[
F (xref;ω)T (x− xref)

]
.

This implies that

lim inf
‖x‖→∞,x∈K

E
[
F (x;ω)T (x− xref)

]
≥ lim inf
‖x‖→∞,x∈K

E
[
F (xref;ω)T (x− xref)

]
.

(2.7)

By (A2), Fatou’s Lemma can be employed in the last inequality to inter-

change limits and expectations leading to

lim inf
‖x‖→∞,x∈K

E
[
F (xref;ω)T (x− xref)

]
≥ E

(
lim inf

‖x‖→∞,x∈K
F (xref;ω)T (x− xref)

)
.

But by assumption, we have that

lim inf
‖x‖→∞,x∈K

F (xref;ω)T (x− xref) > 0

holds in almost sure sense, implying that from (2.7), we have that

lim inf
‖x‖→∞,x∈K

E
[
F (x;ω)T (x− xref)

]
> 0,

allowing us to conclude the existence of a stochastic Nash equilibrium.

Remark: It is important to note the subtle difference in the assumptions

made on xref in Prop. 2.3 and Prop. 2.5. In Prop. 2.3, we have made an

assumption on the behavior on F (x;ω)T (x − xref) while in Prop. 2.5, the

almost sure monotonicity of F (x;ω) allows to derive existence through an

assumption on F (xref;ω)T (x− xref).
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2.3.2 Uniqueness of stochastic Nash equilibria

Next, we examine whether uniqueness statements may be available by exam-

ining scenario-based games. Recall that if F (x;ω) is a monotone mapping

in an almost sure sense, then E[F (x;ω)] is also monotone. However, mere

monotonicity on the set does not yield any immediate results as far as ex-

istence or uniqueness of the original stochastic Nash game are concerned.

However, if in addition to almost-sure monotonicity, the mapping F (x;ω) is

assumed to be strongly monotone on a set of arbitrarily small but positive

measure then the stochastic Nash game not only admits a solution but the

solution is also unique. Before proceeding we define ε-strongly and ε-strictly

monotone mappings

Definition 2.7 (ε-strongly (strictly) monotone mapping )

The mapping F (x;ω) of the scenario-based game is said to be an ε-strongly

(strictly) monotone mapping, if the following hold:

(i) It is monotone in an almost sure sense on Ω;

(ii) Additionally, if there is a subset U ⊆ Ω with IP(U) ≥ ε > 0 such that

F (x;ω) is strongly (strictly) monotone when ω ∈ U .

The next proposition shows that under ε-strong monotonicity both existence

and uniqueness of a stochastic Nash equilibrium can be guaranteed.

Proposition 2.6 (Existence and uniqueness of SNE)

Consider the stochastic Nash game G(K, f ,P) and suppose (A1) holds.

We further assume the mapping F (x, ω) is an ε-strongly monotone mapping.

Then G(K, f ,P) admits a unique equilibrium.

Proof : Our result rests on showing that F (x) is strongly monotone map

under the specified assumptions. On the set U ⊆ Ω, by strong monotonicity,

there exists a constant c > 0 such that

(F (x, ω)−F (y;ω))T (x−y) ≥ c‖x−y‖2,∀x, y ∈ K, for almost every ω ∈ U.

It follows that E[F (x;ω)− F (y;ω)T (x− xref)] can be bounded as∫
U

(F (x;ω)− F (y;ω))T (x− y)dIP +

∫
Ω\U

(F (x;ω)− F (y;ω))T (x− y)dIP

≥
∫
U

c‖x− y‖2dIP = c‖x− y‖2IP(U).
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Therefore, F (x) is a strongly monotone map and G(K, f ,P) admits a unique

equilibrium [37, Th. 2.3.3]. Note that (ii) follows in an analogous fashion.

This result suggests that if we have a scenario-based game characterized

by an ε−strongly monotone map, then the expected value game does have

a unique equilibrium. Notably, the former implies that the scenario-based

Nash game admits a unique equilibrium with positive probability. Next, we

examine the consequences of a weaker requirement on the scenario-based

mapping.

Proposition 2.7 (Uniqueness of stochastic Nash equilibrium)

Consider the stochastic Nash game G(K, f ,P) and suppose (A1) holds.

Furthermore, suppose G(K, f ,P) admits a Nash equilibrium. If we further

assume the mapping F (x, ω) is an ε-strongly monotone mapping.Then the

original stochastic Nash game G(K, f ,P) admits a unique equilibrium.

Proof : Our result rests on showing that F (x) is strictly monotone map

under the specified assumptions. This allows us to claim that at most one

solution to VI(K,F (x)) exists. Together with an assumption of existence,

uniqueness follows readily. On the set U ⊆ Ω, by strict monotonicity, we

have that

(F (x, ω)− F (y;ω))T (x− y) > 0,∀x, y ∈ K, for all ω ∈ U.

It follows that E[(F (x;ω)− F (y;ω))T (x− xref)] can be expressed as∫
U

(F (x;ω)− F (y;ω))T (x− y)dIP +

∫
Ω\U

(F (x;ω)− F (y;ω))T (x− y)dIP > 0.

Therefore, F (x) is a strictly monotone map.

2.4 Nonsmooth stochastic Nash games

A crucial restriction in the discussion in the earlier section pertains to the

differentiability of the functions fi ∈ f . This ensures that the gradients

are single-valued as opposed to being multivalued. Yet, in many settings

complicated by nonsmooth cost and price functions, such as those arising
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from risk measures or the imposition of price caps, the need to examine

nonsmooth generalizations of stochastic Nash games remains paramount.

We begin by defining the multivalued variational inequality that represents

the equilibrium conditions of a nonsmooth stochastic Nash game. Through

this section, we employ a modified form of assumption (A1).

Assumption 2.3 (A1†) Define (A1†) to be (A1) except instead of (A1(d)),

we assume the following:

(A1d†) For each ω ∈ Ω, the functions fi(x;ω) : Rn × Rd → R are convex and

Lipschitz continuous in xi for each x−i ∈
∏

j 6=iKj(x−j).

In contrast with Section 2.3, in this section, we concentrate on player-specific

functions f(xi;x−i, ω) that are not necessarily smooth but are convex and

Lipschitz everywhere, implying that they are regular.

2.4.1 Existence of nonsmooth stochastic Nash equilibrium

In the same vein as before, our intent is to derive conditions under which

the existence of an equilibrium to the nonsmooth stochastic Nash can be

obtained from the almost-sure satisfaction of a coercivity result pertaining to

the scenario-based nonsmooth Nash game. We begin by stating two existence

results for nonsmooth Nash games, of which the former allows for convex

shared constraints while the latter insists on Cartesian strategy sets that

preclude coupling. Akin to the results on smooth stochastic Nash games, our

efforts rely on the analysis of the associated stochastic variational inequalities

with multi-valued mappings [61, 62].

Proposition 2.8 (Nonsmooth Nash games)

Consider a Nash game G(K, f).

(a) Nash games with shared constraints [53, Th. 12.3] Suppose C ⊆
Rn. If there exists an xref ∈ K such that L< is bounded where

L< ,
{
y ∈ K : ∃w ∈ ∂F (x) such that (y − xref)Tw < 0

}
, (2.8)

then the Nash game G(K, f) admits an equilibrium.
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(b) Nash games with Cartesian strategy sets [53, Cor. 12.1] Sup-

pose C = Rn. If there exists an xref ∈ K such that L< is bounded where

L< ,

{
(yi)

N
i=1 ∈ K : for every i such that yi 6= xrefi ,

(yi − xrefi )Twi < 0 for some wi ∈ ∂xifi(x)

}
, (2.9)

then the Nash game G(K, f) admits an equilibrium.

These conditions are implied by the following results, similar to [53,

Cor. 12.1].

Proposition 2.9 Consider a Nash game G(K, f).

(a) Suppose C = Rn. If there exists an xref ∈ K such that

lim inf
xk∈K,‖xk‖→∞,k→∞

(
min

w∈∂F (xk)
(xk − xref)Tw

)
> 0, (2.10)

then the Nash game G(K, f) admits an equilibrium.

(b) Suppose C ⊆ Rn. If there exists an xref ∈ K such that

lim inf
xk∈K,‖xk‖→∞,k→∞

max
i∈{1,...,N}

(
min

wi∈∂xk,ifi(xk)
(xk,i − xrefi )Twi

)
> 0, (2.11)

then the Nash game G(K, f) admits an equilibrium.

Proof :

(a) We show that if (2.10) holds then the set L<, defined in (2.8), is

bounded. If L< is empty, it is trivially bounded. We proceed by a con-

tradiction and assume that L< is nonempty and unbounded. Then there

exists a sequence {xk} of elements belonging to L< such that ‖xk‖ goes

to ∞. But from definition of L< we have that for each k, there exists a

wk ∈ ∂F (xk) such that (xk−xref)Twk < 0. This clearly implies that for each

k, minw∈∂F (xk)(xk − xref)Tw < 0. This further implies for the sequence {xk}
we have that

lim inf
xk∈K,‖xk‖→∞,k→∞

min
w∈∂F (xk)

(xk − xref)Tw ≤ 0.
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But this contradicts the assumption (2.10). This contradiction implies that

L< must be bounded. Thus by Prop. 2.9, we conclude that the game G(K, f)

admits an equilibrium.

(b) Omitted.

In developing a relationship between the solvability of a scenario-based

nonsmooth Nash game and its expected-value counterpart, we first need to

ensure that an interchange between the expectation and differentiation op-

erator remains valid.

Lemma 2.10 Suppose (A1†) holds. Then the sets ∂ijE[fi(xi;x−i, ω)] and

E[∂ijfi(xi;x−i, ω)] are identical; specifically

∂ijE [fi(xi;x−i, ω)] = E [∂ijfi(xi;x−i, ω)] .

Proof : The proof follows by noting that K ⊆ Rn, a separable metric space,

and by invoking Th.2.7.2 [70] .

One can therefore conclude that if w ∈ ∂F (x) implies that for all j =

1, . . . , ni and i = 1, . . . , N, wij ∈ ∂ijE[fi(xi;x−i, ω)]. It follows that wij lies

in E[∂ijfi(xi;x−i, ω)] or wij ∈ E[∂ijfi(xi;x−i, ω)]. To obtain a precise rela-

tionship between the solvability of a scenario-based nonsmooth Nash game

and its stochastic counterpart, we need to be able to express w in terms

of the scenario-based generalized gradients. To facilitate this, we analyze

the set-valued map E[∂ijfi(xi;x−i, ω)] further. This analysis requires some

definitions:

Definition 2.8 (Def. 8.1.2 [31]) Let (Ω,F , IP) be a probability space. Con-

sider a set-valued map H : Ω→ Rn. A measurable map h : Ω→ Rn satisfying

∀ω ∈ Ω, h(ω) ∈ H(ω), is called a measurable selection of H.

As a consequence, for all ω ∈ Ω, j = 1, . . . , ni and i = 1, . . . , N , the

measurable map wij(x;ω) satisfying

wij(x;ω) ∈ ∂ijfi(x;ω)

is a measurable selection of ∂ijfi(x;ω). In fact, Aumann [73] defined the

integral of a set-valued map using the set of all integrable selections; in
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particular if the set of all integrable selections of H(ω) is denoted by H and

given by

H ,
{
f ∈ L1(Ω,F , IP) : h(ω) ∈ H(ω) for almost all ω ∈ Ω

}
,

then the expectation of H(ω) is given by∫
Ω

H(ω)dIP :=

{∫
Ω

h(ω)dIP | h(ω) ∈ H
}
.

If the images of H(ω) are convex then this set-valued integral is convex [31,

Definition 8.6.1]. In this chapter, we are concerned with the integral of Clarke

generalized gradients. Since the Clarke generalized gradient map has a con-

vex image, the convexity of the set-valued integral in this case is immediate.

Note that when the assumption of convexity of images of H does not hold,

then the convexity of this integral follows from Th. 8.6.3 [31] provided that

the probability measure is non-atomic.

Given the convexity of the set, we may define an extremal selection. A

point z̄ of a convex set K is said to be extremal if there are no two points

x, y ∈ K such that λx + (1 − λ)y = z̄ for λ ∈ (0, 1) and is denoted by

z̄ ∈ ext(K). Similarly, as per Def. 8.6.5 [31], we say h ∈ H is an extremal

selection of H if∫
Ω

h(ω)dIP is an extremal point of

∫
Ω

H(ω)dIP.

Then the set He is the set of extremal selections and is defined as

He ,

{
h ∈ H |

∫
Ω

h(ω)dIP ∈ ext

(∫
Ω

H(ω)dIP

)}
.

Before proceeding to prove our main existence result of this section, we

make an assumption pertaining to wij(x;xref, ω) which is defined as

wij(x;xref, ω) , ([∇fi(x)]j([xi]j − [xref
i ]j)),

for any x and xref. 4

Assumption 2.4 (A2†) Assume that wij(x;xref, ω) is a sequence of extended

real-valued measurable functions on P for all j ∈ {1, . . . , ni} and for all i ∈
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N . Furthermore, there exists a nonnegative integrable function ū(x;xref, ω)

such that wij(x;xref, ω) ≥ −ū(x;xref, ω) for all x, i and j.

Theorem 2.11 (Existence of nonsmooth stochastic Nash equilibrium)

Consider a stochastic Nash game G(K, f ,P) and suppose (A1†) and (A2†)

hold. If there exists an xref ∈ K such that

lim inf
k→∞,xk∈K,‖xk‖→∞

(
min

w∈∂F (xk;ω)
wT (xk − xref)

)
> 0 almost surely,

then G(K, f ,P) admits an equilibrium.

Proof : Recall that the solvability of the stochastic VI(K, ∂F ) requires

showing that there exists an xref such that

lim inf
k→∞,xk∈K,‖xk‖→∞

(
min

w∈∂F (xk)
wT (xk − xref)

)
> 0.

We proceed by contradiction and assume that for any xref ∈ K, we have that

lim inf
k→∞,xk∈K,‖xk‖→∞

(
min

w∈∂F (xk)
wT (xk − xref)

)
≤ 0. (2.12)

For a given xk, suppose we denote the selection that minimizes wT (xk−xref)

by wk. By Prop. 7.1.4 [37], ∂F (xk) is a closed and convex set, implying that

wk ∈ ∂F (xk). Therefore, the following holds:

lim inf
k→∞

wTk (xk − xref) ≤ 0. (2.13)

But wTk (xk − xref) can be expressed as wTk (xk − xref) =
∑N

i=1w
T
k,i(xk,i − xref

i ),

where

wk,i ∈ ∂xk,iE [fi(xk;ω)] = E
[
∂xk,ifi(xk;ω)

]
. (2.14)

Note that the right-hand side of (2.14) is an integral of a set-valued map

∂fi(xk;ω) with range Rni and is a convex set. Thus by Carathéodory’s the-

orem for convex sets, there exist λi,l(xk) ≥ 0 and

yi,l(xk) ∈ ext
(∫

Ω
∂xifi(xk;ω)dIP

)
such that

wk,i(x) =

ni∑
l=0

λi,l(xk)yi,l(x),

ni∑
l=0

λi,l(xk) = 1.
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By Th. 8.6.3 [31], for each l, there exists an extremal selection gi,l(xk;ω) of

∂xifi(xk;ω) such that yi,l(xk) =
∫

Ω
gi,l(xk;ω)dIP. Consequently, wk,i may be

expressed as

wk,i =

ni∑
l=0

λi,l(xk)

∫
Ω

gi,l(xk;ω)dIP,

ni∑
l=0

λi,l(xk) = 1. (2.15)

Since gi,l(xk;ω) is a selection from ∂xifi(xk;ω) for each l, we have that for any

ω ∈ Ω, gi,l(xk;ω) ∈ ∂xifi(xk;ω). From the convexity of the set ∂fi(xk;ω),

we get that for each ω, the convex combination
∑ni

l=0 λi,l(x)gi,l(xk;ω) ∈
∂xifi(xk;ω). Therefore, we have that

∑ni
l=0 λi,l(xk)gi,l(xk;ω) is also an in-

tegrable selection of ∂xifi(xk;ω) which we denote by gi(xk;ω) or

gi(xk;ω) ,
ni∑
l=0

λi,l(xk)gi,l(xk;ω) ∈ ∂xifi(xk;ω).

From (2.15) and by interchanging the order of integration and summation,

the following holds

wk,i =

ni∑
l=0

λi,l(xk)

∫
Ω

gi,l(xk;ω)dIP =

∫
Ω

ni∑
l=0

λi,l(xk)gi,l(xk;ω)dIP

=

∫
Ω

gi(xk;ω)dIP.

Substituting wk,i =
∫

Ω
gi(xk;ω)dIP into wTk (xk − xref), we obtain

wTk (xk − xref) =

∫
Ω

N∑
i=1

gi(xk;ω)T (xk,i − xref
k,i)dIP.

Letting g(xk;ω) = (gi(xk;ω))Ni=1 ∈ ∂F (xk;ω), this expression may be rewrit-

ten as

wTk (xk − xref) =

∫
Ω

g(xk;ω)T (xk − xref)dIP.
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By substituting the expression on the right into (2.13), we obtain that

0 ≥ lim inf
k→∞,xk∈K,‖xk‖→∞

(
wTk (xk − xref)

)
(2.16)

= lim inf
k→∞,xk∈K,‖xk‖→∞

(∫
Ω

g(xk;ω)T (xk − xref)dIP

)
(2.17)

≥
∫

Ω

(
lim inf

k→∞,xk∈K,‖xk‖→∞
g(xk;ω)T (xk − xref)dIP

)
, (2.18)

where the second inequality is a consequence of employing Fatou’s Lemma. It

follows that there exists a set U ⊆ Ω with IP(U) > 0 such that for ω ∈ U ⊆ Ω,

we have that

lim inf
k

g(xk;ω)T (xk − xref) ≤ 0. (2.19)

But this implies that for ω ∈ U , a set of positive measure,

lim inf
k→∞,xk∈K,‖xk‖→∞

min
w∈∂F (xk;ω)

wT (xk − xref) ≤ 0, (2.20)

which further implies that

lim inf
k→∞,xk∈K,‖xk‖→∞

min
w∈∂F (x;ω)

wT (x− xref) ≤ 0. (2.21)

Since this holds for all xref ∈ K, it contradicts the hypothesis that there

exists an xref ∈ K such that

lim inf
‖x‖→∞,xk∈K

min
w∈∂F (x;ω)

wT (x− xref) > 0 almost surely.

Consequently, the nonsmooth stochastic Nash game admits an equilibrium.

Under an assumption of Cartesian strategy sets, a corollary of the previous

result is now provided without a proof.

Corollary 2.12 (Existence under Cartesian strategy sets) Consider a

stochastic Nash game G(K, f ,P) and suppose (A1†) and (A2†) hold. Further-

more, suppose C = Rn. If there exists an xref ∈ K such that

lim inf
k→∞,xk∈K,‖xk‖→∞

max
i∈{1,...,N}

(
min

wi∈∂xk,ifi(xk;ω)
wTi (xk,i − xrefi )

)
> 0 a.s.,
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then G(K, f ,P) admits an equilibrium.

Having proved the existence of a nonsmooth stochastic Nash equilibrium,

we investigate if the sufficiency conditions can be weakened if the mapping

∂F (x, ω) is a monotone set-valued mapping in an almost-sure sense.

Proposition 2.13 (Existence of a SNE under monotonicity) Consider

a nonsmooth stochastic Nash game G(K, f ,P) and suppose (A1†) and (A2†)

hold. If there exists an xref such that

lim inf
xk∈K,‖xk‖→∞,k→∞

(
min

w∈∂F (xref;ω)
wT (xk − xref)

)
> 0 almost surely,

then G(K, f ,P) admits an equilibrium.

Proof : We proceed along the same avenue as in Th. 2.11. We begin by

noting that the solvability of stochastic VI(K, ∂F ) requires showing that

lim inf
xk∈K,‖xk‖→∞,k→∞

(
min

w∈∂F (xk)
wT (xk − xref)

)
> 0.

Proceeding by contradiction, this requires that for all xref ∈ K, we have that

lim inf
xk∈K,‖xk‖→∞,k→∞

(
min

w∈∂F (xref;ω)
wT (xk − xref)

)
≤ 0. (2.22)

By the closedness of ∂F (xk), we have that wk, a minimizer of wT (xk − xref),

lies in ∂F (xk). Therefore, we have the following:

lim inf
xk∈K,‖xk‖→∞,k→∞

(
wTk (xk − xref)

)
≤ 0. (2.23)

By adding and subtracting wref, a selection from ∂F (xref), we have that

0 ≥ lim inf
xk∈K,‖xk‖→∞,k→∞

(
(wk − wref)T (xk − xref) + (wref)T (xk − xref)

)
(2.24)

≥ lim
xk∈K,‖xk‖→∞,k→∞

(
(wref)T (xk − xref)

)
, (2.25)

the second inequality being a consequence of the monotonicity of ∂F . By

proceeding in the same fashion as in Th. 2.11, we can express (wref)T (xk−xref)

as an integral
∫

Ω
g(xref;ω)T (xk − xref)dIP. The use of Fatou’s lemma then
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allows us to conclude as before that there exists a set U ⊆ Ω of positive

measure on which the hypothesis

lim inf
‖x‖→∞,x∈K

min
w∈∂F (xref;ω)

wT (x− xref) > 0 almost surely.

is contradicted. Consequently, the nonsmooth monotone stochastic Nash

game admits an equilibrium.

2.5 Stochastic Nash games with shared stochastic

constraints

Our general approach in the two preceding sections has been a largely primal

one in that the equilibrium conditions in the primal space are analyzed. Of-

ten, there may be an interest in equilibria in the primal-dual space, allowing

us to make statements about strategies as well as the associated Lagrange

multipliers (prices) corresponding to the constraints. In this section, we as-

sume that the shared constraint game of the form specified by (A1), where

the set C is given by

C , {x : E [c(x;ω)] ≥ 0} , (2.26)

and refer to it as GE. Our interest lies in the variational equilibrium of GE.

Recall that that the variational equilibrium (VE) in the primal-dual space,

under a suitable regularity condition, or constraint qualification (cf. [37]), is

given by the solution to a CP(Rm+n
+ , H) defined as1

0 ≤ z ⊥ H(z) ≥ 0,

1Recall that given a closed and convex cone K, the complementarity problem CP(K,F )
requires an x ∈ K such that K 3 x ⊥ F (x) ∈ K∗, the dual of K.
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where the mapping H(z) takes on a form given by

H(x, λ) ,


E
[
∇x1(f1 − cTλ1)

]
...

E
[
∇xN (fN − cTλN)

]
E [c(x;ω)]

 and z ,


x1

...

xN

λ

 . (2.27)

Note that we require that λ is a common multiplier for the shared con-

straint. In particular, we use a strict version of the Mangasarian-Fromovitiz

constraint qualification [37] which we define next.

Definition 2.9 (SMFCQ) For a pair z = (x, λ) that solves CP(R+
m+n, H),

we may define an index set γ and β given by

γ = {i : λi > 0}, β = {i : λi = 0}. (2.28)

Then the strict Mangasarian-Fromovitz constraint qualification (SMFCQ) is

said to hold at (x, λ) if

(a) The gradients {∇E[ci(x;ω)]}i∈γ are linearly independent;

(b) There exists a vector v ∈ Rn such that

∇E [ci(x;ω)]T v = 0, ∀i ∈ γ
∇E [ci(x;ω)]T v > 0, ∀i ∈ β.

Karamardian [74] showed the equivalence between the solutions of the varia-

tional inequality VI(K,F ) and a complementarity problem CP(K,F ) when

K is a closed convex cone. Therefore, one may utilize the results from the

earlier sections to analyze the complementarity problem in the larger space.

The associated Jacobian of this map is given by

∇H(x, λ) ,

(
∇xL(x, λ) −A(x)T

A(x) 0

)
� 0,

where L(x, λ) := F (x)− A(x)Tλ

and A(x) :=
(
∇x1E [c(x;ω)] . . . ∇xNE [c(x;ω)]

)
.
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The uniqueness of the equilibria associated with G is less easy to guarantee

in the primal-dual space even if the associated mapping F (x) is strongly

monotone. In particular, if F (x) is a strongly monotone map and c(x) is a set

of concave constraints, then H(x, λ) is merely a monotone map over the entire

space. Uniqueness, unfortunately, requires a stronger requirement in general.

Next, we demonstrate that even in this constrained regime without strong

monotonicity, the game admits a unique Nash equilibrium in the primal-dual

space under a suitable regularity condition.

