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ABSTRACT

Electron beam lithography (EBL) is a very promising candidate for inte-

grated circuit (IC) fabrication beyond the 10 nm technology node. To ad-

dress its throughput issue, the Character Projection (CP) technique has been

proposed, and its stencil planning can be optimized with awareness of over-

lapping characters. However, the top-level 2D stencil planning problem has

been proven to be an NP-hard problem. As its most essential step, the 1D

row ordering is believed hard as well, and no polynomial time optimal solu-

tion has been provided so far. Previous research formulates the problem as

the travelling salesman problem, which is NP-hard and solves it by heuristics.

In this thesis, we formulate the problem as a matching problem and propose

a polynomial time optimal algorithm, which serves as the major subroutine

for the entire stencil planning problem. The optimality of the algorithm is

proved, and experimental results are also provided to show that our work

makes a great improvement in efficiency and correctness to solve the row

ordering problem.
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CHAPTER 1

INTRODUCTION

Integrated circuit (IC) fabrication continues according to Moore’s law in

achieving denser devices. Below the 28 nm technology node, conventional

193 nm immersion (193i) lithography with single exposure has reached its

printability limit, which triggers some advanced lithography techniques such

as double patterning lithography (DPL) [1] and triple patterning lithography

(TPL) [2]. However, multiple patterning lithography (MPL) introduces new

challenges such as decomposability, stitches and overlay, and the manufac-

turing cost increases exponentially with the number of masks. As a result,

other promising candidates are also being explored for the next generation

lithography, including extreme ultraviolet lithography (EUVL) [3], directed

self-assembly (DSA) and electron beam lithography (EBL). Each of the ad-

vanced lithography techniques has its own advantages over others, but also

faces great challenges due to different process limitations. EBL, for instance,

is able to print extremely complicated and dense features, but faces one major

challenge of low throughput.

The most intuitive version of EBL is electron beam direct write (EBDW),

which shoots the desired patterns pixel by pixel, and thus has very low

throughput. One essential improvement of EBL is the variable shaped beam

(VSB) [4, 5, 6], which can print an arbitrarily sized rectangle with one single

shot. However, since current layout designs contain billions of rectangles, the

throughput of VSB is still incapable of meeting the requirement. To further

improve the throughput of EBL, Character Projection (CP) (later multi-

column cell (MCC)) has been proposed [7, 8], which is capable of printing

an entire character (e.g. a standard cell) with one shot.

There are two major challenges in CP. First, how to design the set of

projection characters; second, how to plan the stencil to pack as many char-

acters as possible. The former problem is investigated by [8, 9, 10]. For

the latter problem, placement optimization should be performed based on
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the fact that the characters can overlap at the blank margins located at the

character boundaries, as illustrated in Fig. 1.1. The blank margin is used

to reserve some space for the scattered electrons after they pass through the

aperture [7]. By sharing the blank area in Figs. 1.1(b) and (c), the characters

occupy less stencil area than those in Fig. 1.1(a). Obviously, different place-

ments of the characters result in different area occupation as illustrated by

Figs. 1.1(b) and (c), because the shared blank margins in total are different

among different placement solutions. For a given set of characters, it is a

challenging problem to find their optimal placement, such that they occupy

the smallest stencil area and leave more room to insert additional characters

or features.

Figure 1.1: Comparison of stencil area occupation without and with blank
margin sharing

In the stencil planning problem, it is reasonable to assume that the char-

acters are selected from standard cells or vertical slices of cells, which have

the same heights. In addition, those standard cell characters also share very

similar top and bottom blank margins, because a standard cell usually has

power tracks on the top and bottom, and the distance that scattered elec-

trons can travel outside the character is highly dependent on the pattern

near its boundaries. With such assumptions, we do not need to consider

the vertical placement constraints, and in consequence, the original charac-

ter placement problem can be reduced as a row ordering problem, which has

been proposed as the 1D overlapping aware stencil planning (OSP) problem

in previous works [11, 12, 13]. Several attempts have been made to solve

this problem. However, Yuan, Yu and Pan [12] formulated this problem as

an NP-hard problem, and they either provided a heuristic approach or made

quite a number of assumptions to support their solutions, i.e. the difference

between left and right blank margins is very small. Those assumptions not

only need to be proved by realistic litho-experimental results, but also make
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the problem much easier. In this thesis, we neatly solve the general row

ordering problem by a polynomial time optimal algorithm and we prove its

optimality rigorously. This algorithm can be adopted as the key subroutine

for character selection and distribution in higher-level EBL stencil planning.

