CURVATURE TENSORS AND THEIR RELATIVISTIC SIGNIFICANCE (II)

By

G.P. POKHARIYAL and R.S. MISHRA

(Received December 2, 1970)

Summary: In this paper we have defined the curvature tensors and their properties are studied.

1. Introduction: In the *n*-dimensional space V_n , the tensors

(1.1)
$$C(X, Y, Z, T) = R(X, Y, Z, T) - \frac{R}{n(n-1)} [g(X, T)g(Y, Z) - g(Y, T)g(X, Z)],$$

(1.2)
$$L(X, Y, Z, T) = R(X, Y, Z, T)$$

$$-\frac{1}{n-2} [g(Y, Z) \operatorname{Ric}(X, T) - g(X, Z) \operatorname{Ric}(Y, T) + g(X, T) \operatorname{Ric}(Y, Z) - g(Y, T) \operatorname{Ric}(X, Z)],$$

and

(1.3)
$$V(X, Y, Z, T) = R(X, Y, Z, T)$$

$$-\frac{1}{n-2} [g(X, T) \operatorname{Ric}(Y, Z) - g(Y, T) \operatorname{Ric}(X, Z) + g(Y, Z) \operatorname{Ric}(X, T) - g(X, Z) \operatorname{Ric}(Y, T)]$$

$$+\frac{R}{(n-1)(n-2)} [g(X, T)g(Y, Z) - g(Y, T)g(X, Z)],$$

are called concircular, conharmonic and conformal curvature tensor respectively [1]. These satisfy the symmetric and skew symmetric as well as the cyclic property possessed by curvature tensor R(X, Y, Z, T).

The projective curvature tensor is given by

(1.4)
$$W(X, Y, Z, T) = R(X, Y, Z, T) + \frac{1}{n-1} [g(X, Z) \operatorname{Ric}(Y, T) - g(X, T) \operatorname{Ric}(Y, Z)].$$

We shall now define the curvature tensors and study their properties.

2. Curvature Tensors

Definition (2.1): We define the tensors

(2.1)
$$W^*(X, Y, Z, T) \stackrel{\text{def}}{=} R(X, Y, Z, T) - \frac{1}{(n-1)} [g(X, Z) \operatorname{Ric}(Y, T) - g(X, T) \operatorname{Ric}(Y, Z)],$$

(2.2)a
$$W_1(X, Y, Z, T) \stackrel{\text{def}}{=} R(X, Y, Z, T) + \frac{1}{n-1} [g(X, T) \operatorname{Ric}(Y, Z) - g(Y, T) \operatorname{Ric}(X, Z)],$$

and

(2.2)b
$$W_1^*(X, Y, Z, T) \stackrel{\text{def}}{=} R(X, Y, Z, T)$$

$$-\frac{1}{n-1} [g(X, T) \operatorname{Ric}(Y, Z) - g(Y, T) \operatorname{Ric}(X, Z)].$$

From the equations (1.1) to (2.2)b, it is clear that for an empty gravitational field characterized by Ric(X, Y)=0, the eight fourth rank tensors are identical.

In the space V_n , from equations (1.1), (1.2) and (1.3) we have

(2.3)
$$V(X, Y, Z, T) = L(X, Y, Z, T) + \frac{n}{n-2} [R(X, Y, Z, T) - C(X, Y, Z, T)],$$

which for V_4 reduces to

$$(2.4) V(X, Y, Z, T) = L(X, Y, Z, T) + 2R(X, Y, Z, T) - 2C(X, Y, Z, T).$$

We notice that (2.1) is skew-symmetric in Z, T and it also satisfies

$$(2.5) W*(X, Y, Z, T) + W*(Y, Z, X, T) + W*(Z, X, Y, T) = 0.$$

Breaking $W^*(X, Y, Z, T)$ in two parts viz.

$$G(X, Y, Z, T) = \frac{1}{2} [W^*(X, Y, Z, T) - W^*(Y, X, Z, T)],$$

and

$$H(X, Y, Z, T) = \frac{1}{2} [W^*(X, Y, Z, T) + W^*(Y, X, Z, T)],$$

which are respectively skew-symmetric and symmetric in X, Y. From (2.1) it follows that

(2.6)
$$G(X, Y, Z, T) = R(X, Y, Z, T) - \frac{1}{2(n-1)} [g(X, Z) \operatorname{Ric}(Y, T) - g(X, T) \operatorname{Ric}(Y, Z) - g(Y, Z) \operatorname{Ric}(X, T) + g(Y, T) \operatorname{Ric}(X, Z)],$$

and

(2.7)
$$H(X, Y, Z, T) = \frac{1}{2(n-1)} [g(X, T) \operatorname{Ric}(Y, Z) - g(X, Z) \operatorname{Ric}(Y, T) - g(Y, Z) \operatorname{Ric}(X, T) + g(Y, T) \operatorname{Ric}(X, Z)].$$

It can be seen from (2.6) that G(X, Y, Z, T) possesses all the symmetric and skew-symmetric properties of R(X, Y, Z, T) as well as the cyclic property [2].

