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THE DIFFRACTION OF LIGHT BY SUPERSONIC
WAVES.

By N. S. NAGENDRA NATH.*
(Trinity College, Cambridge.)

7. Introduction.

.&‘\N clementary theory of the diffraction of light by supersonic waves in
liquids was put forward by Sir C. V. Raman and myself! to explain manyv of
:fhc important features of the phenomenon observed by Bir and others.
The theory was developed under the restriction that a light beam undergoss
no amplitude changes on its wavefront during its passage through the super-
sonic field. This restriction enabled us to get closed expressions for the
intensities of the diffraction orders. ILater, experimental conditions
actually satisfying the above restriction were realised by Bir and Sanders
who lhave reported reasonable agreement with our calculations. We have
also developed the exact theory® without the above restriction. Though it
explains certain of the features when the restriction is not satisfied experi-
mentally, yet it is far from being satisfactory, as the expressions are too
complicated. The exact theory developed by Extermann and Wannier3
suffers also from the same defect. They have only plotted the intensity
diagrams of the diffraction orders for certain values of the parameters entering
the theory. The purpose of this paper is to point out an extreme case where
one can get closed expressions for the intensities of the diffraction orders.
While the elementary theory is valid in the low frequency region (5 to 6
megacycles per second or less), the theory contained in this paper is valid
in any frequency region so long as the supersonic field is not strong emough
to excite the second and other higher orders. It is also found that in the
very high frequency region, the first orders would be dominant over the
higler omnes.

Iet us assume that the sound field creates a periodic fluctuation in the
refractive index of the medium and consider the case when the direction of
the incident light is normal to the direction of the sound waves. The ampli-
tudes of the diffraction orders satisfy the equations®
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where

'lt = 1; — 1,

p= A pgpd*,

& = 2muz/A,

po = the refractive index of the medium,
pn = the amplitude of the fluctuation of the index,
A = the wave-length of the incident light,

A* = the wave-length of the sound waves,

= = the width of the sound field along the direction of the incident light.
The boundary conditions to be satisfied by @’s are
Dy (0) =1 and @.(0) =0, -tz (), (2)

which mean that the intensity of the incident light is unity. If p is zero in
(1), the solutions of (1) satisfving (2) are given by @, (&) == 7J, (¢) where J,
is the Bessel function of the rth order. This corresponds to our elementary
theory.

If p is very large, then the equation (1) can only be satisfied if

dd, . , :
2 df) = 1/PP,, ¥ == 0 (3)
which means that
D, = A, exp (i 7 p* £2), r == 0. (4)
But A, must nearly be zero by virtue of (2). If r =0
L!@O -4
¢ = 0 (3)

and hence @, =1 by virtue of (2). This means that when p is very large,
the diffraction effect will 1ot be prominent as is otherwise the case when p is
nearly zero.

Iet us assume that p is so large that the second and all other higher
orders have vanishing amplitudes. In this case the equations are

i :
dP :
- _(i’-fl — Dy = ipPy, .
as one can easily see that @, = —&_,. If we put @, ==A, exp (?2A¢) and
@, = A, exp ({A§), it is easy to find out that A satisfies the equation
2N —Ap —1 =0, (7)

the roots of which are
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Thus the amplitudes can be written as
D, = Agexp (1A,€) + A; exp (14,€)
D, = A exp (1A€) + B, exp (2A,8). (8)

By virtue of (2) and (6) we must have

A() —1‘— B() = 1,
Al + Bl = G)
Ay + 1A A =0, (9)

B, +1 By A =0.

Solving (9) we can write the solutions for @, and @, as

) Vp* 4 8 L 4 )

1 PN f [p— st
w5 (1 ) e [T ¢

A pE 4 8 L 4 J L 4 J ‘
which may also be written as
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It may be seen from (12) that the phase of the central order depends on the
index fluctuation while that of the first order does not depend on it, as pé is
independent of p. The intensities of the diffraction orders are given by
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If p becomes very large I, =1 and I, = 0 in conformity with our egﬂier con-
clusion. If pis very small, I, = 1— sin® (£/ 12)and I, = }sin® (£12). As the
second orders are not observed in this region only when ¢ is small, the above
expressions may be easily seen to be the approximations of J2(€) and J:? (&).
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Leaving these two extreme cases, it may be seen from (12) that when

or z =

, where s a positive intege-, (13)

s
’\/(po/\)\*z)z + 8 (/;)2

the intensity of the first order is zero which means the absence of the diffrac-
tion effect.

“We have assumed here that p is so large that the second and other
higher orders have vanishing intensity. We should thus expect reasonable
agreement between (12) and one of the diagrams in Extermann and Wan-
nier’s paper® in which the second order has a small intensity while all the
higher orders are absent. This diagram corresponds to p =1 and we should

thus expect the validity of (13) when p > 1. (Extermann’s # and D are !

and p £/2 respectively in our notation.) In the following diagram, the dotted
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The dotted curves practically coincide with the continuous ones of Ixtermann and
Wannier for low values of £.

curves are according to (12), while the continuous ones are taken from the
paper of Extermann and Wannier. Complete agreement cannot be expected
as our expressions (12) are valid only when the second and other higher
orders are not present, which is not exactly the case as can be seen in the
curve for the intensity of the second order which is not entirely megligible.
If we remember that Extermann’s curves were plotted from extensive
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calculations, the usefulness of (12) when p > 1 may not be without signi-
ficance, as he has only plotted three intensity diagrams two of which corres-
pond to p < 1 and the remaining to p =1,

Before concluding we may point out the significance of (11) in the
application of the theory to the diffraction of light by supersonic waves in
solids. If we consider a longitudinal sound wave, it creates an index
fluctuation given by an ellipsoid, two of whose axes lie in a plane perpendi-
cular to the direction of the incident light and one of which lies along the
direction of the sound wave. If the incident light is linearly polarised, we
will have to decompose the incident light into two components, the polarisa-
tions of which lie along the above axes and consider the propagation of each
independent of the other. It may be seen from (11) that the phases of the
two components of the central order would be different as they depend on the
principal index fluctuations which are different. Thus the resultant of the two
components of the central order should be elliptically polarised. The first
order would be linearly polarised as can be seen from (11), in the limits of
the validity of the theory. In general, one should expect the diffraction
orders to be elliptically polarised. But when p= 0, the phases of the
diffraction orders do not depend on the index fluctuations and we should
expect, as has been pointed out by Mueller and myself,* that the diffraction
orders would be linearly polarised.
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