The rest of the thesis is organized as follows. Chapter 2 formulates the

overall optimization problem. Chapter 3 explain the previous attempt to ad-

dress the problem. Then the polynomial time optimal algorithm is provided

in Chapter 4. In Chapter 5, we prove the optimality of our algorithm and

analyze its complexity. Experimental results are reported in Chapter 6, and

finally, Chapter 7 concludes the thesis.
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CHAPTER 2

PROBLEM FORMULATION

In this thesis, we target solving the 1D row ordering problem for stencil plan-

ning in EBL. Given a set of n characters C = {c1, c2, ..., cn}, where each char-

acter ci has left blank margin li and right blank margin ri as shown in Fig. 2.1

(a), we can generate a set of blank margin pairs associated with C, denoted

by Cp = {(l1, r1), (l2, r2), ..., (ln, rn)}. By reordering Cp, a sequence of pairs

can be obtained, which is denoted by Sp = {(ls1 , rs1), (ls2 , rs2), ..., (lsn , rsn)}.
We define its cost by the total length of blank margins occupied by all char-

acters after blank margin sharing, as described in Eq. 2.1:

CostSp = ls1 + Σn−1
i=1max(rsi , lsi+1

) + rsn (2.1)

For example in Fig. 2.1(b), if we place the three characters in the order of

{ci, ck, cj}, the sequence cost would be li +max(ri, lk) +max(rk, lj) + lj. On

the other hand, if we reorder them to be {cj, ci, ck}, the sequence cost can

be reduced accordingly. Based on that, we define the row ordering problem

below.

cjckci

ci

li ri
li ri

lj

rj

lk

rk

(a) (b)

cj

lj rj

ci
li

ri

ck
lk

rk

Figure 2.1: Blank margin overlapping

Row Ordering Problem (ROP): Given a set of blank margin pairs Cp,

find its optimal order Sp, such that the sequence cost CostSp is minimal.
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CHAPTER 3

PREVIOUS WORK

Previously, the problem was studied and heuristics were provided. In this

chapter, the former method of [12] was reviewed and discussed.

Figure 3.1: Graph for finding the min cost Hamiltonian path

The goal of the problem is to minimize the total length of all characters in a

row, namely Cost, such that the remaining capacity of the row is maximized.

oHi,j is defined as the maximum allowed overlap when two candidate charac-

ters ci and cj are put adjacent to each other horizontally. In other words,

oHi,j = min(ri, lj). For the same reason illustrated later in Section 4.2, min-

imizing the length is the same as maximizing the overall overlapped blank-

ing margins Σn−1
i=0 o

H
i,i+1. Based on the observation, Yuan, Yu and Pan [12]

formulated a minimum cost Hamiltonian path problem. First, a graph is

constructed as follows. Each character ci is represented by a vertex vi. Two

directed edges eij and eji are added between two vertices vi and vj. The cost

of those edges are oHbig−oHi,j and oHbig−oHj,i respectively. If ci locates to the left

of cj, the shared space is oHi,j, and if ci locates to the right of cj, the shared

space is oHj,i. Additionally, oHbig is a constant which is bigger than any of oHi,j

and oHj,i. So a path that visits each vertex exactly once defines an ordering of
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the characters, and the total weight of that path, namely Σe∈Path(o
H
big − oHi,j)

should be minimized in order to maximize Σn−1
i=0 o

H
i,i+1. Note that there is one

difference from our problem formulation in Chapter 2. The blank margins

at the beginning and the end are ignored here. More evidence is still needed

to determine whether those blank margins are necessary, however, it does

not affect the problem nor our solution, because both cases with and with-

out blank margins at the beginning and the end can be addressed by our

algorithm according to Section 4.2.1.

As shown in Fig. 3.1(a), a graph of all characters of A, B and C is con-

structed. Fig. 3.1(b) shows the resulting min cost Hamiltonian path in the

graph. The corresponding ordering is shown in Fig. 3.2.

Figure 3.2: Resulting order of characters by the min cost Hamiltonian path
method

The problem of the minimum cost Hamiltonian path is NP-hard and solv-

ing the whole row at one time would not be practical. Yuan, Yu and Pan [12]

use heuristics that partition the row into multiple segments, and solve each

segment by the Hamiltonian path based method. This method will be com-

pared with our algorithm presented in this thesis in Chapter 6 by experiment

results. Generally, the heuristic cannot provide an accurate order of char-

acters with minimal length and it also lacks of efficiency. The reason is

that Yuan, Yu and Pan [12] formulate the real problem into a much harder

problem and could not solve it without taking advantages of our problem’s

conditions. Our algorithm will be presented in Chapter 4.
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CHAPTER 4

ALGORITHM

In this chapter, we will illustrate and discuss our algorithm step by step. In

Chapter 5, we will prove the optimality and the time efficiency.

First, we will give a lower bound of the Cost for all the possible solutions.

Next, we will discuss the feasibility issue of the lower bound solution and

some notation will be defined. Finally, we will solve the feasibility issue by

presenting an minimum spinning tree-based algorithm.