From equations (1.3) and (2.6) we get

(2.8)
$$G(X, Y, Z, T) = \frac{1}{2(n-1)} \left[(3n-4)R(X, Y, Z, T) - (n-2)V(X, Y, Z, T) - \frac{R}{(n-1)} \{g(X, Z)g(Y, T) - g(X, T)g(Y, Z)\} \right],$$

which for an electromagnetic field in V_4 becomes

$$(2.9) 3G(X, Y, Z, T) = 4R(X, Y, Z, T) - V(X, Y, Z, T).$$

From equations (1.2) and (2.6), for V_4 , we have

$$3G(X, Y, Z, T) = 4R(X, Y, Z, T) - L(X, Y, Z, T).$$

Thus equation (2.9) is the consequence of (2.10) for a space of vanishing scalar curvature.

Considering $W_1(X, Y, Z, T)$ and $W_1^*(X, Y, Z, T)$, we notice that these are skew-symmetric in X, Y and satisfy the cyclic property. We break both into two parts which are respectively skew-symmetric and symmetric in Z, T.

$$A(X, Y, Z, T) = \frac{1}{2} [W_1(X, Y, Z, T) - W_1(X, Y, T, Z)],$$

$$B(X, Y, Z, T) = \frac{1}{2} [W_1(X, Y, Z, T) + W_1(X, Y, T, Z)],$$

and

$$M(X, Y, Z, T) = \frac{1}{2} [W_1^*(X, Y, Z, T) - W_1^*(X, Y, T, Z)],$$

$$N(X, Y, Z, T) = \frac{1}{2} [W_1^*(X, Y, Z, T) + W_1^*(X, Y, T, Z)],$$

From (2.2)a it follows that

(2.11)
$$A(X, Y, Z, T) = R(X, Y, Z, T) + \frac{1}{2(n-1)} [g(X, T) \operatorname{Ric}(Y, Z) - g(Y, T) \operatorname{Ric}(X, Z) - g(X, Z) \operatorname{Ric}(Y, T) + g(Y, Z) \operatorname{Ric}(X, T)],$$

and

(2.12)
$$B(X, Y, Z, T) = \frac{1}{2(n-1)} [g(X, T) \operatorname{Ric}(Y, Z) - g(Y, T) \operatorname{Ric}(X, Z) + g(X, Z) \operatorname{Ric}(Y, T) - g(Y, Z) \operatorname{Ric}(X, T)].$$

A(X, Y, Z, T) satisfies symmetric, skew-symmetric and the cyclic properties as satisfied by R(X, Y, Z, T).

From (1.3) and (2.11), for an electromagnetic field in V_4 , we have

$$(2.13) 3A(X, Y, Z, T) = 4R(X, Y, Z, T) - V(X, Y, Z, T).$$

Equations (1.2) and (2.11) in V_4 yield

$$(2.14) 3A(X, Y, Z, T) = 4R(X, Y, Z, T) - L(X, Y, Z, T).$$

From equation (2.2)b, we have,

(2.15)
$$M(X, Y, Z, T) = R(X, Y, Z, T) + \frac{1}{2(n-1)} [g(X, Z) \operatorname{Ric}(Y, T) - g(X, T) \operatorname{Ric}(Y, Z) + g(Y, T) \operatorname{Ric}(X, Z) - g(Y, Z) \operatorname{Ric}(X, T)],$$

and

(2.16)
$$N(X, Y, Z, T) = \frac{1}{2(n-1)} [g(Y, T) \operatorname{Ric}(X, Z) - g(X, T) \operatorname{Ric}(Y, Z) + g(Y, Z) \operatorname{Ric}(X, T) - g(X, Z) \operatorname{Ric}(Y, T)].$$

For the electromagnetic field in V_4 , from (1.3) and (2.15) we have

(2.17)
$$3M(X, Y, Z, T) = V(X, Y, Z, T) + 2R(X, Y, Z, T).$$

Also from (1.2) and (2.15) for V_4 , we have

$$(2.18) 3M(X, Y, Z, T) = L(X, Y, Z, T) + 2R(X, Y, Z, T).$$

M(X, Y, Z, T) satisfies symmetric, skew-symmetric as well as the cyclic property as satisfied by R(X, Y, Z, T).

The vector

(2.19)
$$\theta_i = \frac{g_{ij}\epsilon^{jklm}R_k^pR_{pl;m}}{\sqrt{-g}R_{ab}R^{ab}},$$

is called the complexion vector of a non-null electromagnetic field with no matter

by Misner and Wheeler [3] and its vanishing implies that field is purely electrical. A semi-colon stands for covariant differentiation.