Theorem 2.14 (Existence and uniqueness in primal-dual space)

Consider the Nash game given by GE. Suppose assumptions (A1) and (A2)

hold, the (SMFCQ) holds at any solution of GE and suppose H(x, λ;ω) is

monotone in an almost sure sense. Furthermore, suppose F (x;ω) is strictly

monotone map for ω ∈ U ⊆ Ω where IP(U) ≥ ε > 0. Then G admits a unique

Nash equilibrium in the primal-dual space.

Proof : We prove the result in two parts. First, we show that GE admits

a nonempty compact set of equilibria in the primal-dual space. We pro-

ceed to show that any equilibrium to this game is necessarily locally unique,

facilitating a global uniqueness result.

Existence: By noting that F (x;ω) is monotone in an almost sure sense,

it follows that H(x;ω) also satisfies a similar property, a consequence of

observing that

∇H(x;ω) =

(
∇L(x, λ;ω) −∇c(x;ω)T

∇c(x;ω) 0

)

is a positive semidefinite matrix for almost all ω ∈ Ω since λi ≥ 0 and

∇xL(x, λ) = ∇xF (x;ω)−
m∑
i=1

λi∇2
xxci(x;ω)︸ ︷︷ ︸
−∇2

xxci(x)�0

� 0.
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By specifying a vector zref , (xref,0) ∈ K × R+
m, we have the following:

lim inf
‖z‖→∞,z∈K×R+

n

H(z;ω)T (z − zref)

= lim inf
‖z‖→∞,z∈K×R+

n

(
(F (x;ω)−∇c(x;ω)Tλ)T (x− xref) + c(x;ω)Tλ

)
= lim inf
‖z‖→∞,z∈K×R+

n

F (x;ω)T (x− xref) + λT (∇c(x;ω)(x− xref) + c(x;ω))︸ ︷︷ ︸
Terma

 .

The concavity of cj(x;ω) in x for j = 1, . . . ,m allows one to claim that term

(a), defined above, can be bounded from below by

∇cj(x;ω)(xj − xref
j ) + cj(x;ω)) ≥ cj(x

ref;ω), j = 1, . . . ,m.

Moreover, by assumption we have that there exists an xref such that cj(x
ref;ω) >

0, allowing us to conclude that

lim inf
‖z‖→∞,z∈K×R+

n

(
F (x;ω)T (x− xref) + λT (∇c(x;ω)(x− xref) + c(x;ω))

)
≥ lim inf
‖z‖→∞,z∈K×R+

n

(
F (x;ω)T (x− xref) + λT c(xref;ω)

)
≥ lim inf
‖x‖→∞,x∈K

F (x;ω)T (x− xref).

But by assumption, we have that there exists an xref such that

lim inf
‖x‖→∞,x∈K

F (x;ω)T (x− xref) > 0

in an almost sure sense. This allows us to conclude that

E
(

lim inf
‖z‖→∞,z∈K×R+

m

H(z;ω)T (z − zref)

)
≥ E

(
lim inf

‖x‖→∞,x∈K
F (x;ω)T (x− xref)

)
> 0.

By invoking Fatou’s Lemma, we have that

lim inf
‖z‖→∞,z∈K×R+

m

E
[
H(z;ω)T (z − zref)

]
≥ E

[
lim inf

‖z‖→∞,z∈K×R+
m

H(z;ω)T (z − zref)

]
> 0,
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which is a sufficient condition for the existence of a stochastic Nash equilib-

rium in the primal-dual space.

Uniqueness: A uniqueness statement in the presence of monotonicity of

the mapping can be derived from showing that an equilibrium in the primal-

dual space satisfies local uniqueness. Recall that local uniqueness of x over

the set K follows if the only solution to the linear complementarity problem

D(x;K,F ) 3 v ⊥ ∇L(x;λ)v ∈ D(x;K,F )∗ (2.29)

is v ≡ 0, where D(x;K,F ) is the critical cone at x, defined as

D(x;K,F ) , T (x;K,F ) ∩ F (x)⊥,

and T (x;K,F ) is the tangent cone at x, associated with K and F . But this

holds if ∇L(x;λ) is a positive definite matrix. By assumption, we have that

∇L(x;λ, ω) = ∇F (x;ω)−
m∑
i=1

∇2ci(x;ω)

=⇒ ∇L(x;λ, ω) � 0 a.s since ∇F (x;ω) � 0 and −∇2ci(x;ω) � 0 a.s.,

the latter a consequence of the concavity of ci(x;ω) in an almost-sure sense.

But by assumption, there exists a measurable set U ⊆ Ω over which F (x;ω)

is strictly monotone. It follows that∫
ω

vT (∇L(x;λ, ω)vdIP =

∫
U

vT (∇L(x;λ, ω)vdIP +

∫
Ω/U

vT (∇L(x;λ, ω)vdIP

≥
∫
U

vT (∇L(x;λ, ω)vdIP > 0.

Therefore E[∇L(x, λ;ω)] is positive definite and v = 0 is the only solution of

(2.29). This implies that x is a locally unique solution of VI(K,F ).

By Prop. 3.3.12. [37], the tuple (x, λ) is a locally unique solution of VI(K×
R+
m, H) if M(x) is a singleton. But the latter holds from SMFCQ and by

employing Prop. 3.2.1(a) [37]. Finally, by Th. 3.6.6 [37], if a complementarity

problem with a P0 mapping admits a locally unique solution, then the so-

lution is globally unique. But CP(R+
m+n, H) is a monotone complementarity

problem, implying that H ∈ P0 and the required global uniqueness result

holds.
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2.6 Stochastic Nash-Cournot games and their

extensions

In this section, our principal goal lies in applying the framework devel-

oped over the previous three sections. This requires ascertaining whether

the almost-sure requirements can be expected to hold in practical settings.

For this purpose, we consider two extensions to a canonical stochastic Nash-

Cournot games, the first into the realm of nonsmoothness while the second is

in the regime of stochastic coupled constraints (See [3, 75] for a discussion of

Cournot games). In a risk-neutral Nash-Cournot game, firms make produc-

tion decisions prior to the revelation of the uncertainty. In the first extension,

we relax the risk-neutrality assumption by allowing firms to be risk-averse;

this requires the use of a conditional value-at-risk (CVaR) measure [38]. This

measure belongs to the larger class of coherent risk measures and has gained

significant applicability in a variety of settings (see [38, 71, 76, 77] for an in-

troduction to the value at risk (VAR), conditional value at risk (CVAR) and

coherent risk measures). Subsequently, we examine the regime with shared

stochastic constraints.

Throughout this section, we consider a stochastic Nash-Cournot game in

which the players make quantity bids, denoted by x1, . . . , xN . The players

compete for profit which is given by the expected revenue less cost. In the

standard Cournot framework, the ith player’s revenue function is given by

p(x;ω)xi where p(x;ω) is the random price function while his cost function is

denoted by ci(xi). In Section 2.6.1, we examine a risk-averse stochastic Nash-

Cournot framework to accommodate a conditional value-at-risk measure that

captures the risk of lower profits. Expectation-based shared constraints are

introduced in Section 2.6.2.

2.6.1 Risk-averse Nash-Cournot game

The model we consider is a modification of a risk-neutral framework that

employs an expectation-based framework. This can be generalized to allow

for risk preferences by using the conditional value at risk (CVaR) measure

that captures the risk of low profits.

Definition 2.10 (Risk-averse Nash-Cournot Game)
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Consider an N−player game in which the ith player has decision variable

zi = (xi,mi), strategy set Ki × R and objective

fi(z;ω) , ri(x;ω) + κiρi(z;ω)

where E[ri(x;ω)] = ci(xi)−E[p(x;ω)]xi is the negative of the expected profits,

κi ∈ [0, 1] is the player-specific risk-aversion parameter and E[ρi(z;ω)] is the

CVaR measure at level τi ∈ [0, 1] associated with player’s expected loss. The

player-specific risk is defined as

E [ρi(z;ω)] , mi +
1

1− τi
E
[
(ci(xi)− p(x;ω)xi −mi)

+
]
.

Then z∗i = (x∗i ,m
∗
i )
N
i=1 ∈ K × RN is a risk-averse Nash-Cournot equilibrium

of the Nash game, denoted by GNCR(K, f ,P), if z∗i = (x∗i ,m
∗
i ) solves the

convex optimization problem Gi(z
∗
−i), defined as

minimize
(xi,mi)∈Ki×R

E
[
fi(zi; z

∗
−i, ω)

]
.

Consider the objective function of the i-th agent corresponding to a sce-

nario ω for some ω ∈ Ω:

fi(z;ω) = ci(xi)− p(x, ω)xi + κi(mi +
1

1− τi
[ci(xi)− p(x, ω)xi −mi]

+).

The nonsmoothness of the second term implies that the gradient map is

multivalued in nature. However, the argument of the loss function is convex

and Lipschitz (implying that it is regular in the Clarke sense). Since one of

the summands within fi are continuously differentiable, it follows that ∂fi is

given by

∂zifi(z;ω) = ∇zi(ci(xi)− p(x, ω)xi)

+ κi∂zi(mi +
1

1− τi
[ci(xi)− p(x, ω)xi −mi]

+)

where ∇zi(ci(xi)− p(x, ω)xi) is given by(
c′i(xi)− p′(x, ω)xi − p(x, ω)

0

)
.
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Additionally κi∂xi(mi + 1
1−τi [ci(xi)− p(x, ω)xi −mi]

+) is given by
κi

1
1−τi (c

′
i(xi)− (p(x, ω)xi)

′),

κi
1

1−τi∂xi max(ci(xi)− p(x, ω)xi −mi, 0),

0,

if ci(xi)−p(x, ω)xi−mi is positive, zero and negative respectively. Similarly,

we can write κi∂mi(mi + 1
1−τi [ci(xi)− p(x, ω)xi −mi]

+) as


κi

(
1− 1

1−τi

)
,

κi

(
1 + 1

1−τi∂mi max(ci(xi)− p(x, ω)xi −mi, 0)
)
,

κi,

if ci(xi) − p(x, ω)xi − mi is positive, zero and negative respectively. Since,

the function ci(xi) − p(x, ω)xi −mi is regular in the sense of Clarke ( [70]),

when ci(xi)− p(x, ω)xi −mi is zero, we have

∂xi max(ci(xi)p(x, ω)xi −mi, 0) = co((ci(xi)− p(x, ω)xi −mi)
′, 0)

= {αi(c′i(xi)− p′(x, ω)xi − p(x, ω))|αi ∈ [0, 1]},

where co(.) represents the convex hull. Similarly, when ci(xi)−p(x, ω)xi−mi

is zero, we have

∂mi max(ci(xi)p(x, ω)xi −mi, 0) = co(∂mi(ci(xi)p(x, ω)xi −mi), 0)

= {−βi|βi ∈ [0, 1]},

It follows that any element wi ∈ ∂fi(zi; z−i, ω) is given by

wi ,

(
wxi

wmi

)
=

(
c′i(xi)− p′(x, ω)xi − p(x, ω)

1

)
+ wd

where wdi is given by

wdi = κi

(
1

1−τiαi(c
′
i(xi)− p′(x, ω)xi − p(x, ω))

1− βi
1−τi

)
,
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and αi, βi are defined as
(αi, βi) = (1, 1) ci(xi)− p(x, ω)xi −mi > 0,

(αi, βi) ∈ [0, 1]× [0, 1] ci(xi)− p(x, ω)xi −mi = 0,

(αi, βi) = (0, 0) ci(xi)− p(x, ω)xi −mi < 0.

The variational inequality corresponding to the scenario-based game is de-

noted by VI(K × RN , ∂F (z;ω)), where

∂F (z;ω) =
N∏
i=1

∂fi(zi; z−i, ω).

The term wT (z − zref) may be expressed as

wT (z − zref) =
∑
i∈N

wTi (zi − zref
i ) =

∑
i∈N

wxi (xi − xref
i )︸ ︷︷ ︸

Term(a)

+
∑
i∈N

wmi (mi −mref
i )︸ ︷︷ ︸

Term(b)

 .

By (A3), ci(xi) are strictly increasing strictly convex cost functions. Thus,

c′i is a strictly increasing function of xi. We require the following assumption

on the cost functions.

Assumption 2.5 (A3) Suppose the cost function ci(xi) is a strictly increas-

ing strictly convex twice continuously differentiable function for all i ∈ N .

Furthermore, suppose the price function is given by a random affine function

p(x;ω) , a(ω)− b(ω)
∑
i∈N

xi, (2.30)

where a(ω) and b(ω) are positive in an almost-sure sense and integrable.

Assumption 2.6 (A4) Suppose that for large ‖xi‖, ci(xi)′ ≥ a(ω) in an

almost-sure sense for all i ∈ N .

Proposition 2.15 Consider the game GNCR(K, f ,P) where the ith player’s

objective is given by

E [fi(z;ω)] = ci(xi)− E [p(x;ω)]xi

+ κi(mi +
1

1− τi
E
[
(ci(xi)− p(x;ω)xi −mi)

+
]
),
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for all i ∈ N . Suppose (A3) and (A4) hold. Then the game GNCR(K, f ,P)

admits an equilibrium.

Proof : Recall from the definition of ∂F (z;ω), we have that if w ∈ ∂F (z;ω),

then w is given by

w =

(
(1 + κiαi

1−τi )(c
′
i(xi)− p′(x, ω)xi − p(x, ω))

κi(1− βi
1−τi )

)
,

where (αi, βi) for i ∈ N are specified by
(αi, βi) = (1, 1) ci(xi)− p(x, ω)xi −mi > 0,

(αi, βi) ∈ [0, 1]× [0, 1] ci(xi)− p(x, ω)xi −mi = 0,

(αi, βi) = (0, 0) ci(xi)− p(x, ω)xi −mi < 0.

It follows that

wT (z − zref) =
∑
i∈N

wTi (zi − zref
i )

=
∑
i∈N

(1 +
κiαi

1− τi
)(c′i(xi)− p′(x, ω)xi − p(x, ω))(xi − xref

i )︸ ︷︷ ︸
Term(a)

+ κi(1−
βi

1− τi
)(mi −mref

i ).︸ ︷︷ ︸
Term(b)

It can be seen that for sufficiently large x, term (a) tends to infinity at a

quadratic rate for αi ≥ 0. This follows by noting from assumption 2.6 that

for sufficiently large x, we have c′i(xi) ≥ a(ω) for all i ∈ N in an almost-sure

sense. Term (a) above can be bounded from below as follows

(c′i(xi)− p′(x, ω)xi − p(x, ω)) = (c′i(xi) + b(ω)(
∑
j∈N

xj + xi)− a(ω))

≥ (c′i(xi)− a(ω).

where the first inequality follows from the nonnegativity of xi and b(ω)

(almost-surely). From assumption 2.6, it follows that for sufficiently large

‖x‖, we have (c′i(xi)− a(ω) > 0 in an almost-sure sense. Since Ki ⊆ R+, we

have that if x ∈ K, ‖x‖ → ∞, we have that term (a) tends to +∞.
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Term (b) can be written as κi(1− βi
1−τi )(mi−mref

i ). There are several cases

possible:

(i) Suppose mi → ∞ and xi stays bounded, implying that (ci(xi) −
p(X)xi − mi) < 0. Therefore βi = 0 and we have term (b) tending

to +∞.

(ii) Suppose mi → −∞ and xi stays bounded, implying that (ci(xi) −
p(X)xi −mi) > 0. Therefore βi = 1 and we have term (b) tending to

+∞, yet again since 1− 1
1−τi < 0.

(iii) Suppose (ci(xi) − p(X)xi − mi) = 0 , implying that xi,mi → +∞.

Therefore βi ∈ [0, 1] and we have term (b) tending to +∞ or −∞,

based on the value of βi. However, term(a) tends to +∞ at a quadratic

rate, giving us the required result.

It follows that along any sequence zk = (xk,mk) ∈ K×Rn with ‖zk‖ → ∞,

we have wT (zk − zref)→ +∞. Therefore, there exists a zref such that

lim inf
‖z‖→∞,z∈K

wT (z − zref) > 0,

almost-surely for all w ∈ ∂F (x;ω), implying that

lim inf
‖z‖→∞,z∈K

(
min

w∈∂F (x;ω)
wT (z − zref)

)
> 0,

almost surely. From Proposition 2.11, we may conclude that GNCR(K, f ,P)

admits an equilibrium if (A2†) holds. The remainder of the proof proves that

the latter is indeed the case. If wi is any element of ∂zifi(z;ω), then wi is

given by

wi =

(
(1 + κiαi

1−τi )(c
′
i(xi)− p′(x;ω)xi − p(x;ω))

κi(1− βi
1−τi )

)
,
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where (αi, βi) as given as above. Thus, for a fixed zref we have

wTi (zi − zref
i )

= (1 +
κiαi

1− τi
)(c′i(xi)− p′(x;ω)xi − p(x;ω))(xi − xref

i ) + κi(1−
βi

1− τi
)(mi −mref

i )

≥ (b(ω)xi + b(ω)X − a(ω))(xi − xref
i ) + κi(1−

βi
1− τi

)(mi −mref
i )

≥ −a(ω)(xi − xref
i ) + κi(1−

βi
1− τi

)(mi −mref
i ).

If ηi = (1− βi
1−τi ), then by defining ūi(z; zref

i , ω) as

,



−a(ω)(xi − xref
i ) + κiηi(mi −mref

i ), (xi − xref
i ), ηi(mi −mref

i ) < 0,

a(ω)(xi − xref
i ) + κiηi(mi −mref

i ), (xi − xref
i ) > 0, ηi(mi −mref

i ) < 0,

−a(ω)(xi − xref
i )− κiηi(mi −mref

i ), (xi − xref
i ) < 0, ηi(mi −mref

i ) > 0,

a(ω)(xi − xref
i )− κiηi(mi −mref

i ), (xi − xref
i ), ηi(mi −mref

i ) > 0,

the integrability of ūi(z; zref
i , ω) follows from the integrability of a(ω) and

(A2†) holds.

2.6.2 Stochastic Nash-Cournot game with expected value
constraints

We now consider whether the framework developed earlier can be used for

claiming existence of solution for stochastic Nash games with convex expected

value constraints. Consider the game with expected value constraints where

the ith agent solves

minimize E [fi(x;ω)]

subject to
E [di(x;ω)] ≤ 0,

xi ≥ 0.

where fi(xi;x−i, ω) = ci(xi) − p(x, ω)xi, assumption (2.5) holds and di :

Rn × Rd → Rmi are convex constraints in xi, given x−i. Before proceeding,

its worth examining the possible avenues that can be taken:
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Complementarity approach One option lies in constructing an appro-

priate complementarity problem by assuming a regularity condition. Then

under suitable conditions, this problem can be seen to be solvable if a related

scenario-based problem admits a solution in an almost-sure sense. This ap-

proach is described in Section 2.5. If the constraints satisfy an additional

requirement of shared constraints, even stronger statements are possible as

Section 2.5 demonstrates.

Nonsmooth penalty approach An alternate avenue that has not been

considered here is an exact penalty approach introduced in [78]. Here, the

coupled constraints are penalized via an exact penalty function. This leads to

a nonsmooth Nash game whose existence is analyzed by leveraging the prop-

erties of the associated multivalued variational problem. Importantly, any

equilibrium of the penalized game is an equilibrium of the original problem

only if it satisfies an appropriate feasibility requirement.

We proceed to transform this problem into a nonsmooth Nash game and

use the methodology developed in the previous section to claim existence of

solution for the penalized game. Consider the penalized game where each

agent solves

minimize E
[
fi(x;ω) + ρdi(x;ω)+

]
subject to xi ≥ 0.

This is a stochastic nonsmooth game. Again, in the same vein as before we

analyze the properties of the scenario-based game to show existence of an

equilibrium to the stochastic game. We require the following assumption on

di.

Assumption 2.7 (A5) For all i ∈ N , the constraint function di(x;ω) has

bounded derivatives in an almost sure sense.

Proposition 2.16 Consider the penalized stochastic Nash-Cournot game with

expected value constraints GNCEρ (K, f ,P) where the ith player’s objective is

given by E[hi(x;ω)] for all i ∈ N , where hi(x;ω) , fi(x;ω) + ρdi(x;ω)+.

Suppose (A3), (A4) and (A5) hold. Then the game GNCEρ (K, f ,P) admits

an equilibrium.

Proof : Consider the penalized scenario-based game of GNCEρ (K, f ,P) cor-

responding to the point ω ∈ Ω. Then the objective function for the ith agent

54



in the scenario-based game is given by hi(x;ω) = fi(x;ω)+ρdi(x;ω)+, where

fi(x;ω) = ci(xi)− p(x, ω)xi. Now, ∂xihi(x;ω) can be written as

∂xihi(x;ω) = ∇xifi(x;ω) + ρ

mi∑
j=1

∂xi max(di,j(x;ω), 0)

= c′i(xi)− p′(x, ω)xi − p(x, ω) + ρ

mi∑
j=1

βijd
′
ij(xi, x−i;ω),

where βij is derived similar to the risk-averse setting and is given by

βij


= 1 cij(xi, x−i, ω) > 0,

∈ [0, 1] cij(xi, x−i, ω) = 0,

= 0 cij(xi, x−i, ω) < 0.

This scenario-based game admits an equilibrium, if VI(K× RN , ∂h(x;ω)) is

solvable, where ∂xh(x;ω) =
∏N

i=1 ∂xihi(x;ω), For w ∈ ∂xh(x;ω), consider

wT (x− xref) =
∑
i∈N

wTi (xi − xref
i )

=
∑
i∈N

c′i(xi)− p′(x, ω)xi − p(x, ω)T (xi − xref
i )︸ ︷︷ ︸

Term(a)

+ρ

mi∑
j=1

βijd
′
ij(xi, x−i;ω)T (xi − xref

i ).︸ ︷︷ ︸
Term(b)

By (A3) and (A4), it can be seen that for sufficiently large x, term (a) tends

to infinity at a quadratic rate. By (A5), the derivatives d′ij are bounded in an

almost-sure sense. Thus, we have that Term(b) grows at a linear rate. This

gives that for sufficiently large x, we have wT (x − xref) → +∞. Therefore,

there exists a xref such that

lim inf
‖x‖→∞,x∈K

wT (x− xref) > 0,

almost-surely for all w ∈ ∂h(x;ω). It follows that

lim inf
‖x‖→∞,x∈K

(
min

w∈∂F (x;ω)
wT (x− xref)

)
> 0

almost surely. From Proposition 2.11, we may conclude that GNCEρ (K, f ,P)

admits an equilibrium if (A2†) holds. The latter can be shown to hold in a
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fashion similar to Prop. 2.15 and we choose to omit this exercise for purposes

of brevity.

If this equilibrium additionally satisfies feasibility with respect to the pe-

nalized constraints, we may claim that the original game admits an equilib-

rium.

Proposition 2.17 Suppose (A3), (A4) and (A5) hold and suppose for a ρ >

0, an equilibrium x∗ of the penalized stochastic Nash-Cournot game with ex-

pected value constraints GNCEρ (K, f ,P) is additionally feasible to the original

stochastic Nash-Cournot game with expected value constraints GNCE(K, f ,P).

Then x∗ is an equilibrium of GNCE(K, f ,P).

Proof : Follows from Theorem 1 [78].
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CHAPTER 3

ON THE EXISTENCE OF SOLUTIONS TO
STOCHASTIC QUASI-VARIATIONAL

INEQUALITY AND COMPLEMENTARITY
PROBLEMS

3.1 Introduction

Motivation: In deterministic regimes, a wealth of conditions exist for char-

acterizing the solution sets of variational inequality, quasi-variational inequal-

ity and complementarity problems (cf. [79, 37, 52]), including sufficiency

statements of existence and uniqueness of solutions as well as more refined

conditions regarding the compactness and connectedness of solution sets and

a breadth of sensitivity and stability questions. Importantly, the analytical

verifiability of such conditions from problem primitives (such as the underly-

ing map and the set) is essential to ensure the applicability of such schemes,

as evidenced by the use of such conditions in analyzing a range of problems

arising in power markets [3, 35, 80], communication networks [53, 81, 7, 6],

structural analysis [82, 83], amongst others. The first instance of a stochastic

variational inequality problem was presented by King and Rockafellar [84] in

1993 and the resulting stochastic variational inequality problem requires an

x ∈ X such that

(y − x)TE[F (x, ξ(ω))] ≥ 0, ∀y ∈ X,

where X ⊆ Rn, ξ : Ω→ Rd, F : X ×Rd → Rn, E[.] denotes the expectation,

and (Ω,F ,P) represents the probability space. In the decade that followed,

there was relatively little effort on addressing analytical and computational

challenges arising from such problems. But in the last ten years, there has

been an immense interest in the solution of such stochastic variational in-

equality problems via Monte-Carlo sampling methods [16, 85, 18, 10]. But

verifiable conditions for characterization of solution sets have proved to be

relatively elusive given the presence of an integral (arising from the expecta-
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tion) in the map. Despite the rich literature in deterministic settings, direct

application of deterministic results to stochastic regimes is not straightfor-

ward and is complicated by several challenges: First, a direct application

of such techniques on stochastic problems requires the availability of closed-

form expressions of the expectations. Analytical expressions for expectation

are not easy to derive even for single-valued problems with relatively simple

continuous distributions. Second, any statement is closely tied to the distri-

bution. Together, these barriers severely limit the generalizability of such an

approach. To illustrate the complexity of the problem class under consider-

ation, we consider a simple stochastic linear complementarity problem.1

Example : Consider the following stochastic linear complementarity

problem:

0 ≤ x ⊥ E

[(
2 1

1 2

)
x+

(
−2 + ω1

−4 + ω2

)]
≥ 0.