4.1 From Order to Matching

We create a complete bipartite graph G, namely KN,N by making all left

blank margins ri as indices in one set and all right margins li as indices in

the other set, and connect all possible li and ri as shown in Fig. 4.1(a). The

edge (rx, ly) has the weight ei = max(rx, ly), and means that the original

pairs (lx, rx) and (ly, ry) can be connected in the order of (lx, rx)(ly, ry). For

an order of the pairs, there is a corresponding matching between the left and

right blank margins li and ri in the bipartite graph. As shown in Fig. 4.1(b),

for an order Sp = {(l1, r1), (l2, r2), ..., (ln, rn)}, we connect the adjacent rx

with lx+1, and the edges not in the matching are not shown. For instance,

for two pairs (l1, r1) and (l2, r2) which are ordered as (l1, r1), (l2, r2), we create

an edge to connect r1 and l2. In this way, we have a matching as shown in

Fig. 4.1(b), in which all numbers are connected by an edge except for l1 and

rn. We call the matching with one edge less than the perfect matching as

almost-perfect matching. If we add a dummy edge of l1 and rn, then we

have a perfect matching of the graph. As a result, the optimization problem

becomes the following:

Weighted Almost-Perfect Matching Problem (WAMP): Find an

almost-perfect matching in G by deleting one of the matching edges from a
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perfect matching in G, such that a set of edges Es of the matching is able

to define an order of the given pairs with the lowest Cost, where Cost =

ΣN−1
i=1 ei∀ei ∈ Es.
Also, we use Cost∗ to represent the cost of a perfect matching, and Cost is

the cost of almost-perfect matching. Note that, though an order has a corre-

sponding matching, conversely an almost-perfect matching is not always able

to define an order of the pairs. One counterexample is shown in Fig. 4.2(b)

and will be illustrated in Section 4.2. The problem as well as the general

WAMP will be addressed in the following sections.

Figure 4.1: Matching between left and right components
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4.2 Lower Bound by Sorting and Naive Matching

Aiming to minimize the Cost of WAMP, we notice that the summation of

all left margins li as well as all right margins ri will always be a constant Q.

Thus, we can transform our cost function as:

Cost = ΣN−1
i=1 ei∀ei ∈ E

= ls1 + ΣN−1
i=1 max(rsi , lsi+1

) + rsN

= ΣN
i=1(li + ri)− ΣN−1

i=1 min(rsi , lsi+1
)

= Q− ΣN−1
i=1 min(rsi , lsi+1

)

(4.1)

Consequently, we can think of our target as a maximum function:

minCost⇒ max ΣN−1
i=1 min(rsi , lsi+1

) (4.2)

In Eq. 4.2, if we name the results of min(rsi , lsi+1
) as the eliminated numbers,

we want to select as large as possible eliminated numbers. On the other hand,

for one eliminated number, there must exist one larger number which is only

paired with this eliminated number. Thus, intuitively matching two numbers

with a big difference is not desirable because it means a waste of potential

to save more area. This leads us to first sort the numbers.

By the discussion above, we sort the left blank margins li and right blank

margins ri independently in the descending order of their value, as illustrated

in Fig. 4.2. For future convenience, we denote the sorted array of left com-

ponents as L and the sorted array of right components as R, as shown in

Fig. 4.2(b). In order to match up numbers with the smallest differences, we

adopt a naive matching strategy by connecting the rix and ljx with the same

index x in the sorted array. Specifically, if any pair of entries rx and ly have

the same array index after sorting, we connect them with an edge as illus-

trated in Fig. 4.2(b), meaning that the original pairs (lx, rx) and (ly, ry) are

arranged in the order of (lx, rx)(ly, ry). Once all left and right components

are connected, we have a perfect matching for all the numbers, namely an

assignment for their neighbors.

However, as mentioned before, perfectly matching R and L by the same

index probably will not result in a valid ordered sequence of pairs, but one

or multiple cycles. For instance, if after sorting we have R and L as shown
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Figure 4.2: Transformation of two arrays

in Fig. 4.3(a), we will end up with one cycle of pairs corresponding to the

perfect matching. On the other hand, if R and L are ordered as shown in

Fig. 4.3(b), we will have three cycles.

So Cost∗ of perfect matching can also represent the cost of cycles, and

Cost can represent the cost of almost-perfect matching or a sequence. On

the other hand, by the naive matching strategy, we claim that this perfect

matching with the same index will give us a lower bound of the Cost∗, which

is Cost∗IDEAL. If the solution set of perfect matching is Ω, then we have the

following lemma:

Lemma 1 Cost∗IDEAL ≤ Cost∗ω for all ω ∈ Ω

The proof will be given in Chapter 5. Then we discuss the cases of one and

multiple cycles.
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Figure 4.3: Cycles analysis

4.2.1 One cycle

In the case of only one cycle, we can simply cut a cycle into a sequence.