Interchanging the dummy indices l, m (2.19) can be written as

(2.20)
$$\theta_{i} = \frac{g_{ij}\epsilon^{jkml}R_{k}^{p}R_{pm;l}}{\sqrt{-g}R_{ab}R^{ah}},$$

$$= -\frac{g_{ij}\epsilon^{iklm}R_{k}^{p}R_{pm;l}}{\sqrt{-g}R_{ab}R^{ab}}.$$

By setting W^{*h} pm; h=0, we get

$$(2.21) R_{pm;l} = R_{pl;m} ,$$

which on substitution in (2.20) implies that $\theta_i=0$. Thus the vanishing of the divergence of the Weyl* curvature tensor in an electromagnetic field implies a purely electric field.

It is seen that we can't get a purely electric field with the help of $W_{1\,hijk}$ and $W_{1\,hijk}^*$.

From equation (1.1) on contracting, we get

$$(2.22) C_{ij} = \left(R_{ij} - \frac{R}{n}g_{ij}\right),$$

an Einstein tensor.

By contracting W_{hijk}^* , defined by (2.1), we get

$$(2.23) W_{hk}^* = g^{ij} W_{hijk}^* = \left(\frac{n-2}{n-1}\right) \left(R_{hk} + \frac{R}{n-2} g_{hk}\right),$$

and

$$W^* = g^{hh} W_{hh}^* = \left(\frac{n-2}{n-1}\right) \left\{ R + \frac{nR}{n-2} \right\} = 2R.$$

The scalar invariant of second degree in W_{bb}^* is given by

$$(2.24) W_{2}^{*} = W_{hk}^{*} W^{*hk} = \left(\frac{n-2}{n-1}\right)^{2} \left\{ R_{2} + \frac{2R^{2}}{n-2} + \frac{nR^{2}}{(n-2)^{2}} \right\}.$$

From (2.6), on contracting, we have

(2.25)
$$G_{hk} = \frac{2n-3}{2(n-1)} \left[R_{hk} + \frac{R}{(2n-3)} g_{hk} \right],$$

and

$$G=g^{hk}G_{hk}=\frac{3}{2}R.$$

Similarly from (2.7) we have,

$$(2.26) H_{hk} = \frac{-n}{2(n-1)} \left[R_{hk} - \frac{R}{n} g_{hk} \right],$$

and the scalar H=0.

Contracting $W_{1 hijk}$, A_{hijk} and B_{hijk} , we find that the results obtained are exactly similar to equations (2.23) to (2.26).

In the similar manner, on contracting $W_{1 hijk}^*$ we have

$$(2.27) W_{1hk}^* = \frac{n}{n-1} \left(R_{hk} - \frac{R}{n} g_{hk} \right),$$

and

$$W_1^* = g^{hk} W_{1hk}^* = 0$$
.

This scalar invariant of second degree in W_{1hk}^* is given by

$$(2.28) (W_1^*)_2 = W_{1hk}^* W_1^{*hk} = \frac{n^2}{(n-1)^2} \left(R_2 - \frac{R^2}{n} \right).$$

From (2.27), we have

(2.29)
$$W_{1hk}^* R^{hk} = \frac{n}{(n-1)} \left(R_2 - \frac{R^2}{n} \right).$$

Hence

$$(2.30) W_{1hk}^*W_1^{*hk} = \left(\frac{n}{n-1}\right)W_{1hk}^*R^{hk}.$$

From (2.15) we notice that contracted M_{ij} vanishes identically for an *Einstein* space. This enables us to extend the *Pirani* formation of gravitational waves to the *Einstein* space with the help of M_{hijk} .

For an Einstein space M_{hijk} , W_{1hijk}^* , W_{hijk} and V_{hijk} are identically equal. Also we can show that the vanishing of symmetric part N_{hijk} is the necessary and sufficient condition for a space to be an Einstein space.

We can also obtain the *Rainich* [4] type of conditions for the existence of the non-null electrovac universe with the help of W_{hijk}^* similar to those obtained by W_{hijk} [2].

From the above discussion it is seen that except the vanishing of the complexion vector, the tensor W_{1hijk}^* behaves exactly in the same manner as W_{hijk} and their symmetric as well as skew symmetric parts have same properties. Similar thing happens with W_{hijk}^* and W_{1hijk} .

REFERENCES

- [1] Mishra, R.S. (1969): H-Projective curvature tensor in Kahler manifold (under publication).
- [2] K. P. Singh, L. Radhakrishna and R. Sharan: Electromagnetic Fields and cylindrical symmetry, Annals of Phys. Vol. 32, No. 1 pp. 46-68 (1965).
- [3] C.W. Misner and J.A. Wheeler: Ann. Phys. (N.Y.) 2, 525 (1957).
- [4] G.Y. Rainich: Trans. Am. Maths. Soc. 27, 106 (1952).
- [5] L.P. Eisenhart: Riemannian Geometry, Princeton University Press (1926).
- [6] J.L. Synge: Relativity, The general theory, North Hokand Amsterdam (1960).

Department of Mathematics Banaras Hindu University Varanasi-5, India