Specifically, this can be cast as an affine stochastic variational inequality

problem VI(K,F ) where

K , R+
2 and F (x) , E[F (x;ω)], where F (x;ω) ,

[(
2 1

1 2

)
x+

(
−2 + ω1

−4 + ω2

)]
.

�

Consider two cases that pertain to either when the expectation is available

in closed-form (a); or not (b):

(a) Expectation E[.] available: Suppose in this instance, ω is a random

variable that takes values ω1 of ω2, given by the following:

ω1 =

(
1

1

)
or ω2 =

(
−1

−1

)
with probability 0.5.

Consequently, the stochastic variational inequality problem can be expressed

as

0 ≤ x ⊥
[(

2 1

1 2

)
x+

(
−2

−4

)]
≥ 0.

In fact, this problem is a strongly monotone linear complementarity problem

and admits a unique solution given by x∗ = (0, 2). If one cannot ascertain

1Formal definitions for these problems are provided in Section 3.1.1
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monotonicity, a common approach lies in examining coercivity properties of

the map; specifically, VI(K,F ) is solvable since there exists an xref ∈ K such

that (cf. [37, Ch. 2])

lim inf
‖x‖→∞,x∈K

F (x)T (x− xref) > 0.

(b) Expectation E[.] not available in closed-form: However, in many

practical settings, closed-form expressions of the expectation are unavailable.

Two possible avenues are available:

(i) If K is compact, under continuity of the expected value map, VI(K,F )

is solvable.

(ii) If there exists a single x ∈ K that solves VI(K,F (.;ω)) for almost every

ω ∈ Ω, VI(K,F ) is solvable.

Clearly, K is a cone and (i) does not hold. Furthermore (ii) appears to

be possible only for pathological examples and in this case, there does not

exist a single x that solves the scenario-based VI(K,F (.;ω)) for every ω ∈ Ω.

Specifically, the unique solutions to VI(K,F (.;ω1)) and VI(K,F (.;ω2)) are

x(ω1) = (0, 3/2) and x(ω2) = (1/3, 7/3), respectively and since x(ω1) 6=
x(ω2), avenue (ii) cannot be traversed. Consequently, neither of the obvious

approaches can be adopted yet VI(K,F ) is indeed solvable with a solution

given by x∗ = (0, 2).

Consequently, unless the set is compact or the scenario-based VI is solv-

able by the same vector in an almost sure sense, ascertaining solvability of

stochastic variational inequality problems for which the expectation is un-

available in closed form does not appear to be immediately possible through

known techniques. In what could be seen as the first step in this direction, our

prior work [32] examined the solvability of convex stochastic Nash games by

analyzing the equilibrium conditions, compactly stated as a stochastic varia-

tional inequality problem. Specifically, this work relies on utilizing Lebesgue

convergence theorems to develop integration-free sufficiency conditions that

could effectively address stochastic variational inequality problems, with both

single-valued and a subclass of multi-valued maps arising from nonsmooth

Nash games. As a simple illustration of the avenue adopted, consider Exam-

ple 3.1 again and assume that the expectation is unavailable in closed form,
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we examine whether the a.s. coercivity property holds (as presented in the

next section). It can be easily seen that there exists an xref ∈ K, namely

xref , 0, such that

lim inf
‖x‖→∞,x∈K

F (x;ω)T (x− xref) > 0, for ω = ω1 and ω = ω2.

It will be shown that satisfaction of this coercivity property in an almost-sure

sense is sufficient for solvability. But such statements, as is natural with any

first step, do not accommodate stochastic quasi-variational problems and can

be refined significantly to accommodate complementarity problems. More-

over, they cannot accommodate multi-valued variational maps. The present

work focuses on extending such sufficiency statements to quasi-variational in-

equality problems and complementarity problems and accommodate settings

where the maps are multi-valued.

Contributions: This chapter provides amongst the first attempts to ex-

amine and characterize solutions for the class of stochastic quasi-variational

inequality and complementarity problems when expectations are unavailable

in closed form. Our contributions can briefly be summarized as follows:

(i) Stochastic quasi-variational inequality problems (SQVIs): We

begin by recapping our past integration-free statements for stochastic VIs

that required the use of Lebesgue convergence theorems and variational anal-

ysis. Additionally, we provide extensions to regimes with multi-valued maps

and specialize the conditions for settings with monotone maps and Cartesian

sets.We then extend these conditions to stochastic quasi-variational inequal-

ity problems where in addition to a coercivity-like property, the set-valued

mapping needs to satisfy continuity, apart from other “well-behavedness”

properties to allow for concluding solvability. Finally, we extend the suffi-

ciency conditions to accommodate multi-valued maps.

(ii) Stochastic complementarity problems (SCPs): Solvability of com-

plementarity problems over cones requires a significantly different tack. We

show that analogous verifiable integration-free statements can be provided

for stochastic complementarity problems. Refinements of such statements

are also provided in the context of co-coercive maps.
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(iii) Applications: Naturally, the utility of any sufficiency conditions is

based on its level of applicability. We describe two application problems. Of

these, the first is a nonsmooth stochastic Nash-Cournot game which leads

to an SQVI while the second is a stochastic equilibrium problem in power

markets which can be recast as a stochastic complementarity problem. Im-

portantly, both application settings are modeled with a relatively high level

of fidelity.

Remark: Finally, we emphasize three points regarding the relevance and

utility of the provided statements: (i) First, such techniques are of relevance

when integration cannot be carried out easily and have less utility when

sample spaces are finite; (ii) There are settings where alternate models for

incorporating uncertainty have been developed [20, 21, 86]. Such models

assume relevance when the interest lies in robust solutions. Naturally, an

expected-value formulation has less merit in such settings and correspond-

ingly, such robust approaches cannot capture risk-neutral decision-making.2

Consequently, the challenge of analyzing existence of this problem cannot be

done away with by merely changing the formulation, since an alternate for-

mulation may be inappropriate. (iii) Third, we present sufficiency conditions

for solvability. Still, there are simple examples which can be constructed in

finite (and more general) sample spaces where such conditions will not hold

and yet solvability does hold. We believe that this does not diminish the

importance of our results; in fact, this is not unlike other sufficiency con-

ditions for variational inequality problems. For instance, we may construct

examples where the coercivity of a map may not hold over the given set [37]

but the variational inequality problem may be solvable. However, in our

estimation, in some of the more practically occurring engineering-economic

systems, such conditions do appear to hold, reinforcing the relevance of such

techniques. In particular, we show such conditions find applicability in a

class of risk-neutral and risk-averse stochastic Nash games in [32]. In the

present work, we show that such conditions can be employed for analyzing

a class of stochastic generalized Nash-Cournot games with nonsmooth price

functions as well as for a relatively more intricate networked power market

in uncertain settings. Before proceeding to our results we provide a brief

2A similarly loose dichotomy exists between stochastic programming and robust opti-
mization.
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history of deterministic and stochastic variational inequalities.

Background and literature review: The variational inequality problem

provides a broad and unifying framework for the study of a range of mathe-

matical problems including convex optimization problems, Nash games, fixed

point problems, economic equilibrium problems and traffic equilibrium prob-

lems [37]. More generally, the concept of an equilibrium is central to the

study of economic phenomena and engineered systems, prompting the use

of the variational inequality problem [87]. Harker and Pang [51] provide an

excellent survey of the rich mathematical theory, solution algorithms, and

important applications in engineering and economics while a more compre-

hensive review of the analytical and algorithmic tools is provided in the recent

two volume monograph by Facchinei and Pang [37].

Increasingly, the deterministic model proves inadequate when contend-

ing with models complicated by risk and uncertainty. Uncertainty in varia-

tional inequality problems has been considered in a breadth of application

regimes, ranging from traffic equilibrium problems [20, 88], cognitive radio

networks [89, 90], Nash games [32, 86], amongst others. Compared to the field

of optimization, where stochastic programming [91, 92] and robust optimiza-

tion [93] have provided but two avenues for accommodating uncertainty in

static optimization problems, far less is currently available either from a the-

oretical or an algorithmic standpoint in the context of stochastic variational

inequality problems. Much of the efforts in this regime have been largely re-

stricted to Monte-Carlo sampling schemes [12, 16, 84, 17, 94, 18, 95, 13], and

a recent broader survey paper on stochastic variational inequality problems

and stochastic complementarity problems [96].

3.1.1 Formulations

To help explain the two main formulations for stochastic variational inequal-

ity problems found in literature - the expected value formulation and almost-

sure formulation; we now define variational inequality problems and gener-

alizations and their stochastic counterparts. Given a set K ⊆ Rn and a

mapping F : Rn → Rn, the deterministic variational inequality problem,
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denoted by VI(K,F ), requires an x ∈ K such that

(y − x)T F (x) ≥ 0, ∀y ∈ K. (VI(K,F ))

The quasi-variational generalization of VI(K,F ) referred to as a

quasi-variational inequality, emerges when K is generalized from a constant

map to a set-valued map K : Rn → Rn with closed and convex images. More

formally, QVI(K,F ), requires an x ∈ K(x) such that

(y − x)T F (x) ≥ 0, ∀y ∈ K(x). (QVI(K,F ))

If K is a cone, then the variational inequality problem reduces to a comple-

mentarity problem, denoted by CP(K,F ), a problem that requires an x ∈ K
such that

K 3 x ⊥ F (x) ∈ K∗ (CP(K,F ))

where K∗ , {y : yTd ≥ 0, ∀d ∈ K} and y ⊥ w implies yiwi = 0 for i =

1, . . . , n. In settings complicated by uncertainty, stochastic generalizations of

such problems are of particular relevance. Given a continuous probability

space (Ω,F ,P), let E[•] denote the expectation operator with respect to

the measure P. Throughout this chapter, we often denote the expectation

E [F (x; ξ(ω))] by F (x), where F (x; ξ(ω)) denotes the scenario-based map,

Fi(x) , E[Fi(x; ξ(ω))] and ξ : Ω → Rd is a d−dimensional random variable.

For notational ease, we refer to F (x; ξ(ω)) as F (x;ω) through the entirety of

this chapter.

The expected-value formulation We may now formally define the stochas-

tic variational inequality problem as an expected-value formulation. We con-

sider this formulation in the analysis in this chapter.

Definition 3.1 (Stochastic variational inequality problem (SVI(K,F )))

Let K ⊆ Rn be a closed and convex set, F : Rn×Ω→ Rn be a single-valued

map and F (x) , E[F (x;ω)]. Then the stochastic variational inequality prob-

lem, denoted by SVI(K,F ), requires an x ∈ K such that the following holds:

(y − x)T E [F (x;ω)] ≥ 0, ∀y ∈ K. (SVI(K,F ))
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Figure 3.1 provides a schematic of the stochastic variational inequality prob-

lem. Note that when x solves SVI(K,F ), there may exist ω ∈ Ω for which

there exist y ∈ K such that (y − x)TF (x;ω) < 0. Naturally, in instances

where the expectation is simple to evaluate, as seen in Example 3.1 ear-

lier, the resulting SVI(K,F ) is no harder than its deterministic counterpart.

For instance, if the sample space Ω is finite, then the expectation reduces

to a finite summation of deterministic maps which is itself a deterministic

map. Consequently, the analysis of this problem is as challenging as a deter-

ministic variational inequality problem. Unfortunately, in most stochastic

regimes, this evaluation relies on a multi-dimensional integration and is not

a straightforward task. In fact, a more general risk functional can be intro-

duced instead of the expectation leading to a risk-based variational inequality

problem that requires an x such that

( y − x )T ρ[F (x;ω)] ≥ 0, ∀ y ∈ K,

where ρ[F (x;ω)] , E[F (x;ω)] + D[F (x;ω)] and D[•] is a map incorporating

dispersion measures such as standard deviation, upper semi-deviation, or the

conditional value at risk (CVaR) (cf. [97, 98, 92] for recent advances in the

optimization of these risk measures).

x K
N (x;K)

�F (x;�2)

�F (x;�1)
�E[F (x;�)]

(y � x)T E[F (x;�)] ⇥ 0, ⌅y ⇤ K

Figure 3.1: The stochastic variational
inequality (SVI(K,F )): The
expected-value formulation

Extensions to set-valued and

conic regimes follow naturally. For

instance, if K is a point-to-set

mapping defined as K : Rn →
Rn, then the resulting problem

is a stochastic quasi-variational

inequality, and is denoted by

SQVI(K,F ). When K is a

cone, then VI(K,F ) is equiva-

lent to a complementarity problem

CP(K,F ) and its stochastic gener-

alization is given next.

Definition 3.2 (Stochastic complementarity problem (SCP(K,F )))

Let K be a closed and convex cone in Rn, F : Rn×Ω→ Rn be a single-valued

mapping and F (x) , E[F (x;ω)]. Then the stochastic complementarity prob-
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lem, denoted by SCP(K,F ), requires an x ∈ K such that

K 3 x ⊥ E [F (x;ω)] ∈ K∗.

If the integrands of the expectation (F (x;ω)) are multi-valued instead of

single-valued, then we denote the mapping by Φ. Accordingly, the associated

variational problems are denoted by SVI(K,Φ), SQVI(K,Φ) and SCP(K,Φ).

The origin of the expected-value formulation can be traced to a paper by

King and Rockafellar [84] where the authors considered a generalized equa-

tion [99, 100] with an expectation-valued mapping. Notably, the analysis

and computation of the associated solutions are hindered significantly when

the expectation is over a general measure space. Evaluating this integral is

challenging, at best, and it is essential that specialized analytical and com-

putational techniques be developed for this class of variational problems.

From an analytical standpoint, Ravat and Shanbhag have developed exis-

tence statements for equilibria of stochastic Nash games that obviate the

need to evaluate the expectation by combining Lebesgue convergence the-

orems with standard existence statements [101, 32]. Our earlier worked

focused on Nash games and examined such settings with nonsmooth pay-

off functions and stochastic constraints. It represents a starting point for

our current study where we focus on more general variational inequality

and complementarity problems and their generalizations and refinements.

Accordingly, this chapter is motivated by the need to provide sufficiency

conditions for stochastic variational inequality problems, stochastic quasi-

variational inequality problems, and stochastic complementarity problems.

In addition, we consider variants when the variational maps are complicated

by multi-valuednes. Stability statements for stochastic generalized equations

have been provided by Liu, Römisch, and Xu [102].

From a computational standpoint, sampling approaches have addressed

analogous stochastic optimization problems effectively [103, 10], but have

focused relatively less on variational problems. In the latter context, there

have been two distinct threads of research effort. Of these, the first employs

sample-average approximation schemes [10]. In such an approach, the expec-

tation is replaced by a sample-mean and the effort is on the asymptotic and
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rate analysis of the resulting estimators, which are obtainable by solving a

deterministic variational inequality problem (cf. [12, 13, 14, 15]). A rather dif-

ferent track is adopted by Jiang and Xu [16] where a stochastic approximation

scheme is developed for solving such stochastic variational inequality prob-

lems. Two regularized counterparts were presented by Koshal, Nedić, and

Shanbhag [17, 18] where two distinct regularization schemes were overlaid on

a standard stochastic approximation scheme (a Tikhonov regularization and

a proximal-point scheme), both of which allow for almost-sure convergence.

Importantly, this work also presents distributed schemes that can be imple-

mented in networked regimes. A key shortcomings of standard stochastic ap-

proximation schemes is the relatively ad-hoc nature of the choice of steplength

sequences. In [19], Yousefian, Nedić, and Shanbhag develop distributed

stochastic approximation schemes where users can independently choose a

steplength rule. Importantly, these rules collectively allow for minimizing a

suitably defined error bound and are equipped with almost-sure convergence

guarantees.

x
�F (x;�2)

�F (x;�1)

�F (x;�3)

K
N (x; K)

(y � x)T F (x;!) � 0, 8y 2 K for almost every ! 2 ⌦

Figure 3.2: The stochastic variational
inequality problem SVI(K,F ): The
almost-sure formulation

Finally, Wang et al. [104] fo-

cus on developing a sample-

average approximation method

for expected-value formulations

of the stochastic variational

inequality problems while Lu

and Budhiraja [105] examine

the confidence statements asso-

ciated with estimators associ-

ated with a sample-average ap-

proximation scheme for stochas-

tic variational inequality prob-

lem, again with expectation-

based maps.

The almost-sure formulation While there are many problem settings

where expected-value formulations are appropriate (such as when modeling

risk-neutral decision-making in a competitive regime) but there are also in-

stances where the expected-value formulation proves inappropriate. A case

in point arises when attempting to obtain solutions to a variational inequal-
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ity problem that are robust to parametric uncertainty; such problems might

arise when faced with traffic equilibrium or structural design problems. In

this setting, the almost-sure formulation of the stochastic variational inequal-

ity (see Figure 3.2) is more natural.

Given a random mapping F , the almost-sure formulation of the stochastic

variational inequality problem requires a (deterministic) vector x ∈ K such

that for almost every ω ∈ Ω,

(y − x)TF (x;ω) ≥ 0, ∀ y ∈ K. (3.1)

Naturally, if K is an n−dimensional cone, then (3.1) reduces to CP(K,F ),

a problem that requires an x such that for almost all ω ∈ Ω,

K 3 x ⊥ F (x;ω) ∈ K∗. (3.2)

A natural question is how one may relate solutions of the almost sure for-

mulation of the SVI to that of the expected value formulation. The following

result provided without a proof clarifies the relationship.

Proposition 3.1 Suppose there exists a single x ∈ K such that x solves

VI(K,F (.;ω)) (CP(K,F (.;ω))) for almost every ω ∈ Ω. Then x ∈ K is a

solution of VI(K,F ) (CP(K,F )).

Yet, we believe that obtaining such an x is possible only in pathological set-

tings and this condition is relatively useless in deriving solvability statements

for SVI(K,F ) and its variants. Furthermore, this is a stronger condition

than the ones we develop as evidenced by Example 3.1. In this instance,

there is no such x that solves VI(K,F (.;ω)) for every ω but the problem is

indeed solvable.

If K , Rn
+, this problem is a nonlinear complementarity problem (NCP)

and for a fixed but arbitrary realization ω ∈ Ω, the residual of this system

can be minimized as follows:

minimize
x≥0

‖Φ(x;ω)‖,

where Φ(x;ω) denotes the equation reformulation of the NCP (See [37]).

Consequently, a solution to the almost-sure formulation is obtainable by con-
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sidering the following minimization problem:

minimize
x≥0

E [‖Φ(x;ω)‖] . (3.3)

More precisely, if x is a solution of the almost-sure formulation of NCP

(K,F ) if and only if x is a minimizer of (3.3) with E [‖Φ(x;ω)‖] = 0. If

the Fischer-Burmeister φFB is chosen as the C-function, the expected residual

minimization (ERM) problem in [106, 107] solves the following stochastic

program to compute a solution of the stochastic NCP (3.2):

minimize
x≥0

E [‖ΦFB(x;ω) ‖] ,

where ΦFB(x;ω) ,
(√

x2
i + Fi(x;ω)2 − (xi + Fi(x;ω) )

)n
i=1

;
(3.4)

see [96, equation (3.8)]. In [108], Luo and Lin consider the almost-sure

formulation of a stochastic complementarity problem and minimize the ex-

pected residual. Convergence analysis of the expected residual minimization

(ERM) technique has been carried out in the context of stochastic Nash

games [86] and stochastic variational inequality problems [21]. In more re-

cent work, Chen, Wets, and Zhang [20] revisit this problem and present an

alternate ERM formulation, with the intent of developing a smoothed sample

average approximation scheme. In contrast with the expected-value formula-

tion and the almost-sure formulation, Gwinner and Raciti [109, 88] consider

an infinite-dimensional formulation of the variational inequality for capturing

randomness and provide discretization-based approximation procedures for

such problems.

The remainder of the chapter is organized as follows. In section 3.2, we

outline our assumptions used, motivate our study by considering two applica-

tion instances, and provide the relevant background on integrating set-valued

maps. In section 3.3, we recap our sufficiency conditions for the solvability of

stochastic variational inequality problems with single and multi-valued map-

pings and we provide results for the stochastic quasi-variational inequality

problems with single and multi-valued mappings. Refinements of the state-

ments for SVIs are provided for the complementarity regime in Section 3.4

under varying assumptions on the map. Finally, in section 3.5, we revisit the

motivating examples of section 3.2 and verify that the results developed in
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this chapter are indeed applicable.

3.2 Assumptions, examples, and background

In Section 3.2.1, we provide a summary of the main assumptions employed in

the chapter. The utility of such models is demonstrated by discussing some

motivating examples in Section 3.2.2. Finally, some background is provided

on the integrals of set-valued maps in Section 3.2.3.

3.2.1 Assumptions

We now state the main assumptions used throughout the chapter and refer to

them when appropriate. The first of these pertains to the probability space.

Assumption 3.1 (Nonatomicity of measure IP) The probability space

P = (Ω,F , IP) is nonatomic.

The next assumption focuses on the properties of the single-valued map,

referred to as F .

Assumption 3.2 (Continuity and integrability of F )

(i) F : Rn × Ω → Rn is a single-valued map. Furthermore, F (x;ω) is

continuous in x for almost every ω ∈ Ω and is integrable in ω, for every

x.

(ii) F (x) is continuous in x.

Note that, the assumption of Lipschitz continuity of F (x;ω) with an inte-

grable Lipschitz constant implies that E[F (x;ω)] is also Lipschitz continuous.

The next two assumptions pertain to the set-valued maps employed in this

chapter. When the map is multi-valued, to avoid confusion, we employ the

notation Φ(x), defined as Φ(x) , E[Φ(x;ω)], and impose the following as-

sumptions.

Assumption 3.3 (Lower semicontinuity and integrability of Φ) Φ : Rn×
Ω→ 2Rn is a set-valued map satisfying the following:

(i) Φ(x;ω) has nonempty and closed images for every x and every ω ∈ Ω.
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(ii) Φ(x;ω) is lower semicontinuous in x for almost all ω ∈ Ω and integrably

bounded for every x.

Finally, when considering quasi-variational inequality problems, K is a set-

valued map, rather than a constant map.

Assumption 3.4 The set-valued mapK : Rn → 2Rn is deterministic, closed-

valued, convex-valued.

We conclude this subsection with some notation. cl(U) denotes the closure

of a set U ⊂ Rn, bd(U) denotes the boundary of the set U and dom(K)

denotes the domain of the mapping K.

3.2.2 Examples

We now provide two instances of where stochastic variational problems arise

in practice.

Nonsmooth stochastic Nash-Cournot equilibrium problems:

Cournot’s oligopolistic model is amongst the most widely used models for

modeling strategic interactions between a set of noncooperative firms [110].

Under an assumption that firms produce a homogeneous product, each firm

attempts to maximize profits by making a quantity decision while taking as

given, the quantity of its rivals. Under the Cournot assumption, the price of

the good is assumed to be dependent on the aggregate output in the market.

The resulting Nash equilibrium, qualified as the Nash-Cournot equilibrium,

represents a set of quantity decisions at which no firm can increase profit

through a unilateral change in quantity decisions. unilaterally changing the

quantity of the product it produces. To accommodate uncertainty in costs

and prices in Nash-Cournot models and loss of differentiability of price func-

tions which can occur for example by introduction of price caps [35] we con-

sider a stochastic generalization of the classical deterministic Nash-Cournot

model and allow for piecewise smooth price functions, as captured by the

following assumption on costs and prices.

Assumption 3.5 Suppose the cost function ci(xi) is an increasing convex

twice continuously differentiable function for all i = 1, . . . , N . Let X ,∑n
i=1 xi. Since xi denotes the quantity produced, xi ≥ 0. The price function
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p(X;ω) is a decreasing piecewise smooth convex function where p(X;ω) is

given by

p(X;ω) =


p1(X;ω), 0 ≤ X ≤ β1

pj(X;ω), βj−1 ≤ X ≤ βj, j = 2, . . . , s

ps(X;ω), βs ≤ X

(3.5)

where pj(X;ω) = aj(ω) − bj(ω)X is a strictly decreasing affine function of

X for j = 1, . . . , s. Finally, β1, . . . , βs are a set of increasing positive scalars

and (aj(ω), bj(ω)) are positive in an almost-sure sense and integrable for

j = 1, . . . , s.