In other words, we need to delete one of the edges in G in order to get an

almost-perfect matching from a perfect matching. Here, we use Cost∗ to

represent the cost of a cycle or a perfect matching, and Cost is the cost of

almost-perfect matching. Say we have a cycle β that needs to be cut into a

sequence B; its cost is defines as:

Cost∗β = max(lβ1 , rβN ) + ΣN−1
i=1 max(rβi , lβi+1

)

= CostB − φ , where φ ∈ L
⋃

R
(4.3)

To obtain the almost-perfect matching with the smallest cost increment φ

from perfect matching, we pick the edge of the smallest number in the

set of L
⋃
R to delete, because deleting one edge means breaking one of

the N maximization braces in Eq. 4.3, and the smaller term in the brace
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would be φ. So φ has to be the smallest number in L
⋃
R. This gets the

almost-perfect matching and a valid sequence without losing any optimal-

ity. Since the smallest number is always in the bottom of the array R and

L, we just need to delete the last edge in the perfect matching. In the

example of Fig. 4.3(a), we cut the edge (r6, l8) and have the sequence as

(l8, r8)(l4, r4)(l2, r2)(l1, r1)(l5, r5)(l3, r3)(l7, r7)(l6, r6).

So by this method, we can always get the best almost-perfect matching

with the smallest Cost based on a perfect matching. Then minimizing Cost

is the same as minimizing Cost∗. Additionally, in this case, there is only

one cycle and it has the smallest Cost∗ already. As a result, we have the

smallest Cost after deleting the last edge and obtain a valid order of pairs.

Thus WAMP is solved in the case of one cycle.

The problem formulated by previous work in Chapter 3 is also solved, if

we delete the edge with the largest blank margin. A cycle β defines a min

cost Hamiltonian tour of the graph in Chapter 3, then a Hamiltonian path

can be obtained by deleting one edge. The deleting action will take off one

of the maximum braces in Eq. 4.3. Because the maximum brace with the

largest value always appears in the tour, it is chosen to delete such that the

resulting Hamiltonian path has the smallest cost.

4.2.2 Multiple cycles

Clearly we cannot have a valid order of the pairs if we have multiple cycles.

Solving it is the key part of our algorithm. The idea is to merge all cycles into

one and then adopt the method in the case of one cycle to obtain a sequence.

The difficulty is how to guarantee the optimality, which means having the

smallest Cost∗ after merging. The algorithm dealing with this issue will be

discussed in detail in the following chapters.

To sum up, sorting and bipartite matching of numbers with the same

indexes can give us an ideal case of ordering which has the smallest possible

Cost, and can output an optimal solution if only one cycle is produced;

otherwise, the solution might not be valid.
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4.3 Multiple Cycles Analysis

If we have multiple cycles after naive matching, the remaining problem would

be how to get a feasible solution and guarantee the optimality at the same

time. In this chapter, we will defines several notations used to address this

issue in Section 4.4. In order to make it clear, we use the example shown in

Fig. 4.3(b) to illustrate them.
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Figure 4.4: Edge-switch

4.3.1 Region

In the ideal case, we can divide the sorted array R and L into several re-

gions such that one region represent one cycle. As shown in Fig. 4.3(b),

Region I represents Cycle I and similarly for regions I, II, III, and they are
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distinguished by different colors. Note that it is not necessarily true that

one region is formed by consecutive matched pairs. It can consist of multiple

intervals of consecutive matched pairs, i.e. region III.

4.3.2 Boundary

We use B to represent the boundary between two adjacent regions in the

arrays. As shown in Fig. 4.3(b), BI,II
i denotes the ith boundary between

regions I and II.

4.3.3 Relation

We define Relation to be the value ordering of the four numbers involved

in any two matching edges. As shown in Figs. 4.5(a) and (b), the numbers

involved are riu , rix , ljv , ljy , and we have that riu > rix and ljv > ljy . Without

loss of generality, we can assume that riu > ljv , because other cases with

riu < ljv are just symmetrical, and we do not need to discuss them again.

Then there are three cases of their relation:

Type 1: riu > ljv > rix > ljy .

Type 2: riu > ljv > ljy > rix .

Type 3: riu > rix > ljv > ljy .

4.3.4 Edge-switch and ∆Cost

Edge-switch basically means the exchange between two ending points of any

two matching edges. It helps us merge cycles. For example in Fig. 4.4(a),

there are three cycles in the ideal case. If we do two edge-switches at the

boundary between (r2, l1), (r3, l4) and the boundary (r4, l3), (r5, l6), then

three cycles get merged as shown in Fig. 4.4(b). Obviously, any two matching

edges can be switched, and if they are from two different regions then two

cycles get merged. ∆Cost is the increment of Cost∗ of the matching during

an edge-switch. To make it clear, we can put edge-switch into two categories

to discuss following:

Type 1: Edge-switch from non-crossing to crossing.
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As shown in Fig. 4.5, from (a) to (b), it is a type 1 edge-switch, since two

matching edges are not crossing each other in (a) but they are crossing in

(b). We discuss its ∆Cost in three different types of relation between the

numbers involved in this edge-switch.

1. Type 1 Relation:

In Fig. 4.5(a), Cost∗ = riu + rix before the edge-switch. In Fig. 4.5(b),

Cost∗ = riu + ljv after the edge-switch. Thus, ∆Cost = ljv − rix > 0.

2. Type 2 Relation:

In Fig. 4.5(a), Cost∗ = riu + ljy before the edge-switch. In Fig. 4.5(b),

Cost∗ = riu + ljv after the edge-switch. Thus, ∆Cost = ljv − ljy > 0.

3. Type 3 Relation:

In Fig. 4.5(a), Cost∗ = riu + rix before the edge-switch. In Fig. 4.5(b),

Cost∗ = riu + rix after the edge-switch. Thus, ∆Cost = 0.

Consequently, for type 1 edge-switch, ∆CostType1 ≥ 0.

Type 2: Edge-switch from crossing to non-crossing.

As shown in Fig. 4.5, from (b) to (a), it is type 2, and we also discuss its

∆Cost in three cases.

1. Type 1 Relation:

In Fig. 4.5(b), Cost∗ = riu + ljv before the edge-switch. In Fig. 4.5(a),

Cost∗ = riu + rix after the edge-switch. Thus, ∆Cost = rix − ljv < 0.

2. Type 2 Relation:

In Fig. 4.5(b), Cost∗ = riu + ljv before the edge-switch. In Fig. 4.5(a),

Cost∗ = riu + ljy after the edge-switch. Thus, ∆Cost = ljy − ljv < 0.

3. Type 3 Relation:

In Fig. 4.5(b), Cost∗ = riu + rix before the edge-switch. In Fig. 4.5(a),

Cost∗ = riu + rix after the edge-switch. Thus, ∆Cost = 0.

Consequently, for type 2 edge-switch, ∆CostType2 ≤ 0.

From the case study above, we can find that the value of ∆Cost can be

determined in Table 4.1.
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Figure 4.5: Different types of edge-switch

Table 4.1: ∆Cost

∆Cost
Edge-switch

Type 1 Type 2

Relation Type 1,2
min(riu , ljv) −min(riu , ljv)
−max(rix , ljy) +max(rix , ljy)

Type 3 0 0

So, if the two numbers on one side are both larger than the two on the

other side, namely type 3 relation, the ∆Cost of the edge-switch is always

zero. Otherwise, the absolute value of ∆Cost is the difference between the

smaller one of the top two numbers and the larger one of the bottom two

numbers. The sign of ∆Cost is determined by the type of the edge-switch.

4.3.5 Edge-switch-on-boundary

We define edge-switch-on-boundary literally as an edge-switch which takes

place right on the boundary such that all four numbers involved are located

right on the boundary. As shown in Fig. 4.4(b), there are two edge-switch-

on-boundaries. For other cases of edge-switch, they are edge-switch-not-on-
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boundary, i.e. the only edge-switch as shown in Fig. 4.4(c).

4.4 Cycle Merging

In this chapter, we solve the remaining part of the problem, which is how to

address the case of multiple cycles after the naive matching. The problem is

defined as a Cycle Merging Problem (CMP): Merge all cycles (regions

in the sorted array R and L) after naive matching into one cycle by finite

steps of edge-switches such that total ∆Cost is minimized.

We adopt a minimum spinning tree (MST) based algorithm to merge all

cycles and further generate a valid order of pairs. Since the naive matching

gives the lower bound of Cost∗, we need to minimize the Cost∗ increments

of the edge-switches during the merging. Thus, we start from the ideal case,

and eventually get a valid solution by adopting appropriate steps of edge-

switches.

Benefitting from the sorted array, we can merge cycles by merging regions

in R and L. For any two regions, we can pick any edge from each region and

switch them in order to merge the regions. But in our algorithm, we just

consider the edge-switch-on-boundaries, such as the case shown in Fig. 4.4(b),

because of Lemma 2.

Lemma 2 For any not edge-switch-on-boundary, the ∆Cost is equal to or

larger than the summation of all ∆Cost belonging to all edge-switch-on-

boundaries in between.

The proof is given in the Chapter 5. Additionally, all edge-switch-on-boundaries

in between can merge all regions in that area instead of just two regions. For

instance as shown in Figs. 4.4(b) and (c), if you choose (r1, l2) and (r6, l5)

to switch like (c), it would be better to switch (r2, l1) and (r3, l4) as well as

(r4, l3) and (r5, l6), because they have the smaller ∆Cost by Lemma 2 and

not only merge two regions but all the three regions from (a). So we only

need to consider the edge-switch-on-boundary as our potential selection for

edge-switch.

With all possible edge-switch-on-boundaries and their ∆Cost, we can con-

struct a graph H by assigning a vertex for each region and connect two

vertices if the regions that they represents have a common boundary. Addi-
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tionally, the distance of each edge in H is the ∆Cost of the edge-switch on

the corresponding boundary. For example in Fig. 4.3(b), we can construct

a graph as shown in Fig. 4.6(a), where ∆CostI,IIi means the ∆Cost of the

edge-switch on the BI,II
i .