Consider an N−player generalized Nash-Cournot game. Given the tuple of

rival strategies x−i, the ith player’s strategy set is given by Ki(x−i) while

his objective function is given by E[fi(x;ω)] , ci(xi) − E[p(x;ω)xi]. Then

{x∗i }Ni=1 denotes a stochastic Nash-Cournot equilibrium if x∗i solves the convex

optimization problem Gi(x
∗
−i), defined as

minimize
xi

E[fi(x;ω)]

subject to xi ∈ Ki(x−i).

The equilibrium conditions of this problem are given a stochastic QVI with

multi-valued mappings. In section 3.5, we revisit this problem with the intent

of developing existence statements.

Strategic behavior in power markets: Consider a power market model

in which a collection of generation firms compete in a single-settlement mar-

ket. Economic equilibria in power markets has been extensively studied using

a complementarity framework; see [35, 111, 112]. Our model below is based

on the model of Hobbs and Pang [35] which we modify to account for uncer-

tainty in prices and costs.

Consider a set of nodes N of a network. The set of generation firms is

indexed by f , where f belongs to the finite set F . At a node i in the network,

a firm f may generate gfi units at node i and sell sfi units to node i. The total

amount of power sold to node i by all generating firms is Si. The generator

firms’ profits are revenue less costs. If the nodal power price at node ith is a
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random function given by pi(Si;ω) where pi(Si;ω) is a decreasing function of

Si, then the firms’ revenue is just the price times sales sfi. The costs incurred

by the firm f at node i are the costs of generating gfi and transmitting the

excess (sfi− gfi). Let the cost of generation associated with firm f at node i

be given by cfi(gfi;ω) and the cost of transmitting power from an arbitrary

node (referred to as the hub) to node i be given by wi. The constraint set

ensures a balance between sales and generation at all nodes, nonnegative

sales and generation and generation subject to a capacity limit. The price

and cost functions are assumed to satisfy the following requirement.

Assumption 3.6 For i ∈ N , the price functions pi(Si;ω) is a decreasing

function, bounded above by a nonnegative integrable function p̄i(ω). Fur-

thermore, the cost functions cfi(gfi;ω) are nonnegative and increasing.

The resulting problem faced by the fth generating firm f is to determine

sales sfi and generation gfi at all nodes i such that

maximize
sfi, gfi

E

[∑
i∈N

( pi(Si;ω)sfi − cfi(gfi;ω)− (sfi − gfi)wi )
]

subject to

 0 ≤ gfi ≤ capfi

0 ≤ sfi

 , ∀ i ∈ N

and
∑
i∈N

( sfi − gfi ) = 0.

Note that, the generating firm sees the transmission fee wi and the rival firms’

sales s−fi ≡ {shi : h 6= f} as exogenous parameters to its optimization

problem even though they are endogenous to the overall equilibrium model

as we will see shortly.

The ISO sees the transmission fees w = (wi)i∈N as exogenous and pre-

scribes flows y = (yi)i∈N as per the following linear program

maximize
∑
i∈N

yiwi

subject to
∑
i∈N

PDFijyi ≤ Tj, ∀ j ∈ K,

where K is the set of all arcs or links in the network with node set N , Tj
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denotes the transmission capacity of link j, yi represents the transfer of power

(in MW) by the system operator from a hub node to node node i and PDFij

denotes the power transfer distribution factor, which specifies the MW flow

through link j as a consequence of unit MW injection at an arbitrary hub

node and a unit withdrawal at node i.

Finally, to clear the market, the transmission flows yi must must balance

the net sales at each node:

yi =
∑
f∈F

( sfi − gfi ) , ∀ i ∈ N .

The above market equilibrium problem which comprises of each firm’s

problem, the ISO’s problem and market-clearing condition, can be expressed

as a stochastic complementarity problem by following the technique from

[35]. This equivalent formulation of the above market equilibrium problem

is described in the last section 3.5. We also illustrate the solvability of such

problems using the framework developed in this chapter.

3.2.3 Background on integrals of set-valued mappings

Recall that by Assumption 3.1, (Ω,F , IP) is a nonatomic continuous proba-

bility space. Consider a set-valued map H that maps from Ω into nonempty,

closed subsets of Rn . We recall three definitions from [31, Ch. 8]

Definition 3.3 (Measurable set-valued map) A map H is measurable

if the inverse image of each open set in Rn is a measurable set: for all open

sets O ⊆ Rn, we have

H−1(O) = {ω ∈ Ω | H(ω) ∩O 6= ∅} ∈ F .

Definition 3.4 (Integrably bounded set-valued map) A map H is in-

tegrably bounded if there exists a nonnegative integrable function k ∈ L1(Ω,R, IP)

such that

H(ω) ⊆ k(w)B(0, 1) almost everywhere.

Definition 3.5 (Measurable selection) Suppose a measurable map h :

Ω → Rn satisfies h(ω) ∈ H(ω) for almost all ω ∈ Ω. Then h is called a

measurable selection of H.
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The existence of a measurable selection is proved in [31, Th. 8.1.3].

Definition 3.6 (Integrable selection) A measurable selection h : Ω →
Rn is an integrable selection if E[h(ω)] <∞ where

E[h(ω)] =

∫
Ω

hdIP <∞.

The set of all integrable selections of H is denoted by H and is defined as

follows:

H ,
{
h ∈ L1(Ω,F , IP) : h(ω) ∈ H(ω) for almost all ω ∈ Ω

}
,

Definition 3.7 (Expectation of a set-valued map) The expectation of

the set-valued map H, denoted by E[H(ω)], is the set of integrals of integrable

selections of H:

E[H(ω)] ,
∫

Ω

HdIP ,

{∫
Ω

hdIP | h ∈ H
}
.

If the images of H(ω) are convex then this set-valued integral is convex [31,

Definition 8.6.1]. If the assumption of convexity of images of H does not hold,

then the convexity of this integral follows from Th. 8.6.3 [31], provided that

the probability measure is nonatomic. We make precisely such an assumption

(See Assumption 3.1) and are therefore guaranteed that the integral of the

set-valued map H is a convex set [31, Th. 8.6.3] .

Recall that, a point z̄ of a convex set K is said to be extremal if there

are no two points x, y ∈ K such that λx + (1 − λ)y = z̄ for λ ∈ (0, 1) and

is denoted by z̄ ∈ ext(K). Similarly, as per Def. 8.6.5 [31], we define an

extremal selection as follows:

Definition 3.8 (Extremal selection) Given the convex set
∫

Ω
HdIP, an

integrable selection h ∈ H is an extremal selection of H if∫
Ω

hdIP is an extremal point of the closure of the convex set

∫
Ω

HdIP.

The set of all extremal selections is denoted by He and is defined as follows:

He ,

{
h ∈ H |

∫
Ω

hdIP ∈ ext

(
cl

(∫
Ω

HdIP

))}
.
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By Theorem [31, Th. 8.6.3], we have the following Lemma for the represen-

tation of extremal points of closure of
∫

Ω
HdIP.

Theorem 3.2 (Representation of extreme points of set-valued integral)

Suppose Assumption 3.1 holds and let H be a measurable set-valued map

from Ω to subsets of Rn with nonempty closed images. Then the following

hold:

(a)
∫

Ω
HdIP is convex and extremal points of cl(

∫
Ω
HdIP) are contained in∫

Ω
HdIP.

(b) If x ∈ ext
(
cl
(∫

Ω
HdIP

))
, then there exists a unique h ∈ He with

x =
∫

Ω
hdIP.

(c) If H is integrably bounded, then the integral
∫

Ω
HdIP is also compact.

As a corollary to the above theorem, we have a representation of points in

a set-valued integral from [31, Th. 8.6.6]

Corollary 3.3 (Representation of points in a set-valued integral) Let

H be a measurable integrably bounded set-valued map from Ω to subsets

of Rn with nonempty closed images. If IP is nonatomic, then for every

x ∈
∫

Ω
HdIP, there exist n + 1 extremal selections hk ∈ He and n + 1

measurable sets Ak ∈ F , k = 0, · · · , n, such that

x =

∫
Ω

(
n∑
k=1

χAkhk

)
dIP

where χAk is the characteristic function of Ak.

3.3 Stochastic quasi-variational inequality problems

In this section, we develop sufficiency conditions for the solvability of stochas-

tic quasi-variational inequality problems under a diversity of assumptions on

the map. More specifically, we begin by recapping sufficiency conditions for

the solvability of stochastic variational inequality problems with single-valued

and multi-valued maps in Section 3.3.1. In many settings, the variational in-

equality problems may prove incapable of capturing the problem in question.
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For instance, the equilibrium conditions of convex generalized Nash games

are given by a quasi-variational inequality problem. As mentioned earlier,

when the constant map K is replaced by a set-valued map K : Rn → Rn,

the resulting problem is an SQVI. In this section, we extend the sufficiency

conditions presented in the earlier section to accommodate the SQVI(K,F )

(Section 3.3.2) and SQVI(K,Φ) (Section 3.3.3), respectively. Throughout

this section, Assumption 3.4 holds for the set-valued map K.

3.3.1 SVIs with single-valued and multi-valued mappings

In this section, we begin by assuming that the scenario-based mappings

F (•;ω) are single-valued for each ω ∈ Ω. With this assumption, we pro-

vide sufficient conditions that the scenario-based VI(K,F (•;ω)) must satisfy

in order to conclude the existence of solution to the stochastic SVI(K,F )

without requiring the evaluation of expectation operator. Recall that in

SVI(K,F ), F (x) = E[F (x;ω)]. In particular, in the next proposition, we

show that if a certain coercivity condition holds for the scenario-based map

F (•;ω) in an almost-sure sense then existence of the solution to the above

SVI may be concluded without resorting to formal evaluation of the expec-

tation.

Proposition 3.4 (Solvability of SVI(K,F )) Consider a stochastic vari-

ational inequality SVI(K,F ). Suppose Assumption 3.2 holds and G(x;ω) ,

F (x;ω)T (x− xref). Suppose there exists an xref ∈ K such that the following

hold:

(i) lim inf
‖x‖→∞,x∈K

[
F (x;ω)T (x− xref)

]
> 0 almost surely;

(ii) Suppose there exists a nonnegative integrable function u(ω) such that

G(x;ω) ≥ −u(ω) holds almost surely for any x.

Then the stochastic variational inequality SVI(K,F ) has a solution.

Proof : Recall from [37, Ch. 2] that the solvability of SVI(K,F ) requires

showing that there exists an xref such that

lim inf
‖x‖→∞,x∈K

[
F (x)T (x− xref)

]
> 0. (3.6)
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But we have that

lim inf
‖x‖→∞,x∈K

[
F (x)T (x− xref)

]
= lim inf
‖x‖→∞,x∈K

[∫
Ω

F (x;ω)T (x− xref)dIP

]
.

By hypothesis (ii), we may apply Fatou’s lemma to obtain the following

inequality:

lim inf
‖x‖→∞,x∈K

[
F (x)T (x− xref)

]
≥
∫

Ω

lim inf
‖x‖→∞,x∈K

[
F (x;ω)T (x− xref)

]
dIP > 0,

where the last inequality follows from the given hypothesis. Thus (3.6) holds

and therefore SVI(K,F ) has a solution.

In settings where K is a Cartesian product, defined as

K ,
N∏
ν=1

Kν , (3.7)

VI(K,F ) is a partitioned variational inequality probem, as defined in [37,

Ch. 3.5]. Accordingly, Proposition 3.4 can be weakened so that even if the

coercivity property holds for just one index ν ∈ {1, . . . , N}, the stochastic

variational inequality is solvable.

Proposition 3.5 (Solvability of SVI(K,F ) for Cartesian K) Consider

a stochastic variational inequality SVI(K,F ) where K is a Cartesian product

of closed and convex sets as specified in (3.7). Suppose that Assumption 3.2

and the following hold:

(i) There exists an xref ∈ K and an index ν ∈ {1, . . . , N} such that for

any x ∈ K,

lim inf
‖xν‖→∞,xν∈Kν

[
Fν(x;ω)T (xν − xref

ν )
]
> 0,

holds in an almost sure sense; and

(ii) For the above ν and for any x, let G(x;ω) = Fν(x;ω)T (xν − xref
ν ).

Suppose there exists a nonnegative integrable function u(ω) such that

G(x;ω) ≥ −u(ω) holds almost surely for any x.

Then SVI(K,F ) admits a solution.
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Proof : For the given xref ∈ K and for any x ∈ K, there exists a ν ∈
{1, . . . , N}, such that

lim inf
‖xν‖→∞,xν∈Kν

[
Fν(x;ω)T (xν − xref

ν )
]
> 0

holds almost surely. Thus we obtain

E
[

lim inf
‖xν‖→∞,xν∈Kν

Fν(x;ω)T (xν − xref
ν )

]
> 0.

By hypothesis (ii) above we may apply Fatou’s lemma to get

lim inf
‖xν‖→∞,xν∈Kν

E
[
Fν(x;ω)T (xν − xref

ν )
]
> 0.

This implies that C≤ is bounded where

C≤ :=

{
x ∈ K : max

1≤ν≤N
E
[
Fν(x;ω)T (xν − xref

ν )
]
≤ 0

}
.

From [37, Prop. 3.5.1], boundedness of C≤ allows us to conclude that

SVI(K,F ) is solvable.

We now present a weaker set of sufficient conditions for existence under

the assumption that the mapping F (x;ω) is a monotone mapping over K for

almost every ω ∈ Ω.

Corollary 3.6 (Solvability of SVI(K,F ) under monotonicity) Consider

SVI(K,F ) and suppose that Assumption 3.2 holds. Further, let F (x;ω) be

a monotone mapping on K for almost every ω ∈ Ω. Suppose there exists an

xref ∈ K such that G(x;ω) = F (xref;ω)T (x− xref) and the following hold:

(i) lim inf
‖x‖→∞,x∈K

[
F (xref;ω)T (x− xref)

]
> 0 holds in almost sure sense;

(ii) Suppose there exists a nonnegative integrable function u(ω) such that

G(x;ω) ≥ −u(ω) holds almost surely for any x.

Then SVI(K,F ) is solvable.
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Proof : We begin with the observation that the monotonicity of F (x;ω)

allows us to bound F (x;ω)T (x− xref) from below as follows:

F (x;ω)T (x− xref) =
[
F (x;ω)− F (xref;ω)

]T
(x− xref) + F (xref;ω)T (x− xref)

≥ F (xref;ω)T (x− xref).

Taking expectations on both sides gives us

E
[
F (x;ω)T (x− xref)

]
≥ E

[
F (xref;ω)T (x− xref)

]
.

This implies that

lim inf
‖x‖→∞,x∈K

E
[
F (x;ω)T (x− xref)

]
≥ lim inf
‖x‖→∞,x∈K

E
[
F (xref;ω)T (x− xref)

]
.

(3.8)

By hypothesis (ii) above, Fatou’s Lemma can be employed in the last in-

equality to interchange limits and expectations leading to

lim inf
‖x‖→∞,x∈K

E
[
F (xref;ω)T (x− xref)

]
≥ E

[
lim inf

‖x‖→∞,x∈K
F (xref;ω)T (x− xref)

]
.

But by assumption, we have that

lim inf
‖x‖→∞,x∈K

[
F (xref;ω)T (x− xref)

]
> 0

holds in almost sure sense, implying that from (3.8), we have that

lim inf
‖x‖→∞,x∈K

E
[
F (x;ω)T (x− xref)

]
> 0.

Now, Proposition 3.4 allows us to conclude the solvability of the stochastic

variational inequality SVI(K,F )

Next, we consider a stochastic variational inequality SVI(K,Φ) where

Φ(x) , E[Φ(x;ω)] and Φ(x;ω) is a multi-valued mapping. Before proceeding

to prove existence of solutions to SVIs with multi-valued maps, we restate

Corollary 3.3 for the case of the set-valued integral Φ(x) = E[Φ(x;ω)] of in-

terest. This lemma helps represent elements of set-valued integral an integral

of convex combination of extremal selections
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Lemma 3.7 (Representation of elements of set-valued integral)

Suppose Assumption 3.1 holds. Let Φ be a measurable integrably bounded

set-valued map from Rn ×Ω to subsets of Rn with closed nonempty images.

Then any w ∈ E[Φ(x;ω)] can be expressed as

w =

∫
Ω

g(x;ω)dIP

where g(x;ω) =
∑n

k=1 λk(x)fk(x;ω) and λk(x) ≥ 0,
∑n

k=0 λk(x) = 1 and each

fk(x;ω) is an extremal selection of Φ(x;ω)

Proof : Since w ∈ E[Φ(x;ω)] and E[Φ(x;ω)] is a convex set, thus by

Carathéodory’s theorem for convex sets, there exists λk(x) ≥ 0,

wk ∈ ext (cl (E[Φ(x;ω)])) such that

w =
n∑
k=0

λk(x)wk,
n∑
k=0

λk(x) = 1

Now, since wk ∈ ext (cl (E[Φ(x;ω)])), by [31, Th. 8.6.3], for each index k,

there exists an extremal selection fk(x;ω) from Φ(x;ω) such that
∫

Ω
fk(x;ω)dIP =

wk. Thus, we obtain

w =
n∑
k=0

λk(x)

∫
Ω

fk(x;ω)dIP,

which can be rewritten as

w =

∫
Ω

g(x;ω)dIP

where g(x;ω) =
∑n

k=0 λk(x)fk(x;ω). The required representation result fol-

lows.

We begin by providing a coercivity-based sufficiency condition for deter-

ministic multi-valued variational inequalities [113].

Theorem 3.8 (Solvability of VI (K,Φ)) Suppose K is a closed and con-

vex set in Rn and let Φ : K ⇒ Rn be a lower semicontinuous multifunction

with nonempty closed and convex images. Consider the following statements:

(a) Suppose there exists an xref ∈ K such that L<(K,Φ) is bounded (pos-
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sibly empty) where

L<(K,Φ) ,

{
x ∈ K : inf

y∈Φ(x)
(x− xref)Ty < 0

}
.

(b) The variational inequality VI(K,Φ) is solvable

Then, (a) implies (b). Furthermore, if Φ(x) is a pseudomonotone mapping

over K, then (a) is equivalent to (b).

Using this condition, we proceed to develop sufficiency conditions for the

existence of solutions to SVI(K,Φ).

Proposition 3.9 (Solvability of SVI(K,Φ)) Consider SVI(K,Φ) and sup-

pose assumptions 3.1 and 3.3 hold. Further, suppose the following hold:

(i) Suppose there exists an xref ∈ K such that

lim inf
x∈K,‖x‖→∞

(
inf

w∈Φ(x;ω)
wT (x− xref)

)
> 0 almost surely.

(ii) For the above xref, suppose there exists a nonnegative integrable func-

tion U(ω) such that g(x;ω)T (x−xref) ≥ −U(ω) holds almost surely for

any integrable selection g(x;ω) of Φ(x;ω) and for any x.

Then SVI(K,Φ) is solvable.

Proof : The proof proceeds in two parts.

(a) We first show that the following coercivity condition holds for the ex-

pected value map: there exists an xref ∈ K such that

lim inf
x∈K,‖x‖→∞

(
inf

w∈Φ(x)
wT (x− xref)

)
> 0. (3.9)

(b) If (a) holds, then we show that for the given xref ∈ K, the set L<(K,Φ)

is bounded (possibly empty) where

L<(K,Φ) ,

{
x ∈ K : inf

y∈Φ(x)
(x− xref)Ty < 0

}
. (3.10)
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Proof of (a): We proceed by a contradiction and assume that (3.9) does

not hold for the expected value map. Thus, for any xref, there exists a

sequence xk ∈ K with ‖xk‖ → ∞ such that

lim inf
k→∞

(
inf

w∈Φ(xk)
wT (xk − xref)

)
≤ 0.

Since Φ(xk) is a closed set, the infimum above is attained at yk ∈ Φ(xk).

Thus, we have

lim inf
k→∞

[
yTk (xk − xref)

]
≤ 0 (3.11)

Now, yk ∈ Φ(xk) = E[Φ(xk;ω)]. By the representation Lemma (Lemma 3.7),

since yk ∈ Φ(xk), we have that

yk =

∫
Ω

gk(xk;ω)dIP

for some gk(xk;ω) =
∑n

l=1 λl(xk)fl(xk;ω) where λl(xk) ≥ 0,
∑n

l=0 λl(x) = 1

and each fl(xk;ω) is an extremal selection of Φ(xk;ω). With this substitution,

(3.11) becomes

lim inf
k→∞

[∫
Ω

gk(xk;ω)T (xk − xref)dIP

]
≤ 0.

By hypothesis (ii), we may use Fatou’s Lemma to interchange the order of

integration and limit infimum, as shown next:∫
Ω

lim inf
k→∞

[
gk(xk;ω)T (xk − xref)

]
dIP ≤ 0.

Consequently, there is a set of positive measure U ⊆ Ω, over which the

integrand is nonpositive or

lim inf
k→∞

[
gk(xk;ω)T (xk − xref)

]
≤ 0, ∀ω ∈ U.

Substituting the expression for gk, we obtain the following inequality.

lim inf
k→∞

[
(xk − xref)T

(
n∑
l=1

λl(xk)fl(xk;ω)

)]
≤ 0, ∀ω ∈ U.
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As a result, for at least one index l ∈ {1, ..., n}, we have that

lim inf
k→∞

[
λl(xk)fl(xk;ω)T (xk − xref)

]
≤ 0, ∀ω ∈ U.

Since 0 ≤ λl(xk) ≤ 1, the following must be true for the above l:

lim inf
k→∞

[
fl(xk;ω)T (xk − xref)

]
≤ 0, ∀ω ∈ U.

Moreover, fl(xk;ω) ∈ Φ(xk;ω) since it is an extremal selection and we have

that

lim inf
k→∞

[
inf

w∈Φ(xk;ω)
wT (xk − xref)

]
≤ 0, ∀ω ∈ U.

Since, this holds for any xref, it holds for the vector xref in the hypothesis and

for a set of positive measure U , we have that

lim inf
x∈K,‖x‖→∞

[
inf

w∈Φ(x;ω)
wT (x− xref)

]
≤ 0,∀ω ∈ U.

This contradicts the hypothesis and condition (3.9) must hold for the ex-

pected value map.

Proof of (b) Next, we show that when the condition (3.9) holds for the

expected value map, then for the given xref ∈ K the set L<(K,Φ) is bounded

(possibly empty) where

L<(K,Φ) ,

{
x ∈ K : inf

y∈Φ(x)

[
(x− xref)Ty

]
< 0

}
.

If the set L<(K,Φ) is empty, then the result follows by Theorem 3.8. Suppose

L<(K,Φ) is nonempty and unbounded. Then, there exists a sequence {xk} ∈
L<(K,Φ) with ‖xk‖ → ∞. Since xk ∈ L<(K,Φ), we have for each k,

inf
y∈Φ(xk)

[
(xk − xref)Ty

]
< 0.

This implies that for the sequence {xk}, we have that

lim inf
xk∈K,‖xk‖→∞

[
inf

w∈Φ(xk)
wT (xk − xref)

]
≤ 0.
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But this contradicts the coercivity property of the expected value map proved

earlier:

lim inf
x∈K,‖x‖→∞

[
inf

w∈Φ(x)
wT (x− xref)

]
> 0.

This contradiction implies that L<(K,Φ) is bounded and by Theorem 3.8,

SVI(K,Φ) is solvable.

3.3.2 SQVIs with single-valued mappings

Our first result is an extension of [37, Cor. 2.8.4] to the stochastic regime. In

particular, we assume that the mapping E [F (x;ω)] cannot be directly ob-

tained; instead, we provide an existence statement that relies on the scenario-

based map F (x;ω).

Proposition 3.10 (Solvability of SQVI(K,F )) Suppose Assumptions 3.2

and 3.4 hold. Furthermore, suppose there exists a bounded open set U ⊂ Rn

and a vector xref ∈ U such that the following hold:

(a) For every x̄ ∈ cl(U), the image K(x̄) is nonempty and lim
x→x̄

K(x) =

K(x̄);

(b) xref ∈ K(x) for every x ∈ cl(U);

(c) L<(K,F ;ω) ∩ bd(U) = ∅ holds almost surely, where

L<(K,F ;ω) ,
{
x ∈ K(x) | (x− xref)TF (x;ω) < 0

}
.

Then, SQVI(K,F ) has a solution.

Proof : Recall that by [37, Cor. 2.8.4], the stochastic SQVI(K,F ) is solvable

if L<(K,F ) ∩ bd(U) = ∅, where

L<(K,F ) ,
{
x ∈ K(x) | (x− xref)TE [F (x;ω)] < 0

}
.