Figure 4.6: Find the optimal solution by performing the MST algorithm

Consequently, merging all regions into one region with the smallest total

∆Cost becomes finding the MST in this graph, because the MST connects

all vertices and thus all regions are merged into one if we actually switch the

edge picked by the MST.

4.4.1 Minimum spinning tree

We use the same example in Fig. 4.3(b) to explain our algorithm. If we have

all pairs as (l1, r1) = (15, 3), (l2, r2) = (10, 1), (l3, r3) = (8, 9), (l4, r4) = (5, 6),

(l5, r5) = (7, 16), (l6, r6) = (12, 11), (l7, r7) = (14, 4), (l8, r8) = (2, 17), then

from top to bottom:

∆CostII,III1 = (r8 + r5)− (r8 + r5) = 0,

∆CostI,II1 = (r5 + l7)− (r5 + l6) = 2,

∆CostI,III1 = (r6 + l6)− (l6 + l2) = 1,

∆CostII,III2 = (l3 + l5)− (l3 + l5) = 0,

∆CostII,III3 = (l5 + l4)− (l5 + l4) = 0.

Then we use Kruskal’s algorithm [14] to find the MST shown in Fig. 4.6(b).

In this example, the MST contains BII,III
1 and BI,III

2 .
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Figure 4.7: Merge cycles based on MST

4.4.2 Edge-switch after MST

Next, we need to perform the edge-switches picked by the MST algorithm.

We switch the edge on BII,III
1 and BI,III

2 and thus obtain a valid solution of

only one cycle, as shown in Fig. 4.7(b). Finally, we have the final Cost∗ALG
as

Cost∗ALG = Cost∗IDEAL + Σ∆Cost(e), ∀e ∈ MST (4.4)

There is one circumstance that we need to discuss a little more. As shown

in Fig. 4.8(a), after finding the MST, if we want to do edge-switches on

both BI,II
1 and BII,III

1 , then as shown in Fig. 4.8(b), after we switch edges on

BI,II
1 , the problem is that we no longer have the edge-switch-on-boundaries on

BII,III
1 available. However, we can do the edge-switch between edge (ri3 , lj3)

and either edge (ri1 , lj2) or edge (ri2 , lj1).

The solution is that we always easily select the edge containing the smaller

value of ri2 and lj2 to switch with (ri3 , lj3). Without loss of generality, if
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Figure 4.8: Edge-switch example

ri2 > lj2 , we select the edge (ri1 , lj2) and do the switch as shown in Fig. 4.8(d).

After this step, we claim that we have the same total ∆Cost = ∆CostI,II1 +

∆CostII,III1 as what we desire. The reason is as follows.

In Fig. 4.8, we already have ∆CostI,II1 toward the total ∆Cost from (a) to

(b). So, in order to merge cycle II and cycle III, we just need to show that the

∆Cost of (b) to (d) is still ∆CostII,III1 which is the δCost of (a) to (c). The

four numbers involved in those two edge-switch operations, (ri2 , lj2 , ri3 , lj3)

in (a) and (ri1 , lj2 , ri3 , lj3) in (b) have the same relation type, because ri1 >

ri2 > lj3 implies that the largest number among the four becomes rr1 from

ri2 and all other numbers stay the same. According to Table 4.1, the largest

value in the relation does not affect the δCost of the edge-switch. Thus,

from (b) to (d), the ∆Cost is still ∆CostII,III1 = lj2 − ri3 . Even if we have

more consecutive edges that need to be switched, we just need to adopt this

technique iteratively. As a result, we solve this problem without losing any

optimality.

To sum up our algorithm to solve ROP, we first address the problem of

WAMP and then obtain the optimal order of pairs with minimum Cost

based on the matching. The overall flow of solving ROP is presented in the

following three algorithms:
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Algorithm 1: ROP’s algorithm

Data: A set of margin pairs of (li, ri)
Result: An order of pairs with minimal Cost

1Construct a complete bipartite graph G;
2Obtain an almost-perfect matching by solving WAMP;
3return the order determined by the almost-perfect matching;

Algorithm 2: WAMP’s algorithm

Data: Graph G built by pairs of (li, ri)
Result: A minimal Cost almost-perfect matching creating an order of

pairs
1Sort ri and li respectively;
2Naive Matching with same index;
3switch Number of cycles after the naive matching do
4case One cycle
5Delete the last edge in the sorted G;
6return the almost-perfect matching;

7end
8case Multiple cycles
9Merge all cycles by solving CMP;

10Go to case One cycle;

11end

12endsw

Algorithm 3: CMP’s algorithm

Data: Cycles (regions) determined by naive matching
Result: One cycle (region) with minimal sum of all δCost

1Construct a graph H by regions and Boundaries;
2Find the MST in H by Kruskal’s algorithm;
3Switch the edges picked by the MST;
4return the cycle after edge-switches;

21



CHAPTER 5

PROOF

In this chapter, we will prove the optimality of the algorithm we presented

in Chapter 4.

Note that there might be more than one optimal ordering, but our algo-

rithm can only output one of them. If we have the optimal solution OPT

which has smaller cost CostOPT than our algorithm’s CostALG, we will show

that this is not possible. We also use CostIDEAL to represent the case just

after the naive matching with the lower bound of Cost. Because of the rea-

son stated in Section 4.1, we think of ordering as matching instead, in other

words, proving the optimality of WAMP instead of proving ROP directly.

Note that if we just have one cycle after the naive matching, then we use

cut strategy to have the optimal solution. So we just need to consider the

multiple cycles case and its Cost∗IDEAL, Cost∗ALG and Cost∗OPT . In order to

determine the relationship between the ideal case and all possible ordering,

we have the following lemma.

Lemma 3 Any perfect matching in G can be achieved by finite steps of type

1 edge-switch with ∆Cost ≥ 0 from the ideal case.

Actually, because all type 1 edge-switches have non-negative ∆Cost, we can

see that

Lemma 3⇒ Lemma 1 (5.1)

Thus, proving Lemma 3 can be applied to prove Lemma 1.

Proof of Lemma 3:

Base step: N = 1. As shown in the Fig. 5.1(a), there is only one possible

ordering. N = 2. There are two possible matching cases as shown respec-

tively in Figs. 5.1(b) and (c). One type 1 edge-switch can be done from the

ideal case (b) to (c).

Inductive hypothesis:
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Figure 5.1: Base cases

Assume that when N = k, any perfect matching can be achieved by finite

steps of type 1 edge-switch from the ideal case.

When N = k + 1, we have k + 1 pairs. Say we have an arbitrary perfect

matching between R and L as shown in Fig. 5.2(a). As shown Fig. 5.2(b),

we have another perfect matching in Fig. 5.2(b) which is the same as in

Fig. 5.2(a) except for the edges between ri1 , lj1 , rix , ljy . It is obvious that

from Fig. 5.2(b) to Fig. 5.2(a), we just need one type 1 edge-switch step.

For (b), the bottom k pair matchings, by the hypothesis, can be transformed

from the ideal case by finite steps of type 1 edge-switch. Thus, with one more

edge-switch of type 1, we can always achieve an arbitrary perfect matching

of k + 1 pairs. So the lemma is true. Next, we prove Lemma 2.

Proof of Lemma 2:

Refer to Fig. 4.4. If we do an edge-switch-not-on-boundary of (rx, lx) with

(ry, ly) for 0 ≤ x < y ≤ N , and there are M edge-switch-on-boundaries of

(rmi
, lmi

) with (rmi+1, lmi+1) such that mi ≥ x and mi + 1 ≤ y, then we

want to show that edge-switch-not-on-boundary ∆Costnb is larger or equal

to Σi=M
i=1 ∆Costobmi

where ∆Costobmi
represents the ∆Cost for the edge-switch

of (rmi
, lmi

) with (rmi+1, lmi+1).

1. Type 3 relation of rx, ry, lx, ly

∆Costnb = 0 by Table 4.1. Additionally, since rx > ry > lx > ly,

mi ≥ x and mi + 1 ≤ y , we have ∀mi, rmi
> rmi+1 > lmi

> lmi+1 and

∆Costobmi
= 0. Thus, ∆Costnb = Σi=M

i=1 ∆Costobmi
= 0, and the lemma is

true in this case.

2. Type 1 and 2 relations of rx, ry, lx, ly

Assume that we have a counterexample such that ∆Costnb < Σi=M
i=1 ∆Costobmi

.
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Figure 5.2: Inductive steps

Then by Table 4.1, we have

∆Costnb <Σi=M
i=1 ∆Costobmi

min(rx, lx)−max(ry, ly)

<min(rm1 , lm1)

−max(rm1+1, lm1+1) +min(rm2 , lm2)︸ ︷︷ ︸
<0

−max(rm2+1, lm2+1) + ...+min(rmM
, lmM

)︸ ︷︷ ︸
<0

−max(rmM+1, lmM+1)

<min(rm1 , lm1)−max(rmM+1, lmM+1)

Note that −max(rmi+1, lmi+1) + min(rmi+1
, lmi+1

) ≤ 0,∀i ≤ M , since

rmi+1 and lmi+1 are above the rmi+1
and lmi+1

in the sorted R and L
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arrays. But it is not possible because min(rx, lx) ≥ min(rm1 , lm1) and

max(ry, ly) ≤ max(rmM+1, lmM+1). Thus, there is no counterexample

and the lemma is true in this case.

So, Lemma 2 is true.