We proceed by contradiction and assume that there exists an x ∈ L<(K,F )

and x ∈ bd(U). By assumption, x /∈ L<(K,F ;ω) for any ω implying that

(x− xref)TF (x;ω) ≥ 0 for all ω ∈ Ω. It follows that (x− xref)TE[F (x;ω)] ≥
0, implying that x /∈ L<(K,F ). This contradicts our assertion that x ∈
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L<(K,F ). Therefore, we must have that L<(K,F ) ∩ bd(U) = ∅ and by [37,

Cor. 2.8.4], the stochastic SQVI(K,F ) has a solution.

Another avenue for ascertaining existence of equilibrium in stochastic regimes

is an extension of Harker’s result [114, Th. 2] which we present next.

Theorem 3.11 (Solvability of SQVI(K,F ) under compactness)

Suppose Assumptions 3.2 and 3.4 hold and there exists a nonempty com-

pact convex set Γ such that the following hold:

(i) K(x) ⊆ Γ, ∀x ∈ Γ;

(ii) K is a nonempty, continuous, closed and convex-valued mapping on Γ.

Then the SQVI(K,F ) has a solution.

Proof : Since F is continuous by Assumption 3.2(ii), all conditions of [114,

Th. 2] hold. Thus, the SQVI(K,F ) has a solution.

The above theorem relies on properties of the map K and the continuity

of the map F to ascertain existence of solution. By Assumption 3.2, conti-

nuity of the map F holds in the settings we consider and thus the solvability

of SQVI(K,F ) follows readily. This theorem has a slightly different flavor

compared to other results in this chapter in the sense that we do not look

at properties of the scenario-based map (other than continuity) that then

guarantee existence of solution. We have listed this theorem here for com-

pleteness as it presents an alternate perspective of looking at the question of

solvability of SQVI(K,F ).

3.3.3 SQVIs with multi-valued mappings

In this section, we relax the assumption of single-valuedness of the scenario-

based mappings F (•;ω) and instead allow for the map Φ(•;ω) to be multi-

valued. In the spirit of the rest of this chapter, our interest lies in deriving

results that do not rely on evaluation of expectation. We use the concepts

of set-valued integrals discussed in the previous section 3.2.3 and require

that Assumption 3.4 holds throughout this subsection. Our first existence

result relies on a sufficiency condition for generalized quasi-variational in-

equalities [115, Cor. 3.1]. We recall [115, Cor. 3.1] which can be applied to

the multi-valued SQVI(K,Φ).

85



Proposition 3.12 Consider the SQVI(K,Φ). Suppose that there exists a

nonempty compact convex set C such that the following hold:

(a) K(C) ⊆ C;

(b) E[Φ(x;ω)] is a nonempty contractible-valued and compact-valued up-

per semicontinuous mapping on C;

(c) K is nonempty continuous convex-valued mapping on C.

Then the stochastic SQVI(K,Φ) admits a solution

However, this result requires evaluating E[Φ(x;ω)], an object that admits far

less tractability; instead, we develop almost-sure sufficiency conditions that

imply the requirements of Proposition 3.12.

Proposition 3.13 (Solvability of SQVI(K,Φ))) Suppose Assumptions 3.4

and 3.3 hold. Furthermore, suppose there exists a nonempty compact convex

set C such that the following hold:

(a) K(C) ⊆ C;

(b) Φ(x;ω) is a nonempty upper semicontinuous mapping for x ∈ C in an

almost-sure sense;

(c) K is nonempty, continuous and convex-valued mapping on C.

Then the stochastic SQVI(K,Φ) admits a solution.

Proof : From Proposition 3.12, it suffices to show that under the above

assumptions, E[Φ(x;ω)] is a nonempty contractible-valued, compact-valued,

upper semicontinuous mapping on C.

(i) E[Φ(x;ω)] is nonempty: Since Φ(x;ω) is lower semicontinuous, it is

a measurable set-valued map. Since it is a measurable set-valued

map with nonempty closed images, by Aumann’s measurable selec-

tion theorem [31, Th. 8.1.3], there exists a measurable selection h from

Φ(x;ω). Since Φ(x;ω) is integrably bounded, every measurable selec-

tion is integrable. Thus,
∫

Ω
hdIP ∈

∫
Ω

Φ(x;ω), implying that E[Φ(x;ω)]

is nonempty.
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(ii) E[Φ(x;ω)] is contractible-valued: Since the probability space is nonatomic

by definition, we have that E[Φ(x;ω)] is a convex set. Since a convex

set is contractible, we have that E[Φ(x;ω)] is contractible.

(iii) E[Φ(x;ω)] is compact-valued: Since Φ(x;ω) is integrably bounded, by

[31, Th. 8.6.3], we get that E[Φ(x;ω)] is compact.

(iv) E[Φ(x;ω)] is upper semicontinuous: By hypothesis, we have that Φ(x;ω)

is a measurable, integrably bounded and upper-semicontinuous x ∈ C.

Thus, from [73, Cor. 5.2], it follows that E[Φ(x;ω)] is upper semicon-

tinuous.

The previous result relies on the compact-valuedness of K with respect

to a compact set C, a property that cannot be universally guaranteed. An

alternate result for deterministic generalized QVI problems [115, Cor. 4.1]

leverages coercivity properties of the map Φ(x) to claim existence of a solu-

tion. We state this result next.

Proposition 3.14 Let K be a set-valued map from Rn to subsets of Rn and

Φ from Rn to subsets of Rn be a measurable integrably bounded set-valued

map with closed nonempty images. Suppose that there exists a vector xref

such that

xref ∈
⋂

x∈dom(K)

K(x)

and lim
‖x‖→∞,x∈K(x)

[
inf

y∈Φ(x)

(x− xref)Ty

‖x‖

]
=∞. (3.12)

Suppose the following hold:

(i) Φ(x) is a nonempty, contractible-valued, compact-valued, upper semi-

continuous map on Rn;

(ii) K is convex-valued;

(iii) There exists a ρ0 > 0 such that K(x)∩Bρ is a continuous mapping for

all ρ > ρ0 where Bρ is a ball of radius ρ centered at the origin.

Then for each vector q, SQVI(K,Φ+q) has a solution. Moreover, there exists

an r > 0 such that ‖x∗‖ < r for each solution (x∗, y∗).
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In the next proposition, by using the properties of Φ(x;ω), we develop an

integration-free analog of this result for multi-valued SQVI(K,Φ).

Proposition 3.15 (Solvability of SQVI(K,Φ)) Suppose Assumptions 3.3

and 3.4 hold. Suppose that there exists a vector xref such that

(i) xref ∈ ⋂
x∈dom(K)

K(x);

(ii)

lim
‖x‖→∞,x∈K(x)

[
inf

y∈Φ(x;ω)

(x− xref)Ty

‖x‖

]
=∞, a.s. (3.13)

(iii) For the above xref, suppose there exists a nonnegative integrable func-

tion U(ω) such that g(x;ω)T (x−xref) ≥ −U(ω) holds almost surely for

any integrable selection g(x;ω) of Φ(x;ω) and for any x.

(iv) Φ(x;ω) is an upper semicontinuous mapping on Rn in an almost-sure

sense;

(v) There exists a ρ0 > 0 such that K(x)∩Bρ is a continuous mapping for

all ρ > ρ0.

Then for each vector q the stochastic SQVI(K,Φ + q) has a solution. More-

over, there exists an r > 0 such that ‖x∗‖ < r for each solution (x∗, y∗).

Proof : First we show that (3.13) implies that the coercivity property (3.12)

holds for the expected-value map Φ(x) = E[Φ(x;ω)]. Suppose E[Φ(x;ω)] does

not satisfy (3.12). Then, there exists a sequence {xk} such that

lim
‖xk‖→∞,xk∈K(xk)

[
inf

y∈E[Φ(xk;ω)]

(xk − xref)Ty

‖xk‖

]
<∞.

Since Φ(xk;ω) is integrably bounded, we have that E[Φ(xk;ω)] is compact

(by [31, Th. 8.6.3]) and therefore it is a closed set. Thus, we may conclude

that there exists a yk ∈ E[Φ(xk;ω)] for which the infimum is attained and

the above statement can be rewritten as follows:

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)Tyk
‖xk‖

]
<∞, where yk ∈ E[Φ(xk;ω)].
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By lemma 3.7, yk =
∫

Ω
gk(xk;ω)dIP where gk(xk;ω) =

∑n
j=0 λj(xk)fj(xk;ω)

where λj(xk) ≥ 0,
∑n

j=0 λj(xk) = 1 and each fj(xk;ω) is an extremal selec-

tions of Φ(xk;ω). Thus, we can write the above limit as

lim
‖xk‖→∞,xk∈K(xk)

[∫
Ω

(xk − xref)Tgk(xk;ω)

‖xk‖
dIP

]
<∞.

Since, fj(xk;ω) is integrable for every j = 0, . . . , n, each gk(xk;ω) is inte-

grable. Hypothesis (iii) allows for the application of Fatou’s lemma, through

which we have that the following sequence of inequalities:∫
Ω

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)Tgk(xk;ω)

‖xk‖

]
dIP

≤ lim
‖xk‖→∞,xk∈K(xk)

[∫
Ω

(xk − xref)Tgk(xk;ω)

‖xk‖
dIP

]
<∞.

But this implies that the integrand must be finite almost surely. In other

words, for the sequence {xk}, we obtain that

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)Tgk(xk;ω)

‖xk‖

]
<∞, a.s.

Substituting the expression for gk(xk;ω) in terms of extremal selections fj(xk, ω)

from Φ(x;ω), it follows that

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)T

∑n
j=0 λj(xk)fj(xk;ω)

‖xk‖

]
<∞, a.s.

Consequently, for j ∈ {0, · · · , n}, the following holds

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)Tλj(xk)fj(xk;ω)

‖xk‖

]
<∞, a.s. (3.14)

We may now claim that for some index j,

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)Tfj(xk;ω)

‖xk‖

]
<∞, a.s. (3.15)
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Suppose this claim is false, then for j ∈ {0, . . . , n}, for ω ∈ Uj, a set of

positive measure, we have the following:

lim
‖xk‖→∞,xk∈K(xk)

[
(xk − xref)Tfj(xk;ω)

‖xk‖

]
=∞. (3.16)

Since the denominator in (3.16) goes to +∞ as k → ∞, this implies that

numerator goes to +∞ at a faster rate than the denominator ‖xk‖; in effect,

the numerator is Ω(‖xk‖nj) where nj > 1 and vk ∈ Ω(uk) implies that

vk ≥ uk for sufficiently large k. Thus, for j ∈ {0, . . . , n} and ω ∈ Uj ⊂ Ω,

where Uj has positive measure, we have the following:

(xk − xref)Tfj(xk;ω) = Ω (‖xk‖nj) , where nj > 1. (3.17)

But from (3.14), for j ∈ {0, . . . , n} and for ω ∈ Uj,

lim
‖xk‖→∞,xk∈K(xk)

[
λj(xk)(xk − xref)Tfj(xk;ω)

‖xk‖

]
<∞, (3.18)

whereby (3.17) implies that we must have that for each j, as k → ∞,

λj(xk) → 0 faster than (xk − xref)Tfj(xk, ω) → +∞ to ensure that the

limit given by (3.18) remains finite. But this leads to a contradiction since

for each k, by construction, we have that for j ∈ {0, . . . , n}, λj(xk) ≥ 0 and∑n
j=0 λj(xk) = 1. The resulting contradiction proves that for some j, we

must have (3.15) holds, where fj(xk;ω) is an extremal selection of Φ(xk;ω).

This implies that

lim
‖xk‖→∞,xk∈K(xk)

[
inf

y∈Φ(xk;ω)

(xk − xref)Ty

‖xk‖

]
<∞, a.s.

which is in contradiction to hypothesis (3.13). It follows that the coercivity

requirement (3.12) holds for Φ(x) = E[Φ(x;ω)].

Further, from the proof of the Proposition 3.13, we may claim that E[Φ(x;ω)]

is a nonempty contractible-valued, compact-valued, upper semicontinuous

mapping on Rn and from Assumption 3.4, the map K is convex-valued.

Thus, all the hypotheses of Proposition 3.14 are satisfied and the multi-

valued SQVI(K,Φ) admits a solution.
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3.4 Stochastic complementarity problems

When the set K in a VI(K,F ) is a cone in Rn, then the VI(K,F ) is equiv-

alent to a CP(K,F ) [74]. Our approach in the previous sections required us

to assume that the map K was deterministic. In practical settings, however,

the map K may take on a variety of forms. For instance, K may be defined

by a set of algebraic resource or budget constraints in financial applications,

capacity constraints in network settings or supply and demand constraints

in economic equilibrium settings. Naturally, these constraints may often be

expectation or risk-based constraints. In such an instance, a complementar-

ity approach assumes relevance; specifically, in such a case, this problem is

defined in the joint space of primal variables and the Lagrange multipliers

corresponding to the stochastic constraints. Such a transformation yields

an SCP(K,H) where the map H may be expectation-valued while the set

K is a deterministic cone. However, such complementarity problems may

also arise naturally, as is the case when modeling frictional contact problems

[37] and stochastic counterparts of such problems emerge from attempting

to model risk and uncertainty. In the remainder of this section, we consider

complementarity problems with single-valued maps.

Before proceeding, we provide a set of definitions.

Definition 3.9 (CP(K, q,M)) Given a cone K in Rn, an n× n matrix M

and a vector q ∈ Rn, the complementarity problem CP(K, q,M) requires an

x ∈ K,Mx+ q ∈ K∗ such that xT (Mx+ q) = 0.

Recall, from section 3.1.1, K∗ , {y : yTd ≥ 0, ∀d ∈ K}. The recession cone,

denoted by K∞, is defined as follows.

Definition 3.10 (Recession cone K∞) The recession cone associated with

a set K (not necessairly a cone) is defined as K∞ , {d : for some x ∈
K, {x+ τd : τ ≥ 0} ∈ K}.

Note that when K is a closed and convex cone, K∞ = K. Next, we define

the CP kernel of a pair (K,M) and define its R0 variant.

Definition 3.11 (CP kernel of the pair (K,M) (K(K,M))) The CP ker-

nel of the pair (K,M) denoted by K(K,M) is given by

K(K,M) = SOL(K∞, 0,M).

91



Definition 3.12 (R0 pair (K,M)) (K,M) is said to be an R0 pair if

K(K,M) = {0}.

From [37, Th. 2.5.6], when K is a closed and convex cone, (K,M) is an R0

pair if and only if the solutions of the CP(K, q,M) are uniformly bounded

for all q belonging to a bounded set.

Definition 3.13 Let K be a cone in Rn and M be an n× n matrix. Then

M is said to be

(a) copositive on K if xTMx ≥ 0, ∀ x ∈ K;

(b) strictly copositive on K if xTMx > 0, ∀ x ∈ K\{0}.

The main result in this section is an almost-sure sufficiency condition for

the solvability of a stochastic complementarity problem SCP(K,H). The

next Lemma is a simple result that shows that (K,M) being an R0 pair

scales in a certain sense. It is seen that this result is useful in guaranteeing

integrability, a necessity when conducting the analysis in stochastic regimes.

Lemma 3.16 Consider SCP(K,H) and suppose ω denotes an arbitary, but

fixed, element in Ω. Suppose there exists a nonzero matrix M ∈ Rn×n which

is copositive on K such that (K,M) is an R0 pair and T is bounded where

T ,
⋃
τ>0

SOL(K,H(•;ω) + τM). (3.19)

If β , 1
‖M‖ , then the matrix M̄ , βM is copositive on K, (K, M̄) is an R0

pair and T̄ is bounded where

T̄ ,
⋃
τ>0

SOL(K,H(•;ω) + τM̄). (3.20)

Proof : Clearly, when M is copositive, M̄ is also copositive. Further, since

(K,M) is an R0 pair, we have that if x ∈ K with xTMx = 0 then we must

have x = 0. Since β > 0, this implies that for x ∈ K, with xT (βM)x = 0

then it follows that x = 0. Thus, (K, βM) or
(
K, M̄

)
is also an R0 pair.

Finally, observe that by scaling τ in (3.20) by using τ̄ = τβ; we get that

T̄ =
⋃
τ̄>0

SOL (K,H(•;ω) + τ̄M) .
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By invoking the boundedness of T , it follows that the set T̄ is bounded and

the result follows.

We now state the following sufficiency condition [37, Th. 2.6.1] for the

solvability of deterministic complementarity problems which is subsequently

used in analyzing the stochastic generalizations.

Theorem 3.17 Let K be a closed convex cone in Rn and let F be a contin-

uous map from K into Rn. If there exists a copositive matrix E ∈ Rn×n on

K such that (K,E) is an R0 pair and the union⋃
τ>0

SOL(K,F + τE)

is bounded, then the CP(K,F ) has a solution.

Recall that, in our notation for SCP(K,H), H(x) = E[H(x;ω)]. We now

present an intermediate result required in deriving an integration-free suffi-

ciency condition.

Lemma 3.18 Let K = Rn
+ and let H(x;ω) be a mapping that satisfies

Assumption 3.2. Given an ω ∈ Ω, suppose the following holds:

lim inf
‖x‖→∞,x∈K

H(x;ω) > 0. (3.21)

Then, there exists a copositive matrix Mω ∈ Rn×n on K such that (K,Mω)

is an R0 pair and Tω is bounded where

Tω ,
⋃
τ>0

SOL(K,H(•;ω) + τMω). (3.22)

Further, if Mω 6≡ 0, without loss of generality we may assume that ‖Mω‖ = 1.

Proof : We proceed by a contradiction and assume that the there is no

copositive matrix Mω where (K,Mω) is an R0 pair and the set Tω is bounded

where Tω is given by (3.22). Therefore for any copositive matrix M with

(K,M) an R0 pair, the set T is always unbounded where

T ,
⋃
τ>0

SOL(K,H(•;ω) + τM).
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Since T is unbounded, by definition, there exists a sequence {xk} ∈ T and

a sequence {τk} > 0, with limk→∞ ‖xk‖ =∞, xk ≥ 0, H(xk;ω)+τkx
M
k xk ≥ 0

and xTkH(xk;ω) + τkx
T
kMxk = 0.

Now, M is copositive on K and ‖xk‖ → ∞ implies that that the se-

quence {xTkMxk} goes to ∞. Since τk > 0 and {xTkMxk} goes to ∞, the

sequence {τkxTkMxk} either goes to∞ or 0. This together with xTkH(xk;ω)+

τkx
T
kMxk = 0 implies that xTkH(xk;ω) goes to −∞ or 0. From (3.21) and

since ‖xk‖ → ∞, we get that xTkH(xk;ω) > 0 for large k, which contra-

dicts the assertion that xTkH(xk;ω) goes to −∞ or 0. The boundedness of T

follows.

Further, if Mω 6≡ 0, taking β = 1
‖Mω‖ , by Lemma 3.16, we may use βMω

instead of Mω in (3.22). Therefore, without loss of generality, we may assume

that ‖Mω‖ = 1.

We are now prepared to prove our main result.

Theorem 3.19 (Solvability of SCP(K,H)) Consider the stochastic com-

plementarity problem SCP(K,H) where K is the nonnegative orthant. Sup-

pose Assumption 3.2 holds for the mapping H and G(x;ω) , xTH(x;ω).

Further suppose the following hold:

(i)

lim inf
‖x‖→∞,x∈K

H(x;ω) > 0, a.s. (3.23)

(ii) Suppose there exists a nonnegative integrable function u(ω) such that

G(x;ω) ≥ −u(ω) holds almost surely for any x.

Then the stochastic complementarity problem SCP(K,H) admits a solution.

Proof : Note that if (3.23) holds, since K is the nonnegative orthant and

‖xk‖ → ∞ as k → ∞, we must have ‖xk‖ > 0 for sufficiently large k. This

allows us to conclude that

lim inf
‖x‖→∞,x∈K

[
xTH(x;ω)

]
> 0, a.s. (3.24)

In other words, if hypothesis (3.23) in Lemma 3.18 holds, then (3.24) holds.
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From hypothesis (3.23) in Lemma 3.18 , we may conclude that for almost

every ω ∈ Ω, there exists a copositive matrix Mω ∈ Rn×n on K such that

(K,Mω) is an R0 pair and the union Tω is bounded where

Tω ,
⋃
τ>0

SOL(K,H(•;ω) + τMω). (3.25)

Observe that, by Lemma 3.18, for each ω for which Mω 6≡ 0, we may assume

that ‖Mω‖ = 1. Consequently, E [‖Mω‖] < +∞ and the integrability of Mω

follows.

We will prove our main result by using Theorem 3.17. In particular, we

show that there exists a copositive matrix M , defined as M , E[Mω] ∈ Rn×n,

where M is copositive on K, (K,M) is an R0 pair, and the set T is bounded,

where

T ,
⋃
τ>0

SOL(K,H + τM).

(i) M = E[Mω] is copositive on K: Consider the matrix E[Mω]. Since

Mω is copositive on K in an almost-sure sense, it follows that

xTE[Mω]x = E
[
xTMωx

]
≥ 0, ∀ x ∈ K,

implying that M = E[Mω] is a copositive matrix on K.

(ii) (K,M) is an R0 pair: We need to show that SOL(K∞, 0,E [Mω]) =

{0}. Since K is a closed and convex cone, K∞ = K and it suffices to show

that SOL(K, 0,E [Mω]) = {0}. Clearly, 0 ∈ SOL(K, 0,E [Mω]). It remains

to show that SOL(K, 0,E [Mω]) ∈ 0. Suppose this claim is false and there

exists a d ∈ K such that d 6= 0 and d ∈ SOL(K, 0,E [Mω]). It follows that

dTE[Mω]d = 0. This can be written as E
[
dTMωd

]
= 0 and there are sets

U>, U< and U= such that

dTMωd


> 0, ω ∈ U>
= 0, ω ∈ U=

< 0. ω ∈ U<

We consider each of these possibilities next.
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(a) Suppose IP(U=) > 0. We have dTMωd = 0 for ω ∈ U=. Since each

(K,Mω) is an R0 pair, we obtain that d = 0. But this contradicts our

assumption that d 6= 0, implying that IP(U=) = 0.

(b) Suppose IP(U<) > 0. For ω ∈ U<, we have dTMωd < 0. Since Mω is

copositive, for d ∈ K we must have that dTMωd ≥ 0. This contradic-

tion implies that IP(U<) = 0.

(a) and (b) above imply that IP(U>) = 1 or in other words, we have dTMωd >

0 for ω ∈ Ω. This implies that E
[
dTMωd

]
> 0. This contradicts our assertion

that E
[
dTMωd

]
= 0. Thus, we must have d = 0 and SOL(K, 0,E[Mω]) =

{0}. Therefore, (K,M) is indeed an R0 pair.

(iii) The set T is bounded: We proceed to show that the set T is

bounded where

T ,
⋃
τ>0

SOL(K,H + τM). (3.26)

It suffices to show that there exists an m > 0 such that for all x ∈ K, ‖x‖ > m

implies x /∈ T . Suppose there is no such finite m, implying that

for any m > 0, ∃ x ∈ K, ‖x‖ > m and x ∈ T. (3.27)

For each k > 0, choose xk ∈ K such that ‖xk‖ > k and xk ∈ T . For this

sequence ‖xk‖ → ∞. Since ‖xk‖ > k observe that for any k, xk 6= 0. Now,

for each k, since xk ∈ T , it follows that xk ∈ SOL(K,H + τkM) for some

τk > 0. Thus, for each k we have xTkH(xk) + τkx
T
kMxk = 0. Since xk 6= 0

this means that for each k,

xTkH(xk) = E[xTkH(xk;ω)] = −τkxTkMxk. (3.28)

Observe that, since xk ∈ K and ‖xk‖ → ∞, we have xk 6= 0. Further,

since M is copositive we have xTkMxk ≥ 0. Since ‖xk‖ → ∞, we have

that xTkMxk ≥ 0. Since τk > 0, there are two possibilities for the sequence

τkx
T
kMxk: either it τkx

T
kMxk → +∞ or τkx

T
kMxk → 0 as k →∞. In either
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case, as k →∞ from (3.28) we can conclude

lim inf
k→∞

xTkH(xk) = lim inf
k→∞

[
E[xTkH(xk;ω)]

]
= lim inf

k→∞

[
−τkxTkMxk

]
≤ 0.

(3.29)

On the other hand, by (3.24) we have that

lim inf
k→∞

xTkH(xk;ω) > 0 a.s. (3.30)

By hypothesis (ii), Fatou’s lemma can be applied, giving us

lim inf
k→∞

xTkH(xk) = lim inf
k→∞

[
E
[
xTkH(xk;ω)

]]
≥ E

[
lim inf
k→∞

xTkH(xk;ω)
]
> 0,

(3.31)

where the last inequality follows from (3.30). But this contradicts (3.29) and

implies that there is a scalar m such that x ∈ K, ‖x‖ > m implies x /∈ T .

In other words, T is bounded. We have shown that all the conditions of

Theorem 3.17 are satisfied and we may conclude that the stochastic comple-

mentarity problem SCP(K,H) has a solution.

In the above proposition, hypothesis (3.23) guaranteed the existence of

a copositive matrix M , so that all of the conditions of Theorem 3.17 are

satisfied for the SCP. In certain applications, it may be possible to show

the existence of a copositive matrix M such that (K,M) is an R0 pair, for

example, choosing M as the identity matrix may suffice. In fact, if we assume

existence of a copositive matrix M such that (K,M) is an R0 pair, then we

do not require hypothesis (3.23) above but merely equation (3.24) suffices.

This is demonstrated in the proposition below.

Proposition 3.20 Consider the stochastic complementarity problem

SCP(K,H) where K is the nonnegative orthant. Suppose Assumption 3.2

holds for the mapping H, G(x;ω) = xTH(x;ω), and there exists a copositive

matrix M on K such that (K,M) is an R0 pair and the following hold :

(i)

lim inf
x∈K,‖x‖→∞

[
xTH(x;ω)

]
> 0, almost surely. (3.32)
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(ii) Suppose there exists a nonnegative integrable function u(ω) such that

G(x;ω) ≥ −u(ω) holds almost surely for any x.

Then SCP(K,H) has a solution.

Proof : We proceed to show that the set T is bounded where

T ,
⋃
τ>0

SOL(K,H + τM). (3.33)

As earlier, it suffices to show that there exists an m > 0 such that for all

x ∈ K, ‖x‖ > m implies x /∈ T . Suppose there is no such m implying that

for any m > 0 ∃x ∈ K, ‖x‖ > m and x ∈ T. (3.34)

Construct a sequence {xk} as follows: For each m = k > 0, choose xk ∈ K
such that xk ∈ K, ‖xk‖ > k and xk ∈ T . For this sequence ‖xk‖ → ∞. Since

‖xk‖ > k observe that for any k, xk 6= 0. Now, for each k since xk ∈ T ,

it follows that xk ∈ SOL(K,H + τkM) for some τk > 0. Thus, for each k,

we have xk > 0, H(xk) + τkMxk ≥ 0, τk > 0 and xTkH(xk) + τkx
T
kMxk = 0.

Since xk 6= 0 and M is copositive and (K,M) is an R0 pair we have that

xTkMxK ≥ 0. This together with τk > 0 means that for each k,

E[xTkH(xk;ω)] = xTkH(xk) = −τkxTkMxk ≤ 0.

This gives us that

lim inf
k→∞

E[xTkH(xk;ω)] = lim inf
k→∞

[
−τkxTkMxk

]
≤ 0. (3.35)

On the other hand, since xk ∈ K and ‖xk‖ → ∞, by hypothesis (3.32) we

have that

lim inf
k→∞

xTkH(xk;ω) > 0 a.s.

This means that

E
[
lim inf
k→∞

xTkH(xk;ω)
]
> 0. (3.36)

Now, by hypothesis (ii), Fatou’s lemma is applicable, implying that

lim inf
k→∞

E
[
xTkH(xk;ω)

]
≥ E

[
lim inf
k→∞

xTkH(xk;ω)
]
> 0,
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where the last inequality follows from (3.36). This contradicts (3.35). This

contradiction implies that there exists an m such that x ∈ K, ‖x‖ > m

implies x /∈ T . In other words, T is bounded. By hypothesis, we have that

there exists a copositive matrix M on K such that (K,M) is an R0 pair and

we have shown that T is bounded. Thus, all conditions of Theorem 3.17 are

satisfied and we may conclude that the stochastic complementarity problem

SCP(K,H) has a solution.

We now consider several corollaries, the first of which requires defining a

co-coercive mapping.

Definition 3.14 (Co-coercive function) A mapping F : K ⊆ Rn → Rn

is said to be co-coercive on K if there exists a constant c > 0 such that

(F (x)− F (y))T (x− y) ≥ c‖F (x)− F (y)‖2, ∀x, y ∈ K.

We state Cor. [37, Cor. 2.6.3], which is used in the proof of the next

proposition.

Corollary 3.21 Let K be a pointed, closed, convex cone in Rn and let

F : Rn → Rn be a continuous map. If F is co-coercive on Rn, then CP(K,F )

has a nonempty compact solution set if and only if there exists a vector

u ∈ Rn satisfying F (u) ∈ int(K∗).

Our next result provides sufficiency conditions for the existence of a so-

lution to an SCP when an additional co-coercivity assumption is imposed

on the mapping. In particular, we assume that the mapping H(z;ω) is co-

coercive for almost every ω ∈ Ω.

Proposition 3.22 (Solvability under co-coercivity) LetK be a pointed,

closed and convex cone in Rn. Suppose Assumption 3.2 holds for the mapping

H(x;ω) and H(x;ω) is co-coercive on K with constant η(ω) > 0. Suppose

η(ω) ≥ η̄ > 0 for all ω ∈ Ω̄ where IP(Ω̄) = 1 and there exists a deterministic

vector u ∈ Rn satisfying H(u;ω) ∈ int(K∗) in an almost sure sense. Then

the solution set of the SCP(K,H) is a nonempty and compact set.

Proof : First we show that, E [H(x;ω)] is co-coercive in x. We begin by
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noting that

(x− y)T (E [H(x;ω)]− E [H(y;ω)]) =

∫
Ω

(x− y)T (H(x;ω)−H(y;ω))dIP

=

∫
Ω̄

(x− y)T (H(x;ω)−H(y;ω))dIP,

where the second equality follows by noting that P(Ω̄) = 1. This allows us

to conclude that∫
Ω̄

(x− y)T (H(x;ω)−H(y;ω))dIP ≥
∫

Ω̄

η(ω)‖H(x;ω)−H(y;ω)‖2dIP

≥ η̄

∫
Ω̄

‖H(x;ω)−H(y;ω)‖2 dIP,

where the first inequality follows from the co-coercivity of H(x;ω), the second

inequality follows from noting that η(ω) ≥ η̄ for ω ∈ Ω̄, a set of unitary

measure. Finally, by again recalling that Ω̄ has measure one and by leveraging

Jensen’s inequality since ‖.‖2 is a convex function, the required result follows:

η̄

∫
Ω̄

‖H(x;ω)−H(y;ω)‖2 dIP = η̄

∫
Ω

‖H(x;ω)−H(y;ω)‖2 dIP

≥ η̄ ‖E [H(x;ω)]− E [H(y;ω)]‖2 .

Further, since H(u;ω) ∈ int(K∗) holds almost surely for a deterministic

vector u, we have that for all x ∈ K, H(u;ω)Tx ≥ 0 holds almost surely.

This implies that for all x ∈ K,E [H(u;ω)]T x ≥ 0 holds. Thus, there exists

a u ∈ Rn such that E [H(u;ω)] ∈ K∗.

It remains to show that E [H(u;ω)] lies in int(K∗). If E [H(u;ω)] /∈
int(K∗), then there exists an x ∈ K such that E [H(u;ω)]T x = 0. Since

x ∈ K and by assumption, H(u;ω) ∈ int(K∗) almost surely, it follows that

H(u;ω)Tx > 0 almost surely, implying that E [H(u;ω)]T x > 0. Thus, we

arrive at a contradiction, proving that E [H(u;ω)] ∈ int(K∗). Thus, by

Corollary 3.21, since E [H(z;ω)] is co-coercive and there is a vector u ∈ Rn

such that E [H(u;ω)] ∈ int(K∗), it follows that SCP(K,H) has a nonempty

compact solution set.

The next corollary is a direct application of Theorem 3.17 to SCP(K,H)

when E is the identity matrix and can be viewed as a theorem of the alter-
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native for CPs.

Corollary 3.23 (Cor. 2.6.2 [37]) Let K be a closed convex cone in Rn

and let H(x;ω) satisfy Assumption 3.2. Either SCP(K,H) has a solution

or there exists an unbounded sequence of vectors {xk} and a sequence of

positive scalars {τk} such that for every k, the following complementarity

condition holds:

K 3 xk ⊥ E [H(xk;ω)] + τkxk ∈ K∗.

We may leverage this result in deriving a stochastic generalization.

Proposition 3.24 (Theorem of the alternative) Let K be a closed con-

vex cone in Rn and let H(x;ω) be a mapping that satisfies Assumption 3.2.

Either SCP(K,H) has a solution or there exists an unbounded sequence of

vectors {xk} and a sequence of positive scalars {τk} such that for every k,

the following complementarity condition holds almost-surely:

K 3 xk ⊥ H(xk;ω) + τkxk ∈ K∗. (3.37)

Proof : Suppose (3.37) holds almost surely. Consequently, it also holds in

expectation or

K 3 xk ⊥ E[H(xk;ω)] + τkxk ∈ K∗. (3.38)

Therefore by Cor. 3.23, SCP(K,H) does not admit a solution.

3.5 Examples revisited

We now revisit the motivating examples presented in Section 3.2 and show

the applicability of the developed sufficiency conditions in the context of such

problems.

3.5.1 Stochastic Nash-Cournot games with nonsmooth price
functions

In Section 3.2.1, we described a stochastic Nash-Cournot game in which the

price functions were nonsmooth. We revisit this example in showing the
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associated stochastic quasi-variational inequality problem is solvable.

Before proceeding, we recall that fi(x;ω) is a convex function of xi, given

x−i (see [35, Lemma 1]).

Lemma 3.25 Consider the function fi(x;ω) = ci(xi) − xip(X;ω) where

p(X;ω) is given by (3.5). Then fi(xi;x−i) is a convex function in xi for

all x−i.

The convexity of fi and Ki(x−i) allows us to claim that the first-order opti-

mality conditions are sufficient; these conditions are given by a multi-valued

quasi-variational inequality SQVI(K,Φ) where Φ, the Clarke generalized gra-

dient, is defined as

Φ(x) , E

[
N∏
i=1

∂xifi(x;ω)

]
,

and Φ(x;ω) is defined as
∏N

i=1 ∂xifi(x;ω). The subdifferential set of fi(x;ω)

is defined as

∂xifi(x;ω) = c′i(xi)− ∂xi(xip(X;ω)) = c′i(xi)− p(X;ω)− xi∂xip(X;ω).

Thus, if w ∈ Φ(x;ω), then w =
∏n

i=1 wi where wi ∈ ∂xifi(x;ω). Based on

the piecewise smooth nature of p(X;ω), the Clarke generalized gradient of p

is defined as follows:

∂xip(X;ω) ∈


{−b1(ω)}, 0 ≤ X < β1

−[bj−1(ω), bj(ω)], βj−1 = X, j = 2, . . . , s

{−bs(ω)}, βs < X

(3.39)

Since our interest lies in showing the applicability of our sufficiency condi-

tions when the map Φ is expectation valued, we impose the required assump-

tions on the map K as captured by Prop. 3.15 (i) and (v). Existence of a

nonsmooth stochastic Nash-Cournot equilibrium follows from showing that

hypotheses (ii) – (iv) of Prop. 3.15 do indeed hold.

Theorem 3.26 (Existence of stochastic Nash-Cournot equilibrium)

Consider the stochastic generalized Nash-Cournot game and suppose As-

sumptions 3.3, 3.4 and 3.5 hold. Further, assume that conditions (i) and (v)

of Prop. 3.15 hold. Then, this game admits an equilibrium.
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Proof : Since ∂xifi(x;ω) is a Clarke generalized gradient, it is a nonempty

upper semicontinuous mapping at xi, given x−i. Furthermore, the integra-

bility of (aj(ω), bj(ω)) for j = 1, . . . , s allows us to claim that ∂xifi(x;ω)

is integrably bounded. Consequently, hypothesis (iv) in Proposition 3.15

holds.

By Assumption 3.5, since ai(ω) and bi(ω) are positive, we have that

they are bounded below by the nonnegative constant (integrable) function

0. From, this and the description of Φ derived above, we see that hypothesis

(iii) in Prop. 3.15 holds. Thus Fatou’s lemma can be applied.

We now proceed to show that hypothesis (ii) in Proposition 3.15 holds. It

suffices to show that there exists an xref ∈ K(x) such that

lim
‖x‖→∞,x∈K(x)

(
inf

w∈Φ(x;ω)

(x− xref)Tw

‖x‖

)
=∞.

Consider a vector xref such that

xref ∈
⋂

x ∈ dom(K)

K(x).

Then wT (x− xref) can be expressed as the sum of several terms:

wT (x− xref) =
N∑
i=1

c′i(xi)(xi − xref
i )− p(X;ω)(x− xref)

−
N∑
i=1

xi(xi − xref
i )∂xip(X;ω).

When ‖x‖ → ∞, from the nonnegativity of x, it follows that X → ∞ and

for sufficiently large X, we have that ∂xip(X;ω) = −bs(ω). Consequently, for
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almost every ω ∈ Ω, we have that

lim
‖x‖→∞,x∈K(x)

inf
w∈Φ(x;ω)

(x− xref)Tw

‖x‖

= lim
‖x‖→∞,x∈K(x)

(∑N
i=1(c′i(xi) + bs(ω)xi)(xi − xref

i )

‖x‖

)

− lim
‖x‖→∞,x∈K(x)

(
p(X;ω)(x− xref)

‖x‖

)

= lim
‖x‖→∞,x∈K(x)

Term (a)︷ ︸︸ ︷(∑N
i=1(c′i(xi) + bs(ω)(X + xi))(xi − xref

i )

‖x‖

)

− lim
‖x‖→∞,x∈K(x)

Term (b)︷ ︸︸ ︷(
as(ω)(x− xref)

‖x‖

)
=∞,

where the last equality is a consequence of noting that the numerator of Term

(a) tends to +∞ at a quadratic rate while the numerator of Term (b) tends

to +∞ at a linear rate. The existence of an equilibrium follows from the

application of Prop. 3.15.

3.5.2 Strategic behavior in power markets

In Section 3.2.1, we have presented a model for strategic behavior in im-

perfectly competitive electricity markets. We will now develop a stochastic

complementarity-based formulation of such a problem. The developed suffi-

ciency conditions will then be applied to this problem.

Recall that, the resulting problem faced by firm f can be stated as follows:

maximize
sfi, gfi

E

[∑
i∈N

( pi(Si;ω)sfi − cfi(gfi;ω)− (sfi − gfi)wi )
]

subject to gfi ≤ capfi (µfi ), ∀ i ∈ N
0 ≤ gfi, ∀ i ∈ N
0 ≤ sfi, ∀ i ∈ N

and
∑
i∈N

( sfi − gfi ) = 0. (λf )
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The equilibrium conditions of this problem are given by the following com-

plementarity problem.

0 ≤ sfi ⊥ E [−p′i(Si;ω)sfi − pi(Si;ω) + wi]− λf ≥ 0, ∀ i ∈ N
0 ≤ gfi ⊥ E

[
c′fi(gfi;ω)− wi

]
+ µfi + λf ≥ 0, ∀ i ∈ N

0 ≤ µfi ⊥ capfi − gfi ≥ 0, ∀ i ∈ N
λf ⊥

∑
i∈N

( sfi − gfi ) = 0. ∀ f ∈ F

The ISO’s optimization problem is given by

maximize
yi

∑
i∈N

yiwi

subject to
∑
i∈N

PDFijyi ≤ Tj, (ηj) ∀ j ∈ K

and its optimality conditions are as follows:

wi =
∑
j∈K

ηjPDFij ∀ i ∈ N ,

0 ≤ ηj ⊥ Tj −
∑
i∈N

PDFijyi ≥ 0 ∀ j ∈ K.
(3.40)

The market clearing conditions are given by the following.

yi =
∑
h∈F

( shi − ghi ) , ∀ i ∈ N .

Next, we define `i(ω) and hi(ω) as follows:

`i(ω) = −p′i(Si;ω)sfi − pi(Si;ω) + wi = −p′i(Si;ω)sfi − pi(Si;ω) +
∑
j∈K

ηjPDFij

(3.41)

hi(ω) = c′fi(gfi;ω)− wi = c′fi(gfi;ω)−
∑
j∈K

ηjPDFij. (3.42)

Then, by aggregating all the equilibrium conditions together and eliminating

wi and yi based on the equality constraints (3.40), we get the equilibrium
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conditions in sfi, gfi, µfi, , λf , and ηj are as follows

0 ≤ sfi ⊥ E [`i(ω)]− λf ≥ 0, ∀ i ∈ N
0 ≤ gfi ⊥ E [hi(ω)] + µfi + λf ≥ 0, ∀ i ∈ N
0 ≤ µfi ⊥ capfi − gfi ≥ 0, ∀ i ∈ N

λf ⊥
∑
i∈N

( sfi − gfi ) = 0,


, ∀ f ∈ F

and 0 ≤ ηj ⊥ Tj −
∑
i∈N

PDFij
∑
h∈F

( shi − ghi ) ≥ 0. ∀ j ∈ K

This can be viewed as the following stochastic (mixed)-complementarity

problem where x, B, and H(x;ω) are appropriately defined:

0 ≤ x ⊥ E[H(x;ω)]−BTλ ≥ 0

λ ⊥ Bx = 0.

It follows that the inner product in the coercivity condition (3.32) reduces

to xTE[H(x;ω)] as observed by this simplification:(
x

λ

)T (
E[H(x;ω)]−BTλ

Bx

)
= xTE[H(x;ω)].

Next, we show that this inner product is bounded from below by −u(ω)

where u(ω) is a nonnegative integrable function.

Lemma 3.27 For the stochastic complementarity problem SCP(K,H) above

that represents the strategic behavior in power markets, there exists a non-

negative integrable function u(ω) such that have that the following holds:

G(x;ω) = xTH(x;ω) ≥ −u(ω) almost surely for all x ∈ K.
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Proof : The product xTH(x;ω) can be expressed as follows:

∑
f,i

(
−p′i(Si;ω)s2

fi − pi(Si;ω)sfi +

(∑
j∈K

ηjPDFij

)
sfi

)

+
∑
f,i

(
c′fi(gfi;ω)gfi −

(∑
j∈K

ηjPDFij

)
gfi + µfigfi

)

+
∑
f,i

(
µficapfi − µfigfi

)
+
∑
j

ηj

(
Tj −

∑
i∈N

PDFij
∑
h∈F

( shi − ghi )
)
.

After appropriate cancellations, this reduces to∑
f,i

(
−p′i(Si;ω)s2

fi − pi(Si;ω)sfi
)

+
∑
f,i

(
c′fi(gfi;ω)gfi

)
+
∑
f,i

(
µficapfi

)
+
∑
j

ηjTj.

By Assumption 3.6, the price functions are decreasing functions bounded

above by an integrable function and the cost functions are non-decreasing.

Furthermore, K is the nonnegative orthant, µfi, ηj are nonnegative, and

capfi, Tj denote nonnegative capacities. Consequently, we have the following

sequence of inequalities.∑
f,i

(
−p′i(Si;ω)s2

fi − pi(Si;ω)sfi
)

+
∑
f,i

(
c′fi(gfi;ω)gfi

)
+
∑
f,i

(
µficapfi

)
+
∑
j

ηjTj

≥
∑
f,i

(−pi(Si;ω)sfi) ≥ −
(

max
i
p̄i(ω)

)∑
f,i

capfi , −u(ω),

where pi(Si;ω) ≤ p̄i(ω) for all nonnegative Si and
∑

f,i sfi ≤
∑

f,i capfi.

Integrability of u(ω) follows immediately by its definition.

Having presented the supporting results, we now prove the existence of an

equilibrium.

Proposition 3.28 (Existence of an imperfectly competitive equilibrium)

Consider the imperfectly competitive model in power markets. Under As-

sumption 3.6, this problem admits a solution.

Proof : The result follows by showing that Proposition 3.20 can be applied.

Lemma 3.27 shows that hypothesis (ii) of Proposition 3.20 holds. We proceed

to show that hypothesis (i) of Proposition 3.20 also holds. We show that the

107



following property holds almost surely:

lim inf
‖x‖→∞, x≥0

xTH(x;ω) > 0. (3.43)

Consider the expression for xTH(x;ω) derived in Lemma 3.27.

xTH(x;ω) =
∑
f,i

(
−p′i(Si;ω)s2

fi − pi(Si;ω)sfi
)

+
∑
f,i

(
c′fi(gfi;ω)gfi

)
+
∑
f,i

(
µficapfi

)
+
∑
j

ηjTj.

For large ‖x‖, the first summation is dominated by its first term and by

Assumption 3.6, as ‖x‖ goes to ∞, this term goes to ∞. The other terms

are all nonnegative by Assumption 3.6. Thus, the entire expression can only

increase to ∞ as ‖x‖ goes to ∞. This proves that (3.43) holds and the

required result follows.
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CHAPTER 4

ON THE INADEQUACY OF VAR-BASED
RISK MANAGEMENT: VAR, CVAR, AND

NONLINEAR INTERACTIONS

4.1 Introduction

Risk is a complex notion and can take on varied forms with diverse appli-

cations. Managing risk is one of the many problems faced by firms in the

financial industry. In the context of trading firms, such management has

been traditionally achieved by the introducing value-at-risk thresholds on

the portfolio risk accumulated by the traders. This work is motivated by the

question of adequacy of such thresholds when traders are risk-seeking. The

following example clarifies the context.

Example 4.1 (A motivating example) Consider a typical day at

∞−Alpha Asset Management, a fictitious risk management firm, where Mike

manages a trader, Theresa. Mike’s training is in classical finance while

Theresa has a Ph.D. in mathematics. Mike imposes a VaR constraint on

the portfolio risk assumed by Theresa while she trades on a coherent risk

measure. Since she is seeking higher returns, she maximizes her risk; how-

ever, she is constrained by Mike’s VaR threshold. In other words, she will

trade so as to maximize her coherent risk measure subject to Mike’s VaR

constraints.

What can we learn about Mike’s ability to manage Theresa’s risk?

Widely accepted by the financial industry and regulators alike and exten-

sively used by practitioners, the value at risk (VaR) is essentially a mea-

surement of quantiles. However, the academic field of mathematical finance

has long realized that VaR has certain noticeable shortcomings; for example,

it does not properly capture diversification. Alternate measures have been

suggested in the form of coherent risk measures which do, in fact, have many
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desirable properties. While the risk preference of a trader can take on a con-

tinuum of possibilities, given our interest in showing the inadequacy of a VaR

threshold, it suffices to consider any reasonable risk measure. Consequently,

we assume that traders employ a conditional value-at-risk measure or a CVaR

measure. It should be noted that in general this problem is challenging in

that it leads to a stochastic nonconvex optimization problem, whose opti-

mal value is often hard to determine either analytically or computationally.

It is worth emphasizing that the choice of the risk measure, while relevant

in proving our result, does not limit the main claim of inadequacy. More

precisely, it suffices to show that the VaR threshold is inadequate for risk

management, if a risk-seeking trader employing any reasonable risk measure

can accumulate large or infinite risk.

Given our choice of CVaR as the trader’s risk measure, our study reduces to

an examination of the interactions between VaR and CVaR. Furthermore, we

believe that this interaction poses a new source of information. For instance,

the interaction between different nonlinear phenomena has long been a source

of new insight. In physics, for example, properties of subatomic particles are

typically measured by how the particles are deflected by magnetic fields [116].

We consider a similar line of argument concerning the relation between VaR

and a particular coherent risk measure, namely the conditional VaR or CVaR.

4.1.1 Relevance

In the financial industry, the regulators are primarily concerned with con-

trolling risk and avoiding default, thereby protecting the firm and their cus-

tomers. As the events of the last decade have revealed, the implications of

such risk management can be felt on the entire economy. The regulators

achieve this by laying down rules and regulations that participating firms

must abide by. In the financial industry, the Basel Accords (currently Basel

III) provide banking regulations issued by the Basel Committee on Bank-

ing Supervision (BCBS) [117]. Amongst other guidelines, these regulations

provide an international standard for the reserve requirements that banks

should abide by. Naturally, these requirements grow with the level of risk

exposure. In contrast with banking regulators, banks and security firms see
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the capital adequacy requirements as a trade-off between the risk of default

and the potential revenues from operating with higher levels of capital.