Proof of optimality:

If we have the optimal solution OPT , by Lemma 3, it can be achieved by

finite steps of type 1 edge-switch from the ideal case. At the starting point

of the ideal case, we have multiple cycles, but for any one of those switches,

if its four numbers involved are all inside the region, it cannot make any

contribution to merge the cycles. Thus, some of those switches must be cross

two regions. Besides, all regions must be merged, so those switches must

touch all cycles. Thus, those switches can construct an spinning tree in a

graph H ′ where there is one vertex for each cycle (region), and there is an

edge (u, v) with ∆Cost(u,v) for one of all possible switches that crosses any

two different regions u and v. Next, we just need to prove that this spinning

tree in H ′ has the total ∆Cost larger than or equal to the total ∆Cost of

the MST in H defined in Section 4.4.

By Lemma 2, H ′ can be transformed into H by a way that for every edge

of edge-switch-not-on-boundary, replace it by one or more edges of edge-

switch-on-boundary, and then merge the edges with the identical ∆Cost.

Additionally by the Lemma 2, after the transformation, the smallest ∆Cost

between any two vertices stays the same. Thus, the MST in H is also the

MST in H ′. As a result, we prove that the spinning tree of OPT in H ′

has the total ∆Cost larger than or equal to the total ∆Cost of the MST in

H by our algorithm. By Eq. 4.4, Cost∗OPT ≥ Cost∗ALG. Then, by Eq. 4.3

CostOPT ≥ CostALG. OPT could not be more optimal than ALG, so our

algorithm can output an optimal solution.

The overall running time of our algorithm is definitely polynomial. Sorting

and doing the naive matching to obtain the ideal case takes O(N logN) time,

where N is the size of the set of characters. For finding the MST in the graph

G, the number of edges in G is at most N , since the number of boundaries

in the sorted arrays is at most N . Consequently, it can be done within

O(N logN) by Kruskal’s algorithm.

Generally, we have found that all possible solutions can be transformed

from the ideal case and our algorithm can give the optimal solution which
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complete the transformation with the smallest Cost increment. Thus, our

algorithm can generate the optimal solution for the stencil row planning

problem.
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CHAPTER 6

EXPERIMENTAL RESULTS

We implement our algorithm in C++ and test it on a Linux workstation

2.5G Hz CPU and 126 GB memory. Since the previous works [11, 12, 13]

use some assumptions to generate characters having similar left and right

blank margins, which might not be realistic, we create our own benchmarks

with a set of characters with blank margins generated randomly. They are

controlled to be less than the actual character size (the area impossible to

be overlapped), equaling to 1000 in our benchmark. Input is a certain set

of characters, and output is the minimum total length of those characters

in a row. We run our algorithms and only algorithms of [11, 12] on our

benchmarks, since [13] does not improve the row planning and cannot insert

more characters than [11, 12]. The comparison result is shown in Table 6.1.

The number of characters is reported in column 1. The total length of blank

margins, namely Cost, and running time are reported for all three algorithms.

Speed-up and length improvement are also calculated. Because of the running

time issue in [12], last two test cases are not reported for it.

Table 6.1: Comparison results

#CP
[12] [11] ALG

Cost CPU(s) Cost CPU(s) Cost CPU(s) Improve [12] SpdUp [12] Improve [11] SpdUp [11]
96 104000 6.54 132400 0.099 95924 0.00178 7.7% x3666 27.5% x55.5
294 306000 306.3 389980 0.104 288664 0.005627 5.6% x54427 26.0% x18.5
495 505000 2376.3 657980 0.122 478280 0.009335 5.2% x254555 27.3% x13.1
581 619000 3949.3 819000 0.136 582730 0.010847 5.8% x364094 28.8% x12.5
767 NA Hours 1033000 0.157 766197 0.015108 NA NA 25.8% x10.4
929 NA Hours 1271000 0.172 937129 0.017747 NA NA 26.3% x9.7

As shown in Table 6.1, compared to [12], we can improve the result by

around 6% with a huge speed-up, because [12] uses a Hamiltonian path

based method, which approximates the result but is still not efficient. By the

comparison to [11], we can improve the result a lot and also have good speed-

up. And the runtime confirms that the time complexity of our algorithm is

O(n log n) where n denotes the number of characters. Because of the limited
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data set, those heuristics might perform poorly in future industry data. On

the other hand, since we have already proved the optimality of our algorithm,

it can always achieve the best solution theoretically and the experiments also

confirm that. Adopting our algorithm, we save space in a row, thus more

characters can be inserted into the stencil and further reduce the number

of shots needed to print the layout. Additionally, our algorithm becomes

essential if the number of characters is large.
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CHAPTER 7

CONCLUSION

In this paper, we propose a polynomial time optimal algorithm to solve the

1D row ordering problem for EBL stencil planning. Optimality proof is pro-

vided, and the efficiency of our algorithm is also verified by the experimental

results. In the CP technology, our algorithm serves as a key subroutine for

the high-level character selection and distribution problem. Those problems

are proved NP-hard, but any solution of them can still benefit significantly

from our solution for this 1D row ordering problem.
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