Banks, securities firms, and regulators use models to quantify risk and set

capital requirements accordingly (see [118] for explanation of different types

of models used by regulators and firms). Value-at-risk models are popular

in financial institutions. For a given portfolio, these models are designed to

estimate the maximum amount that a bank could lose over a specified pe-

riod with a given probability [119]. The resulting measures provide a metric

of the risk exposure of the given portfolio. Risk managers may then decide

if the firm is comfortable with this level of exposure. Value-at-risk (VaR)

models are extensively used for reporting (both internal and regulatory re-

quirements) and limiting risk, allocating capital, and measuring performance

[120]. Despite its popularity and broad acceptance as an industry standard

in financial industry, VaR models may have played a role in many financial

losses like the failure of Long Term Capital Management (LTCM) hedge fund

in 1998 (cf. [121, 122]). More recently a VaR model masked JP Morgan’s $2

billion loss in 2012 [123]. Yet, VaR continues to be used for measuring and

managing risk. In the wake of the recent financial crisis, the issue of risk

quantification, management, and mitigation has been of interest both from

a firm perspective and a regulatory standpoint.

In recent years, yet another concern of regulators is that the increasing

reliance on high bonuses results in reduced profits in the investment banking

sector. This may actually expose trading firms to high levels of operational

risks. This concern has also supported raising the capital requirements of

firms [124]. In [125], Rajan has argued that firm managers are given in-

centives to take risk that generate severely adverse consequences with small

probability; however, such firms offer generous compensation. This motivates

a question as to whether risk-seeking behavior at the trader’s level may have

severe consequences from a firm standpoint. To the best of our knowledge, no

simple models exist to provide formal support. The inadequacy of VaR was

shown numerically through the study of the portfolio management of bonds,

a model employed by several banks [126]. Specifically, it was observed that

a 15% reduction in VaR resulted in a 15% increase in CVaR, a somewhat

unexpected outcome given the overall goal of risk management. Our study
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is different in that it considers the management of risk in a general setting

with an emphasis on examining the analytical problem from the standpoint

of a trader. More specifically, this study constructs a model that shows that

despite imposing a VaR threshold, risk-seeking traders may still assume an

extremely high level of CVaR risk. This could lead the financial firm to ruin,

a consequence that both firms and regulators want to avoid.

4.1.2 Summary of contributions

The main contributions of our work are as follows:

(i) First, when the asset returns are defined through a uniform distribu-

tion, we determine the maximum CVaR that a trader may assume

while constrained by a VaR threshold. We generalize this result in

showing that for general distributions with compact support, the max-

imum CVaR risk is finite. More important, the maximum risk level is

bounded below by the upper bound of the support of the distribution

and could possibly be large.

(ii) Second, motivated by the result in (i), we we show that risk-seeking

traders can assume unbounded risk (captured via a CVaR metric) de-

spite a VaR threshold when employing a portfolio of assets with Gaus-

sian returns. This requires proving the unboundedness of the optimal

value of a stochastic nonconvex optimization problem, a relatively chal-

lenging class of problems. We further extend this result to a regime

where the asset returns have distributions with unbounded support.

It must be noted that when the distribution has bounded or unbounded

support, even though there is a finite probability that the loss of the random

variable is greater than a given VaR threshold and CVAR at a given threshold

may be finite, it does not immediately follow that the CVAR function is un-

bounded as the risk-aversion parameter tends to its maximum value, namely

1. Our results provide the required mathematical support for this conjecture.

This chapter is organized as follows. In section 4.2, we provide a setting

for the problem, provide a brief review of VaR and CVaR risk measures,

and define the problem. In section 4.3, we show that for portfolios with
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independent asset returns with compact support, firms accumulate finite risk

whose value is of the order of the upper bound of the support. In section

4.4, we extend this result to accommodate portfolios consisting of assets

with independent Gaussian returns and more generally for distributions with

unbounded support. In such an instance, it is seen that the traders can

accumulate unbounded CVaR risk.

4.2 Problem setting

In this study, we consider a setting where a financial firm uses Value-At-Risk

(VaR) as a means of managing risk. A trader employed at such a firm is al-

lowed to choose any position as long as the VaR of his/her preferred position

does not exceed a threshold imposed by the trading firm. Given this VaR

constraint, the trader chooses a particular position based on her risk pref-

erences. We model this problem from the trader’s standpoint and consider

settings under diverse assumptions on the distribution of asset returns.

In this problem, we assume the trader employs a Conditional Value-at-

Risk (CVaR) measure for choosing her preferred position and hence refer

to her as a CVaR trader. Given the VaR constraint imposed by the firm,

the trader seeks to take on as much risk as possible as measured by CVaR.

However, the trader must simultaneously ensure that the VaR constraint is

not violated. Thus, a CVaR traders’ preferred position is chosen based on

it being the best (the one with most risk) possible position with respect to

the CVaR risk measure while also abiding by the VaR constraint imposed by

the firm. This VaR constrained CVaR maximization problem is referred to

as the Trader’s problem. Before discussing the Trader’s problem statement

in detail, we briefly review VaR and CVaR risk measures.

The Value-At-Risk (VaR) has been widely used as a measure of risk and

is considered a de-facto standard for managing risk in the financial indus-

try. Despite its wide acceptance and popularity, VaR as a risk measure has

certain serious shortcomings; it ignores losses beyond VaR regardless of how

large these losses might be. Furthermore, it is nonconvex unless derived

from a Gaussian distribution and, consequently, difficult to optimize [38].
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In 2002, Artzner et al [127] introduced an axiomatic methodology to char-

acterize desirable properties of risk measures such as translation invariance,

subadditivity, positive homogeneity and monotonicity. Risk measures satis-

fying these four axioms were said to be coherent. VaR is not a coherent risk

measure because it lacks sub-additivity. However, the conditional value-at-

risk (CVaR) measure [38, 128] belongs to this class of coherent risk measures.

CVaR as a risk measure for financial applications has been quite popular in

academic literature due to its superior mathematical properties.

We refer the reader to [38, 76, 77] for an introduction to the value at

risk (VAR), conditional value at risk (CVAR) and coherent risk measures

and define each formally before proceeding. The value at risk at the α level

specifies the maximum loss with a specified confidence level α while its con-

ditional variant is the conditional expected loss under the condition that the

loss exceeds the VaR level.

Let (Ω,F ,P) be a probability space, where Ω , R and F , B(R).

Let Xi be an independent random variable defined on this probability space

where i ∈ {1, 2, ..., n} and Xi denotes the loss incurred by stock i in a spec-

ified time interval. For w = (w1, w2, . . . , wn) ∈ Rn
+, consider the portfolio

Z(w) = w1X1 + w2X2 + . . .+ wnXn. The Value-At-Risk (VaR) at level α of

the portfolio Z(w) is denoted by Vα(w) and the Conditional-VaR (CVaR) at

level β of the portfolio Z(w) is denoted by C(β, w).

Consider a trading firm that measures risk using a VaR risk measure.

A trader in such a firm may have his own set of preferred positions and risk

levels that arise from an optimization problem the trader solves. Suppose the

trading firm uses a VaR confidence level α ∈ [0, 1] (typically α ≥ 0.95)

and a VaR threshold v ∈ R+. The trading firm imposes a constraint that

the positions w satisfy Vα(w) ≤ v. This constraint restricts the portfolios of

the trader and the set of VaR-admissible positions w = (w1, w2, . . . , wn) for

the portfolio Z(w) is denoted by A.

A def
= {w ∈ Rn| Vα(w) ≤ v}.

Consider the problem from the standpoint of a trader. We referred to

114



this problem as the Trader’s problem. The traders’ goal is to take on as

much CVaR risk as possible while maintaining the VaR con-

straint imposed by the trading firm. Thus, it is natural to assume that the

trader chooses w̄ as his preferred position based on it being the maximizer

of a CVaR-risk-maximization problem problem over the set of VaR -

admissible positions denoted by A. Also, the CVaR function depends

on the confidence level chosen by the trader. However, since the traders’ goal

is to maximize risk, the trader will want to maximize the CVaR func-

tion over all possible confidence levels. Mathematically, this problem can be

viewed as the following optimization problem:

Definition 4.1 (Trader’s problem) Given α, v such that α ∈ (0, 1) and

v > 0. Then the Trader’s problem is given by

(Trad(D)) max
β,w≥0

C(β, w)

subject to Vα(w) ≤ v,

β ∈ [0, 1].

where in the notation (Trad(D)), D is a vector denoting the distributions

of the random variables X1, X2, . . . , Xn that make up the portfolio Z(w) =

w1X1 + w2X2 + . . .+ wnXn.

VaR is nonconvex unless it is derived from a Gaussian distribution. Thus, the

set of VaR-admissible positions or the constraint set in the Trader’s problem

(Trad(D)) is not convex in general. Furthermore, if Z(w) is convex in w then

C(β, w) is convex in w for a given β (cf. [38]), the resulting optimization

problem requires maximizing a convex function over a possibly nonconvex

constraint. In effect, global optima of the Trader’s problem (Trad(D)) are

not easily solvable. We may also refer to this Trader’s problem as the Trader’s

CVaR problem to emphasize the fact that the risk measure being maxi-

mized in the Trader’s problem (Trad(D)) is the CVaR risk measure. In

the next two sections, we provide a mathematical solution for the Trader’s

problem, under differing assumptions on the distribution.

Before proceeding, we review some notation. Let Z denote a random

variable (as in definition 4.1) where Z = w1X1 + w2X2 + . . . + wnXn. We

assume that Z has density f(x) and distribution function F (x). Furthermore,

we denote by zβ the quantile of Z at level β.
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4.3 Asset distributions with bounded support

We first consider the simplest distribution with bounded support, viz. the

Uniform distribution on [0, 1]. In this case, it is possible to articulate the

solution of the Trader’s problem precisely as shown in Section 4.3.1. It is

natural to wonder what happens when the asset returns have a general dis-

tribution with bounded support. We analyze this question in section 4.3.2

and show that for general distributions with bounded support, the maximum

CVaR risk remains finite. We also show that the maximum risk level is

bounded below by the upper bound of the support of the distribution and

could possibly be large.

4.3.1 Returns with uniform distibutions

Assume Xi are independent uniform random variables on [0, 1], where i ∈
{1, 2}. Let Z(w1, w2) , w1X1 + w2X2. By symmetry and without loss of

generality, we may assume 0 ≤ w1 ≤ w2. Then, the density of Z is given by

fZ(w1,w2)(a) =



a
w1w2

0 ≤ a ≤ w1,

1
w2

w1 ≤ a ≤ w2,

w1+w2−a
w1w2

w2 ≤ a ≤ w1 + w2,

0 otherwise.

This gives us the distribution function of Z as

FZ(w1,w2)(a) =



0 a ≤ 0

a2

2w1w2
0 ≤ a ≤ w1,

a
w2
− w1

2w2
w1 ≤ a ≤ w2,

1− (w1+w2−a)2

2w1w2
w2 ≤ a ≤ w1 + w2,

1, a ≥ w1 + w2.

Figure 1 shows the density and distribution functions for the sum of two

uniform random variables with a = 20.

The Trader’s problem requires articulating the solution set of the problem

given by (Trad(D)). Here, we address this problem when the returns are cap-
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Figure 4.1: Density and distribution functions for the sum of two uniform
random variables

tured by independent and identically distributed uniform random variables.

More specifically, we derive explicit analytical expressions for VaR and

CVaR functions in the case of two independent and identically dis-

tributed uniform random variables.

For a fixed α ∈ [0, 1], let w = (w1, w2) ∈ R2
+ and suppose the VaR at level

α at the point w is denoted by Vα(w). Since Z(w) is a continuous random

variable, Vα(w) is the inverse of the distribution function F at the α level

and is given by

Vα(w1, w2) =


√

2αw1w2, 0 ≤ α ≤ w1

2w2
,

w2

(
α + w1

2w2

)
, w1

2w2
≤ α ≤ 1− w1

2w2
,

w1 + w2 −
√

2w1w2(1− α), 1− w1

2w2
≤ α ≤ 1.

(4.1)

This can be rewritten compactly as

Vα(w1, w2) =
√

2αw1w21[0,
w1
2w2

](α) + w2

(
α +

w1

2w2

)
1(

w1
2w2

,1− w1
2w2

](α)

+ w1 + w2 −
√

2w1w2(1− α)1(1− w1
2w2

,1](α).

Further, for a given β ∈ [0, 1], the CVaR at level β at the point w is denoted

by C(β, w). Since Z(w) is a continuous random variable, C(β, w) represents

the conditional tail expectation and is given by

C(β, w) , E[Z(w)|Z(w) ≥ Vβ(w)].
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Thus, C(β, w) is given by

C(β, w) =


1

1−β

[
−2β
√

2w1w2β
3

+ w1+w2

2
+

w2
1

8w2

]
0 ≤ β ≤ w1

2w2
,

w1

2
+ w2(1+β)

2
+

w2
1

6w2(1−β)
w1

2w2
≤ β ≤ 1− w1

2w2
,

(w1 + w2)− 2
3

√
2w1w2(1− β) 1− w1

2w2
≤ β ≤ 1.

(4.2)

It can also be viewed as

C(β, w) =


Vβ(w) + 1

1−β

[√
2w1w2β(β−3

3
) + w1+w2

2
+

w2
1

8w2

]
0 ≤ β ≤ w1

2w2
,

Vβ(w) + w2(1−β)
2

+
w2

1

6w2(1−β)
w1

2w2
≤ β ≤ 1− w1

2w2
,

Vβ(w) + 1
3

√
2w1w2(1− β) 1− w1

2w2
≤ β ≤ 1.

By substituting r = w1

w2
, it follows that 0 ≤ r ≤ 1, Vα(w) may be written as

Vα(w) = Vα(w2, r) =


w2

√
2αr 0 ≤ α ≤ r

2
,

w2

(
α + r

2

)
r
2
≤ α ≤ 1− r

2
,

w2[r + 1−
√

2r(1− α)] 1− r
2
≤ α ≤ 1,

(4.3)

and

C(β, w) = C(β, w2, r) =


w2

1−β

[
−2β
√

2rβ
3

+ r+1
2

+ r2

8

]
0 ≤ β ≤ r

2
,

w2[ r
2

+ (1+β)
2

+ r2

6(1−β)
] r

2
≤ β ≤ 1− r

2
,

w2[r + 1− 2
3

√
2r(1− β)] 1− r

2
≤ β ≤ 1.

(4.4)

Note that r ≤ 1 when w1 ≤ w2. The next lemma shows that the maximum

value for the CVaR function can only be attained at points on the

VaR boundary (i.e. when the VaR constraint is active)(See Figure

4.2).

Lemma 4.2 Consider a portfolio Z = w1X1 + w2X2 where X1 and X2 are

independent uniform random variables on [0, 1]. Then C(β, w) given by (4.4)

attains a maximum when Vα(w) = v.

Proof : If w = (w1, w2) is such that Vα(w) < v. Let r = w1

w2
. The following

cases arise:
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Figure 4.2: VaR for a sum of two uniform random variables
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Case (i) [ r
2
≤ α ≤ 1 − r

2
]: From (4.3), Vα(w) = w2

(
α + r

2

)
< v. Now

consider the point w′ where

w′ ,

(
rv

α + r
2

,
v

α + r
2

)
.

Consequently, we have r = w1

w2
=

w′1
w′2

. Therefore, for both w and w′, β can lie

in either r
2
≤ β ≤ 1 − r

2
or 1 − r

2
≤ β ≤ 1. In either case, from (4.4) and

since w2 < w′2, we obtain that C(β, w) < C(β, w′).

Case (ii) [1− r
2
≤ α ≤ 1] : From (4.3), Vα(w) = w2[r+1−

√
2r(1− α)] < v.

Applying a similar logic, we get that for

w′2 =
v

r + 1−
√

2r(1− α)

and w′ = (rw′2, w
′
2) , it follows that C(β, w) < C(β, w′). Thus, if w is such

that Vα(w) < v, we can find a ŵ such that Vα(ŵ) = v and C(β, w) < C(β, ŵ).

This shows that for any β, the maximum value of C(β, w) can be attained

only at points w satisfying Vα(w) = v.

In view of the previous lemma, unless otherwise specified, a point w will be

assumed to satisfy Vα(w) = v. Also we assume α and β are always greater

than 0.9, since in practice α is taken to be 0.9 or 0.99 etc. Further, the

constraint Vα(w) = v determines w2 as a function of r. Therefore in what

follows, we consider C(β, w) as a function of β and r only. Thus we have,

w2 =


v√
2αr

0 ≤ α ≤ r
2
,

v

(α+ r
2)

r
2
≤ α ≤ 1− r

2
,

v

[r+1−
√

2r(1−α)]
1− r

2
≤ α ≤ 1.

(4.5)
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Since α ≤ β, we obtain C(β, r) to be given as

C(β, r) =


v

(α+ r
2)

[ r
2

+ (1+β)
2

+ r2

6(1−β)
] r

2
≤ β ≤ 1− r

2
, r

2
≤ α ≤ 1− r

2
,

v

(α+ r
2)

[r + 1− 2
3

√
2r(1− β)] 1− r

2
≤ β ≤ 1, r

2
≤ α ≤ 1− r

2
,

v

[r+1−
√

2r(1−α)]
[r + 1− 2

3

√
2r(1− β)] 1− r

2
≤ β ≤ 1, 1− r

2
≤ α ≤ 1.

(4.6)

Thus, the Trader’s problem in this case reduces to maximizing a piecewise

smooth function in the two dimensional space of (β, r). Now, we study the

behavior of the CVaR function in each of these three kinks and observe

that the CVaR function has the following behavior.

Lemma 4.3 Consider a portfolio consisting of two independent uniform ran-

dom variables on [0, 1]. Let C(β, r) be given by (4.6). For i = 1, . . . , 3, let

C(βi, ri) denote the maximal value of C(β, r) on the ith kink. Assume that

the given VaR level α ≥ 0.86. Then the following hold:

1. (β3, r3) = (1, 1) is the maximizer of C(β, r) on the third kink.

2. (β2, r2) = (1, 2(1− α)) is the maximizer of C(β, r) on the second kink.

3. C(β2, r2) ≤ C(β3, r3).

4. C(β1, r1) ≤ C(β2, r2).

Proof :

1. Consider the third kink where,

C(β, r) =
v

[r + 1−
√

2r(1− α)]
[r + 1− 2

3

√
2r(1− β)]

≤ v

[r + 1−
√

2r(1− α)]
[r + 1] = g(r).

The function g(r) on the right hand side above is an increasing function

of r, since

d

dr

 1

1−
√

2r(1−α)

r+1

 =

 1

1−
√

2r(1−α)

r+1

2

d

dr

(√
2r(1− α)

r + 1
− 1

)
.

121



A further computation and simplification gives that

d

dr

 1

1−
√

2r(1−α)

r+1

 =

 1

1−
√

2r(1−α)

r+1

2(√
2(1− α)

r + 1

)(
1− r√
r(r + 1)

)
> 0,

since r > 2(1−α). Thus, the upper bound of the function g(r) is given

by 2v/(2 −
√

2(1− α)) (when r = 1). But this value is achieved by

C(β, r) when (β, r) ≡ (1, 1). This implies that the global maximizer of

C(β, r) over the third kink is (1, 1).

2. On the second kink, for a fixed r we have that C(β, r) is an increasing

function of β since

dC

dβ
=

v(
α + r

2

) ( 2
√
r√

(1− β)

)
> 0.

Thus, on the second kink, C(β, r) is maximized when β = 1. In this

case

C(1, r) =
v(r + 1)

α + r
2

.

Now, C(1, r) is an increasing function of r since

dC

dr
=

v

α + r
2

− v(r + 1)

2(α + r
2
)2

=
2v(α + r

2
)− v(r + 1)

2(α + r
2
)2

=
v(2α + r − r − 1)

2(α + r
2
)2

≥ 0,

since α ≥ 0.5, 2α−1 ≥ 0 Thus, on the second kink, C(β, r) is maximized

at β = 1 and r = 2(1 − α)(which is the largest value of r in this

region).The maximum value is given by

C(1, 2(1− α)) =
v

α + 1− α [2(1− α) + 1] = v(1 + 2(1− α)).

3. From the proof above we have, C(β2, r2) = C(1, 2(1−α)) = v(1+2(1−
α)) and

C(β3, r3) = C(1, 1) =
2v

2−
√

2(1− α)

Thus, C(β2, r2) ≤ C(β3, r3) if

v(1 + 2(1− α)) ≤ 2v

2−
√

2(1− α)
.
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But this is implied by

2−
√

2(1− α) + 2(1− α)[2−
√

2(1− α)] ≤ 2.

By cross multiplying, squaring and rearranging terms, we get that we

need to show that

2(1− α)

(
2−

√
2(1− α)−

√
2(1− α)

2(1− α)

)
≤ 0

Since 2(1− α) ≥ 0, the above inequality holds only if

2−
√

2(1− α)− 1√
2(1− α)

≤ 0.

Again, since
√

2(1− α) ≥ 0, this holds only if

2
√

2(1− α)− 2(1− α)− 1 ≤ 0 =⇒ 2
√

2(1− α)− (3− 2α) ≤ 0

=⇒
√

2(1− α) ≤ 3− 2α

2
.

Again, by a further simplification we see that this holds if

(1− 2α)2 ≥ 0.

4. We now show that C(β1, r1) ≤ C(β2, r − 2). From the proof above we

have,

C(β2, r2) = C(1, 2(1− α)) = v(1 + 2(1− α)).

On the first kink we have, r
2
≤ β ≤ 1− r

2
, r

2
≤ α ≤ 1− r

2
and

C(β, r) =
v(

α + r
2

) [r
2

+
(1 + β)

2
+

r2

6(1− β)

]
For a fixed r, on the first kink, we have C(β, r) is an increasing function

of β as

dC

dβ
=

v(
α + r

2

) (1

2
+

r2

6(1− β)2

)
> 0.

Thus, the maximum value of C(β, r) in this region occurs when β =
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1− r
2

and the maximum value is

C
(

1− r

2
, r
)

=
v(

α + r
2

) (r
2

+
(1 + β)

2
+

r2

6(1− β)

)
=

v(
α + r

2

) (r
2

+
(1 + 1− r

2
)

2
+

r2

6(1− 1 + r
2
)

)
=

v(
α + r

2

) (r
2

+ 1− r

4
+
r

3

)
=

v(
α + r

2

) (7r

12
+ 1

)
.

Consider f(r) = v

(α+ r
2)

(
7r
12

+ 1
)
. Then

f ′(r) =
v(

α + r
2

) ( 7

12

)
−
(

7r

12
+ 1

)
v

2
(
α + r

2

)2

=
7v
6

(
α + r

2

)
− ( 7r

12
+ 1)v

2
(
α + r

2

)2 = v

(
7
6
α + 7r

12
− 7r

12
− 1
)

2
(
α + r

2

)2

= v

(
7
6
α− 1

)
2
(
α + r

2

)2 ≥ 0 if α ≥ 6

7
= 0.86.

Thus, for α ≥ 6
7
, the maximum of f(r) on the region 1 will be when

r takes on the maximum possible value in this region i.e. when r =

2(1− α). Thus, on region 1

C(β, r) ≤ f(2(1− α)) =
v(

α + 2(1−α)
2

) (7.2(1− α)

12
+ 1

)

= v

(
7(1− α)

6
+ 1

)
.

Since we have that v
(

7(1−α)
6

+ 1
)
≤ v (1 + 2(1− α)), it follows that

C(β1, r1) ≤ C(β2, r2).

Let U = (U,U) denote two independent uniform random variables on [0, 1].

In this case, the solution to the Trader’s problem Trad(U) is characterized

in the proposition that follows.

Proposition 4.4 (Solution for a portfolio with two uniforms on [0,1] )

Given two independent uniform random variables on [0, 1] and α ≥ 0.9, the

solution to the Trader’s problem (Trad(U)) occurs at points given by (β∗, w∗)
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where

β∗ = 1, w∗1 = w∗2, and Vα(w∗) = v.

Proof : By Lemma 4.3(3),(4), we have that C(β1, r1) ≤ C(β2, r2) ≤ C(β3, r3).

Thus, the maximum value of C(β, r) is attained on the third region. By

Lemma 4.3(1), (1, 1) is the global maximizer of C(β, r) over the third re-

gion. It follows that C(β, r) in (4.6) attains the global maximum when

β = 1, r = 1. But r = 1 is equivalent to w1 = w2. Also, the equation (4.6)

holds for points with Vα(w) = v. This completes the proof of the proposition.

If we consider X1 ∼ U([0, a]) and X2 ∼ U([0, b]) and Z = w1X1 + w2X2,

then repeating the calculations as before, we get that the density function

of Z is the density function obtained above with w1 replaced by aw1 and w2

replaced by bw2 under the observation that the formulae hold if aw1 ≤ bw2.

If aw1 ≥ bw2, then we use the same formulae with aw1 replaced by bw2 and

vice-versa, .ie. for 0 ≤ aw1 ≤ bw2 the density of Z is given by

fZ(w1,w2)(p) =



p
abw1w2

0 ≤ p ≤ aw1,

1
bw2

aw1 ≤ p ≤ bw2,

aw1+bw2−p
abw1w2

bw2 ≤ p ≤ aw1 + bw2,

0 otherwise.

This gives us the distribution function of Z as

FZ(w1,w2)(p) =



0 p ≤ 0

p2

2abw1w2
0 ≤ p ≤ aw1,

p
bw2
− aw1

2bw2
aw1 ≤ p ≤ bw2,

1− (aw1+bw2−p)2
2abw1w2

aw2 ≤ p ≤ aw1 + bw2,

1 p ≥ aw1 + bw2.

Let U = (U1, U2) denote two independent uniform random variables on [0, a]

and [0, b] respectively. In this case, the solution to the Trader’s problem

Trad(U) is characterized in the proposition that follows.
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Proposition 4.5 (Solution for a portfolio with two general uniforms)

Given two independent uniform random variables on [0, a] and [0, b] respec-

tively and α ≥ 0.9, the solution to the Trader’s problem (Trad(D)) occurs at

points given by (β∗, w∗) where

β∗ = 1

aw∗1 = bw∗2

Vα(w∗) = v.

The VaR and CVaR obtained earlier in the case of two uniforms

on unit interval, can be modified by replacing w1 by aw1 and w2 by bw2

to get the VaR and CVaR functions for uniforms on [0, a], [0, b].

Following an analysis similar to the case of two uniforms on the unit interval,

the proof of the above proposition is straightforward and is omitted.

4.3.2 Returns with general distributions with bounded
support

In this section, we generalize the results obtained for returns with uniform

distributions to a regime where returns have general distributions, albeit with

bounded support. In this setting, we show that the Trader’s problem always

has a bounded(finite) solution. In other words, given the VaR constraint

imposed by the trading firm, there is a limit to the CVaR risk that the

trader can take on. The distributional requirement is formalized through the

following assumption.

Assumption 4.1 (A1) Consider a random variable Z defined as Z = w1X1+

w2X2 + . . .+wnXn with density function and distribution function denoted by

f(z) and F (z), respectively. Suppose G(x) is defined such that G′(x) = xf(x)

and the following hold:

(a) The smallest support of the distribution is [b, z̄].

(b) G is continuous at z̄ or limt→z̄ G(t) = G(z̄).

Assumption (A1(a)) allows for prescribing distributions with compact sup-

ports while (A1(b)) is a continuity requirement that aids in analysis. It

should also be noted that E[Z] = limt→∞G(t).
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Proposition 4.6 (Distributions with bounded support) Under Assump-

tion (A1), the Trader’s problem (4.1) has bounded CVaR risk and the

maximal CVaR risk is bounded below by z̄:

z̄ ≤ max
β,w

C(β, w) <∞.

Proof : Consider the expectation of Z, conditional on Z ≥ z. We denote

this (tail) expectation by ET (Z; z) and observe that

ET (Z; z) =

∫ ∞
z

af(a)da.

Clearly, since the distribution has support in [b, z̄], if z > z̄,ET (Z; z) = 0.

Now, if b ≤ z ≤ z̄ then we have

ET (Z; z) =

∫ ∞
z

af(a)da =

∫ z̄

z

G′(a)da = G(z̄)−G(z),

where the second equality follows from the fundamental theorem of Calculus.

Now consider C(β, w) which can be simplified as

C(β, w) =
1

1− β

∫ ∞
zβ

af(a)da =
1

1− F (zβ)
ET (Z; zβ) =

G(z̄)−G(zβ)

1− F (zβ)
.

As β → 1, the quantile of the distribution will tend to z̄ since [b, z̄] is the

smallest support of the distribution. Thus, we have that as β → 1, zβ → z̄

or in other words z → z̄. Consequently, we obtain that

lim
β→1

C(β, w) = lim
z→z̄

G(z̄)−G(z)

1− F (z)
.

By assumption limt→z̄ G(t) = G(z̄). By applying L’Hôpital’s rule, we obtain

lim
β→1

C(β, w) = lim
z→z̄

−G′(z)

−F ′(z)
= lim

z→z̄

zf(z)

f(z)
= lim

z→z̄
z = z̄. (4.7)

Thus, as β → 1, C(β, w) remains bounded. For all other β, C(β, w) =
G(z̄)−G(zβ)

1−β is clearly bounded. Thus, the objective of the Trader’s problem

is always bounded. Further, the feasible region of the Trader’s problem is

bounded. Thus, we have that for distributions with bounded support the

Trader’s problem 4.1 always has a bounded solution. In other words, the
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optimal CVaR risk for Trader’s problem is bounded.

Further, from (4.7), we can conclude

z̄ ≤ max
β,w

C(β, w) <∞

Remark: In effect, the maximal CVaR though finite takes on a large value

when the support is large although finite.

4.4 Asset distributions with unbounded support

In section 4.4.1, we first analyze the Trader’s problem in a setting where the

portfolio consists of independent Gaussian random variables. Next we extend

our findings to the case of general distributions with unbounded support. The

assumptions used in analyzing this generalization are captured in Assumption

4.2.

4.4.1 Gaussian returns

We begin this section with a brief review of some properties of Gaussian ran-

dom variables. Recall that a Gaussian random variable with mean zero and

variance one is called a standard Gaussian random variable. The probability

density function of a standard Gaussian random variable is denoted by φ and

is given by

φ(z) ,
1√
2π

exp

(−z2

2

)
.

The distribution function of a standard Gaussian distribution is denoted by

Φ. If X ∼ N(µ, σ), then the density of X is given by

f(x) = φ

(
x− µ
σ

)
=

1√
2πσ

exp

(
−1

2

(
x− µ
σ

)2
)
,
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where φ(z) is the density of a standard Gaussian random varialbe. The

cumulative distribution function of X is given by

F (x) = Φ

(
x− µ
σ

)
,

where Φ(z) denotes the distribution function of a standard Gaussian ran-

dom variable. From these equations, the VaR at level α and the

CVaR at level α for the random variable X ∼ N(µ, σ) are given by

VaR α(X) = µ+ σΦ−1(α) and CVaR α(X) = µ+ σ
φ(zα)

1− Φ(zα)
,

where zα = xα−µ
σ

is the standardized α-th quantile of the distribution. If

Xi ∼ N(0, 1), the standard Gaussian distribution for i ∈ {1, 2, . . . , n}, then

Z(w) =
∑n

i=1wiXi ∼ N(0,
∑n

i=1w
2
i ). Thus the Trader’s problem (Trad(G)),

(where G denotes the standard Gaussian distribution) in this case becomes

(Trad(G)) max
β∈[0,1),w≥0

‖w‖
(

φ(zβ)

1− Φ(zβ)

)
subject to ‖w‖ Φ−1(α) ≤ v.

This can be rewritten as

(Trad(G)) max
β∈[0,1),w≥0

‖w‖
(
φ(zβ)

1− β

)
subject to ‖w‖ ≤ v

Φ−1(α)
.

Substituting ‖w‖ = R and v
Φ−1(α)

= c, we get

(Trad(G)) max
β∈[0,1),R≥0

(
R
φ(zβ)

1− β

)
subject to R ≤ c.

Now, consider the objective function

C(β,R) =

(
R
φ(zβ)

1− β

)
.
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For a fixed β, C(β,R) is an increasing function in R since
φ(zβ)

1−β ≥ 0. Thus

the maximum will occur when R = c and the Trader’s problem reduces to

(Trad(G)) max
β∈[0,1)

c

(
φ(zβ)

1− β

)
(4.8)

Clearly, the optimal value of this problem is independent of c and depends

only on the behavior of the function on β which we study next.

Lemma 4.7 Suppose Z ∼ N(µ, σ2). Let φ denote the standard Gaussian

density. If zβ is the standardized β-th quantile of Z, then

lim
β→1

φ(zβ)

1− β =∞. (4.9)

Proof : We show that given any M > 0 there exists a β ∈ [0, 1] such that
φ(zβ)

1−β > M . By the definition of φ, this is equivalent to requiring that

1√
2π
e
−z2β
2

1− β > M.

By simplifying and taking logarithms on both sides, we get that this is equiv-

alent to requiring that

zβ <

√
log
(√

2πM(1− β)
)−2

. (4.10)

Since the distribution function Φ is an increasing function, applying Φ to

both sides and using the fact that Φ(zβ) = β, we get that (4.10) holds if and

only if

β < Φ

(√
log
(√

2πM(1− β)
)−2
)
.

Define a function g(β) as follows:

g(β) , Φ

(√
log
(√

2πM(1− β)
)−2
)
− β.
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Using the fact that Φ′ = φ, the derivative of g(β) can easily be computed as

g′(β) =
M√

log
(√

2πM(1− β)
)−2
− 1.

Thus, the above derivative is positive when

1

log
(√

2πM(1− β)
)−2 >

1

M2
.

But the term on the right above is always positive. Thus, we get that g′(β) >

0 when the denominator on the left is positive. This holds when
√

2πM(1−
β) > 1. In other words when

β < 1− 1√
2πM

,

we have that g′(β) > 0, implying that the function g(β) is an increasing func-

tion. Furthermore, since Φ(.) ≥ 0 we obtain that g(0) ≥ 0. Consequently,

we may claim that the function g(β) is an increasing function of β and takes

a positve value when β = 0. Therefore g(β) is positive. Thus, given the M ,

there exists a β < 1 such that

β < Φ

(√
log
(√

2πM (1− β)
)−2
)
.

In other words, we have shown given any M > 0 there exists a β ∈ [0, 1] such

that
φ(zβ)

1− β > M.

This shows that the limit articulated by (4.9) holds as required.

This is supported by Figure 4.3 where it can be seen that as β → 1, the

CVaR function becomes unbounded. By Lemma 4.7, the objective in

the Trader’s problem (Trad(G)) is unbounded in β. In fact, in the next

proposition, we show that a trader can assume infinite CVaR risk.

Proposition 4.8 (Unbounded CVaR risk for standard Gaussian returns)

Consider a portfolio consisting of n independent and identically distributed

standard Gaussian random variables. Then the solution to the Trader’s prob-
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Figure 4.3: CVaR of a sum of two Gaussian random variables

lem (Trad(G)) is given by any feasible w together with β = 1. Furthermore,

the CVaR risk corresponding to every solution of (Trad(G)) is infinite.

Proof : From Lemma 4.7, the objective in (Trad(G)) is unbounded in β.

Thus, for any w that satisfies the VaR constraint, as β → 1, the ob-

jective in (Trad(G)) goes to infinity. Thus the objective function attains its

maximum at any feasible w together with β = 1. Therefore, any feasible

w along with β = 1 is a solution to the Trader’s problem for a portfolio

consisting of n standard Gaussian random variables.

Next, we generalize the above result to the case of general (rather than

standard) independent Gaussian random varaibles.

Proposition 4.9 (Unbounded CVaR risk for general Gaussian returns)

Consider a portfolio consisting of n independent (not necessarily standard)

Gaussian random variables with parameters (µ1, σ1), (µ2, σ2), . . . , (µn, σn)).

Then, the solution to the Trader’s problem (Trad(G)), (where G = (G1, G2, ..., Gn))

is given by any feasible w together with β = 1. Furthermore, the CVaR risk

corresponding to every solution of (Trad(G)) is infinite.

Proof : For i = 1, . . . , n, ifXi ∼ N(µi, σ
2
i ) then Z ∼ N

(∑n
i=1 µiwi,

√
(
∑n

i=1 σ
2
iw

2
i )
)

.
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Then the Trader’s problem is given by

(Trad(G)) max
β∈[0,1),w

 n∑
i=1

µiwi +

√√√√ n∑
i=1

σ2
iw

2
i

φ(zβ)

1− Φ(zβ)


subject to

√√√√ n∑
i=1

σ2
iw

2
i Φ−1(α) ≤ v.

Again in this case, the feasible region bounded. However,
φ(zβ)

1−Φ(zβ)
→ ∞ as

β → 1. Thus any feasible w together with β = 1 is a solution to the Trader’s

problem and leads to unbounded CVaR risk.

4.4.2 Assets with general distributions with unbounded
support

In this section, we generalize the results of the previous section to allow for

distributions with unbounded support. We show that under certain assump-

tions A2 (4.2) on the distributions, the Trader’s problem has an unbounded

solution. In other words, the trader has the ability to choose portfolios that

drive the CVaR risk to infinity while obeying the VaR constraint

imposed by the firm. We make the following assumption on the distributions

of returns.

Assumption 4.2 (A2) Consider a random variable Z with unbounded sup-

port defined as Z = w1X1 +w2X2 + . . .+wnXn. Further, suppose there exists

a function G(x) such that G′(x) = xf(x) such that

lim
t→∞

G(t) = L;−∞ < L <∞

where f(z) is the density function of Z.

From Assumption (A2), by unbounded support of Z we have, lim
β→1

zβ =∞;

Further note that, if we assume |E(Z)| <∞ then takingG(x) =
∫ x
−∞ xf(x)dx,

we get that G′(x) = xf(x) and lim
t→∞

G(t) = E(Z) < ∞. Thus, assumption

(A2) holds for distributions with finite expectation.
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Proposition 4.10 (Returns with unbounded support)

Suppose (A2) holds for the random variable Z = w1X1 +w2X2 + . . . wnXn.

Then the Trader’s problem (4.1) has unbounded CVaR risk.

Proof : Consider the expectation of Z conditional on Z ≥ z and denote this

(tail) expectation by ET (Z; z). This may be expressed as follows:

ET (Z; z) =

∫ ∞
z

af(a)da = lim
t→∞

∫ t

z

G′(a)da = lim
t→∞

(G(t)−G(z)) .

By (A2) since limt→∞G(t) = L, we get that the expectation of the tail is

ET (Z; z) = L−G(z).

Now, consider

C(β, w) =
1

1− β

∫ ∞
zβ

af(a)da =
1

1− F (zβ)
ET (Z; zβ) =

L−G(zβ)

1− F (zβ)
.

By (A2), as β → 1, we have that zβ → ∞ or in other words z → ∞. Thus

we obtain that

lim
β→1

C(β, w) = lim
z→∞

L−G(z)

1− F (z)
.

Again by (A2), limt→∞G(t) = L. By applying L’Hôpital’s rule we get

lim
β→1

C(β, w) = lim
z→∞

−G′(z)

−F ′(z)
= lim

z→∞

zf(z)

f(z)
= lim

z→∞
z =∞.

As a consequence, for distributions with unbounded support, the Trader’s

problem 4.1 leads to solutions with unbounded CVaR risk.

As a consequence of the above proposition, we have the following corollaries

which follow from verifying that the distributions satisfy (A2).

Corollary 4.11 (Gaussian distribution) If X1, X2, . . . , Xn have i.i.d.

Gaussian loss distributions then the Trader’s problem has unbounded CVaR

risk.

Proof : Since X1, X2, . . . , Xn have Gaussian loss distributions, then the

random variable Z =
∑n

i=1wiXi as in the definition of the Trader’s problem
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4.1 is also a Gaussian random variable. Without loss of generality, we assume

Z is a standard Gaussian random variable with density

f(x) =
1√
2π

exp

(−x2

2

)
,

We now show that Z satisfies assumption (A2). We define G(x) as

G(x) =
−1√
2π

exp
−x2

2
.

Then G′(x) = xf(x) and clearly limt→∞G(t) = 0. Thus, in the case of

Gaussian random variables, (A2) is satisfied. By proposition 4.10, it follows

that CVaR risk is unbounded.

Corollary 4.12 (Exponential distribution) If the random variable Z =∑n
i=1wiXi is an exponential random variable, then the Trader’s problem has

unbounded CVaR risk.

Proof : For the exponential random variable Z the density is given by

f(x) =

λ exp−λx x ≥ 0

0 x < 0.

Consider

G(x) =

 1
λ

(
−λx exp−λx− exp−λx

)
x ≥ 0

0 x < 0.

Then G′(x) = λx exp−λx = xf(x). Further, by L’Hôpital’s rule the first

term in G(x) goes to zero as x→∞ and the second term clearly goes to zero.

Thus,limt→∞G(t) = 0. Thus, for the case of exponential random variables,

(A2) is satisfied. By proposition 4.10, it follows that for exponential random

variables, the CVaR risk is unbounded.

It can also be shown that such results hold for fat-tailed distributions,

defined as follows.

Definition 4.2 (Fat-tailed distribution) The distribution of a random
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variable X is said to exhibit a fat tail if

lim
x→∞

IP[X > x] ∼ x−α, for some α > 0.

Corollary 4.13 (Fat-tailed distribution) If the random variable

Z =
∑n

i=1 wiXi has a fat-tailed distribution, then the Trader’s problem has

unbounded CVaR risk.

Proof : Since Z has a fat-tail, as x→∞ the density is given by

f(x) = x−(1+α) as x→∞, α > 1.

For large x, taking G(x) = x1−α

1−α we get

G′(x) =
1

xα
=

x

x1+α
= xf(x).

Since α > 1, limt→∞G(t) = 0. Therefore, in the case of fat-tailed distri-

butions, (A2) is satisfied. By proposition 4.10 we get that for fat-tailed

distributions, the CVaR risk is unbounded.

136



CHAPTER 5

CONCLUDING REMARKS AND
SUMMARY

In the final chapter of this thesis, we present some concluding remarks for

each Chapter.

5.1 Concluding remarks on Chapter 2

In Chapter 2, we examine a class of stochastic Nash games where players are

constrained by continuous strategy sets with the overarching goal of char-

acterizing the solution sets of the resulting games. Additionally, we allow

for the coupling of strategy sets through possibly stochastic constraints and

consider regimes where player payoff functions may be nonsmooth in nature.

A corresponding analysis of solution sets of deterministic Nash games may

be obtained through an examination of the sufficient equilibrium conditions.

However, when the player objectives contain expectations, such an avenue is

impeded by the generally intractable nature of the gradient maps. Instead,

we consider whether almost-sure sufficiency conditions may be developed

that are distinguished by their tractability and verifiability. Notably, these

conditions, in turn, guarantee the existence of an equilibrium to a suitably

defined scenario-based Nash game, whose equilibrium conditions are given

by deterministic scalar variational inequality.

We begin by showing that when player payoffs are smooth, then a satisfac-

tion of a coercivity condition in an almost-sure sense allows one to claim the

existence of a Nash equilibrium. A corresponding uniqueness relationship is

somewhat weaker and follows if a strict monotonicity of the mapping holds

with finite probability. Extending the existence results to the nonsmooth

regime, while not immediate, is provided and leads to a set-valued coercivity

condition that is required to hold in an almost-sure sense. In both smooth

and nonsmooth regimes, monotonicity of the mappings allows one to claim
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existence under markedly weaker requirements. When strategy sets are cou-

pled by stochastic shared constraints, the associated mappings are, at best,

monotone in the primal-dual space, suggesting that uniqueness of equilibria

may be difficult to guarantee. Yet, by employing a suitable regularity con-

dition, we prove that an equilibrium in the primal-dual space exists and is

unique.

The application of the sufficiency conditions is generally not always imme-

diate and requires analyzing the associated scenario-based Nash games. We

apply these conditions to the study of Nash-Cournot games in risk-averse and

coupled constraint settings and derive a host of characterization statements

in these regimes.

This chapter has assumed convex objectives and strategy sets in a game

theoretic regime. When strategy sets are nonconvex, there has been markedly

less effort on the analysis of the associated equilibrium problem. One idea

relies on leveraging the fact that an equilibrium of the game is a fixed point

of the reaction map. This approach relies less on convexity and more on

existence of fixed points of a map. Future work in this area would consider

relaxing the convexity assumption and explore the use of nonconvex fixed

point theory in such regimes to claim existence statements for equilibria.

5.2 Concluding remarks on Chapter 3

Finite-dimensional variational inequality and complementarity problems have

proved to be extraordinarily useful tools for modeling a range of equilibrium

problems in engineering, economics, and finance. This avenue of study is

facilitated by the presence of a comprehensive theory for the solvability of

variational inequality problems and their variants. When such problems are

complicated by uncertainty, a subclass of models lead to variational problems

whose maps contain expectations. A direct application of available theory

requires access to analytical forms of such integrals and their derivatives,

severely limiting the utility of existing sufficiency conditions for solvability.

To resolve this gap, we provide a set of integration-free sufficiency condi-

tions for the existence of solutions to variational inequality problems, quasi-

variational generalizations, and complementarity problems in settings where

the maps are either single-valued or multi-valued. These conditions find util-
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ity in the existence of equilibria in the context of generalized nonsmooth

stochastic Nash-Cournot games and strategic problems in power markets.

We believe that these statements are but a first step in examining a range of

problems in stochastic regimes. These include the development of stability

and sensitivity statements as well as the consideration of broader mathemat-

ical objects such as stochastic differential variational inequality problems.

More generally, the question of the stability of stochastic problems under

perturbations of the probability measure itself as well as under perturbations

of the underlying data is an interesting, challenging, important and a practi-

cally relevant problem. Once again, the nonlinearity of the expectation has

proved to be a challenge in addressing this problem. However, this problem

seems amenable to being tackled using a modification of the framework that

has been developed in this thesis.

As mentioned earlier in this chapter 5.1, relaxing the convexity assumption

is a future research direction. A possible approach would be to use the

framework with a fixed point approach instead of a variational one to yield

solutions.

5.3 Concluding remarks on Chapter 4

Through the analysis provided in Chapter 4, we observe that VaR-based

risk management may be inadequate in financial risk management when the

associated traders are risk-seeking. By considering a setting where traders

employ a CVaR measure, we make two sets of contributions. First, we show

that when the underlying asset returns have compact support, the associ-

ated maximal CVaR risk can be precisely characterized and is of the order of

the upper bound of the support. Furthermore, when the distributions have

unbounded support, a trader may take on unlimited CVaR risk while main-

taining a VaR threshold imposed by the firm. This suggests that VaR-based

risk management tools need reassessment and calls for risk management tools

that guard against assuming excessive risk across a family of risk measures.

future work.

As a follow up to this work, it may be interesting to see whether the

property of unboundedness of risk measure in a VaR constrained setting

persists for more general coherent risk measures or convex risk measures.
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Obviously, this would be analytically intractable. However, it seems possible

to consider the representation of coherent risk measures as the supremum of

the expected loss over a convex set of probability measures and glean some

information from there. This research would reveal properties required by

risk metrics used in financial settings where the incentive to undertake risk

is to be managed with reward to the risk-seeking trader and the interests of

stockholders as well.

This work in risk management has close relation to risk preferences and

incentives in the principal-agent problem in economics. Another approach

to this problem could be achieved by looking at this problem through a new

lens of the principal-agent problem.

5.4 Summary

The dissertation can be viewed as amongst the first attempts to provide a

tractable and verifiable framework to address the fundamental question of

ascertaining existence and uniqueness for a broad class of stochastic Nash

games, stochastic variational inequalities. In convex regimes, the framework

can been extended to accommodate important and practical generalizations

of SVIPs. The important feature of this framework is that it does not require

the evaluation of expectation and is applicable to a wide range of practical

equilibrium problems.
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Boston Inc., 1990, vol. 2.

143



[32] U. Ravat and U. V. Shanbhag, “On the characterization of solution
sets of smooth and nonsmooth convex stochastic Nash games,” SIAM
Journal on Optimization, vol. 21, no. 3, pp. 1168–1199, 2011.
[Online]. Available: http://dx.doi.org/10.1137/100792644

[33] U. V. Ravat, U. V. Shanbhag, and R. B. Sowers, “On
the inadequacy of var-based risk management: VaR, CVaR,
and nonlinear interactions,” Optimization Methods and Soft-
ware, vol. 29, no. 4, pp. 877–897, 2014. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/10556788.2013.860528

[34] U. Ravat and U. V. Shanbhag, “On the existence of solution in stochas-
tic variational inequalities and their extensions,” Under review, 2014.

[35] B. F. Hobbs and J. S. Pang, “Nash-Cournot equilibria in electric power
markets with piecewise linear demand functions and joint constraints,”
Oper. Res., vol. 55, no. 1, pp. 113–127, 2007.

[36] D. Zhang and A. Nagurney, “Formulation, stability, and computation
of traffic network equilibria as projected dynamical systems,” J. Op-
tim. Theory Appl., vol. 93, no. 2, pp. 417–444, 1997.

[37] F. . Facchinei and J. Pang, Finite Dimensional Variational In-
equalities and Complementarity Problems: Vols I and II.
Springer-Verlag, NY, Inc., 2003.

[38] S. Uryasev and R. T. Rockafellar, “Conditional value-at-risk: optimiza-
tion approach,” in Stochastic optimization: algorithms and ap-
plications (Gainesville, FL, 2000), ser. Appl. Optim. Dordrecht:
Kluwer Acad. Publ., 2001, vol. 54, pp. 411–435.
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